Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 1 lutego 2026 01:43
  • Data zakończenia: 1 lutego 2026 01:57

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Graficzny symbol pokazany na ilustracji oznacza

Ilustracja do pytania
A. bramę
B. przełącznik
C. most
D. koncentrator
Przełącznik, znany również jako switch, jest kluczowym elementem infrastruktury sieciowej stosowanym do zarządzania ruchem danych między różnymi urządzeniami w sieci lokalnej (LAN). Jego główną funkcją jest przekazywanie pakietów danych tylko do docelowych urządzeń, co zwiększa efektywność i bezpieczeństwo sieci. Przełącznik analizuje adresy MAC urządzeń podłączonych do jego portów, co pozwala na inteligentne przesyłanie danych tylko tam, gdzie są potrzebne. Przełączniki mogą działać w różnych warstwach modelu OSI, ale najczęściej funkcjonują na warstwie drugiej. W nowoczesnych sieciach stosuje się przełączniki zarządzalne, które oferują zaawansowane funkcje, takie jak VLAN, QoS czy możliwość zdalnego konfigurowania. Dzięki temu możliwa jest bardziej precyzyjna kontrola i optymalizacja ruchu sieciowego. W praktyce przełączniki są stosowane w wielu środowiskach, od małych sieci biurowych po duże centra danych, gdzie odpowiadają za skalowalne i efektywne zarządzanie zasobami sieciowymi. Zgodnie z dobrymi praktykami branżowymi, wybór odpowiedniego przełącznika powinien uwzględniać zarówno aktualne potrzeby sieci, jak i przyszłe możliwości jej rozbudowy.

Pytanie 2

Aby zintegrować komputer z siecią LAN, należy użyć interfejsu

A. D-SUB
B. S/PDIF
C. RJ-45
D. LPT
Interfejs RJ-45 jest standardem używanym w sieciach Ethernet oraz LAN, który pozwala na fizyczne połączenie komputerów i innych urządzeń sieciowych. Zastosowanie tego interfejsu umożliwia przesyłanie danych z prędkościami typowymi dla sieci lokalnych, wynoszącymi od 10 Mbps do nawet 10 Gbps w przypadku nowoczesnych technologii. Złącze RJ-45 jest odpowiedzialne za łączenie kabli miedzianych typu twisted pair, które są powszechnie stosowane w budowie infrastruktury sieciowej. W codziennych zastosowaniach, RJ-45 znajduje zastosowanie w podłączaniu komputerów do routerów, przełączników oraz punktów dostępowych. W standardzie ANSI/TIA-568 określono kolory przewodów w kablu Ethernet, co zapewnia spójność w instalacjach sieciowych. Warto również zwrócić uwagę na właściwości kabli, takie jak kategorie (np. Cat5e, Cat6), które wpływają na wydajność i przepustowość sieci. Przykładem zastosowania RJ-45 jest sieć biurowa, gdzie wiele komputerów jest podłączonych do switcha, umożliwiając współdzielenie zasobów i dostęp do internetu.

Pytanie 3

Jak w systemie Windows Professional można ustalić czas działania drukarki oraz jej uprawnienia do drukowania?

A. katalog wydruku
B. ustawienia drukowania
C. dzielenie wydruku
D. parametry drukarki
Zrozumienie roli, jaką odgrywają różne elementy konfiguracji drukarek w systemie Windows, jest kluczowe dla efektywnego zarządzania drukiem. Wydaje się, że odpowiedzi takie jak "kolejka wydruku" czy "preferencje drukowania" mogą być logicznymi wyborami, jednak nie są one właściwe w kontekście pytania. Kolejka wydruku odnosi się do zarządzania dokumentami oczekującymi na wydruk, a nie do ustawiania godzin pracy drukarki czy uprawnień. Choć kolejka jest istotnym elementem w procesie drukowania, nie daje możliwości zmiany ustawień czasowych ani przydzielania dostępów użytkownikom. Podobnie, preferencje drukowania dotyczą głównie ustawień specyficznych dla dokumentów, takich jak jakość druku czy format, ale nie obejmują one zarządzania dostępnością drukarki. Z kolei "udostępnianie wydruku" ma na celu umożliwienie innym użytkownikom dostępu do drukarki w sieci, ale nie pozwala na konfigurację jej pracy w określonych godzinach. Typowym błędem jest mylenie różnych poziomów konfiguracji – właściwości drukarki to miejsce, gdzie można precyzyjnie ustawić te parametry. Wiedza o tym, jak odpowiednio zarządzać dostępem i czasem pracy drukarki, jest niezbędna dla optymalizacji i bezpieczeństwa procesów drukowania, co jest szczególnie ważne w środowisku biurowym, gdzie wiele osób korzysta z tych samych zasobów.

Pytanie 4

Zwiększenie zarówno wydajności operacji (zapis/odczyt), jak i bezpieczeństwa przechowywania danych jest możliwe dzięki zastosowaniu macierzy dyskowej

A. RAID 1
B. RAID 3
C. RAID 50
D. RAID 0
Wybór RAID 3, RAID 1 lub RAID 0 jako odpowiedzi na pytanie jest błędny, ponieważ każda z tych konfiguracji ma swoje ograniczenia, jeżeli chodzi o jednoczesne zwiększenie szybkości operacji oraz bezpieczeństwa przechowywania danych. RAID 1, który polega na mirroringu danych, zapewnia doskonałą redundancję, ale nie zwiększa wydajności zapisu, a wręcz może ją obniżyć, ponieważ wymaga tego samego zapisu na dwóch dyskach. RAID 0 z kolei, mimo że oferuje wysoką wydajność dzięki stripingowi, nie zapewnia żadnej redundancji – w przypadku awarii któregoś z dysków, wszystkie dane są tracone. RAID 3, korzystający z parzystości, również nie jest optymalnym rozwiązaniem, gdyż wprowadza pojedynczy dysk parzystości, co może stać się wąskim gardłem w operacjach zapisu. Kluczowym błędem myślowym jest zatem brak zrozumienia, że aby osiągnąć wysoką wydajność i bezpieczeństwo, konieczne jest zastosowanie odpowiedniej kombinacji technologii RAID. W praktyce, podejście do wyboru macierzy dyskowej wymaga analizy specyficznych potrzeb operacyjnych i budżetowych, a także znajomości kompromisów, które wiążą się z różnymi konfiguracjami RAID, co przekłada się na efektywność w zarządzaniu danymi w każdej organizacji.

Pytanie 5

Urządzenie, które zamienia otrzymane ramki na sygnały przesyłane w sieci komputerowej, to

A. regenerator
B. konwerter mediów
C. punkt dostępu
D. karta sieciowa
Karta sieciowa jest kluczowym elementem w architekturze sieci komputerowych, odpowiedzialnym za konwersję danych z postaci cyfrowej na sygnały, które mogą być przesyłane przez medium transmisyjne, takie jak kable czy fale radiowe. Jej głównym zadaniem jest obsługa protokołów komunikacyjnych, takich jak Ethernet czy Wi-Fi, co pozwala na efektywne łączenie komputerów i innych urządzeń w sieci. Przykładowo, w przypadku korzystania z technologii Ethernet, karta sieciowa przekształca dane z pamięci komputera na ramki Ethernetowe, które są następnie transmitowane do innych urządzeń w sieci. Dodatkowo, karty sieciowe często zawierają funkcje takie jak kontrola błędów oraz zarządzanie przepustowością, co przyczynia się do stabilności i wydajności przesyłania danych. Warto zauważyć, że w kontekście standardów branżowych, karty sieciowe muszą być zgodne z normami IEEE, co zapewnia ich interoperacyjność w zróżnicowanych środowiskach sieciowych.

Pytanie 6

Który z trybów nie jest dostępny dla narzędzia powiększenia w systemie Windows?

A. Zadokowany
B. Pełnoekranowy
C. Płynny
D. Lupy
Odpowiedzi wskazujące na dostępność trybów takich jak pełnoekranowy, zadokowany czy lupy mogą wynikać z nieporozumienia dotyczącego funkcjonalności narzędzia lupa w systemie Windows. Tryb pełnoekranowy rzeczywiście istnieje i umożliwia użytkownikom maksymalizację obszaru roboczego, co jest niezwykle istotne w kontekście pracy z niewielkimi detalami w dokumentach lub obrazach. Przy użyciu tego trybu, użytkownicy mogą lepiej skoncentrować się na szczegółach, które są dla nich istotne. Z kolei tryb zadokowany, który umieszcza narzędzie lupa w wybranej części ekranu, jest przydatny dla osób, które chcą mieć stały dostęp do powiększenia, nie tracąc przy tym widoku na inne aplikacje. Wbudowane opcje lupy w systemie Windows są zgodne z dobrymi praktykami dostępu do technologii, zapewniając wsparcie dla osób z problemami wzrokowymi. Typowym błędem jest założenie, że wszystkie tryby są dostępne jednocześnie, co prowadzi do nieporozumień. Warto zrozumieć, że każde narzędzie ma swoje ograniczenia i specyfikacje, a brak trybu płynnego w narzędziu lupa w Windows podkreśla konieczność świadomego korzystania z dostępnych opcji, aby maksymalizować ich efektywność. Zrozumienie tych aspektów jest kluczowe dla efektywnego wykorzystania narzędzi dostępnych w systemach operacyjnych i wspiera użytkowników w codziennych zadaniach.

Pytanie 7

Na dołączonym obrazku pokazano działanie

Ilustracja do pytania
A. kompresji danych
B. połączenia danych
C. usuwania danych
D. kodu źródłowego
Kompresja danych to proces redukcji rozmiaru plików poprzez usuwanie redundancji w danych. Jest to kluczowy etap w zarządzaniu wielkimi zbiorami danych oraz w transmisji danych przez sieci, szczególnie gdy przepustowość jest ograniczona. Najczęściej stosowane algorytmy kompresji to ZIP RAR i 7z, które różnią się efektywnością i czasem kompresji. Kompresja jest szeroko stosowana w różnych dziedzinach techniki i informatyki, m.in. przy przesyłaniu plików w Internecie, gdzie ograniczenie wielkości plików przyspiesza ich przepływ. Proces ten jest również istotny w przechowywaniu danych, ponieważ zredukowane pliki zajmują mniej miejsca na dyskach twardych, co przyczynia się do oszczędności przestrzeni dyskowej oraz kosztów związanych z utrzymaniem infrastruktury IT. Przy kompresji plików istotne jest zachowanie integralności danych, co zapewniają nowoczesne algorytmy kompresji bezstratnej, które umożliwiają odtworzenie oryginalnych danych bez żadnych strat. Kompresja ma również zastosowanie w multimediach, gdzie algorytmy stratne są używane do zmniejszenia rozmiarów plików wideo i audio poprzez usuwanie mniej istotnych danych, co jest mniej zauważalne dla ludzkiego oka i ucha.

Pytanie 8

W filmie przedstawiono konfigurację ustawień maszyny wirtualnej. Wykonywana czynność jest związana z

A. ustawieniem rozmiaru pamięci wirtualnej karty graficznej.
B. wybraniem pliku z obrazem dysku.
C. dodaniem drugiego dysku twardego.
D. konfigurowaniem adresu karty sieciowej.
Poprawnie – w tej sytuacji chodzi właśnie o wybranie pliku z obrazem dysku (ISO, VDI, VHD, VMDK itp.), który maszyna wirtualna będzie traktować jak fizyczny nośnik. W typowych programach do wirtualizacji, takich jak VirtualBox, VMware czy Hyper‑V, w ustawieniach maszyny wirtualnej przechodzimy do sekcji dotyczącej pamięci masowej lub napędów optycznych i tam wskazujemy plik obrazu. Ten plik może pełnić rolę wirtualnego dysku twardego (system zainstalowany na stałe) albo wirtualnej płyty instalacyjnej, z której dopiero instalujemy system operacyjny. W praktyce wygląda to tak, że zamiast wkładać płytę DVD do napędu, podłączasz plik ISO z obrazu instalacyjnego Windowsa czy Linuxa i ustawiasz w BIOS/UEFI maszyny wirtualnej bootowanie z tego obrazu. To jest podstawowa i zalecana metoda instalowania systemów w VM – szybka, powtarzalna, zgodna z dobrymi praktykami. Dodatkowo, korzystanie z plików obrazów dysków pozwala łatwo przenosić całe środowiska między komputerami, robić szablony maszyn (tzw. template’y) oraz wykonywać kopie zapasowe przez zwykłe kopiowanie plików. Moim zdaniem to jedna z najważniejszych umiejętności przy pracy z wirtualizacją: umieć dobrać właściwy typ obrazu (instalacyjny, systemowy, LiveCD, recovery), poprawnie go podpiąć do właściwego kontrolera (IDE, SATA, SCSI, NVMe – zależnie od hypervisora) i pamiętać o odpięciu obrazu po zakończonej instalacji, żeby maszyna nie startowała ciągle z „płyty”.

Pytanie 9

W systemie Windows, gdzie można ustalić wymagania dotyczące złożoności hasła?

A. autostarcie
B. zasadach zabezpieczeń lokalnych
C. BIOS-ie
D. panelu sterowania
Odpowiedź 'zasady zabezpieczeń lokalnych' jest prawidłowa, ponieważ to w tym miejscu w systemie Windows można określić wymagania dotyczące złożoności haseł. Ustawienia te pozwalają na definiowanie polityki dotyczącej haseł, co jest kluczowe dla zapewnienia bezpieczeństwa systemu. Użytkownicy mogą ustawić takie wymagania, jak minimalna długość hasła, konieczność użycia znaków specjalnych, cyfr oraz wielkich liter. Przykładowo, w środowiskach korporacyjnych, gdzie bezpieczeństwo informacji jest priorytetem, organizacje mogą wdrożyć polityki wymuszające skomplikowane hasła, aby zmniejszyć ryzyko nieautoryzowanego dostępu. Takie praktyki są zgodne z najlepszymi standardami, jak NIST SP 800-63, które zalecają stosowanie złożonych haseł w celu ochrony danych. Dobrze skonfigurowane zasady zabezpieczeń lokalnych są fundamentem solidnej architektury bezpieczeństwa w każdej organizacji.

Pytanie 10

Rodzajem złośliwego oprogramowania, którego podstawowym zamiarem jest rozprzestrzenianie się w sieciach komputerowych, jest

A. trojan
B. robak
C. backdoor
D. keylogger
Robak to złośliwe oprogramowanie, które ma zdolność do samodzielnego rozprzestrzeniania się w sieciach komputerowych. W przeciwieństwie do wirusów, które potrzebują hosta do reprodukcji, robaki są autonomiczne i mogą kopiować się z jednego komputera na drugi bez potrzeby interakcji użytkownika. Przykładem robaka jest Blaster, który w 2003 roku wykorzystał lukę w systemie Windows, aby zainfekować miliony komputerów na całym świecie. Robaki często wykorzystują protokoły sieciowe, takie jak TCP/IP, do komunikacji i rozprzestrzeniania się, co czyni je szczególnie niebezpiecznymi. Dobre praktyki w zakresie bezpieczeństwa obejmują regularne aktualizowanie oprogramowania, aby eliminować znane luki, edukowanie użytkowników na temat zagrożeń związanych z otwieraniem nieznanych załączników oraz stosowanie zapór sieciowych, które mogą blokować nieautoryzowane połączenia. Zrozumienie mechanizmów działania robaków jest kluczowe dla skutecznej ochrony przed nimi oraz w odpowiedzi na incydenty związane z bezpieczeństwem sieciowym.

Pytanie 11

Jakie polecenie w systemie Linux umożliwia wyświetlenie listy zawartości katalogu?

A. cd
B. rpm
C. ls
D. pwd
Polecenie 'ls' jest fundamentalnym narzędziem w systemach Linux i Unix, służącym do wyświetlania zawartości katalogów. Umożliwia użytkownikom szybkie sprawdzenie, jakie pliki i podkatalogi znajdują się w danym katalogu. Domyślnie, polecenie to wyświetla jedynie nazwy plików, ale można je rozszerzyć o różne opcje, takie jak '-l', co zapewnia bardziej szczegółowy widok z dodatkowymi informacjami, takimi jak uprawnienia, właściciel, grupa, rozmiar plików oraz daty modyfikacji. Użycie 'ls -a' pozwala ponadto na wyświetlenie ukrytych plików, które zaczynają się od kropki. Dobre praktyki w administrowaniu systemem Linux obejmują znajomość i stosowanie polecenia 'ls' w codziennej pracy, co umożliwia skuteczne zarządzanie plikami i katalogami. Przykładowe zastosowanie to: 'ls -lh' w celu uzyskania czytelnych rozmiarów plików oraz 'ls -R' do rekurencyjnego przeszukiwania podkatalogów.

Pytanie 12

Ile maksymalnie dysków twardych można bezpośrednio podłączyć do płyty głównej, której fragment specyfikacji jest przedstawiony w ramce?

  • 4 x DIMM, max. 16GB, DDR2 1200 / 1066 / 800 / 667 MHz, non-ECC, un-buffered memory Dual channel memory architecture
  • Five Serial ATA 3.0 Gb/s ports
  • Realtek ALC1200, 8-channel High Definition Audio CODEC - Support Jack-Detection, Multi-streaming, Front Panel Jack-Retasking - Coaxial S/PDIF_OUT ports at back I/O
A. 8
B. 2
C. 4
D. 5
Płyta główna wyposażona jest w pięć portów SATA 3.0 które umożliwiają podłączenie pięciu dysków twardych. Specyfikacja SATA 3.0 oferuje prędkość transferu danych do 6 Gb/s co jest istotne przy pracy z dużymi plikami lub aplikacjami wymagającymi dużej przepustowości danych. W praktyce takie porty są wykorzystywane nie tylko do podłączania dysków HDD czy SSD ale także do napędów optycznych co zwiększa wszechstronność zastosowania płyty. Ważnym aspektem jest również możliwość tworzenia macierzy RAID co pozwala na zwiększenie wydajności lub bezpieczeństwa przechowywania danych. Standard SATA 3.0 jest szeroko stosowany i zgodny z wcześniejszymi generacjami co oznacza że istnieje możliwość podłączania starszych urządzeń przy zachowaniu kompatybilności. Wybór płyty z wystarczającą liczbą portów SATA jest kluczowy w planowaniu rozbudowy komputera szczególnie w środowiskach profesjonalnych gdzie zapotrzebowanie na przestrzeń dyskową dynamicznie się zmienia. Dobre praktyki branżowe obejmują również przemyślane zarządzanie kablami i przestrzenią wewnątrz obudowy co ma znaczenie dla optymalizacji przepływu powietrza i tym samym chłodzenia podzespołów.

Pytanie 13

Zgodnie z zamieszczonym fragmentem testu w systemie komputerowym zainstalowane są

Ilustracja do pytania
A. pamięć fizyczna 0,70 GB i plik wymiany 1,22 GB
B. pamięć fizyczna 0,50 GB i plik wymiany 1,00 GB
C. pamięć fizyczna 0,49 GB i plik wymiany 1,22 GB
D. pamięć fizyczna 0,49 GB i plik wymiany 1,20 GB
Odpowiedź dotycząca pamięci fizycznej 0,49 GB i pliku wymiany 1,20 GB jest prawidłowa ze względu na dokładne wartości podane w pytaniu. W rzeczywistości pamięć fizyczna w komputerze często odnosi się do ilości RAM, a plik wymiany to część pamięci na dysku twardym używana jako uzupełnienie RAM. Programy komputerowe oraz system operacyjny korzystają z tych zasobów do zarządzania danymi i wykonywania zadań obliczeniowych. Prawidłowa interpretacja informacji o zasobach pamięci ma kluczowe znaczenie dla zarządzania wydajnością systemu. Rozpoznanie odpowiednich wartości pamięci jest podstawą do diagnozowania i optymalizacji działania komputera. Zarządzanie pamięcią RAM i plikiem wymiany to standardowa praktyka w administracji systemami komputerowymi. Dzięki temu można uniknąć problemów z wydajnością, jak zbyt długie czasy reakcji czy zawieszanie się aplikacji. Zrozumienie tych mechanizmów pomaga również w planowaniu rozbudowy pamięci w komputerach w celu lepszego dostosowania do potrzeb użytkowników i aplikacji.

Pytanie 14

Urządzenie warstwy dystrybucji, które umożliwia komunikację pomiędzy różnymi sieciami, to

A. routerem
B. koncentratorem
C. przełącznikiem
D. serwerem
Router jest urządzeniem, które działa na trzeciej warstwie modelu OSI, czyli warstwie sieci. Jego głównym zadaniem jest przekazywanie danych pomiędzy różnymi sieciami, co jest kluczowe w przypadku, gdy te sieci są oddzielne. Router analizuje otrzymane pakiety danych i, na podstawie ich adresów docelowych, podejmuje decyzje dotyczące trasowania, czyli wyboru najefektywniejszej drogi do przesłania danych. Przykładem zastosowania routerów są sieci domowe, gdzie router łączy lokalną sieć (LAN) z internetem. Dzięki funkcjom takim jak NAT (Network Address Translation) routery pozwalają na wykorzystanie jednego adresu IP do łączenia wielu urządzeń w sieci lokalnej. Ponadto, routery są zgodne z różnymi protokołami sieciowymi, co umożliwia im współpracę z innymi urządzeniami oraz integrację z systemami zarządzania siecią, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 15

Jaka będzie suma liczb binarnych 1010 oraz 111, gdy przeliczymy ją na system dziesiętny?

A. 16
B. 17
C. 19
D. 18
Aby obliczyć sumę liczb binarnych 1010 i 111, najpierw przekształcamy je na system dziesiętny. Liczba binarna 1010 reprezentuje wartość dziesiętną 10, ponieważ: 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 8 + 0 + 2 + 0 = 10. Liczba 111 w systemie binarnym to 7 w systemie dziesiętnym, ponieważ: 1*2^2 + 1*2^1 + 1*2^0 = 4 + 2 + 1 = 7. Teraz dodajemy te wartości w systemie dziesiętnym: 10 + 7 = 17. W kontekście praktycznym, znajomość konwersji między systemami liczbowymi jest kluczowa w programowaniu, elektronice oraz w obszarach takich jak algorytmy komputerowe czy projektowanie systemów cyfrowych, gdzie operacje na danych binarnych są powszechne. Zrozumienie i poprawne wykonywanie tych obliczeń jest fundamentalne dla każdego technika zajmującego się informatyką czy inżynierią komputerową.

Pytanie 16

W systemach Windows profil użytkownika tymczasowego jest

A. generowany w momencie pierwszego logowania do komputera i przechowywany na lokalnym dysku twardym urządzenia
B. ładowany do systemu z serwera, definiuje konkretne ustawienia dla poszczególnych użytkowników oraz całych grup
C. ładowany do systemu w przypadku, gdy wystąpi błąd uniemożliwiający załadowanie profilu mobilnego użytkownika
D. ustawiany przez administratora systemu i przechowywany na serwerze
Wszystkie błędne odpowiedzi opierają się na nieporozumieniach dotyczących funkcji i przeznaczenia profili użytkowników w systemach Windows. Stwierdzenie, że profil tymczasowy użytkownika jest tworzony przez administratora systemu i przechowywany na serwerze, jest mylące, ponieważ profile tymczasowe są generowane automatycznie przez system w momencie, gdy występuje błąd z profilem użytkownika. Profile mobilne, które są przechowywane na serwerze, mają zupełnie inny cel - umożliwiają użytkownikom dostęp do ich danych z różnych urządzeń, a nie są związane z profilami tymczasowymi. Podobnie, przekonanie, że profil tymczasowy jest stworzony podczas pierwszego logowania do komputera, jest błędne; system Windows tworzy standardowy profil użytkownika w momencie pierwszego logowania, a profil tymczasowy pojawia się tylko w przypadku wystąpienia problemów. Wreszcie, twierdzenie, że profil tymczasowy jest wczytywany z serwera i określa konkretne ustawienia dla użytkowników, jest niezgodne z praktykami zarządzania profilami. Profile tymczasowe są lokalne i nie mają dostępu do zdalnych ustawień ani plików. Typowe błędy myślowe, które prowadzą do tych niepoprawnych wniosków, dotyczą braku zrozumienia różnicy między profilami mobilnymi, standardowymi a tymczasowymi oraz ich rolą w kontekście zarządzania użytkownikami w systemach operacyjnych.

Pytanie 17

Wykonanie polecenia perfmon w terminalu systemu Windows spowoduje

A. aktualizację systemu operacyjnego przy użyciu usługi Windows Update
B. przygotowanie kopii zapasowej systemu
C. uruchomienie aplikacji Monitor wydajności
D. aktywację szyfrowania zawartości aktualnego folderu
Użycie komendy perfmon w wierszu poleceń systemu Windows uruchamia narzędzie Monitor wydajności, które jest kluczowym elementem w analizie i monitorowaniu działania systemu operacyjnego. Perfmon pozwala administratorom systemów na zbieranie informacji dotyczących wydajności różnych zasobów sprzętowych oraz aplikacji działających w systemie. Narzędzie to umożliwia tworzenie wykresów, raportów oraz zapisywanie danych wydajnościowych, co jest niezbędne do identyfikacji wąskich gardeł w systemie oraz optymalizacji jego działania. Praktycznym zastosowaniem perfmon jest możliwość monitorowania obciążenia CPU, pamięci RAM, dysków twardych oraz sieci, co jest szczególnie istotne w środowiskach serwerowych oraz w czasie rozwiązywania problemów wydajnościowych. W wielu organizacjach wykorzystuje się perfmon zgodnie z dobrymi praktykami zarządzania infrastrukturą IT, co pozwala na zapewnienie wysokiej dostępności oraz wydajności systemów. Przykładowo, administratorzy mogą ustawić alerty, które informują o przekroczeniu określonych progów wydajności, co pozwala na proaktywne zarządzanie zasobami systemowymi.

Pytanie 18

Które urządzenie należy zainstalować, w celu zwiększenia obszaru zasięgu sieci bezprzewodowej?

A. Koncentrator.
B. Punkt dostępowy.
C. Przełącznik.
D. Konwerter światłowodowy.
Prawidłowo – żeby zwiększyć obszar zasięgu sieci bezprzewodowej, instalujemy punkt dostępowy (access point, AP). Punkt dostępowy jest urządzeniem warstwy 2/3, które tworzy komórkę sieci Wi‑Fi i pozwala urządzeniom bezprzewodowym (laptopy, smartfony, drukarki Wi‑Fi) łączyć się z siecią przewodową Ethernet. W praktyce wygląda to tak, że do istniejącego switcha lub routera dopinamy dodatkowy AP skrętką, konfigurujemy ten sam SSID, zabezpieczenia (np. WPA2‑PSK lub WPA3‑Personal), kanał radiowy i w ten sposób rozszerzamy zasięg tej samej sieci logicznej. Moim zdaniem kluczowe jest zrozumienie różnicy między wzmacnianiem sygnału a rozszerzaniem zasięgu zgodnie z dobrą praktyką. Profesjonalne sieci firmowe opierają się właśnie na wielu punktach dostępowych, rozmieszczonych zgodnie z projektem radiowym (site survey), tak żeby zapewnić pokrycie sygnałem i roaming między AP. Standardy IEEE 802.11 (a/b/g/n/ac/ax) definiują sposób komunikacji między klientem Wi‑Fi a punktem dostępowym, więc to AP jest tym centralnym elementem „chmury Wi‑Fi”. W realnych wdrożeniach, np. w biurze wielopiętrowym, zamiast jednego mocnego routera Wi‑Fi instaluje się kilka lub kilkanaście punktów dostępowych, podłączonych do sieci szkieletowej (przełączników). Dzięki temu użytkownik może przechodzić z laptopem po budynku, a urządzenie automatycznie przełącza się między AP, nie tracąc połączenia. To jest właśnie dobra praktyka wynikająca z projektowania sieci zgodnie z zasadami dla WLAN. W domu podobnie: jeśli router Wi‑Fi nie „dociąga” do ostatniego pokoju, dokładamy dodatkowy access point lub system typu mesh – ale podstawowa idea jest ta sama: kolejne punkty dostępowe rozszerzają zasięg. Dodatkowo warto pamiętać o poprawnej konfiguracji mocy nadawczej, wyborze mniej zatłoczonych kanałów (szczególnie w paśmie 2,4 GHz) oraz stosowaniu aktualnych standardów bezpieczeństwa. Samo dołożenie switcha lub innego urządzenia przewodowego nie zapewni zasięgu radiowego – właśnie dlatego rola AP jest tu tak kluczowa.

Pytanie 19

Jaką bramkę logiczną reprezentuje to wyrażenie?

Ilustracja do pytania
A. Odpowiedź C
B. Odpowiedź A
C. Odpowiedź B
D. Odpowiedź D
Wybierając niepoprawne odpowiedzi w pytaniu dotyczącym bramek logicznych można napotkać kilka powszechnych błędów. Bramka NOT-OR czyli NOR przedstawiona w opcji A jest często mylona z innymi bramkami ze względu na swoje unikalne działanie negujące wyniki operacji OR. Jednak NOR zwraca wartość prawdziwą wyłącznie gdy oba wejścia są fałszywe co nie odpowiada działaniu w wyrażeniu XOR. Bramka OR przedstawiona w opcji D również nie jest poprawna ponieważ zwraca wartość prawdziwą gdy co najmniej jedno z wejść jest prawdziwe co różni się od XOR który wymaga różnorodności wejściowej. Kolejnym błędem merytorycznym jest zrozumienie działania bramki NOT-AND czyli NAND w opcji C która neguje wynik AND i zwraca fałsz tylko gdy oba wejścia są prawdziwe co także nie pasuje do wyrażenia XOR. Te błędne wybory często wynikają z niepełnego zrozumienia zależności logicznych i działania każdego typu bramki co podkreśla potrzebę głębszej analizy i zrozumienia logiki cyfrowej. Zrozumienie każdego z tych błędów jest kluczowe dla poprawnej interpretacji operacji logicznych w projektowaniu systemów cyfrowych i wdrażaniu algorytmów.

Pytanie 20

W trakcie instalacji systemu Windows, zaraz po rozpoczęciu instalatora w trybie graficznym, istnieje możliwość otwarcia Wiersza poleceń (konsoli) za pomocą kombinacji klawiszy

A. ALT+F4
B. SHIFT+F10
C. CTRL+Z
D. CTRL+SHIFT
Odpowiedź SHIFT+F10 jest prawidłowa, ponieważ ta kombinacja klawiszy uruchamia Wiersz poleceń w trakcie instalacji systemu Windows. Jest to przydatne w sytuacjach, gdy użytkownik potrzebuje dostępu do narzędzi diagnostycznych lub chce wprowadzić dodatkowe polecenia przed zakończeniem procesu instalacji. Umożliwia to również modyfikację ustawień systemowych oraz naprawę problemów, które mogą wystąpić podczas konfiguracji. Przykładem zastosowania może być sytuacja, w której użytkownik chce uruchomić narzędzie DISKPART do zarządzania partycjami dyskowymi, co pozwala na tworzenie, usuwanie lub formatowanie partycji przed zainstalowaniem systemu. Ta funkcjonalność jest zgodna z najlepszymi praktykami w zakresie instalacji systemów operacyjnych, gdzie dostęp do dodatkowych narzędzi może znacząco ułatwić proces oraz zwiększyć elastyczność konfiguracji. Warto również zaznaczyć, że ta kombinacja klawiszy jest standardem w różnych wersjach systemów Windows, co czyni ją zrozumiałą i uniwersalną dla użytkowników.

Pytanie 21

Które urządzenie pomiarowe wykorzystuje się do określenia wartości napięcia w zasilaczu?

A. Watomierz
B. Amperomierz
C. Woltomierz
D. Omomierz
Woltomierz jest specjalistycznym przyrządem pomiarowym zaprojektowanym do mierzenia napięcia elektrycznego. Jego zastosowanie jest kluczowe w elektrotechnice, gdzie ocena wartości napięcia w zasilaczach i obwodach elektrycznych jest niezbędna do zapewnienia ich prawidłowego funkcjonowania. Przykładowo, przy konserwacji i diagnostyce urządzeń elektronicznych w laboratoriach lub warsztatach, woltomierz pozwala na precyzyjne określenie napięcia wejściowego i wyjściowego, co jest istotne dla analizy ich wydajności i bezpieczeństwa. W praktyce, pomiar napięcia z użyciem woltomierza odbywa się poprzez podłączenie jego końcówek do punktów, między którymi chcemy zmierzyć napięcie, co jest zgodne z zasadami BHP oraz standardami branżowymi, takimi jak IEC 61010. Zrozumienie funkcji woltomierza oraz umiejętność jego użycia jest niezbędne dla każdego specjalisty zajmującego się elektrycznością i elektroniką.

Pytanie 22

Klient dostarczył wadliwy sprzęt komputerowy do serwisu. W trakcie procedury przyjmowania sprzętu, ale przed rozpoczęciem jego naprawy, serwisant powinien

A. wykonać ogólny przegląd sprzętu oraz przeprowadzić rozmowę z klientem
B. przeprowadzić testy powykonawcze sprzętu
C. sporządzić rachunek z naprawy w dwóch kopiach
D. przygotować rewers serwisowy i opieczętowany przedłożyć do podpisu
Wykonanie przeglądu ogólnego sprzętu oraz przeprowadzenie wywiadu z klientem to kluczowe kroki w procesie serwisowym. Przegląd ogólny pozwala na wstępne zidentyfikowanie widocznych uszkodzeń czy nieprawidłowości, które mogą wpływać na funkcjonowanie urządzenia. Dodatkowo, przeprowadzenie wywiadu z klientem umożliwia uzyskanie informacji o objawach usterki, okolicznościach jej wystąpienia oraz ewentualnych wcześniejszych naprawach. Te informacje są niezwykle cenne, ponieważ mogą naprowadzić serwisanta na konkretne problemy, które mogą być trudne do zdiagnozowania w trakcie samego przeglądu. Przykładowo, klient może zauważyć, że sprzęt wydaje nietypowe dźwięki w określonych warunkach, co może sugerować problem z wentylacją lub zasilaczem. W branży serwisowej kierowanie się najlepszymi praktykami, takimi jak podejście oparte na badaniach oraz komunikacja z klientem, zwiększa efektywność napraw i zadowolenie klientów. Standardy ISO 9001 sugerują, że proces przyjmowania reklamacji powinien być systematyczny i oparty na szczegółowej dokumentacji, co obejmuje m.in. sporządzenie notatek z wywiadu i przeglądu.

Pytanie 23

Wskaż cechę platformy wirtualizacji Hyper-V.

A. Brak integracji z chmurą.
B. Bezpośrednie uruchamianie aplikacji na systemie Linux.
C. Brak kompatybilności z systemami z rodziny Windows.
D. Bezpośrednie funkcjonowanie na sprzęcie fizycznym.
Poprawnie wskazana cecha Hyper‑V to bezpośrednie funkcjonowanie na sprzęcie fizycznym. Hyper‑V jest tzw. hipernadzorcą typu 1 (bare‑metal), co oznacza, że działa bezpośrednio na warstwie sprzętowej, a nie jako zwykła aplikacja w systemie operacyjnym. W praktyce wygląda to tak, że po włączeniu serwera startuje najpierw hypervisor, a system Windows (np. Windows Server z rolą Hyper‑V) jest traktowany jako jedna z maszyn wirtualnych – tzw. partycja nadrzędna. Dzięki temu Hyper‑V ma bezpośredni dostęp do CPU, pamięci RAM, kontrolerów dyskowych i kart sieciowych, co znacząco poprawia wydajność i stabilność całego środowiska wirtualizacji. Z mojego doświadczenia w środowiskach produkcyjnych to właśnie ta architektura pozwala na bezpieczne uruchamianie wielu maszyn wirtualnych, z izolacją zasobów i możliwością stosowania takich funkcji jak migracja na żywo (Live Migration), wirtualne przełączniki, czy zaawansowane mechanizmy wysokiej dostępności oparte o klaster Windows Server. W dobrych praktykach administracji serwerami przyjmuje się, że hypervisor typu 1, taki jak Hyper‑V, instaluje się na dedykowanym sprzęcie, bez „śmieciowego” oprogramowania, żeby nie obniżać wydajności warstwy wirtualizacji. W firmach wykorzystuje się Hyper‑V m.in. do konsolidacji serwerów (kilkanaście serwerów logicznych na jednym fizycznym), tworzenia środowisk testowych, a także budowy prywatnej chmury. To bezpośrednie działanie na sprzęcie jest fundamentem tych zastosowań i odróżnia Hyper‑V od prostych rozwiązań typu „virtual PC” działających jak zwykłe programy.

Pytanie 24

Proporcja ładunku zgromadzonego na przewodniku do potencjału tego przewodnika definiuje jego

A. rezystancję
B. pojemność elektryczną
C. indukcyjność
D. moc
Moc, rezystancja oraz indukcyjność to wielkości, które mają różne definicje i zastosowania w elektromagnetyzmie, ale nie są one związane ze stosunkiem ładunku zgromadzonego na przewodniku do jego potencjału. Moc elektryczna odnosi się do szybkości, z jaką energia jest konsumowana lub przekazywana w obwodzie elektrycznym i mierzy się ją w watach (W). W kontekście obwodów, moc nie ma bezpośredniego związku z ładunkiem i potencjałem, lecz z napięciem i natężeniem prądu. Rezystancja, mierząca opór elektryczny, również nie odnosi się do pojemności elektrycznej. Jest to wielkość, która opisuje, jak bardzo dany materiał utrudnia przepływ prądu i jest wyrażana w omach (Ω). Wyższa rezystancja oznacza mniejszy przepływ prądu dla danej wartości napięcia. Inaczej wygląda to w przypadku indukcyjności, która dotyczy zdolności elementu do generowania siły elektromotorycznej w odpowiedzi na zmieniające się prądy w swoim otoczeniu. Indukcyjność, wyrażana w henrach (H), ma znaczenie głównie w obwodach zmiennoprądowych i nie ma zastosowania w kontekście pojemności elektrycznej. Kluczowym błędem myślowym jest mylenie tych różnych pojęć, co często prowadzi do nieporozumień w elektrotechnice oraz w analizie obwodów. Zrozumienie różnic między tymi parametrami jest fundamentalne dla efektywnego projektowania i diagnostyki systemów elektrycznych.

Pytanie 25

Komunikat "BIOS checksum error" pojawiający się w trakcie startu komputera zazwyczaj wskazuje na

A. uszkodzoną lub wyczerpaną baterię na płycie głównej
B. błąd pamięci RAM
C. wadliwy wentylator CPU
D. brak urządzenia z systemem operacyjnym
Komunikat "BIOS checksum error" mówi nam, że coś jest nie tak z pamięcią CMOS, która trzyma ustawienia BIOS. Kiedy bateria na płycie głównej padnie lub jest uszkodzona, CMOS nie da rady zapisać danych, stąd pojawia się ten błąd. W praktyce to znaczy, że komputer nie może się uruchomić, bo mu brakuje ważnych danych do startu. Wymiana baterii na płycie głównej to prosta sprawa, którą można ogarnąć samemu. Fajnie jest też regularnie sprawdzać, w jakim stanie jest ta bateria, zwłaszcza u starszych komputerów. Warto również zapisywać ustawienia BIOS-u przed ich zmianą, w razie gdyby trzeba było je przywrócić. Jeśli ten komunikat się powtarza, to możliwe, że trzeba będzie zaktualizować BIOS, żeby wszystko działało stabilniej. Moim zdaniem, to bardzo przydatna wiedza dla każdego użytkownika komputera.

Pytanie 26

W systemie Windows 7, aby skopiować katalog c:\est wraz ze wszystkimi podkatalogami na zewnętrzny dysk, należy zastosować polecenie

A. copy c:\est f:\est /E
B. copy f:\est c:\est /E
C. xcopy f:\est c:\est /E
D. xcopy c:\est f:\est /E
Wybór niewłaściwych poleceń do kopiowania katalogów jest częstym błędem, który wynika z niepełnego zrozumienia funkcjonalności dostępnych w systemie Windows. W przypadku polecenia 'copy f:\est c:\est /E', użytkownik myli koncepcję operacji kopiowania. 'copy' jest przeznaczone do kopiowania pojedynczych plików, a nie katalogów, co oznacza, że nie obsługuje on hierarchicznej struktury folderów ani ich podkatalogów. Nawet przy dodaniu opcji /E, nie zmienia to zasadniczo funkcji polecenia, ponieważ 'copy' nie potrafi kopiować całych drzew katalogów. Kolejna nieprawidłowa koncepcja występuje w poleceniach, gdzie zamienia się źródło z celem, jak w 'xcopy f:\est c:\est /E'. Użytkownicy mogą myśleć, że kopiowanie odwrotne jest równoważne, co nie jest prawdą. W systemach Windows, źródło i cel są kluczowe dla określenia, skąd i dokąd dane mają być przesyłane. Dodatkowo, błędne użycie 'xcopy' w kontekście przekazywania z nieprawidłowych lokalizacji może prowadzić do nieoczekiwanych rezultatów, takich jak brak danych lub ich niekompletne skopiowanie. Aby poprawnie zrozumieć i wykorzystać te polecenia, warto zapoznać się z dokumentacją systemową oraz praktykami administracyjnymi, co zapewni efektywne zarządzanie danymi oraz uniknięcie typowych pułapek związanych z kopiowaniem plików i katalogów.

Pytanie 27

Najbardziej nieinwazyjnym, a zarazem efektywnym sposobem naprawy komputera zainfekowanego wirusem typu rootkit jest

A. zainstalowanie najskuteczniejszego oprogramowania antywirusowego i uruchomienie go w trybie monitorowania - z biegiem czasu wirus zostanie automatycznie wykryty
B. ponowne zainstalowanie systemu operacyjnego
C. usunięcie podejrzanych procesów z Menedżera zadań
D. uruchomienie specjalnego programu do wykrywania rootkitów z zewnętrznego nośnika (np. LiveCD)
Przeinstalowanie systemu operacyjnego, choć może wydawać się skuteczną metodą na pozbycie się wirusa, często prowadzi do utraty danych oraz wymaga znacznych zasobów czasowych i ludzkich. W przypadku rootkitów, które mogą modyfikować struktury systemowe, ponowna instalacja może nie być wystarczająca, jeśli wirus był aktywny w czasie instalacji, co może prowadzić do powrotu infekcji. Zainstalowanie programu antywirusowego i oczekiwanie na jego działanie jest myśleniem, które opiera się na założeniu, że wirusy zawsze zostaną wykryte, co nie jest prawdą, zwłaszcza w przypadku rootkitów, które są zaprojektowane tak, aby unikać wykrycia. Wiele programów antywirusowych ma ograniczone możliwości w walce z tym typem złośliwego oprogramowania, a poleganie na nich może prowadzić do fałszywego poczucia bezpieczeństwa. Usuwanie podejrzanych procesów z Menadżera zadań to działanie tymczasowe i ryzykowne. Procesy mogą być ukryte lub zmieniane przez rootkity, co sprawia, że ich ręczne usuwanie jest nieefektywne i potencjalnie niebezpieczne. W praktyce, najskuteczniejszym działaniem w przypadkach infekcji rootkitem jest użycie narzędzi do skanowania z zewnętrznego nośnika, co jest zgodne z najlepszymi praktykami w branży bezpieczeństwa IT. Te metody nie tylko eliminują wirusa, ale również zapewniają solidną analizę systemu, co jest kluczowe w obstawianiu bezpieczeństwa danych.

Pytanie 28

Protokołem umożliwiającym bezpołączeniowe przesyłanie datagramów jest

A. IP
B. ARP
C. UDP
D. TCP
Wybór IP, TCP lub ARP jako protokołu do bezpołączeniowego dostarczania datagramów wykazuje pewne nieporozumienia dotyczące funkcji i charakterystyki tych protokołów. IP (Internet Protocol) jest protokołem warstwy sieciowej, który odpowiada za adresowanie i routing pakietów w sieci, ale nie jest protokołem transportowym. Nie zapewnia on bezpośredniej komunikacji pomiędzy aplikacjami ani zarządzania tranzytem danych, co czyni go niewłaściwym wyborem w kontekście dostarczania datagramów. TCP, mimo że jest protokołem bezpołączeniowym, oferuje pełne zarządzanie połączeniami, co obejmuje mechanizmy kontroli błędów i retransmisji, co wprowadza dodatkowe opóźnienia i narzuty, przez co nie jest odpowiedni do sytuacji, gdzie kluczowe jest szybkie dostarczanie danych. ARP (Address Resolution Protocol) działa na warstwie łącza danych i ma na celu mapowanie adresów IP na adresy MAC, co również nie ma związku z dostarczaniem datagramów na poziomie transportowym. Zrozumienie specyfiki tych protokołów jest kluczowe, aby uniknąć błędnych wniosków i zastosować odpowiednie technologie w odpowiednich kontekstach, co jest podstawą skutecznej komunikacji sieciowej. Podczas wyboru protokołu, ważne jest rozważenie wymagań aplikacji oraz charakterystyki przesyłanych danych, aby dostosować odpowiednią metodę komunikacji.

Pytanie 29

Diagnostykę systemu Linux można przeprowadzić za pomocą komendy

Thread(s) per core:1
Core(s) per socket:4
Socket(s):1
NUMA node(s):1
A. lscpu
B. pwd
C. whoami
D. cat
Polecenie lscpu jest używane do wyświetlania szczegółowych informacji o architekturze procesora w systemie Linux. Jest to narzędzie, które zbiera dane z systemu operacyjnego na temat jednostek obliczeniowych takich jak liczba rdzeni na gniazdo liczba wątków na rdzeń liczba gniazd procesorowych oraz inne kluczowe parametry. Dzięki temu administratorzy systemów mogą lepiej zrozumieć zasoby sprzętowe dostępne na serwerze co jest niezbędne przy planowaniu wdrażania aplikacji optymalizacji wydajności oraz monitorowaniu zasobów. Praktyczne zastosowanie lscpu obejmuje scenariusze w których konieczne jest dostosowanie aplikacji do dostępnych zasobów czy też optymalizacja ustawień systemowych. Standardowa praktyka to używanie lscpu w ramach audytu sprzętowego co pozwala na efektywne zarządzanie zasobami oraz unikanie potencjalnych problemów związanych z nieadekwatnym przydzieleniem zasobów. Dodatkowo lscpu może być używane w skryptach automatyzujących procesy docierania do szczegółowych danych sprzętowych co wspiera administratorów w codziennych operacjach związanych z zarządzaniem infrastrukturą IT. Rozumienie tych informacji jest kluczowe dla efektywnego zarządzania i planowania zasobów komputerowych w nowoczesnych środowiskach IT.

Pytanie 30

W systemie Windows powiązanie rozszerzeń plików z odpowiednimi programami realizuje się za pomocą polecenia

A. bcdedit
B. label
C. path
D. assoc
Polecenie 'assoc' w systemie Windows jest odpowiedzialne za przypisywanie rozszerzeń plików do konkretnych aplikacji. Umożliwia ono użytkownikom oraz administratorom systemu zdefiniowanie, jakie programy mają otwierać pliki z określonymi rozszerzeniami. Na przykład, jeśli chcemy, aby pliki z rozszerzeniem '.txt' były otwierane przy użyciu notatnika, możemy użyć polecenia 'assoc .txt=Notatnik'. Dzięki temu, przy próbie otwarcia pliku .txt, system automatycznie wywoła odpowiedni program. Praktyczne zastosowanie tej funkcji jest szczególnie ważne w kontekście zarządzania dużą liczbą plików i różnych aplikacji, umożliwiając użytkownikom bardziej efektywne korzystanie z systemu operacyjnego. Dobrą praktyką jest regularne sprawdzanie, czy przypisania rozszerzeń są aktualne i odpowiadają używanym programom, co zapobiega problemom związanym z otwieraniem plików. Wiedza o tym poleceniu jest przydatna również dla administratorów systemów, którzy mogą zarządzać przypisaniami w sposób centralny dla wszystkich użytkowników.

Pytanie 31

Który adres stacji roboczej należy do klasy C?

A. 172.0.0.1
B. 232.0.0.1
C. 127.0.0.1
D. 223.0.0.1
Adres 223.0.0.1 jest adresem klasy C, co wynika z jego pierwszego oktetu, który mieści się w zakresie od 192 do 223. Adresy klasowe w IPv4 są klasyfikowane na podstawie pierwszego oktetu, a klasy C są przeznaczone dla małych sieci, w których można mieć do 254 hostów. Adresy klasy C są powszechnie stosowane w organizacjach, które potrzebują mniejszych podsieci. Przykładowo, firma z 50 komputerami może przypisać im zakres adresów zaczynający się od 223.0.0.1 do 223.0.0.50, co skutkuje efektywnym zarządzaniem adresacją. Warto również znać, że adresy klasy C korzystają z maski podsieci 255.255.255.0, co pozwala na wydzielenie 256 adresów IP w danej podsieci (z czego 254 są użyteczne dla hostów). Znajomość klas adresowych i ich zastosowania jest istotna w kontekście projektowania sieci oraz ich efektywnego zarządzania, a także w kontekście bezpieczeństwa i optymalizacji ruchu sieciowego.

Pytanie 32

Urządzenie trwale zainstalowane u abonenta, które zawiera zakończenie poziomego okablowania strukturalnego, to

A. punkt konsolidacyjny
B. gniazdo energetyczne
C. punkt rozdzielczy
D. gniazdo teleinformatyczne
Wybór punktu konsolidacyjnego, gniazda energetycznego czy punktu rozdzielczego jako odpowiedzi na pytanie o zakończenie okablowania strukturalnego poziomego jest nieprawidłowy z kilku powodów. Punkt konsolidacyjny to element, który służy do łączenia różnych połączeń okablowania w jednym miejscu, ale nie jest zakończeniem tego okablowania. Jego rola polega na zapewnieniu elastyczności w zarządzaniu i rozbudowie sieci, co czyni go istotnym, ale nie końcowym elementem w łańcuchu połączeń. Gniazdo energetyczne, z drugiej strony, ma zupełnie inny cel - dostarczanie energii elektrycznej, a nie przesyłanie danych. Łączenie gniazda teleinformatycznego z gniazdem energetycznym jest dość powszechnym błędem myślowym, który wynika z niewłaściwego zrozumienia funkcjonalności tych elementów. Ostatnia odpowiedź, punkt rozdzielczy, również nie odpowiada na pytanie, ponieważ jego główną funkcją jest podział sygnału na różne kierunki, a nie kończenie połączenia okablowego. W rezultacie, nieodpowiednie zrozumienie ról poszczególnych elementów infrastruktury teleinformatycznej może prowadzić do poważnych problemów w projektowaniu oraz eksploatacji sieci, a także wpływać na jej wydajność i niezawodność.

Pytanie 33

Który układ mikroprocesora jest odpowiedzialny między innymi za pobieranie rozkazów z pamięci oraz generowanie sygnałów sterujących?

A. ALU
B. IU
C. FPU
D. EU
Na pierwszy rzut oka wybór ALU wydaje się logiczny, bo to bardzo znany element mikroprocesora i kojarzy się z wykonywaniem operacji. Jednak ALU – Arithmetic Logic Unit – odpowiada głównie za realizowanie operacji arytmetycznych i logicznych, takich jak dodawanie, odejmowanie czy porównania bitowe. To taki "kalkulator" mikroprocesora, ale nie zarządza pobieraniem rozkazów ani nie generuje sygnałów sterujących dla innych jednostek. FPU, czyli Floating Point Unit, to wyspecjalizowana jednostka do operacji na liczbach zmiennoprzecinkowych. Bez niej bardziej zaawansowane obliczenia matematyczne wykonywałyby się bardzo wolno, jednak FPU w ogóle nie zajmuje się cyklem rozkazowym czy sterowaniem procesorem. Z kolei EU (Execution Unit) to trochę ogólne pojęcie – czasem odnosi się do jednostek wykonawczych, które faktycznie realizują instrukcje, ale nie one decydują o tym, którą instrukcję pobrać i kiedy to nastąpi. Najczęstszym błędem przy tego typu pytaniach jest utożsamianie jednostki wykonawczej z jednostką sterującą, a to dwa zupełnie różne byty! W polskich materiałach edukacyjnych często spotyka się uproszczenie, że "procesor wykonuje rozkazy", przez co niektórzy myślą, że to właśnie ALU, FPU czy EU są "mózgiem" całej operacji. A to IU, jednostka sterująca, jest tym centrum decyzyjnym – to ona pobiera rozkazy z pamięci, dekoduje je i wydaje polecenia pozostałym układom. Moim zdaniem dobrze jest raz a porządnie rozróżnić te funkcje, bo potem – przy projektowaniu prostych układów w FPGA albo analizie wydajności procesora – łatwo się pogubić. W praktyce, gdybyśmy zabrali z CPU IU, procesor przestałby w ogóle działać, bo żaden inny układ nie przejąłby jej obowiązków sterowania cyklem rozkazowym. To taka trochę niewidzialna ręka całego systemu, o której niestety często się zapomina, skupiając uwagę na bardziej "medialnych" jednostkach jak ALU czy FPU.

Pytanie 34

Źródłem problemu z wydrukiem z przedstawionej na rysunku drukarki laserowej jest

Ilustracja do pytania
A. brak tonera w kasecie kartridż
B. zaschnięty tusz
C. uszkodzony bęben światłoczuły
D. uszkodzony podajnik papieru
Uszkodzony bęben światłoczuły to naprawdę częsta przyczyna problemów z drukowaniem w drukarkach laserowych. Ten bęben jest kluczowym elementem, bo to on przenosi obraz na papier. Jak się uszkodzi, to mogą się na nim pojawić różne defekty, które prowadzą do ciemnych pasów czy plam. W praktyce to moze być spowodowane zarysowaniami, zużyciem czy nawet zbyt długim narażeniem na światło. Warto dbać o takie rzeczy i regularnie wymieniać bębny zgodnie z tym, co zaleca producent. Dzięki temu zmniejszamy ryzyko uszkodzeń. Pamiętaj, że bęben światłoczuły to element eksploatacyjny, więc jego żywotność jest ograniczona. Częsta wymiana oraz korzystanie z dobrego jakościowo tonera to podstawowe zasady, które pomogą w uzyskaniu lepszej jakości wydruku. No i nie zapomnij o przeszkoleniu zespołu z obsługi drukarek i wymiany części – to naprawdę wpływa na efektywność pracy w biurze.

Pytanie 35

Jakie urządzenie jest kluczowe dla połączenia pięciu komputerów w sieci o strukturze gwiazdy?

A. modem
B. most
C. ruter
D. przełącznik
Przełącznik to kluczowe urządzenie w sieciach komputerowych o topologii gwiazdy, które umożliwia efektywne połączenie i komunikację między komputerami. W topologii gwiazdy każdy komputer jest podłączony do centralnego urządzenia, którym w tym przypadku jest przełącznik. Dzięki temu przełącznik może na bieżąco analizować ruch w sieci i przekazywać dane tylko do docelowego urządzenia, co minimalizuje kolizje i zwiększa wydajność. Przełączniki operują na warstwie drugiej modelu OSI (warstwa łącza danych), co pozwala im na inteligentne kierowanie ruchu sieciowego. Na przykład w biurze, gdzie pracuje pięć komputerów, zastosowanie przełącznika pozwala na szybką wymianę informacji między nimi, co jest kluczowe dla efektywnej współpracy. Warto również zwrócić uwagę, że standardy takie jak IEEE 802.3 (Ethernet) definiują zasady działania przełączników w sieciach lokalnych, co czyni je niezbędnym elementem infrastruktury sieciowej.

Pytanie 36

Prezentowana usterka ekranu laptopa może być spowodowana

Ilustracja do pytania
A. ustawieniem złej rozdzielczości ekranu.
B. martwymi pikselami.
C. uszkodzenie podświetlenia matrycy.
D. uszkodzeniem taśmy łączącej matrycę z płytą główną.
Uszkodzenie taśmy łączącej matrycę z płytą główną to jedna z najczęstszych przyczyn pojawiania się dziwnych artefaktów graficznych, przesuniętych linii czy zniekształceń obrazu na ekranie laptopa, szczególnie gdy pojawiają się one losowo lub zmieniają się przy poruszaniu klapą. Moim zdaniem to dość typowy objaw — jakby coś „nie łączyło”, a obraz tracił spójność, czasem nawet znika na chwilę lub pojawiają się kolorowe pasy. W praktyce, jeżeli obraz wyświetla się niepoprawnie nawet w BIOS-ie albo bezpośrednio przy starcie systemu (czyli zanim ładuje się sterownik graficzny), to bardzo często winna jest właśnie taśma sygnałowa lub złącza na niej. Standardy serwisowe wręcz zalecają na początku sprawdzić tę taśmę — czy nie jest obluzowana, przetarta albo czy złącza nie są zabrudzone. Dobre praktyki branżowe mówią, żeby przed wymianą matrycy albo płyty głównej zacząć od taśmy, bo to najmniej kosztowna naprawa i najczęściej wystarczająca przy takich objawach. Osobiście spotkałem się z sytuacją, gdzie klient już miał zamawiać nową matrycę, a winna była tylko taśma, którą wystarczyło poprawić albo wymienić na nową, zgodnie z procedurami serwisowymi stosowanymi przez większość producentów laptopów. Warto też pamiętać, że regularne sprawdzanie i delikatne obchodzenie się z klapą ekranu znacząco wydłuża żywotność taśmy.

Pytanie 37

W komputerowych stacjach roboczych zainstalowane są karty sieciowe Ethernet 10/100/1000 z interfejsem RJ45. Jakie medium transmisyjne powinno być zastosowane do budowy sieci komputerowej, aby osiągnąć maksymalną przepustowość?

A. Światłowód wielomodowy
B. Światłowód jednomodowy
C. Kabel UTP kategorii 5
D. Kabel UTP kategorii 5e
Kabel UTP kategorii 5e jest właściwym wyborem do budowy sieci komputerowej, gdyż oferuje poprawioną wydajność w porównaniu do kategorii 5. Standard ten jest zaprojektowany do obsługi prędkości do 1 Gbit/s na odległości do 100 metrów, co idealnie odpowiada wymaganiom kart sieciowych Ethernet 10/100/1000. W praktyce, kable UTP kategorii 5e zawierają ulepszony system ekranowania, co minimalizuje zakłócenia elektromagnetyczne oraz przesłuchy, co jest kluczowe w gęsto zaludnionych środowiskach biurowych. Warto również zauważyć, że standardy IEEE 802.3ab dla Ethernetu 1000BASE-T wymagają użycia co najmniej kabla kategorii 5e, aby zapewnić pełną funkcjonalność. Dzięki temu, w zastosowaniach takich jak systemy VoIP, transmisja danych oraz multimedia, kabel UTP kategorii 5e dostarcza nie tylko wysoką przepustowość, ale również stabilność i niezawodność połączeń sieciowych.

Pytanie 38

Pierwszą usługą, która jest instalowana na serwerze, to usługa domenowa w Active Directory. W trakcie instalacji kreator automatycznie poprosi o zainstalowanie usługi serwera.

A. FTP
B. DHCP
C. WEB
D. DNS
FTP (File Transfer Protocol) jest protokołem służącym do przesyłania plików w sieci, a jego zastosowanie dotyczy głównie transferu danych pomiędzy serwerami a klientami. FTP nie pełni roli usługi domenowej, dlatego nie jest wymagany podczas instalacji Active Directory. Podobnie, usługa WEB, odnosząca się do hostowania stron internetowych, jest niezwiązana z zarządzaniem domenami w Active Directory, a jej funkcjonalność nie obejmuje rozwiązywania nazw ani adresów w sieci. Z kolei DHCP (Dynamic Host Configuration Protocol) jest usługą odpowiedzialną za automatyczne przydzielanie adresów IP urządzeniom w sieci, ale nie jest tożsama z funkcją DNS. Często błędnym myśleniem jest mylenie tych usług, gdyż wszystkie mają swoje specyficzne zastosowania w infrastrukturze sieciowej, ale każda z nich pełni inną rolę. W praktyce, nieprawidłowe przypisanie tych usług do procesu instalacji Active Directory może prowadzić do wielu problemów, takich jak błędne przypisanie adresów IP, trudności w komunikacji między urządzeniami oraz problemy z dostępem do zasobów sieciowych. Ostatecznie, zrozumienie różnic między tymi usługami oraz ich odpowiednim zastosowaniem w kontekście Active Directory jest kluczowe dla zapewnienia prawidłowego funkcjonowania infrastruktury IT.

Pytanie 39

Do czego służy nóż uderzeniowy?

A. Do instalacji skrętki w gniazdach sieciowych
B. Do montażu złącza F na kablu koncentrycznym
C. Do przecinania przewodów światłowodowych
D. Do przecinania przewodów miedzianych
Zastosowanie noża uderzeniowego w cięciu przewodów miedzianych, światłowodowych, czy montażu złącza F na kablu koncentrycznym jest nieodpowiednie i niezgodne z przeznaczeniem tego narzędzia. Nóż uderzeniowy, jak sama nazwa wskazuje, został zaprojektowany w celu precyzyjnego montażu kabli skrętkowych, a nie do obróbki innych typów przewodów. Cięcie przewodów miedzianych wymaga innego typu narzędzi, takich jak nożyce do kabli, które są dostosowane do grubości oraz materiału przewodów, co zapewnia czyste cięcie i minimalizuje ryzyko uszkodzenia żył. Z kolei przewody światłowodowe wymagają stosowania precyzyjnych narzędzi optycznych, które pozwalają na odpowiednie przygotowanie końcówek włókien, co jest kluczowe dla jakości transmisji światła. Montaż złącza F na kablu koncentrycznym również nie jest związany z użyciem noża uderzeniowego; do tego celu stosuje się inne narzędzia, takie jak zaciskarki czy narzędzia do ściągania izolacji. Wybór niewłaściwego narzędzia może prowadzić do problemów z jakością połączeń, co w dłuższym czasie przekłada się na awarie i straty sygnału, podkreślając znaczenie używania odpowiednich narzędzi do konkretnego zadania.

Pytanie 40

Jakie narzędzie w systemie Windows pozwala na kontrolowanie stanu sprzętu, aktualizowanie sterowników oraz rozwiązywanie problemów z urządzeniami?

A. devmgmt
B. services
C. eventvwr
D. perfmon
Odpowiedzi "services", "perfmon" oraz "eventvwr" są związane z innymi funkcjami systemu Windows, które nie spełniają roli Menedżera urządzeń. "Services" odnosi się do narzędzia umożliwiającego zarządzanie usługami systemowymi, które mogą być uruchamiane lub zatrzymywane, ale nie dostarcza informacji o stanie sprzętu ani nie pozwala na aktualizację sterowników. Użytkownicy często mylą te funkcje, sądząc, że mogą one wpływać na sprzęt, a tymczasem ich głównym celem jest zarządzanie oprogramowaniem działającym w tle. "Perfmon", czyli Monitor wydajności, koncentruje się na analizowaniu wydajności systemu poprzez zbieranie danych na temat różnych zasobów, jednak nie oferuje możliwości interakcji ze sprzętem ani sterownikami. Z kolei "eventvwr" to Podgląd zdarzeń, który rejestruje dzienniki zdarzeń systemowych, aplikacji i zabezpieczeń, jednak jego funkcjonalność nie obejmuje zarządzania sprzętem, co może prowadzić do mylnych przekonań o jego przydatności w kontekście rozwiązywania problemów sprzętowych. Oparcie się na tych narzędziach w sytuacji konfliktów sprzętowych lub problemów z działaniem urządzeń może prowadzić do błędnych diagnoz i wydłużenia procesu naprawy urządzeń, dlatego ważne jest, aby użytkownicy rozumieli różnice pomiędzy tymi narzędziami a Menedżerem urządzeń.