Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 21 lutego 2026 23:15
  • Data zakończenia: 21 lutego 2026 23:28

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. pozostawić je obok kontenera na śmieci
B. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
C. wrzucić je do kosza na śmieci
D. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 2

Zadaniem czujnika kontaktronowego zamontowanego na siłowniku jest sygnalizacja

Ilustracja do pytania
A. położenia tłoka siłownika.
B. przekroczenia wartości ciśnienia roboczego.
C. przekroczenia wartości temperatury cylindra.
D. miejsca nieszczelności siłownika.
Czujnik kontaktronowy zamontowany na siłowniku pełni kluczową rolę w sygnalizacji położenia tłoka, co jest istotne w wielu aplikacjach automatyzacji i mechaniki. Działa na zasadzie reakcji na pole magnetyczne, które generowane jest przez magnes umieszczony na tłoku. Gdy tłok przesuwa się wzdłuż cylindra, magnes zbliża się do kontaktronu, co powoduje zamknięcie lub otwarcie obwodu elektrycznego, sygnalizując tym samym aktualne położenie tłoka. Dzięki zastosowaniu czujników kontaktronowych, operatorzy maszyn mogą zdalnie monitorować położenie tłoka, co zwiększa bezpieczeństwo i efektywność procesów przemysłowych. Przykładem praktycznego zastosowania są systemy automatyki przemysłowej, gdzie precyzyjne pozycjonowanie tłoków jest kluczowe dla synchronizacji ruchu różnych elementów maszyn. Standardy branżowe, takie jak ISO 13849 dotyczące bezpieczeństwa maszyny, podkreślają znaczenie monitorowania położenia elementów roboczych w kontekście bezpieczeństwa operacji, co czyni czujniki kontaktronowe niezbędnym elementem nowoczesnych systemów automatyki.

Pytanie 3

Który miernik należy zastosować w układzie, którego schemat przedstawiono na rysunku, w celu pomiaru napięcia metodą bezpośrednią?

Ilustracja do pytania
A. Woltomierz.
B. Omomierz.
C. Amperomierz.
D. Watomierz.
Woltomierz to kluczowe narzędzie w pomiarach elektrycznych, które służy do bezpośredniego pomiaru napięcia w obwodach. Jego zastosowanie jest niezwykle istotne w praktyce, zwłaszcza w kontekście analizowania działania różnych układów elektronicznych oraz w diagnostyce systemów energetycznych. Woltomierz działa na zasadzie pomiaru różnicy potencjałów między dwoma punktami, co pozwala na dokładne określenie wartości napięcia. W praktyce, podczas pomiaru, woltomierz jest podłączany równolegle do elementu, którego napięcie chcemy zmierzyć. Warto również zaznaczyć, że korzystanie z woltomierzy cyfrowych, które oferują większą dokładność i dodatkowe funkcje analityczne, stało się powszechne w laboratoriach oraz w pracach serwisowych. W kontekście norm branżowych, pomiary napięcia powinny być przeprowadzane zgodnie z wytycznymi zawartymi w standardach IEC 61010, które określają wymagania dotyczące bezpieczeństwa przy pomiarach elektrycznych.

Pytanie 4

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. IL (Instruction List) - lista instrukcji - lista instrukcji
B. FBD (Function Block Diagram) - schemat bloków funkcyjnych
C. ST (Structured Text) - tekst strukturalny
D. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
Odpowiedź IL (Instruction List) jest jak najbardziej trafna! To jeden z tych języków programowania, które są używane w programowalnych sterownikach logicznych (PLC) i co ważne, jest w formie tekstowej. Zgodnie z normą IEC 61131-3, IL to język niskiego poziomu, przypominający asembler, co pozwala na programowanie sterowników w sposób bardziej zrozumiały dla osób znających tradycyjne języki programowania. Dzięki IL można tworzyć sekwencje instrukcji w prostych linijkach kodu, co na pewno pomoże w optymalizacji czasu działania systemu. Na przykład w automatyce, gdzie każda sekunda ma znaczenie, użycie IL może zmniejszyć opóźnienia w logice sterowania. A znajomość tego języka pozwala też łatwiej współpracować z innymi systemami, które korzystają z niskopoziomowego kodu. To naprawdę przydatna umiejętność w branży.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

W procesie TIG stosuje się technikę spawania

A. elektrodą wolframową w osłonie argonowej
B. strumieniem elektronów
C. elektrodą topliwą w osłonie dwutlenku węgla
D. łukiem plazmowym
Metoda TIG (Tungsten Inert Gas) to technika spawania, w której wykorzystuje się elektrodę wolframową, a osłona gazowa pochodzi z argonu. Wolfram charakteryzuje się wysoką temperaturą topnienia, co pozwala na uzyskanie stabilnego łuku elektrycznego, niezbędnego do spawania metali. Proces ten jest niezwykle precyzyjny i doskonały dla spawania cienkowarstwowego, co czyni go idealnym do zastosowania w branżach takich jak lotnictwo, motoryzacja czy medycyna, gdzie wymagana jest wysoka jakość i wytrzymałość spoin. Przykładem może być spawanie elementów konstrukcyjnych w lekkich pojazdach lub komponentów silników, gdzie każdy detal ma kluczowe znaczenie dla bezpieczeństwa oraz wydajności. Metoda TIG umożliwia również spawanie różnych materiałów, takich jak stal nierdzewna, aluminium czy tytan, co sprawia, że jest niezwykle wszechstronna. Dobre praktyki w tej metodzie obejmują odpowiednie przygotowanie powierzchni spawanych elementów oraz właściwe ustawienie parametrów spawania, co wpływa na jakość i trwałość spoiny.

Pytanie 7

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 1 Nm
B. 986 Nm
C. 9 420 Nm
D. 10 Nm
Obliczenie momentu obrotowego na wale silnika synchronicznego można przeprowadzić za pomocą wzoru: M = P / (2 * π * n), gdzie M to moment obrotowy w niutonometrach (Nm), P to moc w watach (W), a n to prędkość obrotowa w obrotach na minutę (obr/min). W przypadku mocy 3,14 kW, co odpowiada 3140 W, oraz prędkości obrotowej 3000 obr/min, obliczenia wyglądają następująco: M = 3140 W / (2 * π * (3000/60)) = 10 Nm. Wynik ten jest zgodny z praktycznymi zastosowaniami silników synchronicznych, które często znajdują zastosowanie w aplikacjach przemysłowych. Silniki te charakteryzują się wysoką efektywnością oraz stabilną prędkością obrotową, co czyni je idealnym wyborem do napędu maszyn wymagających precyzyjnej kontroli prędkości. W kontekście standardów branżowych, takie obliczenia są istotne dla prawidłowego doboru silników oraz ich efektywnego wykorzystania w różnych aplikacjach.

Pytanie 8

Zależność między ciśnieniem p, temperaturą T i objętością V powietrza opisuje zależność poniżej. Obniżenie temperatury powietrza przy jego stałej objętości

p · V
T
= const
A. zwiększa ciśnienie powietrza dla temperatur mniejszych od 0 stop.C
B. zmniejsza ciśnienie powietrza.
C. nie ma wpływu na ciśnienie powietrza.
D. zwiększa ciśnienie powietrza.
Obniżenie temperatury powietrza przy stałej objętości rzeczywiście prowadzi do zmniejszenia ciśnienia powietrza. Zgodnie z prawem Boyle'a-Mariotte'a, dla danej masy gazu, iloczyn ciśnienia (p) i objętości (V) jest wprost proporcjonalny do temperatury (T) wyrażonej w kelwinach. Przy stałej objętości zmiana temperatury wpływa bezpośrednio na ciśnienie. Na przykład, w zastosowaniach inżynieryjnych, w układach pneumatycznych, obniżenie temperatury powietrza może prowadzić do spadku efektywności systemu, co jest kluczowe w kontekście chłodzenia, gdzie kontrola temperatury jest niezbędna dla zapewnienia odpowiednich parametrów pracy. W praktyce, w systemach klimatyzacyjnych, obniżenie temperatury powietrza zewnętrznego skutkuje zmniejszeniem ciśnienia wewnętrznego, co może wpływać na wydajność całego układu. Zrozumienie tej zależności jest niezbędne dla projektantów systemów klimatyzacyjnych oraz inżynierów zajmujących się aerodynamiką.

Pytanie 9

Wskaż kod barwny rezystora o rezystancji 26 kΩ.

KolorWartośćMnożnikTolerancja
1 pasek2 pasek3 pasek4 pasek
brak---± 20 %
srebrny--10-2 Ω± 10 %
złoty--10-1 Ω± 5 %
czarny-0100 Ω-
brązowy11101 Ω± 1 %
czerwony22102 Ω± 2 %
pomarańczowy33103 Ω-
żółty44104 Ω-
zielony55105 Ω± 0,5 %
niebieski66106 Ω± 0,25 %
fioletowy77107 Ω± 0,1 %
szary88108 Ω± 0,05 %
biały99109 Ω-
A. pomarańczowy, fioletowy, pomarańczowy, żółty.
B. żółty, szary, pomarańczowy, żółty.
C. czerwony, niebieski, pomarańczowy, żółty.
D. brązowy, zielony, pomarańczowy, żółty.
Kod barwny dla rezystora 26 kΩ wygląda tak: 'czerwony' dla 2, 'niebieski' dla 6, a 'pomarańczowy' to mnożnik, czyli 10^3. Tak więc mamy 26 x 10^3 Ω. Zrozumienie tych kodów jest naprawdę ważne w elektronice, bo pozwala szybko sprawdzić wartość rezystora bez multimetru. W praktyce, umiejętność szybkiego rozpoznawania wartości komponentów to coś, co się przydaje, szczególnie gdy robimy prototypy czy naprawiamy różne urządzenia. Dobrze jest też pamiętać o tolerancji, czyli tym, jak bardzo realna wartość może różnić się od tej nominalnej. W sytuacjach, kiedy dokładność ma duże znaczenie, odpowiednia tolerancja może decydować o tym, czy wszystko działa, jak powinno. Dlatego znajomość tych kodów to podstawa w nauce elektroniki.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Aby sprawdzić stan bezpieczników, znaleźć niedokręcone złącza oraz zidentyfikować przegrzane elementy instalacji bez konieczności wyłączania zasilania, należy wykorzystać

A. miernik uniwersalny
B. kamerę termowizyjną
C. miernik RLC
D. miernik parametrów instalacji
Kamera termowizyjna jest specjalistycznym narzędziem, które pozwala na bezdotykowe monitorowanie temperatury obiektów w instalacjach elektrycznych. Dzięki wykrywaniu różnic temperatur, możliwe jest szybkie zlokalizowanie przegrzanych elementów, takich jak zwarcia, przeciążenia czy niedokręcone złącza, co może prowadzić do potencjalnych awarii. W praktyce, technicy często używają kamer termograficznych do regularnych przeglądów instalacji, co umożliwia wczesne wykrywanie problemów zanim dojdzie do uszkodzenia sprzętu czy pożaru. W branży energetycznej oraz budowlanej, zgodnie z normą NFPA 70E, regularne inspekcje termograficzne są kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych. Zastosowanie kamery termograficznej jest zatem zgodne z najlepszymi praktykami konserwacyjnymi, a także przyczynia się do zmniejszenia kosztów eksploatacyjnych poprzez minimalizację ryzyka awarii.

Pytanie 13

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wysuniętym tłoczysku siłownika i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 1 i I3 = 0
B. I2 = 0 i I3 = 0
C. I2 = 1 i I3 = 1
D. I2 = 0 i I3 = 1
W Twojej odpowiedzi wskazałeś, że I2 = 0 i I3 = 1, co jest poprawne. W kontekście działania czujników w układzie, kiedy tłoczek siłownika jest wysunięty, czujnik B2 jest aktywowany, co przekłada się na stan logiczny I3 równy 1. Z kolei czujnik B1 pozostaje nieaktywny, ponieważ jego aktywacja zachodzi tylko w przypadku, gdy tłoczek jest w pozycji cofniętej, co powoduje, że I2 = 0. Takie działanie układu jest zgodne z podstawowymi zasadami automatyki i sterowania, gdzie odpowiednie aktywowanie czujników ma kluczowe znaczenie dla poprawnej funkcji systemów. W praktyce, zrozumienie stanów logicznych w kontekście czujników jest istotne w projektowaniu i diagnostyce układów automatyki przemysłowej, ponieważ pozwala na efektywne monitorowanie i kontrolę procesów. Umiejętność interpretacji stanów logicznych jest również niezbędna w kontekście bezpieczeństwa operacyjnego i zapewnienia zgodności z procedurami eksploatacyjnymi.

Pytanie 14

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Dynamometrycznego
B. Płaskiego
C. Imbusowego
D. Nasadowego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Tensomer foliowy powinien być zamocowany do podłoża

A. klejem
B. zszywką
C. nitem
D. śrubą
Tensomer foliowy to naprawdę ważny materiał w budownictwie i przemyśle, więc jego mocowanie do podłoża za pomocą kleju ma sens z kilku powodów. Klej tworzy trwałe i elastyczne połączenie, co jest mega istotne, bo folia może się kurczyć lub rozciągać w zależności od temperatury czy wilgotności. Ważne, żeby używać odpowiednich klejów – najlepiej takich, które są dopasowane do folii i podłoża. Na przykład, kleje poliuretanowe czy akrylowe dobrze się sprawdzają, bo mają dobrą przyczepność i są odporne na warunki atmosferyczne. Przy klejeniu trzeba też dobrze przygotować powierzchnię – czyli usunąć kurz i tłuszcz, żeby to wszystko trzymało się jak należy. Generalnie, mocowanie folii klejem to norma w branży, bo to zapewnia długotrwałą stabilność, co się później opłaca, jeżeli chodzi o koszty.

Pytanie 17

Aby zmierzyć temperaturę, należy podłączyć do wejścia sterownika PLC

A. czujnik rezystancyjny
B. czujnik indukcyjny
C. prądnicę tachometryczną
D. przekaźnik elektromagnetyczny
Czujnik rezystancyjny, znany również jako czujnik RTD (Resistance Temperature Detector), jest najczęściej wykorzystywany do pomiaru temperatury w systemach automatyki. Jego działanie opiera się na zasadzie zmiany oporu elektrycznego materiału w zależności od temperatury. W praktyce, czujniki te oferują wysoką precyzję oraz stabilność pomiaru, co czyni je odpowiednimi do zastosowań w przemyśle chemicznym, petrochemicznym oraz w systemach HVAC. Dodatkowo, czujniki rezystancyjne mogą być stosowane w szerokim zakresie temperatur, co sprawia, że są uniwersalne i elastyczne w zastosowaniach. W kontekście połączenia z PLC, czujnik rezystancyjny może być podłączony bezpośrednio do wejścia analogowego sterownika, umożliwiając dokładny odczyt temperatury oraz kontrolę procesów. Warto również dodać, że dla zapewnienia dokładnych pomiarów, stosuje się standardy takie jak IEC 60751, które określają charakterystyki czujników RTD.

Pytanie 18

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. przeprowadzić reanimację poszkodowanego i wezwać pomoc
B. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
C. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
D. wezwać pomoc i przeprowadzić sztuczne oddychanie
Inne odpowiedzi, które zaznaczyłeś, mają błędne podejście do tego, co jest najważniejsze w sytuacji wypadku. Pamiętaj, że nie można najpierw robić sztucznego oddychania, gdy drogi oddechowe są zablokowane, bo to jest naprawdę niebezpieczne. Jak coś zablokuje drogi, to powietrze się nie dostanie do płuc i tylko pogorszymy sytuację. Odpowiedź, w której zostawiasz poszkodowanego w pozycji, w jakiej go znalazłeś, jest też zła, bo może prowadzić do kompikacji jak aspiracja. No i w resuscytacji najważniejsze jest, by najpierw otworzyć drogi oddechowe, a potem wezwać pomoc. Każdy, kto chce być ratownikiem, powinien to wiedzieć. Ignorowanie tych zasad może naprawdę zaszkodzić osobie, która potrzebuje pomocy.

Pytanie 19

Transoptor wykorzystuje się do

A. konwersji impulsów elektrycznych na promieniowanie świetlne
B. galwanicznego połączenia obwodów
C. galwanicznej izolacji obwodów
D. sygnalizowania transmisji
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów elektrycznych. Jego głównym zadaniem jest zapewnienie nieprzerwanego, ale izolowanego połączenia pomiędzy dwoma obwodami, co pozwala na przesyłanie sygnałów elektrycznych bez bezpośredniego połączenia między nimi. Przykładem zastosowania transoptora jest integracja urządzeń pracujących przy różnych poziomach napięcia, takich jak mikroprocesory i elementy wykonawcze, co chroni wrażliwe układy przed wysokim napięciem. Transoptory są powszechnie stosowane w automatyce przemysłowej, telekomunikacji oraz systemach pomiarowych, gdzie izolacja jest kluczowa dla bezpieczeństwa i niezawodności. Dzięki nim możliwe jest także zminimalizowanie zakłóceń elektromagnetycznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi w projektowaniu systemów elektronicznych.

Pytanie 20

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. nienaruszonych narzędzi izolowanych
B. rękawic ochronnych i fartucha ochronnego
C. okularów ochronnych i fartucha ochronnego
D. szczypiec oraz zestawu wkrętaków
Używanie nieuszkodzonych narzędzi izolowanych jest kluczowym elementem zapewnienia bezpieczeństwa podczas pracy z urządzeniami mechatronicznymi, w których może występować niebezpieczne napięcie elektryczne. Narzędzia izolowane, takie jak śrubokręty, szczypce czy klucze, są zaprojektowane z myślą o minimalizacji ryzyka porażenia prądem elektrycznym. Izolacja narzędzi powinna spełniać odpowiednie normy, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w obszarach narażonych na wysokie napięcia. Przykładem zastosowania izolowanych narzędzi może być naprawa elektrycznych systemów sterowania w robotach przemysłowych, gdzie dostęp do napięciowych elementów urządzenia wiąże się z ryzykiem. W praktyce, stosowanie tych narzędzi powinno być rutyną w codziennej pracy mechatronika, a przed każdym użyciem należy upewnić się, że nie ma widocznych uszkodzeń izolacji. Regularne kontrole i konserwacja narzędzi izolowanych są również niezbędne, aby zapewnić ich niezawodność i skuteczność.

Pytanie 21

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. efektu piezoelektrycznego
B. zmiany rezystancji
C. zmiany indukcyjności własnej
D. zmiany pojemności elektrycznej
Czujniki oparte na zmianie rezystancji, znane jako tensometry, są kluczowe w pomiarze odkształceń konstrukcji nośnych. Ich działanie opiera się na zasadzie zmiany rezystancji elektrycznej materiału pod wpływem odkształcenia mechanicznego. Kiedy materiał jest rozciągany lub ściskany, jego długość oraz przekrój poprzeczny ulegają zmianie, co bezpośrednio wpływa na jego rezystancję. Tensometry są powszechnie stosowane w inżynierii budowlanej, zwłaszcza przy monitorowaniu mostów, wieżowców oraz innych obiektów narażonych na duże obciążenia. Dzięki ich użyciu inżynierowie mogą ocenić stan techniczny konstrukcji i przewidzieć potencjalne zagrożenia. Standardy branżowe, takie jak ISO 376, definiują wymagania dotyczące precyzyjnych pomiarów odkształceń, co czyni tensometry niezastąpionym narzędziem w nowoczesnym monitorowaniu strukturalnym. Umożliwiają one również przeprowadzanie analiz statycznych i dynamicznych, co jest kluczowe w projektowaniu bezpiecznych i trwałych obiektów budowlanych.

Pytanie 22

Którą metodę łączenia materiałów przedstawiono na rysunku?

Ilustracja do pytania
A. Klejenie.
B. Spawanie.
C. Lutowanie.
D. Zgrzewanie.
Lutowanie jest procesem, który polega na łączeniu metali z wykorzystaniem dodatkowego materiału, zwanego lutem, o niższej temperaturze topnienia niż metale łączone. Na zdjęciu widoczne są przewody elektryczne, których połączenie zostało wykonane w tej technice. Lutowanie jest powszechnie stosowane w elektronice do łączenia elementów w obwodach elektronicznych, ponieważ zapewnia silne i trwałe połączenia. W praktyce lutowanie wykorzystuje się nie tylko w elektronice, ale również w wielu innych branżach, takich jak motoryzacja czy przemysł maszynowy. Standardy branżowe, takie jak IPC-A-610 dotyczące akceptowalności montażu elektronicznego, podkreślają znaczenie jakości połączeń lutowanych. Właściwe techniki lutowania, takie jak stosowanie odpowiednich lutów i technik grzewczych, są kluczowe dla zapewnienia niezawodności i bezpieczeństwa w aplikacjach. Ponadto, lutowanie może być stosowane do naprawy i konserwacji urządzeń, co czyni go niezwykle wartościową umiejętnością w wielu zawodach technicznych.

Pytanie 23

Jaki przyrząd pomiarowy jest używany do wyznaczenia poziomu skrzynki montowanej jako osłona dla zamontowanego elektrozaworu?

A. Klepsydra
B. Mikrometr
C. Poziomnica
D. Kątomierz
Poziomnica jest narzędziem kontrolno-pomiarowym, które służy do określenia poziomu w różnych zastosowaniach budowlanych i montażowych. Jej działanie opiera się na małym pojemniku wypełnionym cieczą i zamontowanej w nim bąbelkowej poziomicy, która wskazuje, czy dany obiekt znajduje się w poziomie. Użycie poziomnicy jest kluczowe w przypadku montażu skrzynek na elektrozawory, ponieważ zapewnia, że elementy te będą stabilne i prawidłowo funkcjonujące, co ma bezpośredni wpływ na ich efektywność operacyjną. Przykładowo, w systemach hydraulicznych, niezrównoważone montaż skrzynki może prowadzić do awarii, a nawet uszkodzenia sprzętu. Dobre praktyki branżowe zazwyczaj zalecają korzystanie z poziomnicy przed finalnym zamocowaniem elementów, co pozwala na eliminację potencjalnych błędów i zapewnienie długotrwałej niezawodności systemu. Ponadto, poziomnice są często używane w budownictwie i instalacjach, gdzie precyzyjne ustawienie jest niezbędne, co czyni je narzędziem nieodzownym w każdej pracowni oraz na placu budowy.

Pytanie 24

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w hełm ochronny
B. w gogle ochronne
C. w odzież ochronną
D. w rękawice antywibracyjne
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 25

Enkoder to urządzenie przetwarzające

A. kąt obrotu na regulowane napięcie stałe
B. prędkość obrotową na regulowane napięcie stałe
C. prędkość obrotową na impulsy elektryczne
D. kąt obrotu na impulsy elektryczne
Enkoder to urządzenie, które przekształca kąt obrotu w impulsy elektryczne, co jest kluczowe w wielu aplikacjach automatyki i robotyki. Przykładami zastosowania enkoderów są systemy napędu w robotach, które muszą precyzyjnie określić położenie swoich kończyn. Działanie enkodera opiera się na zasadzie pomiaru kąta obrotu wału, co pozwala na dokładne śledzenie ruchu. W praktyce, impulsy elektryczne generowane przez enkoder są wykorzystywane przez kontrolery do regulacji prędkości i pozycji napędu. Standardowe normy, takie jak IEC 61131, definiują klasyfikację i wymagania dla urządzeń pomiarowych, w tym enkoderów, co zapewnia ich niezawodność i interoperacyjność w różnych systemach. Warto również zauważyć, że istnieją różne typy enkoderów, jak inkrementalne i absolutne, które różnią się zasadą działania, ale oba przekształcają kąt obrotu na impulsy elektryczne, co czyni je niezbędnymi w nowoczesnych systemach automatyzacji.

Pytanie 26

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Sondy
B. Regulatora
C. Silnika
D. Chwytaka
Chwytak jest kluczowym elementem w systemach manipulacyjnych, odpowiedzialnym za wykonywanie operacji manipulacyjnych. Jego zadaniem jest chwytanie, przenoszenie i wydawanie obiektów w zadanych lokalizacjach, co jest fundamentalne w automatyzacji procesów produkcyjnych i logistycznych. Chwytaki mogą mieć różne formy, takie jak chwytaki pneumatyczne, elektryczne czy hydrauliczne, co pozwala na dostosowanie ich do specyfiki manipulowanych obiektów. Przykładowo, w przemyśle motoryzacyjnym chwytaki są wykorzystywane do montażu komponentów, gdzie precyzyjne i szybkie operacje są kluczowe dla efektywności produkcji. W praktyce, dobór odpowiedniego chwytaka wymaga analizy właściwości manipulowanych przedmiotów, takich jak ich waga, kształt i materiał, co jest zgodne z dobrą praktyką projektowania systemów automatyzacji. Standardy, takie jak ISO 9283, dotyczące oceny wydajności chwytaków, są również istotne, zapewniając ich odpowiednią funkcjonalność w zastosowaniach industrialnych.

Pytanie 27

Pokazany na rysunku sposób montowania podzespołów elektronicznych, na płytce obwodu drukowanego, to

Ilustracja do pytania
A. lutowanie.
B. klejenie.
C. zgrzewanie.
D. spawanie.
Lutowanie jest standardową metodą łączenia podzespołów elektronicznych na płytkach obwodów drukowanych (PCB). Proces ten polega na użyciu stopu lutowniczego, który po podgrzaniu w płynnej formie wypełnia szczeliny między elementami a płytką, a następnie po schłodzeniu tworzy trwałe połączenie. Zaletą lutowania jest jego zdolność do zapewnienia nie tylko solidnego połączenia elektrycznego, ale również wytrzymałości mechanicznej, co jest kluczowe w zastosowaniach elektronicznych. W praktyce lutowanie stosowane jest w produkcji urządzeń elektronicznych, takich jak komputery, telewizory czy telefony. Istnieją różne techniki lutowania, w tym lutowanie ręczne, lutowanie na fali czy lutowanie w piecu, które są dostosowane do różnych potrzeb produkcyjnych i typów urządzeń. Warto zaznaczyć, że lutowanie powinno być przeprowadzane zgodnie z normami IPC (Institute for Printed Circuits), które określają wymagania dotyczące jakości i niezawodności połączeń lutowanych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika jednofazowego o napięciu 230 V
B. Silnika prądu stałego o napięciu 400 V
C. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
D. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
Silnik prądu stałego o napięciu 400 V nie może być zasilany ze źródła napięciowego 400 V; 3/N/PE ~50 Hz, ponieważ wymaga on specyficznego napięcia zasilania i charakterystyki napięcia stałego. Silniki prądu stałego są projektowane do pracy przy konkretnym napięciu, a ich zasilanie napięciem przemiennym mogłoby spowodować uszkodzenie mechanizmu wirnika oraz układów regulacji. W praktyce, silniki te są zasilane z falowników lub prostowników, które konwertują napięcie przemienne na stałe. Standardy IEC 60034 dotyczące maszyn elektrycznych oraz normy dotyczące bezpieczeństwa elektrycznego podkreślają konieczność stosowania odpowiednich wartości napięcia, aby zapewnić prawidłową i bezpieczną pracę urządzeń. Należy również pamiętać, że każdy silnik powinien być dopasowany do specyfikacji źródła zasilania, co zapobiega nieprawidłowym działaniom i możliwym uszkodzeniom.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

W obwodzie zasilania silnika element oznaczony symbolem Ql

Ilustracja do pytania
A. odpowiada za załączanie i wyłączania silnika.
B. ogranicza natężenie prądu rozruchu silnika.
C. zabezpiecza obwód przed skutkami zwarć i przeciążeń.
D. poprawia współczynnik cos φ.
Element oznaczony symbolem Q1 w obwodzie zasilania silnika najczęściej pełni rolę wyłącznika nadprądowego, który jest kluczowym komponentem zabezpieczającym instalacje elektryczne. Jego głównym zadaniem jest ochrona obwodu przed skutkami zwarć i przeciążeń, co jest niezwykle istotne z punktu widzenia bezpieczeństwa oraz trwałości urządzeń elektrycznych. Wyłącznik ten działa automatycznie, odcinając zasilanie w momencie, gdy prąd przekracza ustalony bezpieczny poziom, co zapobiega uszkodzeniom zarówno w instalacji, jak i w podłączonym sprzęcie. W praktyce zastosowanie wyłączników nadprądowych jest regulowane przez normy, takie jak PN-EN 60898, które określają wymagania dotyczące ich działania i charakterystyk. Stosowanie takich zabezpieczeń w obwodach zasilania silników jest dobrym standardem branżowym, który przyczynia się do niezawodności systemów elektrycznych. Dodatkowo, wyłączniki te mogą być używane w układach z różnymi typami silników, zapewniając ich ochronę podczas rozruchu oraz w trakcie normalnej eksploatacji.

Pytanie 33

Wartość napięcia wskazana przez woltomierz wynosi

Ilustracja do pytania
A. 17 V
B. 8 V
C. 40 V
D. 4 V
Poprawna odpowiedź wynika z precyzyjnego odczytu wskazania woltomierza. Na zdjęciu możemy dostrzec, że wskazówka instrumentu znajduje się na poziomie 8 V, co jest zgodne z podziałką na skali. Wartości napięcia mierzonego woltomierzem muszą być odczytywane z dużą starannością, aby uniknąć błędów. W praktyce, prawidłowy odczyt napięcia jest kluczowy w wielu zastosowaniach, takich jak diagnostyka układów elektronicznych, testowanie baterii czy praca z instalacjami elektrycznymi. Ważne jest, aby znać zasady działania i kalibracji woltomierzy, aby zapewnić dokładność pomiarów. Standardy branżowe, takie jak IEC 61010, określają wymagania dotyczące bezpieczeństwa i dokładności urządzeń pomiarowych, co podkreśla znaczenie stosowania właściwych narzędzi w odpowiednich warunkach. Dobrze przeprowadzony pomiar nie tylko umożliwia zrozumienie działania obwodu, ale również przyczynia się do bezpieczeństwa pracy z urządzeniami elektrycznymi.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Tachogenerator przy obrotach 1000 obr./min. wytwarza napięcie 30 V. Jaką wartość napięcia wygeneruje ten tachogenerator przy prędkości obrotowej 200 obr./min?

A. 6 V
B. 15 V
C. 3 V
D. 5 V
Prądnica tachometryczna działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej. W tym przypadku, przy prędkości obrotowej 1000 obr./min, prądnica generuje napięcie wynoszące 30 V. Możemy obliczyć napięcie przy niższej prędkości obrotowej, stosując proporcję. Zauważmy, że 200 obr./min to 20% 1000 obr./min. Jeśli napięcie jest proporcjonalne do prędkości, to przy 200 obr./min prądnica wygeneruje 20% z 30 V, co daje 6 V. Tego rodzaju obliczenia są powszechnie stosowane w inżynierii, szczególnie w systemach automatyki, gdzie precyzyjne pomiary napięcia są kluczowe dla prawidłowego działania urządzeń. Przykładowo, w systemach pomiarowych oraz w kontrolach zadań w automatyce przemysłowej, znajomość zależności między prędkością a generowanym napięciem pozwala na optymalizację procesów oraz zwiększenie efektywności energetycznej.

Pytanie 36

Aby możliwa była prawidłowa praca pompy membranowej przedstawionej na rysunku do zasilania, należy zastosować

Ilustracja do pytania
A. przemiennik częstotliwości.
B. zasilacz elektryczny napięcia stałego.
C. zasilacz hydrauliczny.
D. sprężarkę ze zbiornikiem na sprężone powietrze.
Sprężarka ze zbiornikiem na sprężone powietrze to mega ważny element w pracy pompy membranowej. Działa to tak, że pompy pneumatyczne potrzebują sprężonego powietrza do ruchu membrany. Dzięki temu powietrzu, które dostarczane jest w odpowiednich ilościach i ciśnieniu, pompa może fajnie transportować różne ciecze czy gazy. Często takie pompy spotykamy w branży chemicznej, farmaceutycznej albo w systemach odwadniania, gdzie precyzyjne dawkowanie jest kluczowe. Sprężarka z zbiornikiem zapewnia stabilne ciśnienie powietrza, co jest mega istotne, żeby pompa działała ciągle i nie miała problemów z wahaniami ciśnienia, bo to może prowadzić do uszkodzenia. Jak dobrze dobierzemy sprężarkę do konkretnej aplikacji, to naprawdę możemy zwiększyć efektywność i żywotność pompy membranowej, co jest zgodne z tym, co jest w branży najlepszego.

Pytanie 37

Na rysunku przedstawiono wykres zależności sygnału wyjściowego od wielkości regulowanej (temperatury) regulatora

Ilustracja do pytania
A. trójstanowego.
B. ciągłego.
C. dwustanowego.
D. impulsowego.
Regulator dwustanowy charakteryzuje się tym, że jego wyjście może przyjmować jedynie dwa stany: włączony (1) lub wyłączony (0). W przedstawionym wykresie, sygnał wyjściowy zmienia się z 0 na 1 przy osiągnięciu temperatury 100°C, a następnie wraca do 0 po przekroczeniu kolejnej wartości 150°C. Takie zachowanie jest typowe dla regulatorów stosowanych w prostych aplikacjach, takich jak sterowanie grzałkami, klimatyzatorami czy systemami ogrzewania, gdzie istotne jest utrzymanie temperatury w określonych granicach. W praktyce, zastosowanie regulatorów dwustanowych pozwala na prostotę konstrukcji oraz łatwość w implementacji systemów automatyki. W kontekście standardów branżowych, regulator dwustanowy spełnia wymagania normy IEC 61131 dotyczącej programowalnych kontrolerów logicznych, co zapewnia jego uniwersalność i niezawodność w różnych zastosowaniach przemysłowych. Dodatkowo, jego prostota w konfiguracji czyni go popularnym wyborem w systemach HVAC, gdzie szybkość reakcji na zmiany temperatury jest kluczowa dla efektywności energetycznej.

Pytanie 38

Określ wartość rezystancji Rab między punktami a i b obwodu elektrycznego, przedstawionego na rysunku, po wystąpieniu zwarcia między punktami C i D.

Ilustracja do pytania
A. 4 Ω
B. 1 Ω
C. 2 Ω
D. 0 Ω
Zgadza się! Poprawna odpowiedź to 1 Ω. Po zwarciu między punktami C i D, rezystory R2 i R3 są połączone równolegle. W tym przypadku ich rezystancja równoległa oblicza się według wzoru 1/R = 1/R2 + 1/R3. Jednakże, ponieważ zwarcie powoduje, że rezystory te są praktycznie wyłączone z obwodu, całkowita rezystancja między punktami A i B wynosi 0 Ω, co oznacza, że przepływ prądu jest nieograniczony. W praktyce, w systemach elektrycznych, takie zjawiska są niebezpieczne i prowadzą do uszkodzenia elementów układów. W przypadku projektowania obwodów, kluczowe jest uwzględnienie potencjalnych zwarć, dostosowując dobór komponentów oraz stosując odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które zapobiegają skutkom zwarć i zapewniają bezpieczeństwo użytkowników.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Do którego urządzenia odnoszą się przedstawione w ramce informacje?

Stała wydajności (wydatek)
Cechy: objętość robocza 3,29 cm3/obr.,
prędkość obrotowa do 4800 obr./min.,
ciśnienie do 175 bar.
Zastosowanie: w hydraulicznych maszynach mobilnych i przemysłowych.
Zalecany napęd: bezpośredni współosiowy ze sprzęgłem elastycznym.
Wykorzystanie: jako urządzenie pomocnicze lub w instalacjach o niewielkich przepływach.
A. Pompy hydraulicznej.
B. Silnika pneumatycznego.
C. Chłodnicy oleju hydraulicznego.
D. Hydroakumulatora.
Pompa hydrauliczna jest kluczowym elementem w wielu systemach hydraulicznych, a informacje przedstawione w ramce doskonale odzwierciedlają jej charakterystykę. Pompy hydrauliczne charakteryzują się stałą wydajnością oraz możliwością regulacji ciśnienia roboczego, co jest niezbędne w aplikacjach przemysłowych i mobilnych. Zastosowanie pomp hydraulicznych jest szerokie, od układów sterowania w maszynach budowlanych, po systemy hydrauliczne w przemyśle motoryzacyjnym. W przypadku pomp z napędem współosiowym, elastyczne sprzęgła umożliwiają redukcję drgań oraz zwiększają żywotność układów. Zgodnie z najlepszymi praktykami branżowymi, dobór odpowiedniej pompy hydraulicznej powinien być oparty na analizie parametrów, takich jak objętość robocza, prędkość obrotowa oraz wymagane ciśnienie robocze, co pozwala na optymalne funkcjonowanie całego systemu hydraulicznego.