Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 7 grudnia 2025 11:00
  • Data zakończenia: 7 grudnia 2025 11:29

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas wymiany (demontażu) złącza kompresyjnego typu F, jak należy postąpić z tym złączem?

A. odciąć
B. odlutować
C. wyrwać
D. odkręcić
Wybór opcji, które polegają na wyrwaniu, odkręceniu lub odlutowaniu złącza kompresyjnego typu F, wskazuje na niepełne zrozumienie zasad demontażu tego elementu oraz na niedostateczną znajomość technik stosowanych w praktykach instalacyjnych. Wyrwanie złącza mogłoby prowadzić do uszkodzenia przewodów, co w rezultacie może skutkować utratą sygnału lub koniecznością wymiany całego segmentu instalacji. Podobnie, odkręcenie złącza w przypadku, gdy zostało ono skompresowane, może być nieefektywne, ponieważ złącza te są projektowane tak, aby były trwałe i odporne na odkręcanie. Wykorzystanie techniki lutowania do demontażu złącza kompresyjnego nie tylko nie jest zalecane, ale również zagraża integralności samego przewodu. Lutowanie jest techniką, która wiąże się z podgrzewaniem elementów, co może wprowadzić dodatkowe problemy, takie jak przegrzanie lub uszkodzenie materiałów izolacyjnych. Kluczowe jest, aby przy demontażu złącz stosować metody, które są zgodne z najlepszymi praktykami branżowymi, aby uniknąć potencjalnych problemów związanych z późniejszym użytkowaniem instalacji. Zastosowanie niewłaściwej metody demontażu może prowadzić do znacznych kosztów napraw oraz negatywnie wpływać na wydajność całego systemu komunikacyjnego.

Pytanie 2

Jakie urządzenia wykorzystuje się do pomiaru mocy czynnej?

A. wariometry
B. woltomierze
C. watomierze
D. waromierze
Watomierz jest urządzeniem pomiarowym, które służy do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, mierzona w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonania pracy, w przeciwieństwie do mocy biernej, która nie ma wpływu na wykonanie pracy, a jedynie oscyluje w obwodzie. Watomierze działają na zasadzie pomiaru napięcia, prądu oraz kąta fazowego między nimi, co pozwala na dokładne określenie mocy czynnej. W zastosowaniach przemysłowych, gdzie monitorowanie zużycia energii jest kluczowe dla efektywności energetycznej, watomierze stanowią nieocenione narzędzie. Standardowe watomierze mogą być wykorzystywane w różnych instalacjach elektrycznych, zarówno w domowych, jak i przemysłowych, co sprawia, że ich znajomość oraz umiejętność ich zastosowania są niezbędne dla inżynierów i techników. Dobre praktyki w zakresie pomiarów mocy zawsze uwzględniają wykorzystanie watomierzy, które są kalibrowane zgodnie z normami międzynarodowymi, co zapewnia ich dokładność i powtarzalność wyników.

Pytanie 3

Urządzenie działające w sieci komputerowej, mające na celu powiększenie zasięgu transmisji przez odtworzenie pierwotnego kształtu sygnału, bez oceny poprawności przesyłanych informacji, to

A. switch
B. repeater
C. hub
D. bridge
Repeater, znany również jako wzmacniacz sygnału, jest urządzeniem, które działa na warstwie fizycznej modelu OSI. Jego głównym zadaniem jest odbieranie sygnałów sieciowych, a następnie ich regeneracja i ponowne przesyłanie, co pozwala na zwiększenie zasięgu transmisji. Przykład zastosowania repeatera można zobaczyć w dużych biurach lub na kampusach uniwersyteckich, gdzie dystans między urządzeniami sieciowymi może przekraczać standardowy zasięg sieci Ethernet. W takich przypadkach repeater pozwala na efektywne łączenie kilku segmentów sieci, eliminując utratę jakości sygnału. Repeater działa bez analizy danych, co oznacza, że nie filtruje ani nie interpretuje przesyłanych informacji, co czyni go idealnym rozwiązaniem do rozszerzenia zasięgu. Dobre praktyki zalecają umieszczanie repeaterów w miejscach, gdzie sygnał jest najsłabszy, by maksymalnie wykorzystać ich możliwości. Warto również pamiętać o stosowaniu repeaterów w sieciach Wi-Fi, gdzie mogą znacznie poprawić jakość sygnału w trudno dostępnych lokalizacjach.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Kąty odpowiedzialne za określenie kierunku ustawienia anteny satelitarnej to

A. azymutu, elewacji, transpondera
B. elewacji, konwertera, azymutu
C. azymutu, konwertera, transpondera
D. elewacji, konwertera, transpondera
Prawidłowe wyznaczenie kierunku ustawienia anteny satelitarnej wymaga znajomości trzech fundamentalnych kątów: elewacji, azymutu oraz kąta konwertera. Niektóre z odpowiedzi zawierają błędne pojęcia lub niewłaściwe zestawienia kątów, co prowadzi do nieporozumień. Na przykład, kąt elewacji jest niezbędny, ponieważ pozwala określić, pod jakim kątem antena ma być skierowana w górę, co jest kluczowe dla odbioru sygnału z satelitów. Kąt azymutu z kolei wskazuje kierunek poziomy, w którym antena powinna być ustawiona, aby móc odebrać sygnał. Zdarza się, że odpowiedzi sugerują użycie kąta transpondera, co jest niepoprawne, ponieważ transponder to element satelity, który przetwarza sygnał, a nie parametr ustawienia anteny. Często występującym błędem jest mylenie funkcji konwertera z innymi kątami, co prowadzi do niepoprawnych wniosków. Konwerter LNB jest kluczowym elementem, który określa, jak sygnał z satelity jest odbierany i przetwarzany, dlatego jego odpowiednie ustawienie jest niezwykle istotne. Właściwe zrozumienie tych kątów i ich zastosowania jest kluczowe dla uzyskania optymalnej jakości sygnału. Niezrozumienie tych aspektów może skutkować problemami z odbiorem, co w praktyce oznacza niedziałającą antenę lub niską jakość sygnału.

Pytanie 7

W czterech różnych wzmacniaczach selektywnych przeprowadzono analizę charakterystyki przenoszenia, a na tej podstawie wyznaczono współczynnik prostokątności p. Jaka wartość współczynnika prostokątności wskazuje na najwyższą selektywność wzmacniacza?

A. p = 0,6
B. p = 0,8
C. p = 0,4
D. p = 1,0
Wartość współczynnika prostokątności p = 1,0 oznacza najlepszą selektywność wzmacniacza, ponieważ wskazuje na idealne parametry przenoszenia sygnału. Wzmacniacz o p = 1,0 charakteryzuje się maksymalnym poziomem wzmocnienia w pasmie przenoszenia oraz minimalną ilością zniekształceń poza tym zakresem. W praktyce oznacza to, że wzmacniacz jest w stanie skutecznie oddzielić sygnały o różnych częstotliwościach, co jest kluczowe w aplikacjach takich jak komunikacja radiowa, gdzie ważne jest oddzielanie sygnałów o różnych częstotliwościach. W branży telekomunikacyjnej standardy, takie jak ITU-T G.703, podkreślają znaczenie selektywności w systemach transmisyjnych, co czyni ten wskaźnik krytycznym dla zapewnienia wysokiej jakości sygnału. Wartości p mniejsze niż 1,0 sygnalizują gorsze parametry selektywności, co może prowadzić do zniekształceń i utraty jakości sygnału, szczególnie w skomplikowanych systemach, gdzie wiele sygnałów jest przesyłanych równocześnie.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Co należy zrobić jako pierwsze, gdy u pacjenta występuje zatrzymanie akcji serca oraz brak oddechu?

A. sprawdzić drożność dróg oddechowych
B. umożliwić położenie na boku
C. wykonać sztuczne oddychanie oraz masaż serca
D. podać leki
W sytuacji zatrzymania akcji serca oraz braku oddechu najważniejsze jest, aby w pierwszej kolejności sprawdzić drożność dróg oddechowych. Bez zapewnienia drożności dróg oddechowych, nie będzie możliwe skuteczne przeprowadzenie wentylacji ani masażu serca, ponieważ niewłaściwie ukierunkowane powietrze nie dotrze do płuc. W praktyce, podczas udzielania pierwszej pomocy, należy niezwłocznie unikać wszelkich przeszkód, które mogą blokować drogi oddechowe, takich jak język, wymioty czy inne ciała obce. W standardach resuscytacji, takich jak wytyczne American Heart Association (AHA), kluczowym krokiem jest ocena i otwarcie dróg oddechowych, co powinno być zrealizowane poprzez zastosowanie manewru uniesienia podbródka lub przechylenia głowy do tyłu. Przykładem zastosowania tej zasady jest sytuacja, w której ratownik wykonuje te czynności przed przystąpieniem do udzielania sztucznego oddychania, co może znacząco zwiększyć szanse na przeżycie osoby poszkodowanej.

Pytanie 12

Woltomierz analogowy wskazał 30 działek. Urządzenie jest ustawione na zakres 100 V, a cała skala ma 100 działek. Jaką wartość napięcia odczytał woltomierz?

A. 3,33 V
B. 3 V
C. 33,3 V
D. 30 V
Woltomierz analogowy przedstawia wskazanie w oparciu o skalę, na której 100 działek odpowiada maksymalnemu zakresowi pomiarowemu, czyli 100 V. W tym przypadku, każda działka skali reprezentuje 1 V (100 V / 100 działek = 1 V/działkę). Jeśli wskazówka wychyliła się na 30 działek, oznacza to, że woltomierz wskazuje 30 V (30 działek * 1 V/działkę = 30 V). Ta zasada obliczeń jest szczególnie przydatna w praktyce, ponieważ umożliwia szybkie oszacowanie wartości napięcia na podstawie wskazania miernika. W branży elektrycznej precyzyjne pomiary napięcia są kluczowe do zapewnienia poprawności instalacji oraz bezpieczeństwa urządzeń. Na przykład, w zastosowaniach przemysłowych, takich jak kontrola zasilania maszyn, dokładne odczyty napięcia są niezbędne do monitorowania parametrów pracy urządzeń oraz ochrony przed uszkodzeniami. Zrozumienie, jak interpretować wartości wskazywane przez woltomierz, jest fundamentalne dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 13

Jakie narzędzie wykorzystuje się do weryfikacji poprawności zainstalowanej sieci komputerowej?

A. analizatora sieci strukturalnych
B. miernika z pomiarem MER
C. multimetru z pomiarem R
D. testera wytrzymałości dielektrycznej
Miernik z pomiarem MER (Modulation Error Ratio) jest narzędziem stosowanym w telekomunikacji, często w kontekście analizy sygnałów cyfrowych, ale nie jest to odpowiednie narzędzie do weryfikacji poprawności instalacji sieci komputerowej. MER mierzy jakość sygnału, jednak nie dostarcza informacji o fizycznych aspektach samej instalacji, takich jak integralność kabli czy poprawność połączeń. Tester wytrzymałości dielektrycznej jest urządzeniem stosowanym do oceny izolacji kabli, co jest ważne, ale nie odnosi się bezpośrednio do weryfikacji całej sieci komputerowej ani do jej funkcjonalności po instalacji. Z kolei multimetr z pomiarem R (oporu) pozwala na sprawdzenie ciągłości przewodów, co jest istotne, jednak nie dostarcza kompleksowych informacji o jakości sygnałów ani o wydajności sieci. Typowym błędem w myśleniu technicznym jest przekonanie, że te narzędzia można używać zamiennie z analizatorami sieci strukturalnych. W rzeczywistości, każde z tych narzędzi ma specyficzne zastosowania, które nie pokrywają się z wymaganiami dotyczącymi weryfikacji instalacji sieci komputerowej. Dla zapewnienia efektywności i niezawodności sieci, konieczne jest użycie odpowiednich narzędzi, które pozwalają na pełną diagnostykę oraz spełnienie norm branżowych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

MAN to termin odnoszący się do typu sieci komputerowej

A. miejskiej
B. masowej
C. rozległej
D. lokalnej
Wybór odpowiedzi dotyczącej sieci masowej, rozległej czy lokalnej może wynikać z nieprawidłowego zrozumienia definicji oraz zastosowań różnych typów sieci komputerowych. Sieć masowa, mimo że może wydawać się sensownym określeniem, nie odnosi się do standardowych terminów stosowanych w branży. W rzeczywistości nie istnieje formalna definicja sieci masowej w kontekście klasyfikacji sieci. Z kolei sieci rozległe (WAN) obejmują znacznie szersze obszary, często rozciągając się na obszary geograficzne, które wykraczają poza granice miast. WAN-y są projektowane z myślą o łączeniu lokalnych sieci (LAN) na dużych odległościach, co sprawia, że nie pasują do koncepcji MAN. Przykładem może być sieć łącząca oddziały firm w różnych miastach. Natomiast sieci lokalne (LAN) są projektowane do obsługi ograniczonych przestrzeni, takich jak pojedyncze budynki czy biura, co również nie odpowiada definicji MAN. Właściwe zrozumienie różnicy między tymi typami sieci jest kluczowe, aby móc efektywnie projektować i wdrażać rozwiązania sieciowe zgodne z potrzebami organizacji. Używanie terminów w sposób precyzyjny jest istotne dla komunikacji w branży IT oraz dla skuteczności projektów, które często zależą od odpowiedniego doboru technologii i architektury sieciowej.

Pytanie 16

Jakie jest zastosowanie symetryzatora antenowego?

A. w celu zmiany charakterystyki kierunkowej anteny
B. do przesyłania sygnałów z kilku anten do jednego odbiornika
C. aby zwiększyć zysk energetyczny anteny
D. do dopasowania impedancyjnego anteny i odbiornika
Wybór odpowiedzi, które sugerują, że symetryzator antenowy służy do zwiększenia zysku energetycznego anteny, zmiany kierunkowości anteny lub przesyłania sygnałów z kilku anten do jednego odbiornika, opiera się na nieporozumieniach dotyczących funkcji tych urządzeń. Symetryzator nie zwiększa zysku energetycznego anteny. Zysk energetyczny anteny odnosi się do jej charakterystyki radiowej, która jest związana z porównaniem wydajności anteny do standardowej anteny izotropowej, a nie do samego dopasowania impedancji. Zmiana charakterystyki kierunkowej anteny jest realizowana przez zastosowanie różnych typów anten, takich jak anteny kierunkowe lub omni-kierunkowe, a nie przez symetryzator. Symetryzator nie jest też urządzeniem, które przesyła sygnały z kilku anten. Zamiast tego, w sytuacji wymagającej podłączenia wielu anten, stosuje się urządzenia takie jak przełączniki antenowe lub wzmacniacze rozgałęźne. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie roli dopasowania impedancyjnego z parametrami wydajnościowymi anteny lub niewłaściwe zrozumienie funkcji urządzeń w systemach komunikacyjnych. Właściwe zrozumienie tych koncepcji jest niezbędne dla efektywnego projektowania i stosowania technologii antenowych.

Pytanie 17

Znak graficzny przedstawiony na rysunku informuje, że podczas prac z urządzeniem należy zastosować środki ochrony indywidualnej zabezpieczające przed

Ilustracja do pytania
A. polem elektromagnetycznym.
B. światłem lasera.
C. mikrofalami.
D. substancją żrącą.
Znak graficzny przedstawiony na rysunku to symbol ostrzegawczy dotyczący promieniowania laserowego. Użycie tego symbolu wskazuje na konieczność stosowania środków ochrony indywidualnej, w tym specjalnych okularów ochronnych, które są kluczowe w ochronie oczu przed szkodliwymi skutkami promieniowania laserowego. Przykładem zastosowania tej ochrony jest praca w laboratoriach, gdzie lasery są powszechnie używane do różnych zastosowań, takich jak cięcie materiałów czy badania naukowe. Okulary ochronne posiadają specjalne filtry, które blokują określone długości fal światła, co minimalizuje ryzyko uszkodzenia wzroku. W kontekście standardów branżowych, stosowanie odpowiednich środków ochrony indywidualnej jest regulowane przez normy ISO oraz przepisy BHP, które nakładają obowiązek zapewnienia bezpieczeństwa pracowników w miejscu pracy. Ignorowanie tych wymogów może prowadzić do poważnych konsekwencji zdrowotnych, dlatego tak istotne jest przestrzeganie zasad ochrony osobistej w przypadku pracy z urządzeniami emitującymi promieniowanie laserowe.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Do odkręcenia śruby, którą przedstawiono na zdjęciu należy zastosować klucz

Ilustracja do pytania
A. nasadowy Torx.
B. imbusowy sześciokątny.
C. nasadowy sześciokątny.
D. imbusowy Torx.
Poprawna odpowiedź to klucz nasadowy sześciokątny, ponieważ do odkręcenia śruby z sześciokątną głową wymaga się zastosowania narzędzia o odpowiednim profilu. Klucz nasadowy sześciokątny jest standardowym narzędziem w mechanice, które zapewnia doskonałe dopasowanie do sześciokątnych gniazd śrub, co minimalizuje ryzyko uszkodzenia zarówno śruby, jak i narzędzia. Użycie tego klucza pozwala na skuteczne przeniesienie momentu obrotowego, co jest kluczowe w przypadku mocno dokręconych elementów. W praktyce, klucze nasadowe są często wykorzystywane w warsztatach samochodowych, budowlanych oraz w różnych projektach DIY, gdzie ważna jest precyzja i efektywność. Utrzymanie kluczy w dobrym stanie technicznym oraz ich odpowiednie oznaczenie zgodnie z normami, takimi jak ISO, jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy.

Pytanie 22

Podczas serwisowania telewizora, technik zauważył brak sygnału wideo, iskry oraz typowy zapach ozonu. Który z wymienionych komponentów uległ uszkodzeniu?

A. Układ odchylania w pionie
B. Powielacz wysokiego napięcia
C. Zintegrowana głowica w.cz.
D. Wzmacniacz mocy
Powielacz wysokiego napięcia jest kluczowym elementem w odbiornikach telewizyjnych, odpowiadającym za generowanie wysokiego napięcia potrzebnego do zasilania kineskopu. Iskrzenie oraz zapach ozonu wskazują na występowanie łuku elektrycznego, co zazwyczaj oznacza, że element ten uległ uszkodzeniu. W praktyce, awarie powielacza mogą prowadzić do całkowitego braku obrazu, ponieważ nie dostarcza on odpowiedniego napięcia do katody kineskopu. W takich przypadkach, serwisanci często sprawdzają powielacz jako pierwszy krok diagnostyczny. Ponadto, powielacze wysokiego napięcia są projektowane zgodnie z rygorystycznymi standardami bezpieczeństwa, aby zminimalizować ryzyko uszkodzenia innych komponentów oraz zapewnić stabilne działanie telewizora. Zrozumienie funkcji tego elementu jest kluczowe nie tylko dla właściwej diagnostyki, ale także dla późniejszych napraw i konserwacji sprzętu elektronicznego.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jaki czujnik pozwala na pomiar naprężeń mechanicznych w konstrukcjach?

A. Czujnik magnetyczny
B. Czujnik hallotronowy
C. Czujnik pojemnościowy
D. Czujnik tensometryczny
Czujnik tensometryczny jest specjalistycznym urządzeniem, które umożliwia pomiar naprężeń mechanicznych w elementach konstrukcyjnych poprzez wykorzystanie zasady zmiany oporu elektrycznego pod wpływem odkształceń. Tensometry działają na bazie efektu tensometrycznego, gdzie cienkie przewody lub folia, umieszczone na powierzchni mierzonego elementu, zmieniają swoją rezystancję w zależności od odkształceń mechanicznych. Przykłady zastosowania czujników tensometrycznych obejmują monitorowanie naprężeń w mostach, budynkach oraz innych konstrukcjach inżynierskich, co pozwala na wczesne wykrywanie uszkodzeń i zapewnia bezpieczeństwo użytkowników. Stanowią one integralną część systemów monitorowania strukturalnego, które są zgodne z normami, takimi jak ISO 3340, dotyczące oceny stanu technicznego obiektów. Dzięki ich wysokiej dokładności i niezawodności, czujniki tensometryczne są kluczowym narzędziem w inżynierii, umożliwiającym projektowanie bezpieczniejszych i bardziej efektywnych konstrukcji.

Pytanie 25

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. kontroli temperatury elementów
B. uaktualniania oprogramowania
C. znajdowania anomalii w działaniu urządzenia
D. pomiaru parametrów
Odpowiedź "uaktualnianie oprogramowania" jest poprawna, ponieważ testowanie elektronicznego wzmacniacza akustycznego koncentruje się głównie na aspektach związanych z jego wydajnością i funkcjonalnością w kontekście audio. W procesie testowania, kluczowe jest przeprowadzenie pomiaru parametrów, takich jak zniekształcenia harmoniczne, pasmo przenoszenia, czy moc wyjściowa, co pozwala na ocenę jakości dźwięku generowanego przez wzmacniacz. Kontrola temperatury elementów jest również istotna, aby zapewnić, że urządzenie nie przegrzewa się podczas pracy, co mogłoby prowadzić do uszkodzeń lub obniżenia jakości dźwięku. Dodatkowo, identyfikacja anomalii w działaniu urządzenia jest kluczowa w utrzymaniu jakości i niezawodności sprzętu. Uaktualnianie oprogramowania może być istotne w kontekście poprawy funkcjonalności, ale nie jest to kluczowy element testowania samego wzmacniacza akustycznego. Przykłady dobrych praktyk w tej dziedzinie obejmują korzystanie z analizatorów widma i oscyloskopów do dokładnej analizy parametrów akustycznych.

Pytanie 26

Czym jest multiplekser w kontekście układów kombinacyjnych?

A. przekazywanie sygnału cyfrowego "1 z n" wybranego adresem na wyjście
B. sterowanie wskaźnikiem 7-segmentowym
C. konwersja kodu pierścieniowego "1 z n" na sygnał wyjściowy
D. liczenie oraz przechowywanie impulsów
Multiplekser to taki ważny element w układach cyfrowych. Jego głównym zadaniem jest przekazywanie jednego sygnału spośród wielu wejść na wyjście. Dzięki sygnałom sterującym możemy wybrać, który sygnał chcemy wysłać. Przykładowo, w systemach komunikacyjnych, gdy mamy różne źródła danych, multipleksery pomagają zarządzać tymi sygnałami. To pozwala na lepsze wykorzystanie pasma i zwiększenie przepustowości. W telekomunikacji czy przetwarzaniu sygnałów, multipleksery są kluczowe do multiplexingu, czyli łączenia kilku sygnałów w jeden. Warto też wiedzieć, że są różne typy multiplekserów, jak MUX 2:1, MUX 4:1 czy MUX 8:1, które różnią się liczbą wejść i zastosowaniem.

Pytanie 27

Do ilu jednogłowicowych tunerów satelitarnych i z ilu zespołów satelitów jest możliwe przesyłanie sygnału za pośrednictwem konwertera, którego parametry zamieszczono w załączonej dokumentacji technicznej?

Typ konwerteraMonoblock Quad
Liczba wyjść4
Przełączanie satelitówDiSEqC
Pasmo dolne10.7-11.7 GHz
Pasmo górne11.7-12.75 GHz
Częstotliwość oscylatoraLOW 9.75 GHz
HIGH 10.60 GHz
Częstotliwość wyjściowaDolne pasmo 950-1950 MHz
Górne pasmo 1100-2150 MHz
Sygnał przełączający pasma22 kHz
Współczynnik szumów0,1 dB
Separacja pomiędzy sygnałami przełączającymi z tunerówok. 28 dB
Średnica mocowania23 mm
A. Do jednego, z czterech zespołów satelitów.
B. Do dwóch, z dwóch zespołów satelitów.
C. Do czterech, z jednego zespołu satelitów.
D. Do czterech, z dwóch zespołów satelitów.
Poprawna odpowiedź to 'Do czterech, z dwóch zespołów satelitów'. Konwerter Monoblock Quad, będący przedmiotem analizy, wyposażony jest w cztery wyjścia, co umożliwia równoczesne podłączenie czterech tunerów satelitarnych. W kontekście systemów satelitarnych, kluczowym aspektem jest wykorzystanie technologii DiSEqC, która pozwala na współpracę z różnymi satelitami. W przypadku tego konwertera, sygnał może być odbierany z dwóch różnych zespołów satelitów, co jest istotne w praktycznych zastosowaniach, gdzie użytkownicy często chcą mieć dostęp do kanałów z różnych źródeł. Przykładowo, użytkownicy mogą odbierać sygnał zarówno z satelity Astra, jak i Hot Bird, co poszerza ich możliwości programowe. Tego rodzaju konwertery są powszechnie stosowane w instalacjach multiswitchowych, gdzie odpowiednie zarządzanie sygnałem jest kluczowe dla zapewnienia stabilności oraz jakości odbioru. W standardach branżowych, takich jak EN 50494, określono zasady dotyczące współpracy konwerterów z systemami DiSEqC, co potwierdza poprawność tej odpowiedzi.

Pytanie 28

Rysunek przedstawia przewód przygotowany do wykonania złącza

Ilustracja do pytania
A. RJ45
B. SCART
C. HDMI
D. BNC
Złącza RJ45, SCART i HDMI różnią się znacznie od BNC pod względem budowy oraz zastosowania, co prowadzi do mylnych interpretacji ich funkcji. Złącze RJ45 jest standardem dla sieci komputerowych, szczególnie w kontekście Ethernetu. Posiada prostokątną konstrukcję z ośmioma pinami, co czyni go idealnym do przesyłania danych, ale nie nadaje się do przesyłania sygnału wideo. Użytkownicy mogą mylić RJ45 z BNC w kontekście sieci, jednak ich zastosowania są zupełnie różne. Z kolei złącze SCART, będące standardem w systemach audio-wideo, ma inną funkcjonalność i jest używane głównie w telewizorach i sprzęcie RTV. Jego złącze jest szerokie i oparte na wielu pinach, co również nie pasuje do formatu BNC. HDMI, z kolei, jest nowoczesnym złączem, które obsługuje zarówno audio, jak i wideo w wysokiej rozdzielczości, ale jego konstrukcja oraz sposób działania są odmienne od BNC. Podczas gdy RJ45 i HDMI są często używane w kontekście nowoczesnych rozwiązań technologicznych, BNC pozostaje istotnym elementem w określonych zastosowaniach, zwłaszcza tam, gdzie wymagana jest wysoka jakość sygnału wideo. Mylenie tych złączy może wynikać z powierzchownej analizy ich funkcji, co pokazuje, jak ważna jest znajomość specyfikacji technicznych oraz standardów branżowych w kontekście właściwego doboru komponentów.

Pytanie 29

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
B. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
C. Zasilacz symetryczny oraz cyfrowy multimetr
D. Generator funkcyjny oraz cyfrowy multimetr
Wybór przyrządów pomiarowych jest kluczowy dla uzyskania prawidłowych wyników w testach wzmacniaczy. Odpowiedzi, które nie uwzględniają zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu, pomijają istotne elementy wymagane do przeprowadzenia analizy charakterystyki przenoszenia. Zasilacz symetryczny jest niezbędny, aby zapewnić wzmacniaczowi stabilne napięcie zasilające, co jest kluczowe w kontekście pomiaru jego wydajności. Generator funkcyjny jest także istotny, ponieważ pozwala na wytwarzanie sygnałów o różnych kształtach i częstotliwościach, co umożliwia ocenę, jak wzmacniacz odpowiada na zmiany parametrów sygnału. Pominięcie oscyloskopu, który jest narzędziem do wizualizacji sygnałów, prowadzi do utraty możliwości obserwacji i analizy dynamiki wzmacniacza. Dodatkowo, wybór multimetru cyfrowego czy zasilacza napięcia stałego nie dostarcza wymaganych możliwości do kompleksowej analizy. Multimetr cyfrowy, choć przydatny w pomiarach napięcia i prądu, nie jest wystarczający do oceny charakterystyki przenoszenia, gdyż nie pozwala na analizę sygnałów w funkcji czasu, co jest istotne w przypadku wzmacniaczy operacyjnych, które reagują na zmiany sygnałów w czasie. Dlatego kluczowe jest zastosowanie pełnego zestawu odpowiednich narzędzi do przeprowadzenia rzetelnych badań.

Pytanie 30

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 150 mV
B. 1000 mV
C. 300 mV
D. 100 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 31

Jakie narzędzie jest niezbędne do zainstalowania wtyku kompresyjnego typu F na kablu koncentrycznym?

A. zaciskarkę.
B. nóż montażowy.
C. obcęgi.
D. śrubokręt.
Zaciskarka to narzędzie specjalnie zaprojektowane do montażu wtyków kompresyjnych na kablach koncentrycznych. Dzięki precyzyjnemu mechanizmowi chwytania i zaciskania, pozwala na pewne i trwałe połączenie wtyku z kablem, co jest kluczowe dla uzyskania optymalnej jakości sygnału. Użycie zaciskarki zapewnia, że wtyk jest prawidłowo zamocowany, eliminując ryzyko luzów, które mogłyby prowadzić do zakłóceń sygnału. W branży telekomunikacyjnej oraz w instalacjach antenowych, gdzie jakość sygnału jest kluczowa, stosowanie odpowiednich narzędzi, takich jak zaciskarka, jest zgodne z najlepszymi praktykami. W przypadku kabli koncentrycznych, wtyki kompresyjne oferują lepszą ochronę przed zakłóceniami elektromagnetycznymi, a ich prawidłowy montaż przy użyciu zaciskarki jest niezbędny, aby zapewnić optymalne działanie całego systemu. Warto zwrócić uwagę na standardy, takie jak ISO/IEC 11801, które podkreślają znaczenie odpowiedniego montażu i użycia właściwych narzędzi w celu zapewnienia niezawodności i wydajności systemów transmisji danych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie rodzaje sił stanowią zagrożenie dla mechanicznych połączeń światłowodowych?

A. Wzdłużne
B. Poprzeczne
C. Ukośne
D. Skrośne
Siły skrośne, ukośne oraz poprzeczne wpływają na spaw w mniejszym stopniu, co często prowadzi do błędnych wniosków w kontekście ich znaczenia dla światłowodowych spawów mechanicznych. Siły skrośne, działające równolegle do powierzchni spawu, mogą powodować uszkodzenia, ale w praktyce rzadziej prowadzą do poważnych problemów z integralnością optyczną w porównaniu do sił wzdłużnych. Często zdarza się, że osoby zajmujące się instalacją światłowodów mylnie interpretują siły skrośne jako główne zagrożenie, nie dostrzegając realnych zagrożeń związanych z obciążeniami wzdłużnymi. Z kolei siły ukośne, które działają pod kątem do osi włókna, mogą być mylnie uważane za istotne, jednak ich wpływ na spawy jest zazwyczaj marginalny w porównaniu do sił wzdłużnych. W przypadku sił poprzecznych, działających prostopadle do osi włókna, również nie stanowią one głównego zagrożenia, gdyż ich wpływ na spaw jest ograniczony, a w wielu przypadkach można je zminimalizować poprzez odpowiednie ułożenie kabli i zabezpieczenia. Niezrozumienie tych różnic prowadzi do nieodpowiedniego projektowania i instalacji, co może skutkować spadkiem jakości sygnału oraz zwiększeniem ryzyka awarii.

Pytanie 34

Schemat, którego generatora przedstawiono na rysunku?

Ilustracja do pytania
A. Meissnera w konfiguracji wspólny emiter.
B. Hartleya w konfiguracji wspólna baza.
C. Hartleya w konfiguracji wspólny emiter.
D. Meissnera w konfiguracji wspólna baza.
Generator Hartleya, który został przedstawiony w schemacie, jest jednym z popularnych typów generatorów sinusoidalnych. Kluczowym elementem jego konstrukcji jest cewka z odczepem, co można zauważyć w układzie L2 i L3. Te odczepy pozwalają na uzyskanie odpowiednich warunków rezonansowych, co jest niezbędne dla stabilności generowanego sygnału. W konfiguracji wspólny emiter połączenie emitera tranzystora z masą przez rezystor RE oraz kondensator CE jest charakterystyczne dla tego typu układów, co pozwala na uzyskanie wysokiej wydajności i amplitudy sygnału. W praktyce, generatory Hartleya są wykorzystywane w różnych aplikacjach, takich jak oscylatory w radiotechnice, generatory sygnałów w systemach komunikacyjnych oraz w układach automatyki. Zastosowanie takiego generatora pozwala na generację stabilnych sygnałów o określonej częstotliwości, co jest kluczowe w wielu dziedzinach inżynierii elektronicznej. Dodatkowo, ze względu na prostotę konstrukcji, generatory te są często wykorzystywane w projektach edukacyjnych, gdzie studenci mogą zrozumieć zasady działania układów rezonansowych i podstawowych elementów elektronicznych.

Pytanie 35

Podstawowym zadaniem zastosowania optoizolacji pomiędzy obwodami elektronicznymi jest

A. dopasowanie poziomów napięć między obwodami elektronicznymi
B. galwaniczne oddzielenie obwodów elektronicznych
C. zwiększenie wydolności wyjściowej obwodu elektronicznego
D. dopasowanie impedancji obwodów elektronicznych
Optoizolacja w układach elektronicznych nie służy dopasowaniu impedancyjnemu, które jest ważne, gdy mówimy o transferze energii w systemach RF czy audio. Dopasowanie impedancji jest kluczowe, żeby zminimalizować straty energii i refleksje sygnału, ale to nie cel optoizolacji. Jak ktoś mówi, że optoizolacja ma na celu dopasowanie napięć między układami, to też nie do końca tak jest. Owszem, napięcia mogą się różnić w różnych układach, ale optoizolacja nie ma za zadanie ich harmonizować, tylko pozwala na niezależne działanie tych układów, bez ryzyka uszkodzenia z powodu różnic w napięciach. Poza tym, zwiększenie obciążalności wyjściowej układu też nie jest celem optoizolacji, bo optoizolator nie zwiększa tej maksymalnej wartości prądu. Mylenie tych pojęć może prowadzić do słabego projektowania układów, gdzie optoizolacja nie działa jak powinna, a to może zwiększać ryzyko awarii. Dlatego dobrze jest zrozumieć, jak działa optoizolacja, żeby skutecznie projektować układy i zapewnić ich niezawodność.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

PAL B/G, PAL, SECAM, NTSC - jakie skróty dotyczą?

A. nazwa obszarów w półprzewodnikach
B. metod kodowania sygnału AUDIO
C. metod kodowania kolorów w sygnale telewizyjnym
D. nazwa szyn systemowych mikrokontrolera 8051
Podejście do właściwego zrozumienia skrótów PAL, NTSC, SECAM i PAL B/G powinno być ściśle związane z ich fundamentalnym znaczeniem w kontekście kodowania sygnału wideo. Odpowiedzi dotyczące nazw szyn systemowych mikrokontrolera 8051 lub obszarów w półprzewodnikach wskazują na nieporozumienie dotyczące zastosowania tych terminów. Mikrokontrolery 8051 są związane z systemami embedded i nie mają bezpośredniego związku z telewizją analogową czy cyfrową, podczas gdy obszary w półprzewodnikach odnoszą się do struktury materiałów półprzewodnikowych, takich jak tranzystory czy diody, a nie do standardów telewizyjnych. Również odpowiedzi dotyczące sposobów kodowania sygnału audio są mylące, ponieważ audio i wideo są różnymi rodzajami sygnałów, które są przesyłane i przetwarzane w odmienny sposób. W rzeczywistości, standardy telewizyjne, takie jak PAL, NTSC i SECAM, koncentrują się na kolorze oraz synchronizacji obrazu, co jest kluczowe dla zapewnienia wysokiej jakości wizji podczas odbioru telewizyjnego. Ignorowanie tych różnic prowadzi do błędnych wniosków i nieporozumień, które mogą skutkować w problemach technicznych, jak również w niezdolności do prawidłowego odbioru sygnału telewizyjnego. Dlatego zrozumienie kontekstu i zastosowania tych terminów jest kluczowe w dziedzinie technologii audiowizualnych.

Pytanie 38

Adres IP bramy w rejestratorze, który jest podłączony do sieci komputerowej, to adres

A. kamery
B. serwera DNS
C. przełącznika
D. rutera
Błędne odpowiedzi na to pytanie mogą wynikać z nieporozumienia dotyczącego roli poszczególnych urządzeń w sieci. Przełącznik to urządzenie, które działa na poziomie warstwy drugiej modelu OSI, odpowiedzialne za przekazywanie ramek danych w obrębie lokalnej sieci. Nie ma on funkcji bramy, ponieważ nie obsługuje komunikacji pomiędzy różnymi sieciami. Kamery, z drugiej strony, to urządzenia końcowe, które przesyłają dane za pomocą protokołów sieciowych, ale również nie pełnią roli bramy. Serwer DNS działa na poziomie tłumaczenia nazw domenowych na adresy IP, co jest niezbędne do lokalizowania zasobów w sieci, jednak jego funkcjonalność również nie obejmuje działania jako brama. Typowym błędem w rozumieniu tego zagadnienia jest mylenie funkcji przełącznika z funkcjami rutera oraz nieznajomość podstawowych zadań serwera DNS. Aby skutecznie zarządzać siecią, należy zrozumieć, że ruter jest odpowiedzialny za komunikację zewnętrzną, a inne urządzenia, takie jak przełączniki, kamery czy serwery DNS, pełnią uzupełniające role, lecz nie mogą działać jako brama bezposrednia.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Przy włączaniu wzmacniacza akustycznego konieczne jest ustawienie wartości

A. częstotliwości sygnału wejściowego na możliwie najwyższą
B. amplitudy sygnału wejściowego na możliwie najniższą
C. częstotliwości sygnału wejściowego na możliwie najniższą
D. amplitudy sygnału wejściowego na możliwie najwyższą
Ustawienie amplitudy sygnału wejściowego na możliwie najmniejszą wartość podczas uruchamiania wzmacniacza akustycznego jest kluczowe dla zapewnienia bezpieczeństwa nie tylko samego urządzenia, ale także podłączonych do niego głośników. Wzmacniacze akustyczne mogą być bardzo wrażliwe na nadmierne poziomy sygnału, co może prowadzić do przesterowania, a w konsekwencji do uszkodzeń komponentów, takich jak tranzystory czy końcówki mocy. Ustawienie niskiej amplitudy sygnału umożliwia bezpieczne wprowadzenie sygnału do wzmacniacza, dzięki czemu użytkownik może stopniowo dostosować poziom wzmocnienia do pożądanych wartości, unikając nagłych skoków głośności. Przykładowo, w profesjonalnym środowisku audio, przed rozpoczęciem występu, technicy dźwięku zawsze wprowadzają sygnał na minimalnym poziomie, aby zminimalizować ryzyko nieprzyjemnych zaskoczeń akustycznych. Dobrą praktyką jest również monitorowanie poziomów sygnału za pomocą wskaźników LED lub mierników poziomu, co pozwala na dostosowanie parametrów w czasie rzeczywistym.