Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 17 grudnia 2025 08:46
  • Data zakończenia: 17 grudnia 2025 08:56

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. NPN NC
B. PNP NO
C. PNP NC
D. NPN NO
Odpowiedź NPN NC jest prawidłowa, ponieważ czujnik na schemacie wskazuje na tranzystor NPN z wyjściem normalnie zamkniętym (NC). W przypadku wyjść typu NPN, prąd płynie od kolektora do emitera, co oznacza, że wyjście czujnika jest połączone z masą, gdy czujnik jest aktywowany. Wyjście NC oznacza, że w stanie nieaktywnym obwód jest zamknięty, a po aktywacji czujnika obwód się otwiera. To konsekwentnie stosowane rozwiązanie, zwłaszcza w aplikacjach, gdzie konieczne jest zapewnienie bezpieczeństwa. W praktycznych zastosowaniach, takie czujniki są często używane w systemach automatyki przemysłowej. Pomagają w monitorowaniu i kontrolowaniu pozycji elementów maszyn, dostarczając istotnych informacji o stanie systemu. Standardy przemysłowe często zalecają stosowanie wyjść typu NPN NC ze względu na ich niezawodność i bezpieczeństwo, szczególnie w sytuacjach, gdzie błąd w detekcji mógłby prowadzić do uszkodzenia sprzętu lub obrażeń.

Pytanie 2

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono na ilustracji

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
To elektronarzędzie w odpowiedzi numer 2 to miniaturowa szlifierka, znana jako multi-tool lub dremel. Jest idealna do precyzyjnej obróbki, takiej jak frezowanie, szlifowanie, polerowanie czy nawet cięcie drobnych elementów. Dzięki swojej wszechstronności znajduje zastosowanie w modelarstwie, rzemiosłach artystycznych oraz w drobnych pracach naprawczych. To narzędzie ma możliwość wymiany końcówek, co pozwala na dostosowanie go do konkretnej pracy. Dremel jest bardzo popularny w warsztatach domowych, ale również w profesjonalnych. Umożliwia pracę z różnymi materiałami, od drewna, przez metal, po tworzywa sztuczne. Warto pamiętać, że korzystanie z niego wymaga pewnej wprawy i ostrożności, ponieważ jego prędkość obrotowa jest wysoka. Stosowanie odpowiednich końcówek i właściwych prędkości obrotowych jest kluczowe, aby uniknąć przegrzewania materiału i zapewnić idealne wykończenie. Z mojego doświadczenia, użycie takiego narzędzia znacząco przyspiesza drobne prace i pozwala na osiągnięcie wysokiej precyzji w obróbce.

Pytanie 3

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. przetwornik PWM.
B. analogowo-cyfrowy konwerter USB.
C. zadajnik cyfrowo-analogowy.
D. przetwornica napięcia.
Odpowiedź jest prawidłowa, ponieważ pokazany na rysunku układ to faktycznie analogowo-cyfrowy konwerter USB. To urządzenie działa jako pomost między sygnałami analogowymi a cyfrowymi, co jest kluczowe w wielu zastosowaniach przemysłowych i naukowych. W praktyce, takie konwertery są używane do przetwarzania sygnałów z czujników analogowych, takich jak termometry czy czujniki ciśnienia, na dane cyfrowe, które mogą być analizowane przez komputer. Standard USB zapewnia łatwość integracji z systemami komputerowymi oraz szeroką kompatybilność. Moim zdaniem, to niezbędne narzędzie w laboratoriach i przemyśle, gdzie precyzyjne pomiary są kluczowe. Dodatkowo, izolacja galwaniczna widoczna na schemacie chroni sprzęt przed różnicami potencjałów, co jest zgodne z dobrymi praktykami inżynierskimi. Dzięki temu, urządzenie można bezpiecznie używać w trudnych warunkach przemysłowych, gdzie mogą wystąpić zakłócenia elektromagnetyczne. Warto też wspomnieć, że taki konwerter umożliwia jednoczesne monitorowanie wielu kanałów pomiarowych, co znacząco zwiększa jego funkcjonalność.

Pytanie 4

Który rysunek przedstawia symbol graficzny zestyku przekaźnika czasowego o opóźnionym załączeniu?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawnie – to symbol zestyków przekaźnika czasowego o opóźnionym załączeniu. Charakterystycznym elementem jest łukowata linia przy stykach, oznaczająca działanie zależne od czasu. W praktyce oznacza to, że po podaniu napięcia na cewkę przekaźnika zestyk nie załącza się od razu, lecz dopiero po upływie określonego czasu ustawionego na przekaźniku. Takie przekaźniki są stosowane np. w układach automatyki, gdzie konieczne jest sekwencyjne uruchamianie urządzeń – wentylator włącza się dopiero po kilku sekundach od startu silnika, oświetlenie awaryjne reaguje z opóźnieniem lub grzałka załącza się po stabilizacji układu. W dokumentacji technicznej zapis symbolu jest zgodny z normami PN-EN 60617. Moim zdaniem warto zapamiętać, że łuk w symbolu zawsze oznacza funkcję czasową – a jego położenie względem styków określa, czy chodzi o opóźnione załączenie, czy opóźnione wyłączenie.

Pytanie 5

Na podstawie danych technicznych zawartych w tabeli ustal parametry zasilania maty grzejnej.

Nazwa produktu:Mata grzejna 5,0 m² 170 W THERMOVAL
Powierzchnia grzewcza5,0 m²
Całkowita moc grzewcza850 W
Moc grzewcza / m²170 W
Napięcie zasilające230 V
Wymiary produktuszer. 0,5 x dł. 10 m
A. Napięcie 230 V, prąd 3,7 A
B. Napięcie 230 V, prąd 5,0 A
C. Napięcie 230 V, prąd 0,7 A
D. Napięcie 170 V, prąd 3,7 A
Odpowiedź z napięciem 230 V i prądem 3,7 A jest poprawna. Z tabeli wynika, że napięcie zasilające matę grzejną wynosi 230 V. Moc całkowita maty to 850 W, a prąd obliczamy z zależności P = U * I, gdzie P to moc, U to napięcie, a I to prąd. Podstawiając dane: 850 W = 230 V * I, otrzymujemy I = 850 W / 230 V, co daje w przybliżeniu 3,7 A. Stosowanie tej zależności to podstawa w elektrotechnice i pozwala na poprawne określenie parametrów zasilania urządzeń. W praktyce, taka mata grzejna znajdzie zastosowanie w ogrzewaniu podłogowym, co jest popularnym rozwiązaniem w nowoczesnym budownictwie. Zastosowanie odpowiedniego napięcia i prądu gwarantuje efektywność pracy urządzenia. Warto wiedzieć, że przy instalacjach elektrycznych zawsze należy przestrzegać odpowiednich norm i standardów, takich jak PN-EN 60335 dotyczący bezpieczeństwa użytkowania urządzeń elektrycznych. Prawidłowe zrozumienie i zastosowanie tej wiedzy jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności systemów grzewczych.

Pytanie 6

Na podstawie stanów logicznych określ, która bramka przedstawionego na rysunku układu cyfrowego jest uszkodzona.

Ilustracja do pytania
A. NAND
B. AND
C. OR
D. NOT
W tym układzie uszkodzona nie jest ani bramka OR, ani NOT, ani NAND – tylko AND. Warto to prześledzić logicznie. Pierwsza bramka (OR) ma na wejściach dwa sygnały 1, więc poprawnie daje 1 na wyjściu. Dolna część układu zawiera inwerter (NOT), który z wejścia 1 tworzy 0 – i to także działa prawidłowo. Te dwa sygnały (1 z OR i 0 z NOT) trafiają następnie do bramki AND. Zgodnie z tablicą prawdy dla bramki AND, wynik powinien być 0, ponieważ jedno z wejść ma wartość 0. Na rysunku jednak wyjście tej bramki ma stan 1 – co jest logicznie niemożliwe, jeśli bramka działa poprawnie. Wskazuje to na jej uszkodzenie, np. zwarcie wewnętrzne powodujące utrzymanie stałego poziomu wysokiego niezależnie od wejść. Ostatnia bramka w układzie ma oznaczenie NAND, ale w tym przypadku działa poprawnie – jej wyjście 1 odpowiada wejściom 1 i 0, bo NAND daje 1, gdy nie wszystkie wejścia są jednocześnie 1. Typowy błąd przy analizie takich schematów to nieuwzględnienie, że jedna z bramek może być zrealizowana w technologii negującej (z kółkiem na wyjściu). W praktyce napraw układów logicznych bramka AND jest często pierwszym podejrzanym elementem, jeśli mimo wejść 0 i 1 na wyjściu pojawia się stała jedynka logiczna – to oznacza awarię toru wyjściowego lub zwarcie z zasilaniem. Poprawna diagnoza wymaga zrozumienia podstaw algebry Boole’a i tabel prawdy dla poszczególnych typów bramek.

Pytanie 7

W sterowniku PLC wejścia cyfrowe oznaczane są symbolem literowym

A. I
B. AQ
C. AI
D. Q
W sterownikach PLC wejścia cyfrowe oznaczane są symbolem literowym 'I'. To skrót od angielskiego słowa 'Input', co dosłownie oznacza wejście. Wejścia te są integralną częścią systemu PLC, ponieważ umożliwiają odbieranie sygnałów z różnych czujników i urządzeń zewnętrznych. Przykładami takich czujników mogą być przyciski, czujniki fotoelektryczne czy wyłączniki krańcowe. Dzięki temu sterownik PLC może reagować na zmienne warunki pracy i odpowiednio sterować wyjściami, takimi jak siłowniki czy lampy. Standardy przemysłowe, takie jak IEC 61131-3, od lat utrzymują jednolitość w oznaczaniu elementów systemów automatyki, co ułatwia inżynierom zrozumienie i konserwację systemów bez względu na producenta sterownika. Wejścia cyfrowe są kluczowe w systemach, gdzie potrzebna jest szybka reakcja na zmiany w otoczeniu, a ich właściwe oznaczenie umożliwia precyzyjne projektowanie i programowanie aplikacji przemysłowych. Dobre zrozumienie oznaczeń w PLC jest podstawą efektywnego projektowania systemów automatyki, co w praktyce przekłada się na zwiększenie wydajności i niezawodności procesów produkcyjnych.

Pytanie 8

Element zaznaczony na ilustracji strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. silnik prądu stałego.
B. autotransformator.
C. opornik dekadowy.
D. multimetr cyfrowy.
Autotransformator to urządzenie transformujące napięcie przy użyciu pojedynczego uzwojenia. Poprzez zmianę odczepów na uzwojeniu, możemy regulować napięcie wyjściowe w stosunku do napięcia wejściowego. Jest to rozwiązanie bardziej ekonomiczne i kompaktowe w porównaniu do klasycznych transformatorów, które mają dwa oddzielne uzwojenia: pierwotne i wtórne. W praktyce, autotransformatory są powszechnie używane w urządzeniach elektronicznych, gdzie wymagane są niewielkie zmiany napięcia. Przykład to regulacja oświetlenia lub prędkości obrotowej silników. Standardy branżowe wskazują na zastosowanie ich w sytuacjach, gdzie potrzebna jest wysoka sprawność i niskie straty mocy. Warto pamiętać, że autotransformatory nie izolują galwanicznie obwodów, co może być zarówno zaletą, jak i wadą, w zależności od aplikacji. Dzięki nim możemy uzyskać regulowane napięcie w sposób bardziej płynny i efektywny, co jest cenione w wielu dziedzinach przemysłu.

Pytanie 9

Połączenie zacisku L2 przemiennika częstotliwości ze źródłem zasilania należy wykonać przewodem w izolacji o kolorze

Ilustracja do pytania
A. białym.
B. czerwonym.
C. brązowym.
D. niebieskim.
Odpowiedź niebieska jest poprawna, ponieważ w systemach elektrycznych zgodnych z normą PN-EN 60446 kolorem niebieskim oznacza się przewody neutralne, czyli te, które są podłączone do bieguna neutralnego zasilania. Praktycznie w każdym przypadku, gdy mamy do czynienia z instalacją elektryczną, neutralne przewody w kolorze niebieskim są kluczowe dla prawidłowego funkcjonowania systemu. Przykładowo, podczas instalacji przemienników częstotliwości, przewód L2 często jest przewodem neutralnym, który uziemia i stabilizuje układ. Ważne jest, aby pamiętać, że właściwe oznaczenie przewodów nie tylko ułatwia serwisowanie, ale przede wszystkim zapewnia bezpieczeństwo i zgodność z przepisami. Moim zdaniem, umiejętność rozpoznawania i prawidłowego łączenia przewodów to fundamentalna umiejętność każdego elektryka, dlatego warto przyłożyć do tego szczególną uwagę. Dobre oznaczenie przewodów to także mniejsze ryzyko pomyłki w przyszłości, co jest jednym z podstawowych standardów w branży elektrycznej.

Pytanie 10

Na podstawie danych umieszczonych w tabeli, dobierz średnicę wiertła do wykonania otworu pod gwint M8 o skoku 1 mm.

Średnica
znamionowa
gwintu
Skok
gwintu
mm
Średnica
nominalna
wiertła
mm
M81.256.80
17.00
0.757.25
M91.257.80
18.00
0.758.25
A. 7,25 mm
B. 7,80 mm
C. 6,80 mm
D. 7,00 mm
Odpowiedź 7,00 mm jest prawidłowa, ponieważ zgodnie z tabelą, dla gwintu M8 z skokiem 1 mm, należy użyć wiertła o średnicy 7,00 mm. To ważne, aby zrozumieć, dlaczego dobór właściwej średnicy wiertła jest kluczowy. Gwinty są używane do tworzenia połączeń śrubowych, które muszą być trwałe i wytrzymałe. Jeśli otwór jest za ciasny, może dojść do uszkodzenia narzędzi lub nawet materiału, z którym pracujesz. Z kolei zbyt duży otwór wpłynie na siłę połączenia, a nawet spowoduje jego luzowanie się. Praktyka mówi, że otwór powinien być na tyle duży, by śruba mogła bez problemu wejść, ale jednocześnie na tyle mały, by gwint miał odpowiednią przyczepność. Dobrze jest zapamiętać, że dla gwintów metrycznych, średnicę wiertła często oblicza się jako różnicę średnicy gwintu i skoku gwintu. Dlatego w przypadku M8 (8 mm) i skoku 1 mm, 8 mm - 1 mm = 7 mm. To nie tylko teoria, ale także zasada stosowana w praktyce przez profesjonalistów w branży.

Pytanie 11

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok licznika impulsów zliczającego w górę CTU
B. blok licznika impulsów zliczającego w dół CTD
C. blok timera opóźniającego załączenie TON
D. blok timera opóźniającego wyłączenie TOF
Blok licznika impulsów zliczającego w dół, oznaczany jako CTD, jest kluczowym elementem w sterownikach PLC, który pozwala na zliczanie wstecz impulsów sterujących. Na wykresie widzimy, że wartość CV (Current Value) zmniejsza się z każdym impulsem, co odpowiada działaniu licznika zliczającego w dół. Tego typu bloki są często używane w aplikacjach przemysłowych, w których ważne jest utrzymanie kontroli nad ilością wykonanych operacji lub zliczaniem komponentów na linii produkcyjnej. Stosując standardy IEC 61131-3, projektanci systemów mogą łatwo zintegrować funkcję licznika w swoich programach, co zapewnia spójność i niezawodność działania. Moim zdaniem, liczniki zliczające w dół są niezastąpione w sytuacjach, gdzie kontrola ilości zasobów czy operacji jest kluczowa. Dzięki nim możemy również realizować bardziej zaawansowane zadania logiczne, jak np. zatrzymywanie procesu po osiągnięciu określonej liczby cykli. Ważnym aspektem jest także możliwość resetowania licznika, co daje dużą elastyczność w zastosowaniach praktycznych.

Pytanie 12

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. termoelektryczne.
B. rezystancyjne metalowe.
C. bimetalowe.
D. rezystancyjne półprzewodnikowe.
W systemach automatyki pomiar temperatury jest kluczowy dla wielu procesów, dlatego ważne jest, aby używać odpowiednich czujników. Czasami błędnie można założyć, że czujniki rezystancyjne półprzewodnikowe, termoelektryczne czy bimetalowe będą stosowane zamiennie z czujnikami Pt100, jednak każda z tych technologii ma swoje unikalne cechy i zastosowania. Czujniki rezystancyjne półprzewodnikowe, często znane jako termistory, różnią się znacząco od czujników Pt100. Termistory mają nieliniową charakterystykę i są zazwyczaj stosowane w aplikacjach wymagających kompaktowych rozwiązań o ograniczonym zakresie temperatur. Natomiast czujniki termoelektryczne, zwane też termoparami, generują napięcie w odpowiedzi na różnicę temperatur, co czyni je idealnymi dla wysokich temperatur i aplikacji wymagających szybkiej reakcji. Z kolei czujniki bimetalowe działają na zasadzie fizycznego wyginania się dwóch zespawanych metali o różnej rozszerzalności cieplnej. Choć są one proste i tanie, ich dokładność i szybkość reakcji są ograniczone. Typowym błędem myślowym jest założenie, że wszystkie czujniki temperatury działają w podobny sposób, co może prowadzić do nieodpowiedniego doboru czujnika do konkretnej aplikacji. Wybór odpowiedniego czujnika jest kluczowy dla zapewnienia dokładności i efektywności procesów przemysłowych.

Pytanie 13

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. A
B. P
C. B
D. T
Przyłącze T w zaworze hydraulicznym jest przeznaczone do podłączenia zbiornika z cieczą hydrauliczną. To przyłącze, zwane także portem powrotu, umożliwia odprowadzenie cieczy powracającej do zbiornika z systemu hydraulicznego, po tym jak wykonała swoje zadanie, np. przesunięcie tłoka w siłowniku. Jest to kluczowe dla utrzymania prawidłowego obiegu cieczy i zapobiegania nadmiernemu ciśnieniu w układzie. W praktyce, prawidłowe podłączenie zbiornika do przyłącza T pozwala na efektywne działanie całego systemu i uniknięcie awarii spowodowanych zbyt dużym ciśnieniem. Moim zdaniem, znajomość tego typu detali jest niezbędna dla każdego, kto chce pracować z hydrauliką, ponieważ błędne podłączenie może prowadzić do poważnych problemów. Standardy branżowe wyraźnie wskazują na konieczność stosowania się do opisanych zasad przy projektowaniu i konserwacji systemów hydraulicznych.

Pytanie 14

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór niewłaściwego elementu jako zamiennika dla S1 może prowadzić do nieprawidłowego działania całego układu. Na schemacie widoczne są elementy, które pełnią różne funkcje w systemach pneumatycznych i elektrycznych, takie jak wyłączniki krańcowe czy zawory regulacyjne. Błędnym myśleniem jest sądzić, że każdy zawór lub przełącznik spełni tę samą funkcję. Dla przykładu, wyłącznik krańcowy może być użyty do wykrywania pozycji, ale nie zastąpi zaworu rozdzielającego, który steruje kierunkiem przepływu medium. Wybór nieodpowiedniego typu zaworu, np. zamiast zaworu pneumatycznego użycie zaworu elektrycznego, może prowadzić do nieefektywności i uszkodzeń systemu. Często błędnym założeniem jest także ignorowanie specyfikacji technicznych, takich jak ciśnienie robocze czy rodzaj medium. Dobre praktyki w branży wymagają szczegółowej analizy parametrów pracy i zastosowania komponentów zgodnych z normami, takimi jak ISO czy CE, co minimalizuje ryzyko awarii i zapewnia długotrwałe funkcjonowanie układu. Zrozumienie tych różnic jest kluczowe w projektowaniu i serwisowaniu systemów automatyki przemysłowej.

Pytanie 15

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Obiektowy separator napięć 24 V DC
B. Przetwornica akumulatorowa 2x24 V / 230 V AC
C. Przetwornica napięcia 2x24 V DC / 230 V AC
D. Zasilacz 230 V AC / 24 V DC
Zasilacz 230 V AC / 24 V DC to urządzenie, które zamienia prąd zmienny o napięciu 230 V na prąd stały o napięciu 24 V. Jest to niezwykle przydatne w wielu aplikacjach przemysłowych, gdzie potrzeba zasilania urządzeń elektronicznych i sterowników, które działają na niskim napięciu stałym. Zasilacze tego typu są wykorzystywane w automatyce przemysłowej, systemach kontroli oraz w instalacjach, gdzie wymagana jest stabilność i niezawodność zasilania. Standardem w branży jest zapewnienie, że zasilacz posiada odpowiednie zabezpieczenia przed przeciążeniem, przegrzaniem i zwarciem, co zwiększa bezpieczeństwo użytkowania. Warto zauważyć, że takie zasilacze często wyposażone są w różne tryby pracy, jak np. Hiccup Mode, który automatycznie resetuje zasilanie w przypadku awarii, co jest zgodne z dobrymi praktykami zapewniającymi ciągłość pracy systemów. Moim zdaniem, zrozumienie funkcji i konstrukcji zasilaczy to podstawa dla każdego technika zajmującego się elektroniką i automatyzacją, bo często to właśnie od nich zależy bezawaryjność całego systemu.

Pytanie 16

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. separatora.
B. przepływomierza.
C. przetwornika pomiarowego.
D. wzmacniacza operacyjnego.
Przetwornik pomiarowy to urządzenie niezbędne w systemach automatyki i pomiarów, które przekształca jedną formę sygnału w inną. Może to być np. zamiana sygnału analogowego na cyfrowy lub przetwarzanie wielkości fizycznej, jak temperatura, na sygnał elektryczny. Moim zdaniem, to kluczowy element, który pozwala na integrację i automatyzację procesów przemysłowych. Przetworniki są powszechnie stosowane w systemach monitoringu i kontroli, gdzie precyzyjne dane są nieodzowne dla optymalizacji procesów. W praktyce, przy wyborze przetwornika, warto zwrócić uwagę na jego dokładność, zakres pomiarowy oraz kompatybilność z innymi elementami systemu. Przykładowo, w przemyśle chemicznym, przetwornik może mierzyć stężenie substancji i przekazywać te dane do systemu zarządzania produkcją. Standardy takie jak IEC i ANSI definiują wytyczne dotyczące konstrukcji i działania przetworników, co zapewnia ich niezawodność i bezpieczeństwo w różnych aplikacjach. Z tego powodu, prawidłowe zrozumienie funkcji i specyfikacji przetworników jest kluczowe dla specjalistów zajmujących się projektowaniem systemów pomiarowych.

Pytanie 17

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
B. Rezystancji żył L1, L2, L3.
C. Rezystancji izolacji między przewodami L1 i L2 i L3.
D. Sumy rezystancji żył L1, L2, L3 oraz PEN.
Wykonanie pomiaru rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowe w ocenie bezpieczeństwa elektrycznego instalacji. Taki pomiar pomaga zidentyfikować możliwe uszkodzenia izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Rezystancja izolacji jest mierzona przy użyciu specjalnych mierników, które podają wysokie napięcie pomiarowe, aby dokładnie ocenić stan izolacji. Standardy branżowe, takie jak PN-HD 60364, zalecają regularne wykonywanie takich pomiarów w celu utrzymania bezpieczeństwa instalacji. Praktyczne zastosowanie tej wiedzy można znaleźć w przemyśle budowlanym, gdzie bezpieczeństwo instalacji elektrycznych jest priorytetem. W domowych warunkach, choć rzadko wykonywane przez laików, pomiary te mogą być kluczowe przy odbiorze nowych instalacji. Moim zdaniem, znajomość i wykonywanie takich pomiarów to podstawa zdrowego rozsądku w zawodzie elektryka. Z doświadczenia wiem, że regularne pomiary rezystancji izolacji pozwalają na wczesne wykrycie potencjalnych problemów, co przekłada się na bezpieczeństwo użytkowników.

Pytanie 18

Na podstawie tabeli określ, jak często należy czyścić filtr ssawny.

Lp.Zakres pracTermin wykonania
1Śruby mocująceSprawdzenie momentu dokręceniaPo pierwszej godzinie pracy
2ZbiornikOpróżnianie zbiornikaPo każdej pracy dłuższej niż 1 h
3Filtr ssawnyCzyszczenieCo 100 h
WymianaW razie konieczności
4OlejWymianaPo pierwszych 100 h
Co 300 h
Sprawdzanie stanuRaz w tygodniu
A. Raz w tygodniu.
B. Co godzinę.
C. Co 100 godzin.
D. Co 300 godzin.
To, że wybrałeś odpowiedź 'Co 100 godzin' jako prawidłową, świadczy o twojej umiejętności prawidłowego analizowania harmonogramów konserwacyjnych. W tabeli wyraźnie podano, że czyszczenie filtra ssawnego powinno się odbywać co 100 godzin pracy. To nie jest przypadkowy wybór; jest to część standardowych procedur konserwacyjnych, które pomagają w utrzymaniu optymalnej wydajności maszyn. Regularne czyszczenie filtra ssawnego co 100 godzin pozwala na uniknięcie problemów związanych z zanieczyszczeniem systemu, takich jak zmniejszenie mocy ssania czy awarie pompy. Z mojego doświadczenia wynika, że takie podejście znacząco wydłuża żywotność sprzętu i zmniejsza koszty związane z naprawami. W branży powszechnie stosuje się zasadę, że regularna konserwacja jest tańsza i bardziej efektywna niż naprawy awaryjne. Dlatego warto zawsze pamiętać o harmonogramie konserwacji i nie pomijać żadnych jego punktów. Filtry są kluczowym elementem systemów ssawnych i ich stan ma bezpośredni wpływ na wydajność całego układu. Stąd też, takie regularne czyszczenie jest nie tylko zalecane, ale wręcz konieczne dla zachowania pełnej funkcjonalności urządzeń. Odpowiednia konserwacja to również dbałość o bezpieczeństwo eksploatacji, co w dłuższej perspektywie przekłada się na lepsze wyniki finansowe i operacyjne.

Pytanie 19

Określ, który blok funkcjonalny musi być użyty w programie sterującym urządzeniem służącym do pakowania określonej liczby zabawek do kartonu.

A. Timer TON
B. Multiplekser analogowy.
C. Regulator PID
D. Licznik jednokierunkowy.
Wybór licznika jednokierunkowego do sterowania urządzeniem pakującym zabawki jest trafny, ponieważ liczniki świetnie nadają się do zliczania określonej liczby zdarzeń, takich jak pakowanie zabawek do kartonu. Licznik jednokierunkowy, często określany jako licznik up, zwiększa swoją wartość za każdym razem, gdy otrzymuje impuls. W kontekście urządzenia pakującego może to być impuls z czujnika, który rejestruje każdą wrzuconą zabawkę. Po osiągnięciu zaprogramowanej liczby zabawek licznik może wysłać sygnał, który inicjuje kolejne działania, takie jak zamknięcie i przeniesienie kartonu. To podejście jest zgodne z praktycznym zastosowaniem w automatyce przemysłowej, gdzie liczniki są często wykorzystywane do zadań związanych z kontrolą ilościową. W branży automatyki standardem jest stosowanie liczników w przypadku, gdy wymagane jest precyzyjne śledzenie liczby operacji. Takie rozwiązanie zapewnia zarówno dokładność, jak i prostotę implementacji, co jest kluczowe w środowiskach produkcyjnych, gdzie niezawodność i łatwość obsługi są na wagę złota. Warto zauważyć, że w przypadku bardziej złożonych operacji, licznik jednokierunkowy może być częścią systemu zawierającego również inne typy liczników lub komponenty logiczne.

Pytanie 20

Element przedstawiony na rysunku to

Ilustracja do pytania
A. pirometr.
B. termometr rtęciowy.
C. czujnik rezystancyjny.
D. czujnik pojemnościowy.
To, co widzimy na rysunku, to czujnik rezystancyjny, znany również jako termometr rezystancyjny (RTD). Jest szeroko stosowany w przemyśle do pomiaru temperatury dzięki swojej precyzji i stabilności. Czujniki rezystancyjne działają na zasadzie zmiany rezystancji metalu pod wpływem temperatury. Najczęściej spotykanymi materiałami są platyna (Pt-100, Pt-500, Pt-1000), ponieważ oferuje liniową charakterystykę i dobrą powtarzalność pomiarów. Przykładowo, Pt-100 oznacza, że rezystancja czujnika wynosi 100 omów przy 0°C. W praktyce, znajdziesz takie czujniki w systemach HVAC, procesach chemicznych czy nawet w sprzęcie laboratoryjnym. Standardy, takie jak DIN EN 60751, określają ich konstrukcję i precyzję. Dzięki swoim właściwościom, czujniki te są preferowane w aplikacjach, gdzie małe błędy pomiarowe są kluczowe. Moim zdaniem, ich popularność wynika również z dostępności precyzyjnych przetworników, które łatwo integrują się z systemami automatyki.

Pytanie 21

Aby przekaźnik czasowy PCU-504 realizował funkcję opóźnionego załączenia po czasie 2 minut, kolejno przełączniki P1, P2 i P3 powinny być ustawione w następujących pozycjach:

Ilustracja do pytania
A. P1 – 2, P2 – 1, P3 – B10
B. P1 – 2, P2 – 2, P3 – A0,1
C. P1 – 1, P2 – 2, P3 – B0,1
D. P1 – 1, P2 – 1, P3 – A10
Wybrana konfiguracja P1 – 2, P2 – 1, P3 – B10 jest prawidłowa, ponieważ pozwala na opóźnione załączenie przekaźnika czasowego na 2 minuty. Ustawienie P1 na 2 oraz P2 na 1 oznacza, że czas opóźnienia wynosi 20 jednostek bazowych. W przypadku P3 ustawionego na B10, przekaźnik działa w trybie opóźnionego załączenia (B), a jednostką bazową jest 10 sekund. Mnożymy więc 20 jednostek przez 10 sekund, co daje nam dokładnie 200 sekund, czyli 2 minuty. W praktyce ustawienia te są często wykorzystywane w aplikacjach, gdzie konieczne jest precyzyjne sterowanie czasowe, np. w automatyce przemysłowej do sterowania sekwencjami maszyn. Ważne jest, aby zawsze stosować się do instrukcji producenta, by uniknąć błędów w konfiguracji. Warto również wiedzieć, że takie przekaźniki są niezastąpione w systemach automatyki budynkowej, gdyż pozwalają na oszczędność energii i zwiększenie efektywności operacyjnej poprzez optymalizację czasu działania urządzeń.

Pytanie 22

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 220 ÷ 240 V
B. 440 ÷ 480 V
C. 380 ÷ 420 V
D. 254 ÷ 277 V
Silnik przedstawiony na tabliczce znamionowej ma określony zakres napięć zasilania, w którym może bezpiecznie pracować. Dla częstotliwości sieci 60 Hz oraz uzwojeń połączonych w gwiazdę, dopuszczalny zakres napięć wynosi 440 ÷ 480 V. Taki zakres jest określony przez standardy międzynarodowe, które mają na celu zapewnienie bezpieczeństwa i efektywności pracy urządzeń elektrycznych. W praktyce oznacza to, że silnik będzie działał optymalnie w systemach elektrycznych, które dostarczają napięcie w tym przedziale. Jest to szczególnie ważne w zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe. Z mojego doświadczenia, dobór odpowiedniego napięcia zasilania pozwala na uniknięcie problemów związanych z nadmiernym zużyciem energii oraz nadmiernym obciążeniem silnika, co może prowadzić do jego uszkodzenia. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, które zawsze kładą nacisk na zrozumienie specyfikacji technicznych i ich zastosowanie w praktyce.

Pytanie 23

Który rozrusznik typu „softstart” należy zastosować do łagodnego rozruchu silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. Rozrusznik 3.
B. Rozrusznik 2.
C. Rozrusznik 1.
D. Rozrusznik 4.
Wybór odpowiedniego rozrusznika softstart to nie tylko kwestia dopasowania mocy, ale też warunków środowiskowych, w jakich będzie on pracował. Rozruszniki 1 i 4, mimo że obsługują odpowiednie napięcie 1x230 V, posiadają obudowy o stopniu ochrony IP 20. Oznacza to, że są one tylko zabezpieczone przed ciałami stałymi większymi niż 12,5 mm, co nie jest wystarczające w środowisku wysokiego zapylenia. Bardzo często zapomina się, że pył może być jednym z najważniejszych czynników wpływających na niezawodność sprzętu elektrycznego. Rozrusznik 2, choć ma wyższy stopień ochrony IP 67, przeznaczony jest do pracy na wyższe napięcia (380-415 V), więc nie nadaje się do silnika jednofazowego na 230 V. Brak zgodności napięcia może prowadzić do nieprawidłowego działania urządzenia lub nawet jego uszkodzenia. Często pojawia się błędne przekonanie, że wyższy stopień ochrony zawsze oznacza lepszy wybór, ale nie można pomijać kwestii dopasowania do specyfikacji technicznej całego systemu. Kluczem do sukcesu jest zawsze pełne zrozumienie wymagań aplikacji i środowiska, w jakim urządzenie będzie pracować, co pozwala unikać niepotrzebnych kosztów i potencjalnych awarii.

Pytanie 24

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 2
Ilustracja do odpowiedzi A
B. Miernik 3
Ilustracja do odpowiedzi B
C. Miernik 4
Ilustracja do odpowiedzi C
D. Miernik 1
Ilustracja do odpowiedzi D
Wiele osób wybiera błędny miernik, bo patrzy jedynie na jednostkę „V” bez zwracania uwagi na zakres i typ napięcia. Miernik numer 1 ma zakres do 6 V – byłby zbyt mało czuły i mógłby się uszkodzić przy napięciu 10 V. Miernik numer 2 ma zakres aż do 75 V, przez co wskazówka przy pomiarze 10 V niemal się nie poruszy, co uniemożliwia dokładny odczyt. Z kolei miernik numer 4 jest przeznaczony do pomiaru napięcia przemiennego (oznaczenie „~”), a w naszym układzie występuje napięcie stałe (DC), więc jego zastosowanie byłoby błędem technicznym – nie pokaże prawidłowego wyniku, a w skrajnym przypadku może zostać uszkodzony. W praktyce automatyki i elektrotechniki zawsze trzeba dopasować zakres przyrządu do mierzonego sygnału – najlepiej, gdy maksymalna wartość na skali jest nieco wyższa od maksymalnej wartości sygnału. Typowy sygnał analogowy z czujnika lub przetwornika to 0–10 V DC, dlatego właściwy jest woltomierz o zakresie obejmującym ten przedział, np. –5...15 V. Stosowanie miernika do AC lub o zbyt dużym zakresie prowadzi do błędnych wniosków diagnostycznych, co w automatyce może skutkować niewłaściwą regulacją urządzenia, np. zaworu proporcjonalnego. Moim zdaniem właśnie znajomość zakresów i typów napięć odróżnia praktyka od kogoś, kto tylko „mierzy, żeby coś się ruszyło na wskazówce”.

Pytanie 25

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PID
B. PD
C. P
D. PI
Regulator PID, czyli Proporcjonalno-Całkująco-Różniczkujący, to jeden z najczęściej stosowanych regulatorów w przemyśle. Schemat, który właśnie widzisz, przedstawia wszystkie trzy elementy składowe tego regulatora: składową proporcjonalną, całkującą i różniczkującą. K_p odpowiada za reakcję proporcjonalną, która jest proporcjonalna do bieżącego błędu. Element 1/T_i s to część całkująca, która sumuje błędy w czasie, co pomaga zredukować błąd ustalony. T_d s to składowa różniczkująca, która przewiduje przyszłe błędy na podstawie tempa zmian. W praktyce PID jest niezastąpiony tam, gdzie wymagana jest precyzyjna kontrola – w systemach HVAC, w automatyce przemysłowej, a nawet w robotyce. Dobór właściwych parametrów K_p, T_i, T_d jest kluczowy i często wymaga tuningu metodą Zieglera-Nicholsa lub metodą prób i błędów. Moim zdaniem, każda osoba zajmująca się automatyką powinna dobrze znać zastosowanie i działanie regulatorów PID.

Pytanie 26

Na podstawie fragmentu instrukcji przekaźnika czasowego wskaż, które położenie przełączników realizuje funkcję załączenia z opóźnieniem.

Ilustracja do pytania
A. Położenie II
B. Położenie I
C. Położenie IV
D. Położenie III
Błędne koncepcje dotyczą położeń II, III i IV, które nie realizują funkcji załączenia z opóźnieniem. W położeniu II przekaźnik działa bezpośrednio po podaniu napięcia, co tutaj nie spełnia wymogu opóźnienia. W środowiskach automatyki przemysłowej, natychmiastowe załączenie może prowadzić do przeciążeń lub niepożądanych reakcji systemu. Położenie III również nie spełnia tej funkcji, ponieważ jest przeznaczone do pracy ciągłej bez opóźnienia. Tego typu ustawienia są używane w prostych aplikacjach, gdzie czas reakcji nie wpływa na bezpieczeństwo czy efektywność. Położenie IV to sytuacja, gdzie przekaźnik działa w trybie przerywanym, co jest używane do cyklicznych operacji, ale nie dotyczy funkcji z opóźnieniem. Wybór tego trybu w kontekście opóźnienia jest zwykle błędny, gdyż jego celem jest generowanie cyklicznych impulsów, a nie opóźnione załączanie. Typowe błędy myślowe to zakładanie, że każda zmiana położenia przełącznika zmienia jedynie czas reakcji, podczas gdy w rzeczywistości zmienia ona całą logikę działania przekaźnika. Aby uniknąć takich pomyłek, warto zrozumieć, że każda funkcja przekaźnika czasowego ma swoje specyficzne zastosowania i musi być dobrana zgodnie z wymogami systemu.

Pytanie 27

W regulatorze PID symbolem TI oznacza się czas

A. zdwojenia.
B. wyprzedzenia.
C. propagacji.
D. opóźnienia.
Pojęcia takie jak czas propagacji, opóźnienia czy wyprzedzenia mogą być mylące w kontekście regulatorów PID. Czas propagacji odnosi się raczej do opóźnień sygnału w systemach komunikacyjnych i nie ma związku z funkcjonowaniem regulatora PID. Czas opóźnienia to parametr występujący w modelach układów dynamicznych, związany z czasem potrzebnym na reakcję systemu na dany sygnał wejściowy. Może to być czas transportu materiału w procesie, ale nie jest to bezpośrednio związane z parametrami TI regulatora PID. Kolejnym błędnym pojęciem jest czas wyprzedzenia, który w automatyce może dotyczyć członów korekcyjnych stosowanych do kompensacji opóźnień czy poprawy dynamiki układu, lecz nie odnosi się do TI, który jest czasem całkowania. Typowym błędem jest zakładanie, że wszystkie te czasy są wymienne, co prowadzi do nieprawidłowego dostrajania regulatorów i destabilizacji procesu. Rozumienie, że TI to czas zdwojenia, jest kluczowe, bo to on określa, jak szybko regulator skoryguje odchyłki procesu względem zadanej wartości, co jest fundamentem stabilizacji i optymalizacji w systemach sterowania. Warto więc zrozumieć te koncepcje, aby unikać typowych błędów w projektowaniu i stosowaniu regulatorów PID w praktyce inżynierskiej. Właściwe zrozumienie parametrów regulatora pozwala na bardziej efektywne projektowanie i implementację systemów automatyki, co przekłada się na większą niezawodność i wydajność procesów technologicznych. Dlatego też nauka i zrozumienie tych pojęć jest niezbędne dla inżynierów automatyków i technologów procesów. Takie podejście pozwala na zgodność z dobrą praktyką projektową i wymogami norm jakościowych, co w efekcie zwiększa konkurencyjność przedsiębiorstw na rynku."]

Pytanie 28

Na podstawie fragmentu instrukcji montażu przycisku sterującego dobierz narzędzie do jego demontażu.

Ilustracja do pytania
A. Wkrętak płaski.
B. Klucz oczkowy.
C. Klucz nasadowy.
D. Wkrętak krzyżakowy.
Wybór wkrętaka płaskiego jako narzędzia do demontażu przycisku sterującego jest trafny z kilku powodów. Po pierwsze, większość przycisków i elementów sterujących zaprojektowano z myślą o łatwym montażu i demontażu, co często wymaga jedynie podstawowych narzędzi, jak właśnie wkrętak płaski. Wkrętak ten umożliwia precyzyjne działanie na śruby lub zaczepy bez ryzyka uszkodzenia plastikowych elementów obudowy. Z mojego doświadczenia wynika, że wkrętaki płaskie są niezastąpione w sytuacjach, gdzie przestrzeń jest ograniczona, a demontaż wymaga delikatności. Standardy branżowe często zalecają użycie narzędzi minimalizujących uszkodzenia, co może mieć znaczenie przy obsłudze delikatnych urządzeń elektronicznych. Praktyczne zastosowanie wkrętaka płaskiego obejmuje nie tylko demontaż, ale również możliwość korekty ustawienia elementów montażowych, co czyni go uniwersalnym narzędziem w skrzynce każdego majsterkowicza.

Pytanie 29

Którym narzędziem nie można ściągnąć izolacji z przewodów elektrycznych wielożyłowych?

A. Narzędzie 1
Ilustracja do odpowiedzi A
B. Narzędzie 2
Ilustracja do odpowiedzi B
C. Narzędzie 4
Ilustracja do odpowiedzi C
D. Narzędzie 3
Ilustracja do odpowiedzi D
Pierwsze narzędzie widoczne na zdjęciu to obcinak do rur, najczęściej używany przy pracach hydraulicznych – do cięcia rur z tworzyw sztucznych, miedzi lub aluminium. Nie nadaje się do zdejmowania izolacji z przewodów elektrycznych, ponieważ jego ostrze jest zaprojektowane do przecinania grubych, sztywnych materiałów, a nie do precyzyjnego nacinania powłoki przewodów. Gdyby ktoś próbował użyć go do kabli, bardzo łatwo mógłby uszkodzić żyły przewodzące. W przeciwieństwie do niego, pozostałe narzędzia (2, 3 i 4) to ściągacze izolacji, zaprojektowane właśnie do pracy z przewodami jedno- i wielożyłowymi. Mają regulację średnicy, ograniczniki głębokości cięcia i specjalne szczęki zapobiegające przecięciu miedzi. Moim zdaniem to bardzo dobre pytanie praktyczne – w warsztacie czy na budowie zdarza się, że ktoś myli obcinak do rur z ściągaczem, bo oba mają podobny kształt uchwytu. W rzeczywistości jednak to zupełnie inne narzędzia – jedno tnie, drugie tylko usuwa cienką warstwę izolacji, zachowując nienaruszony przewodnik. Profesjonalny elektryk zawsze użyje dedykowanego ściągacza, aby uniknąć ryzyka przegrzania lub zwarcia w przewodzie.

Pytanie 30

Który termometr należy zastosować do bezkontaktowego pomiaru temperatury?

A. Pirometryczny.
B. Rezystancyjny.
C. Dylatacyjny.
D. Termoelektryczny.
Pirometryczny termometr to urządzenie, które doskonale nadaje się do bezkontaktowego pomiaru temperatury. Wykorzystuje on promieniowanie podczerwone emitowane przez badany obiekt, co umożliwia precyzyjne określenie temperatury bez potrzeby fizycznego kontaktu. To rozwiązanie jest niezwykle użyteczne w sytuacjach, gdy dostęp do mierzonego obiektu jest utrudniony lub niebezpieczny, na przykład w przemyśle hutniczym, gdzie temperatura powierzchni metali jest bardzo wysoka. Pirometry są również standardem w medycynie, szczególnie w kontekście szybkiego monitorowania temperatury ciała. W porównaniu do tradycyjnych metod, pirometryczne pomiary są szybkie i eliminują ryzyko zanieczyszczenia krzyżowego. Z mojego doświadczenia, pirometry są nie tylko praktyczne, ale także niezastąpione w wielu zastosowaniach. Ich zdolność do zdalnego pomiaru sprawia, że są preferowaną metodą w wielu branżach, od produkcji przemysłowej po ochronę zdrowia. Pomiar temperatury metodą bezkontaktową to także zgodność z wytycznymi bezpieczeństwa i higieny pracy, co jest niezmiernie ważne w wielu sektorach przemysłowych. Dodatkowo, pirometry zgodne z normami ISO i CE są gwarancją dokładności i jakości pomiarów.

Pytanie 31

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. modułu wyjściowego.
B. zasilacza sterownika PLC.
C. modułu wejściowego.
D. interfejsu komunikacyjnego.
Moduł oznaczony jako ADMC-1801 pełni funkcję modułu wejściowego w układzie sterowania z użyciem PLC. Moduły wejściowe są kluczowe w systemach automatyki, ponieważ pozwalają na zbieranie sygnałów z różnych czujników i urządzeń pomiarowych. W tym przypadku, jak widać na schemacie, moduł ten jest wykorzystywany do odbierania sygnału z czujnika PT100, który mierzy temperaturę. PT100 to zresztą standardowy czujnik rezystancyjny, cieszący się dużą popularnością ze względu na swoją dokładność i stabilność pomiarów. Odczyty z tego czujnika są następnie przekształcane przez moduł wejściowy na sygnał zrozumiały dla PLC, co umożliwia dalsze przetwarzanie i odpowiednie sterowanie procesem. Z mojego doświadczenia, użycie odpowiedniego modułu wejściowego jest kluczowe dla zapewnienia dokładności i niezawodności całego systemu sterowania. Dobre praktyki branżowe sugerują również regularne kalibrowanie takich czujników i modułów, aby utrzymać najwyższy poziom precyzji. Takie podejście zapewnia, że system działa zgodnie z założeniami projektowymi, a ewentualne odchylenia są szybko wychwytywane i korygowane.

Pytanie 32

Przedstawione na ilustracjach narzędzia służą do

Ilustracja do pytania
A. zaciskania wtyków RJ-11.
B. ściągania izolacji.
C. zaciskania tulejek.
D. zaciskania wtyków RJ-45.
Narzędzia przedstawione na ilustracjach to profesjonalne ściągacze izolacji, które są niezbędne w pracy każdego elektryka. Ściąganie izolacji to proces usuwania powłoki zewnętrznej przewodów, aby móc odsłonić rdzeń miedziany lub aluminiowy, co umożliwia dalsze prace, takie jak lutowanie czy zaciskanie końcówek. Prawidłowe ściągnięcie izolacji jest kluczowe, aby uniknąć uszkodzenia przewodów i zapewnić bezpieczne połączenia elektryczne. Ściągacze izolacji automatyczne, takie jak te pokazane na zdjęciu, umożliwiają szybkie i precyzyjne zdejmowanie izolacji z przewodów o różnych średnicach bez konieczności ręcznego dostosowywania narzędzia. Z mojego doświadczenia, korzystanie z takich narzędzi znacznie skraca czas pracy i minimalizuje ryzyko błędów, które mogą prowadzić do awarii systemu. Zgodnie z dobrymi praktykami branżowymi, zawsze warto używać dedykowanych narzędzi do każdej operacji, aby zapewnić ich trwałość i niezawodność, co w efekcie zwiększa bezpieczeństwo całego systemu.

Pytanie 33

Określ przeznaczenie urządzenia przedstawionego na rysunku.

Ilustracja do pytania
A. Programowanie układu.
B. Wizualizacja przebiegu procesu.
C. Zasilanie układu sterowania.
D. Pomiar wielkości procesowych.
Urządzenie, które widzisz, to panel HMI, czyli interfejs człowiek-maszyna. Jest to podstawowe narzędzie w systemach automatyki przemysłowej do wizualizacji przebiegu procesu. Tego typu panele, jak ten na zdjęciu, umożliwiają operatorom interakcję z systemami sterowania procesem. Za ich pomocą można monitorować parametry procesu, wizualizować dane w czasie rzeczywistym oraz podejmować decyzje operacyjne w oparciu o wizualizowane informacje. Moim zdaniem, panel HMI jest fundamentem każdego nowoczesnego systemu automatyki, bo pozwala na szybkie diagnozowanie i reagowanie na nieprawidłowości w procesie. W praktyce, panele HMI są używane w wielu gałęziach przemysłu, od produkcji po energetykę. Z mojego doświadczenia, dobry interfejs HMI zgodny z normami, jak ISO 9241, ułatwia pracę operatorom, a dobrze zaprojektowana wizualizacja ogranicza ryzyko błędów ludzkich. Warto też wspomnieć, że niektóre panele HMI oferują możliwość zdalnego dostępu, co jest ogromnym ułatwieniem w czasach wzmożonej automatyzacji i potrzeby szybkiego reagowania na sytuacje awaryjne.

Pytanie 34

Na schemacie zespołu przygotowania powietrza symbol graficzny manometru oznaczono cyfrą

Ilustracja do pytania
A. 1
B. 3
C. 4
D. 2
Odpowiedź jest prawidłowa, ponieważ na schemacie zespołu przygotowania powietrza, manometr jest oznaczony cyfrą 2. Manometr to instrument pomiarowy służący do mierzenia ciśnienia płynów i gazów. W przypadku systemów pneumatycznych, takich jak zespoły przygotowania powietrza, manometry pełnią kluczową rolę w monitorowaniu ciśnienia roboczego, co jest niezbędne do prawidłowego działania całego układu. Poprawne odczytywanie i interpretacja danych z manometru pozwala na szybkie reagowanie na wszelkie odchylenia od normy, co może zapobiec awariom i zwiększyć efektywność systemu. Standardy w branży pneumatycznej, takie jak ISO 1219, precyzują oznaczanie urządzeń na schematach, co ułatwia identyfikację i obsługę. Moim zdaniem, umiejętność czytania takich schematów jest fundamentalna dla każdego technika pracującego w dziedzinie automatyki i pneumatyki. Dobrze jest także znać różne typy manometrów, jak te z rurką Bourdona, które są popularne ze względu na swoją niezawodność i precyzję.

Pytanie 35

Przedstawiony na rysunku czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. napiężeń.
B. pola magnetycznego.
C. temperatury.
D. ciśnienia.
To, co widzisz na zdjęciu, to czujnik typu kontaktron, który służy do detekcji pola magnetycznego. Kontaktrony są powszechnie używane w różnych zastosowaniach, takich jak systemy alarmowe, gdzie wykrywają obecność lub ruch drzwi i okien. Działają na zasadzie magnetycznego zamknięcia obwodu - kiedy w pobliżu znajdzie się magnes, dwie metalowe blaszki wewnątrz szklanej obudowy stykają się, zamykając obwód elektryczny. W przemyśle te czujniki są również stosowane do wykrywania pozycji maszyn czy robotów, a także w urządzeniach takich jak liczniki rowerowe, gdzie magnes zamocowany na kole zamyka obwód kontaktronu z każdą pełną rewolucją. Co ciekawe, kontaktrony są bardzo niezawodne, ponieważ nie mają mechanicznych części ruchomych, co zmniejsza ryzyko awarii. Moim zdaniem, to niesamowite, że coś tak prostego w konstrukcji może być tak użyteczne w tylu dziedzinach.

Pytanie 36

W regulatorze PID symbolem Kₚ oznacza się współczynnik

A. proporcjonalności.
B. propagacji.
C. wyprzedzenia.
D. zdwojenia.
Regulator PID to jedno z najczęściej stosowanych narzędzi w inżynierii procesowej i automatyce. Kiedy mówimy o współczynniki K_p, mamy na myśli współczynnik proporcjonalności. To właściwie kluczowy element, który odpowiada za natychmiastową reakcję systemu na błąd. W praktycznych zastosowaniach, K_p jest używany do zwiększenia reaktywności systemu na zmiany. Im wyższa wartość K_p, tym system jest bardziej czuły na różnice między wartością rzeczywistą a zadaną. Oczywiście, nie zawsze wyższe oznacza lepsze – zbyt duży K_p może powodować oscylacje, co jest zjawiskiem niekorzystnym. Praktyka pokazuje, że najlepiej jest znaleźć optymalną wartość, która zapewnia stabilność systemu. Dobre praktyki branżowe zalecają przeprowadzanie tuningu regulatora PID, aby uzyskać najlepsze wyniki w specyficznych warunkach pracy, co często odbywa się metodą Zieglera-Nicholsa. Warto pamiętać, że regulator PID jest centralnym elementem wielu systemów sterowania, od prostych kontrolerów temperatury po skomplikowane systemy sterowania w branży lotniczej czy chemicznej. Takie podejście pozwala na przewidywalne i stabilne zachowanie całego systemu sterowania, zwiększając jego efektywność i niezawodność.

Pytanie 37

Którego przyrządu należy użyć do sprawdzenia równoległości dwóch powierzchni?

A. Transametru.
B. Mikrometru.
C. Czujnika zegarowego.
D. Suwmiarki uniwersalnej.
Czujnik zegarowy to bardzo precyzyjne narzędzie pomiarowe, które jest powszechnie stosowane do kontroli równoległości powierzchni. Dzięki swojej konstrukcji pozwala na dokładne mierzenie odchyłek powierzchni w stosunku do referencyjnej linii prostej lub płaszczyzny. Czujnik zegarowy posiada wskazówkę, która precyzyjnie wskazuje różnice w wysokości na powierzchni, umożliwiając tym samym dokładną ocenę równoległości. W praktyce, gdy chcemy ocenić, czy dwie powierzchnie są równoległe, mocujemy czujnik na podstawie magnetycznej i przeprowadzamy pomiar wzdłuż jednej powierzchni, obserwując odczyty na skali. Przy braku odchyłek, wskazówka czujnika nie powinna się znacząco poruszać. Jest to zgodne z zasadą stosowania czujników do kontroli równoległości, co jest standardem w branży obróbki metalu, gdzie precyzja jest kluczowa. Moim zdaniem, czujnik zegarowy to jeden z najbardziej uniwersalnych przyrządów pomiarowych, który każdy technik powinien umieć obsługiwać. Pozwala na uzyskanie dokładnych pomiarów, co jest szczególnie istotne w procesach, gdzie liczy się każdy mikrometr.

Pytanie 38

W jakiej kolejności powinno się wykonać czynności związane z wymianą termostatu w zbiorniku ciepłej wody?

  1. Odłączyć zasilanie.
  2. Odłączyć przewody od termostatu.
  3. Zdemontować termostat uszkodzony.
  4. Zamontować nowy termostat.
  5. Dołączyć przewody do termostatu.
  6. Załączyć zasilanie.
  1. Odłączyć przewody od termostatu.
  2. Odłączyć zasilanie.
  3. Zdemontować termostat uszkodzony.
  4. Zamontować nowy termostat.
  5. Dołączyć przewody do termostatu.
  6. Załączyć zasilanie.
Lista 1.Lista 2.
  1. Odłączyć zasilanie.
  2. Odłączyć przewody od termostatu.
  3. Zdemontować termostat uszkodzony.
  4. Zamontować nowy termostat.
  5. Załączyć zasilanie.
  6. Dołączyć przewody do termostatu.
  1. Odłączyć zasilanie.
  2. Zdemontować termostat uszkodzony.
  3. Zamontować nowy termostat.
  4. Dołączyć przewody do termostatu.
  5. Odłączyć przewody od termostatu.
  6. Załączyć zasilanie.
Lista 3.Lista 4.
A. Według listy 2.
B. Według listy 4.
C. Według listy 1.
D. Według listy 3.
Wybrałeś poprawną kolejność czynności związaną z wymianą termostatu w zbiorniku ciepłej wody. Zacznijmy od początku: odłączanie zasilania to kluczowy pierwszy krok, żeby zapewnić bezpieczeństwo pracy. Prąd jest niebezpieczny, więc zawsze warto sprawdzić, czy zasilanie jest faktycznie odłączone. Następnie odłączamy przewody od starego termostatu, co umożliwia jego bezpieczne zdemontowanie. Kiedy już usuniemy uszkodzony termostat, przystępujemy do montażu nowego. Każdy nowy element mechaniczny musi być prawidłowo zamontowany, aby działał zgodnie z zamierzeniem. Potem podłączamy przewody do nowego termostatu, upewniając się, że są mocno osadzone. Na końcu załączamy zasilanie i sprawdzamy, czy wszystko działa poprawnie. Taka kolejność działań wynika z dobrych praktyk branżowych, które kładą nacisk na bezpieczeństwo i efektywność. Moim zdaniem, zawsze warto kierować się tymi zasadami, aby uniknąć problemów i zapewnić sobie spokój ducha podczas pracy z urządzeniami elektrycznymi.

Pytanie 39

Na ilustracji przedstawiono

Ilustracja do pytania
A. elektroniczny czujnik ciśnienia.
B. separator sygnałów USB.
C. zadajnik cyfrowo-analogowy.
D. przetwornik PWM.
To, co widzisz na ilustracji, to elektroniczny czujnik ciśnienia. Tego typu urządzenia są kluczowe w różnych dziedzinach przemysłu, ponieważ pozwalają na precyzyjne pomiary ciśnienia w systemach hydraulicznych, pneumatycznych czy nawet w instalacjach gazowych. Elektroniczne czujniki ciśnienia wykorzystują różne technologie, takie jak piezoelektryczność, pojemnościowe zmiany lub rezystancyjne mostki tensometryczne, które przetwarzają ciśnienie na sygnał elektryczny. Moim zdaniem, to fascynujące, jak te małe urządzenia mogą monitorować i kontrolować procesy w czasie rzeczywistym, zapewniając niezawodność i bezpieczeństwo. Standardem w branży jest, aby czujniki te były kalibrowane zgodnie z normami ISO, co gwarantuje ich dokładność. Przykładowo, w przemyśle spożywczym, zapewniają one, że ciśnienie w autoklawach jest odpowiednie do sterylizacji produktów. W mojej opinii, rozwój tego typu technologii ma ogromne znaczenie dla postępu w automatyce i robotyce.

Pytanie 40

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór miernika z obrazu #2 jest trafny, gdyż jest to specjalistyczne urządzenie dedykowane do testowania okablowania strukturalnego. Takie mierniki, jak te od Fluke Networks, są zaprojektowane do dokładnego mierzenia parametrów sieciowych, takich jak długość kabla, tłumienie sygnału czy przesłuch między parami. Mierniki te pozwalają wykonywać testy zgodnie z normami, takimi jak TIA/EIA, co gwarantuje, że okablowanie spełnia wymagania certyfikacyjne. W praktyce, przy instalacjach sieciowych, użycie takiego sprzętu jest nieocenione, bo pozwala na szybkie diagnozowanie problemów związanych z jakością połączenia. Dzięki wbudowanym funkcjom, takim jak auto-test, użytkownik może w prosty sposób sprawdzić, czy kabel spełnia normy dla Ethernetu 1000BASE-T, co jest istotne w środowiskach wymagających wysokiej przepustowości. Ważne jest, aby stosować odpowiednie urządzenia, które nie tylko wskazują problemy, ale też dostarczają szczegółowych raportów dotyczących stanu sieci, co jest kluczowe dla utrzymania jej niezawodności i wydajności.