Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 1 lutego 2026 13:43
  • Data zakończenia: 1 lutego 2026 14:12

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aparat przedstawiony na rysunku służy do

Ilustracja do pytania
A. dekantacji
B. ekstrakcji ciecz-ciecz
C. ługowania
D. sedymentacji
Dekantacja, ekstrakcja ciecz-ciecz oraz sedymentacja to techniki, które mają swoje specyficzne zastosowania i różnią się zasadniczo od ługowania. Dekantacja polega na oddzielaniu cieczy od ciał stałych lub od innych cieczy, które się ze sobą nie mieszają, poprzez powolne wylewanie górnej warstwy cieczy po jej osadzeniu. Typowym zastosowaniem dekantacji jest separacja wody od osadów w procesach oczyszczania ścieków. Ekstrakcja ciecz-ciecz natomiast polega na wydobywaniu substancji rozpuszczonej w jednej cieczy, przenosząc ją do innej cieczy, w której rozpuszcza się lepiej. Jest to technika często wykorzystywana w chemii organicznej do separacji związków chemicznych. Sedymentacja jest procesem, w którym cząstki stałe osiadają na dnie cieczy pod wpływem siły grawitacji. Zjawisko to jest stosowane w wielu dziedzinach, od geologii po inżynierię środowiska. Typowe błędy w rozumieniu tych procesów polegają na ich myleniu z ługowaniem; brak jest zrozumienia, że ługowanie wymaga zastosowania odpowiednich reagentów i jest procesem chemicznym, a nie tylko fizycznym oddzielaniem substancji. Każda z tych metod ma swoje miejsce w różnych aplikacjach przemysłowych i laboratoryjnych, dlatego ważne jest, aby dobrze rozumieć różnice między nimi, aby móc skutecznie dobierać odpowiednie techniki w zależności od potrzeb.

Pytanie 2

Zbiór próbek pierwotnych tworzy próbkę

A. jednostkową
B. analityczną
C. laboratoryjną
D. ogólną
Próbka ogólna to zbiór próbek pierwotnych, które reprezentują szerszą populację danego materiału lub substancji. W kontekście badań laboratoryjnych, próba ogólna jest kluczowa, ponieważ ma na celu uzyskanie wiarygodnych wyników analitycznych, które można ekstrapolować na całość populacji. Na przykład, w przemyśle spożywczym, podczas kontroli jakości, pobiera się próbki ogólne z różnych partii produktów, aby ocenić ich jakość i bezpieczeństwo. Według standardów ISO 2859, próby ogólne powinny być pobierane w sposób losowy, aby zminimalizować ryzyko błędów systematycznych w ocenie. Spojrzenie na próbkę jako całość pozwala na lepszą interpretację danych oraz podejmowanie świadomych decyzji dotyczących procesów produkcyjnych i kontroli jakości. Dlatego zrozumienie różnicy między próbką ogólną a innymi typami próbek, takimi jak próbki jednostkowe, jest fundamentalne w zarządzaniu jakością oraz w badaniach naukowych.

Pytanie 3

Jakie urządzenie wykorzystuje się do pomiaru lepkości cieczy?

A. piknometr
B. wiskozymetr
C. aparat Boetiusa
D. kriometr
Wiskozymetr to narzędzie, które służy do pomiaru lepkości cieczy, co jest naprawdę ważne w różnych branżach, jak chemia, inżynieria materiałowa czy nawet przemysł spożywczy. Lepkość to w sumie miara tego, jak bardzo ciecz opiera się zmianom. W praktyce ma to znaczenie podczas mieszania, transportu czy przerabiania cieczy. Wiskozymetry działają na różne sposoby. Na przykład, wiskozymetr kinematyczny mierzy czas, w którym ciecz przepływa przez określony przekrój, a wiskozymetr dynamiczny oblicza lepkość na podstawie siły potrzebnej do przepływu. Przykładowo, w przemyśle farmaceutycznym ważne, żeby lepkość była odpowiednia, bo to wpływa na działanie leków. W przemyśle spożywczym natomiast, lepkość ma spory wpływ na to, jak mają smakować i wyglądać produkty. Poza tym, wiskozymetry są często spotykane w laboratoriach, a metody pomiaru lepkości są nawet określone przez normy ISO.

Pytanie 4

Gdzie należy przechowywać cyjanek potasu KCN?

A. w pojemniku, z dala od źródeł ciepła
B. w szczelnie zamkniętym eksykatorze
C. w stalowej szafie, zamkniętej na klucz
D. w warunkach chłodniczych
Przechowywanie cyjanku potasu w szczelnym eksykatorze, w warunkach chłodniczych lub w pojemniku z dala od źródeł ciepła jest niewłaściwym podejściem, które nie uwzględnia kluczowych aspektów bezpieczeństwa. Eksykatory są zazwyczaj używane do przechowywania substancji higroskopijnych, a nie toksycznych, jak KCN. Umieszczanie go w eksykatorze może prowadzić do trudności w dostępie i kontroli nad substancją, co zwiększa ryzyko przypadkowego uwolnienia. Przechowywanie w warunkach chłodniczych może wydawać się racjonalne z perspektywy obniżenia reaktywności, jednak nie eliminuje ryzyka kontaktu z osobami nieuprawnionymi. Poza tym, substancje chemiczne powinny być przechowywane w odpowiednich warunkach, które są zgodne z zależnościami prawnymi i normami, jednak nie w warunkach, które mogą zmylić personel co do poziomu zagrożenia. Ostatnia koncepcja przechowywania KCN w pojemniku z dala od źródeł ciepła nie uwzględnia faktu, że nie jest to wystarczające zabezpieczenie. Każda substancja chemiczna wymaga odpowiedniego przechowywania, które zapewni nie tylko ochronę przed wysoką temperaturą, ale również przed dostępem osób nieuprawnionych. Prawidłowe podejście do przechowywania substancji niebezpiecznych wiąże się z zastosowaniem dedykowanych, zamykanych przestrzeni magazynowych, co stanowi najlepszą praktykę w zarządzaniu substancjami chemicznymi.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Substancje kancerogenne to

A. rakotwórcze
B. enzymatyczne
C. uczulające
D. mutagenne
Kancerogenne substancje to związki chemiczne, które mają zdolność wywoływania nowotworów w organizmach żywych. Są one klasyfikowane jako rakotwórcze, co oznacza, że mogą prowadzić do transformacji komórek normalnych w komórki nowotworowe. Przykłady takich substancji to azbest, benzen oraz formaldehyd, które są powszechnie znane z ich szkodliwego wpływu na zdrowie i są regulowane przez różne normy, takie jak Międzynarodowa Agencja Badań nad Rakiem (IARC) czy OSHA (Occupational Safety and Health Administration). Wiedza o kancerogenności substancji ma kluczowe znaczenie w przemyśle, szczególnie w kontekście ochrony pracowników oraz zachowania zdrowia publicznego. Organizacje muszą wdrażać programy oceny ryzyka oraz strategie minimalizacji ekspozycji na te substancje w celu ochrony zdrowia ludzi i środowiska. W wielu krajach istnieją również regulacje prawne, które wymagają oznaczania produktów zawierających kancerogenne substancje, co pozwala konsumentom na podejmowanie świadomych decyzji.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Do wykrywania pierwiastków w niskich stężeniach w badaniach spektrograficznych należy używać reagentów

A. spektralnie czystych
B. czystych do badań
C. czystych
D. chemicznie czystych
Odpowiedź 'spektralnie czyste' jest prawidłowa, ponieważ oznaczanie pierwiastków śladowych w metodach spektrograficznych wymaga stosowania reagentów o wysokiej czystości, które nie zawierają zanieczyszczeń mogących wpływać na wyniki analizy. Spektralna czystość reagentów odnosi się do minimalizacji obecności innych pierwiastków, które mogłyby wprowadzać błędy w pomiarach, co jest kluczowe w przypadku analiz o niskich granicach detekcji. Standardowe praktyki w laboratoriach chemicznych wskazują na konieczność stosowania reagentów, które były poddawane odpowiednim procesom oczyszczania, takim jak destylacja czy chromatografia, aby uzyskać ich spektralne czystości. Przykładem mogą być reakcje analityczne w spektrometrii mas, gdzie nawet drobne zanieczyszczenia mogą prowadzić do fałszywych identyfikacji i ilościowych pomiarów. W ten sposób, zachowanie standardów spektralnej czystości reagentów w praktyce laboratoryjnej jest niezbędne dla uzyskania wiarygodnych wyników analizy.

Pytanie 10

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 20 cm3
B. 50 cm3
C. 10 cm3
D. 25 cm3
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 11

Które równanie przedstawia reakcję otrzymywania mydła?

CH3COOH + NaOH →CH3COONa + H2O2 CH3COOH + Na2O →2 CH3COONa + H2O2 C2H5COOH + 2 Na →2 C2H5COONa + H2C17H35COOH + NaOH →C17H35COONa + H2O
A. CH3COOH + NaOH → CH3COONa + H2O
B. 2 C2H5COOH + 2 Na → 2 C2H5COONa + H2↑
C. C17H35COOH + NaOH → C17H35COONa + H2O
D. 2 CH3COOH + Na2O → 2 CH3COONa + H2O
No, ta reakcja, którą podałeś, to super przykład zmydlania, a więc procesu, w którym kwasy tłuszczowe reagują z zasadami, w tym przypadku z wodorotlenkiem sodu. Z tego powodu powstaje sól kwasu tłuszczowego, czyli mydło, a przy okazji mamy jeszcze wodę. Zmydlanie to absolutny must-have w produkcji mydeł, które wszyscy używamy w domach czy w kosmetykach. Przykład? Naturalne mydła, które można robić z olejów, np. kokosowego albo oliwy z oliwek. Ważne, żeby trzymać się dobrych proporcji kwasu tłuszczowego do zasady, bo to wpływa na to, jak twarde będzie mydło, jak się pieni i jak nawilża. Zmydlanie jest też ważnym procesem w chemii, bo używa się go do produkcji różnych substancji chemicznych. Jak widać, to istotna sprawa!

Pytanie 12

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,1500 mol/dm3
B. 0,1000 mol/dm3
C. 0,1200 mol/dm3
D. 0,2000 mol/dm3
Miano zasady NaOH oblicza się na podstawie reakcji zobojętnienia z kwasem HCl, w której stosunek molowy NaOH do HCl wynosi 1:1. Ustalając miano roztworu NaOH, wykorzystujemy wzór na miano: c(NaOH) = (c(HCl) * V(HCl)) / V(NaOH), gdzie c oznacza stężenie, a V objętość. W naszym przypadku mamy c(HCl) = 0,1000 mol/dm³ oraz V(HCl) = 30,0 cm³ (0,030 dm³) i V(NaOH) = 25,0 cm³ (0,025 dm³). Podstawiając wartości do wzoru, uzyskujemy: c(NaOH) = (0,1000 mol/dm³ * 0,030 dm³) / 0,025 dm³ = 0,1200 mol/dm³. Przykład ten ilustruje, jak ważne jest odpowiednie wyważenie ilości reagentów w reakcjach chemicznych, co jest kluczowe w laboratoriach chemicznych i przemyśle, gdzie precyzyjne stężenia roztworów mają istotne znaczenie dla efektywności procesów chemicznych oraz jakości końcowego produktu. Standardy analityczne podkreślają konieczność dokładności w pomiarach, co ma wpływ na wiarygodność uzyskanych wyników.

Pytanie 13

Jaką objętość powinna mieć kolba miarowa, aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z analitycznej odważki, która zawiera 0,1 mola NaOH?

A. 1 dm3
B. 200 cm3
C. 2 dm3
D. 100 cm3
Aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z odważki analitycznej, musimy obliczyć odpowiednią objętość roztworu. Stężenie molowe (M) wyraża liczbę moli substancji w litrze roztworu. W tym przypadku, aby uzyskać roztwór o stężeniu 0,050 M, musimy użyć 0,050 mola NaOH w 1 litrze roztworu. Mając 0,1 mola NaOH, możemy przygotować 0,1 / 0,050 = 2 litry roztworu. W związku z tym, kolba miarowa powinna mieć pojemność 2 dm3, aby pomieścić przygotowany roztwór. Tego rodzaju obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma istotne znaczenie dla uzyskania wiarygodnych wyników eksperymentalnych. Przestrzeganie standardów przygotowania roztworów zapewnia ich jednorodność i dokładność, co jest niezbędne w badaniach analitycznych, a także w różnorodnych aplikacjach przemysłowych.

Pytanie 14

W wypadku oblania skóry kwasem mrówkowym należy

Wyciąg z karty charakterystyki
Skład: kwas mrówkowy 80%, woda 11-20%
Pierwsza pomoc.
Po narażeniu przez drogi oddechowe. Natychmiast wezwać lekarza.
Po kontakcie ze skórą. Zanieczyszczoną skórę natychmiast przemyć dużą ilością wody.
A. zastosować na skórę mydło w płynie.
B. polać skórę środkiem zobojętniającym.
C. podać do picia dużą ilość schłodzonej wody.
D. przemyć skórę dużą ilością wody.
Przemycie skóry dużą ilością wody w przypadku kontaktu z kwasem mrówkowym jest kluczowym działaniem, które ma na celu minimalizację uszkodzeń. Woda działa jak rozcieńczalnik, co pozwala na szybsze usunięcie szkodliwej substancji z powierzchni skóry. Zgodnie z wytycznymi zawartymi w standardach pierwszej pomocy, każdy przypadek kontaktu skóry z substancjami żrącymi powinien być traktowany jako sytuacja wymagająca natychmiastowej reakcji. W praktyce, jeśli dojdzie do kontaktu z kwasem mrówkowym, należy jak najszybciej przemyć zanieczyszczoną skórę wodą o temperaturze pokojowej przez co najmniej 15 minut. Ważne jest, aby nie stosować innych substancji ani środków chemicznych, które mogłyby reagować z kwasem, co mogłoby prowadzić do powstania dodatkowych, szkodliwych związków chemicznych. Warto również pamiętać, że w przypadku poważniejszych oparzeń chemicznych należy zawsze skontaktować się z profesjonalną pomocą medyczną, aby ocenić stan pacjenta i podjąć dalsze działania. Przechowywanie odpowiednich materiałów pierwszej pomocy w miejscach, gdzie mogą wystąpić takie wypadki, jest również zalecane jako dobra praktyka. Przykładem zastosowania jest sytuacja w laboratoriach chemicznych, gdzie pracownicy są szkoleni w zakresie reagowania na wypadki z substancjami chemicznymi.

Pytanie 15

Z analizy wykresu wynika, że substancją o najniższej rozpuszczalności w wodzie w temperaturze 100°C jest

A. siarczan(VI) miedzi(II)
B. sól kamienna
C. cukier
D. saletra potasowa
Cukier, siarczan(VI) miedzi(II) i saletra potasowa to substancje, które w sumie dobrze się rozpuszczają w wodzie, ale nie są odpowiedzią na pytanie, której substancji rozpuszczalność jest najsłabsza. Cukier, czyli sacharoza, jest znany z tego, że łatwo się rozpuszcza – w 100°C potrafi się rozpuścić nawet do 2000 g/l, co naprawdę przewyższa sól kamienną. Siarczan(VI) miedzi(II) ma też dobrą rozpuszczalność, bo przy 20°C dochodzi do około 70 g/l, więc również nie pasuje do tego pytania. Saletra potasowa, czyli azotan potasu, rozpuszcza się w wodzie do około 350 g/l przy 20°C. Czasami ludzie mylą, co to znaczy, że coś dobrze się rozpuszcza, bo na przykład myślą, że jak cukier się łatwo rozpuszcza w herbacie, to musi być słabiej rozpuszczalny. W rzeczywistości jednak, żeby zrozumieć rozpuszczalność substancji, warto sięgnąć po konkretne dane naukowe i zrozumieć, jakie właściwości chemiczne decydują o ich zachowaniu w roztworach.

Pytanie 16

W celu rozdrabniania niewielkich ilości bardzo twardego materiału wykorzystuje się moździerze

A. melaminowe
B. teflonowe
C. ze stali molibdenowej
D. agatowe
Odpowiedź "ze stali molibdenowej" jest poprawna, ponieważ moździerze wykonane z tego materiału charakteryzują się wyjątkową twardością i odpornością na zużycie, co czyni je idealnymi do rozdrabniania twardych substancji. Stal molibdenowa, dzięki swoim właściwościom, zapewnia doskonałą trwałość oraz stabilność mechaniczną, co jest kluczowe przy pracy z bardzo twardymi materiałami, takimi jak niektóre minerały czy substancje chemiczne. Użycie moździerzy stalowych w laboratoriach chemicznych oraz gastronomicznych jest powszechną praktyką, gdyż pozwala na uzyskanie dokładnych i jednorodnych rezultatów. Przykładem zastosowania może być rozdrabnianie przypraw, takich jak pieprz czy zioła, gdzie kluczowe jest zachowanie aromatów i właściwości smakowych. Ponadto stal molibdenowa jest mniej podatna na korozję w porównaniu do innych stali, co wydłuża żywotność narzędzia oraz zapewnia bezpieczeństwo w kontakcie z różnymi substancjami chemicznymi.

Pytanie 17

W laboratorium chemicznym przewody instalacji rurowych są oznaczane różnymi kolorami, zgodnie z obowiązującymi normami. Polska Norma PN-70 N-01270/30 określa kolor dla wody jako

A. czerwony
B. żółty
C. zielony
D. niebieski
Odpowiedź "zielony" jest poprawna, ponieważ według Polskiej Normy PN-70 N-01270/30 kolor zielony jest przypisany dla instalacji wodnych. W praktyce oznakowanie rur wodociągowych tym kolorem ma na celu poprawę bezpieczeństwa w laboratoriach chemicznych oraz w innych obiektach, gdzie może wystąpić współistnienie różnych substancji. Oznakowanie ma na celu jednoznaczne wskazanie, jakiego medium można się spodziewać w danej instalacji, co ma kluczowe znaczenie w kontekście ewentualnych wypadków lub niebezpieczeństw. Na przykład w laboratoriach, gdzie używa się wielu substancji chemicznych, a także rozmaitych płynów, właściwe oznaczenie rur wodnych pozwala uniknąć pomyłek, które mogłyby prowadzić do poważnych konsekwencji. Przestrzeganie tego rodzaju norm w instalacjach przemysłowych oraz badawczych jest częścią szerokiego systemu zarządzania bezpieczeństwem, który powinien być wdrażany w każdym laboratorium.

Pytanie 18

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Soxleth.
B. Engler.
C. Thiel.
D. Kipp.
Aparat Thielego jest specjalistycznym urządzeniem używanym do oznaczania temperatury topnienia związków chemicznych. Jego działanie opiera się na precyzyjnym pomiarze temperatury w kontrolowanym środowisku, co pozwala na uzyskanie dokładnych wyników. W praktyce, aparat Thielego wykorzystuje się w laboratoriach chemicznych oraz w przemyśle farmaceutycznym do określenia charakterystyki substancji stałych, co jest kluczowe dla ich dalszych zastosowań. Zgodnie z dobrą praktyką laboratoryjną, proces oznaczania temperatury topnienia powinien odbywać się w atmosferze wolnej od zanieczyszczeń, co zapewnia dokładność wyników. Dodatkowo, znajomość temperatury topnienia jest istotna nie tylko dla identyfikacji substancji, ale także dla oceny ich czystości. Substancje czyste mają wyraźnie określoną temperaturę topnienia, podczas gdy zanieczyszczenia powodują obniżenie tej wartości. Dlatego aparaty Thielego są powszechnie stosowane w standardowych procedurach analitycznych, co świadczy o ich znaczeniu w chemii analitycznej.

Pytanie 19

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. dekantację bez sączenia
B. podgrzewanie roztworu do wrzenia
C. sączenie przez sączek o drobnych porach lub filtr membranowy
D. suszenie roztworu w suszarce laboratoryjnej
<strong>Sączenie przez sączek o drobnych porach lub filtr membranowy</strong> to standardowa metoda przygotowania próbek do analiz spektrofotometrycznych, szczególnie gdy zależy nam na usunięciu nawet najmniejszych cząstek zawieszonych. W branży laboratoryjnej takie podejście uchodzi za dobrą praktykę, bo pozwala skutecznie oddzielić fazę ciekłą od niepożądanych drobin, które mogłyby rozpraszać światło i zakłócać pomiar. Filtry membranowe wyróżniają się bardzo drobną porowatością (np. 0,22–0,45 µm), przez co nawet mikroskopijne cząstki nie przechodzą dalej. Użycie sączka o drobnych porach jest też bezpieczne dla składu chemicznego roztworu, nie powoduje dodatkowych reakcji i nie wpływa na wyniki analizy. Moim zdaniem, to wręcz obowiązkowa czynność przed większością analiz spektrofotometrycznych, szczególnie gdy pracujemy z próbkami środowiskowymi, farmaceutycznymi czy biologicznymi. Warto wspomnieć, że profesjonalne laboratoria stosują filtry strzykawkowe lub sączki z tworzyw sztucznych, bo są wygodne i minimalizują ryzyko zanieczyszczeń. Odpowiednia filtracja gwarantuje, że absorbancja mierzona spektrofotometrycznie odzwierciedla wyłącznie skład roztworu, a nie „szum” od cząstek zawieszonych. Takie przygotowanie próbek to po prostu podstawa rzetelnych wyników.

Pytanie 20

Jak definiuje się próbkę wzorcową?

A. próbkę utworzoną z próbki laboratoryjnej, z której następnie pobiera się próbkę analityczną
B. próbkę o ściśle określonym składzie
C. fragment materiału pobrany z próbki laboratoryjnej, przeznaczony wyłącznie do jednego badania
D. próbkę uzyskaną w wyniku zbierania próbek jednostkowych do jednego zbiornika zgodnie z ustalonym schematem
Wybór odpowiedzi wskazujących na próbki przygotowane z próbki laboratoryjnej lub części materiału nie oddaje istoty definicji próbki wzorcowej. Próbka przygotowana z próbki laboratoryjnej, z której pobiera się próbkę analityczną, odnosi się do procesu pobierania i może wprowadzać niepewność w wyniki analizy, gdyż nie gwarantuje, że skład próbki analitycznej jest znany. Podobnie, definicja części materiału pobranego do jednego oznaczenia nie uwzględnia kluczowego aspektu, jakim jest dokładność i znany skład. Na przykład, jeśli pobieramy próbki do jednego oznaczenia, niekoniecznie mamy pewność co do ich właściwego składu, co mogłoby prowadzić do błędnych wniosków. Z kolei odpowiedź dotycząca próbki powstałej na skutek pobierania próbek jednostkowych do jednego pojemnika odnosi się bardziej do metodologii kolekcji niż do definicji próbki wzorcowej. Ta koncepcja może mylić, gdyż nie uwzględnia, że próbka wzorcowa musi mieć niezmienny skład, aby móc być uznana za wiarygodny standard. W procesach analitycznych kluczowe jest, aby próbka wzorcowa była precyzyjnie zdefiniowana, co jest istotnym wymaganiem w praktykach laboratoryjnych, takich jak akredytacja ISO, gdzie oczekuje się stosowania prób wzorcowych o znanym składzie w celu zapewnienia jakości wyników. Wybór niepoprawnych odpowiedzi może więc prowadzić do poważnych nieporozumień w zakresie analizy i interpretacji wyników laboratoryjnych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. cz.
B. techn.
C. cz.d.a.
D. cz.ch.
Odpowiedzi "cz.ch.", "techn." oraz "cz.d.a." są błędne w kontekście pytania, ponieważ każda z tych terminologii odnosi się do innych klas substancji. Termin "cz.ch." odnosi się do substancji czystych chemicznie, które muszą spełniać wysokie standardy czystości i są używane w bardziej wymagających analizach, gdzie nawet najmniejsze zanieczyszczenia mogą wpływać na wyniki. W kontekście analiz jakościowych i ilościowych, wybór substancji czystych chemicznie w sytuacjach, gdy nie jest to wymagane, nie tylko zwiększa koszty, ale również komplikuje procedury laboratoryjne. Z kolei "techn." odnosi się do substancji technicznych, które mogą być używane w procesach przemysłowych, ale ich standardy czystości również mogą nie być odpowiednie dla analiz laboratoryjnych. Używanie takich substancji w analizach może prowadzić do zafałszowań wyników, co jest absolutnie niedopuszczalne w kontekście rzetelnych badań. Termin "cz.d.a." odnosi się do czystości dla analizy, co również oznacza wyższe wymagania dotyczące czystości, a więc nie pasuje do koncepcji substancji pomocniczych, które nie muszą spełniać tych standardów. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to niepełne zrozumienie różnic w wymaganiach czystości oraz niewłaściwe przypisywanie terminów do kontekstu ich zastosowania w analizach chemicznych.

Pytanie 23

Do 300 g wody o temperaturze 30oC dodano 120 g substancji, co zaowocowało powstaniem roztworu nasyconego. Jaką ma rozpuszczalność ta substancja w temperaturze 30oC?

A. 30 g
B. 50 g
C. 20 g
D. 40 g
Odpowiedź 40 g jest poprawna, ponieważ oznacza to, że w 300 g wody w temperaturze 30°C maksymalna ilość substancji, która może się w niej rozpuścić, wynosi właśnie 40 g. Rozpuszczalność jest charakterystyczną właściwością substancji i jest określona dla danej temperatury. W praktyce oznacza to, że w celu uzyskania roztworu nasyconego należy dodać substancję do wody, aż osiągnie się stan, w którym wszelka dodatkowa substancja nie rozpuści się, co jest praktycznym krokiem przy przygotowywaniu roztworów w laboratoriach chemicznych. Wartości rozpuszczalności są kluczowe w różnych zastosowaniach, na przykład w przemyśle farmaceutycznym, gdzie odpowiednia rozpuszczalność substancji aktywnej wpływa na efektywność leku. Zrozumienie tego parametru pozwala na precyzyjne formułowanie roztworów o odpowiednich stężeniach, co jest niezbędne w procesach produkcyjnych. Dodatkowo, wiedza o rozpuszczalności substancji jest istotna w analizach chemicznych oraz w ocenie wpływu czynników fizykochemicznych na procesy rozpuszczania.

Pytanie 24

Który z wymienionych roztworów NaOH, o określonych stężeniach, nie jest roztworem mianowanym?

A. około 0,2 mol/dm3
B. ściśle 0,2 mol/dm3
C. 0,200 mol/dm3
D. 0,100 mol/dm3
Odpowiedź 'około 0,2 mol/dm3' jest prawidłowa, ponieważ nie spełnia kryteriów roztworu mianowanego. Roztwory mianowane charakteryzują się ściśle zdefiniowanym stężeniem, co oznacza, że ich stężenie powinno być określone z maksymalną precyzją. Roztwór mianowany NaOH o stężeniu dokładnie 0,200 mol/dm3 czy ściśle 0,2 mol/dm3 to przykłady roztworów, które są dokładnie przygotowane i spełniają standardy laboratoryjne. Roztwory te są kluczowe w analizach chemicznych, gdzie precyzyjne pomiary stężenia są niezbędne do uzyskania wiarygodnych wyników. W praktyce, na przykład w titracji, gdzie oblicza się ilość substancji reagującej, zastosowanie roztworu mianowanego pozwala na dokładne obliczenie stężenia substancji analizowanej, co jest podstawą wielu procedur analitycznych. Warto zatem zwracać uwagę na precyzję w przygotowywaniu roztworów, aby zapewnić ich wiarygodność i powtarzalność wyników.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Przedstawiony na rysunku sprzęt służy do

Ilustracja do pytania
A. pobierania próbek gazu.
B. przeprowadzania ekstrakcji.
C. pobierania próbek cieczy.
D. rozdzielania niemieszających się cieczy.
Poprawna odpowiedź, dotycząca pobierania próbek gazu, opiera się na rozpoznaniu zastosowania zbiornika z zaworami, który jest typowym elementem systemów gazowych. Zawory umieszczone na górze oraz na dole zbiornika są kluczowe dla precyzyjnego pobierania próbek gazów. W praktyce, tego typu urządzenia wykorzystuje się w laboratoriach analitycznych, przemyśle chemicznym oraz na stacjach monitorowania jakości powietrza. Zgodnie z normą ISO 17025, która dotyczy wymagań ogólnych dla laboratoriów badawczych, pobieranie próbek musi być przeprowadzane z zachowaniem odpowiednich procedur w celu zapewnienia wiarygodności wyników. Zbiorniki takie są projektowane z uwzględnieniem bezpieczeństwa oraz efektywności, co oznacza, że muszą być odpornie na ciśnienie oraz zapewniać odpowiednie uszczelnienie. Dodatkowo, ważnym aspektem jest możliwość przechowywania różnych rodzajów gazów, co zwiększa elastyczność ich zastosowania. Takie zbiorniki są również wyposażone w systemy monitorujące, które umożliwiają kontrolę parametrów gazu, takich jak ciśnienie i temperatura.

Pytanie 27

Którą substancję można bezpośrednio wyrzucić do odpadów komunalnych?

A. Tlenek rtęci(II)
B. Azbest
C. Azotan(V) srebra
D. Glukozę
Glukoza to taki prosty cukier, który znajdziesz w wielu jedzeniu. Jest zupełnie naturalna i nasze ciała potrafią ją rozłożyć. Dlatego można ją bez obaw wrzucać do odpadów komunalnych, co oznacza, że trafia do oczyszczalni i tam można ją przerobić. Z tego, co wiem, glukoza nie szkodzi ani naturze, ani zdrowiu ludzi. Jeśli chodzi o odpady, to takie organiczne rzeczy jak glukoza są ok i można je spokojnie kompostować. W przemyśle używa się jej do produkcji żywności i jako źródło energii w fermentacji, co pokazuje, że można ją bezpiecznie utylizować. W dodatku normy takie jak ISO 14001 pomagają zarządzać środowiskiem, więc glukoza jest w tym kontekście super bezpieczna.

Pytanie 28

Odczynnik, który nie został wykorzystany, należy zutylizować zgodnie z informacjami zawartymi na etykiecie

A. w czerwcu 2017 roku
B. 5 maja 2017 roku
C. 13 maja 2017 roku
D. w kwietniu 2017 roku
Odpowiedź 'w czerwcu 2017 roku' jest prawidłowa, ponieważ wskazuje na termin, w którym niezużyty odczynnik powinien być zutylizowany zgodnie z zaleceniami przedstawionymi na etykiecie. Niezbędne jest przestrzeganie dat ważności i instrukcji dotyczących utylizacji odczynników chemicznych, aby zapewnić bezpieczeństwo oraz minimalizować negatywny wpływ na środowisko. Na przykład, jeśli odczynnik został dopuszczony do użycia do czerwca 2017 roku, oznacza to, że jego skuteczność może być już obniżona, a stosowanie go po tym terminie może prowadzić do nieprzewidywalnych rezultatów w badaniach. W praktyce, laboratoria chemiczne, zgodnie z normą ISO 14001, powinny mieć wdrożone procedury zarządzania odpadami niebezpiecznymi, co obejmuje odpowiednią klasyfikację, przechowywanie oraz utylizację odczynników. Dokładne przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa pracowników oraz ochrony środowiska. Warto również pamiętać o odpowiednim dokumentowaniu wszystkich procesów związanych z utylizacją, co wspiera transparentność oraz zgodność z regulacjami prawnymi.

Pytanie 29

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
B. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
C. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
D. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
Zastosowanie zlewki w procesie przygotowywania roztworów może prowadzić do licznych problemów pomiarowych i nieprecyzyjnych rezultatów. Zlewki, choć są użyteczne do ogólnych operacji laboratoryjnych, nie zapewniają odpowiedniej dokładności w pomiarach objętości. Nie mają one podziałek, które pozwalałyby na precyzyjne odmierzenie potrzebnych ilości rozpuszczalnika. Ponadto, rozpuszczenie substancji w 100 cm³ rozpuszczalnika w zlewce nie gwarantuje, że końcowy roztwór będzie miał pożądane stężenie. W momencie przenoszenia roztworu do kolby miarowej, możliwe jest, że niecała objętość roztworu zostanie przetransportowana, co prowadzi do błędnych obliczeń. Dodatkowo, takie podejście może być wprowadzające w błąd, ponieważ nie uwzględnia się zasady dopełniania kolby do kreski, co jest kluczowe dla uzyskania dokładnego stężenia. Wiele osób może pomylić przygotowanie roztworu zlewce z kolbą miarową, co jest typowym błędem myślowym. W laboratoriach stosuje się konkretne protokoły, które podkreślają znaczenie użycia odpowiednich narzędzi do precyzyjnego przygotowania roztworów, a niewłaściwy wybór sprzętu może prowadzić do nieprawidłowych wyników badań chemicznych i analiz.

Pytanie 30

Roztwory, które wykorzystuje się do kalibracji pehametrów, to

A. buforowe
B. zasadowe
C. kalibracyjne
D. kwasowe
Roztwory buforowe są kluczowe w kalibracji pehametrów, ponieważ utrzymują stałe pH pomimo dodania niewielkich ilości kwasów lub zasad. Dzięki swojej właściwości stabilizacji pH, roztwory buforowe pozwalają na dokładne pomiary, co jest niezbędne w różnych zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach analitycznych, gdzie pomiar pH jest istotny dla jakości analizowanych próbek, kalibracja pehametru za pomocą roztworów buforowych zapewnia wiarygodność wyników. Standardami ISO dla pomiaru pH zaleca się stosowanie roztworów buforowych o znanych wartościach pH, co umożliwia precyzyjne ustawienie punktów kalibracyjnych. Dobre praktyki wymagają także, aby roztwory buforowe były świeże i odpowiednio przechowywane, aby uniknąć zmian ich właściwości chemicznych. Właściwa kalibracja przyczynia się do minimalizacji błędów pomiarowych, a tym samym zwiększa dokładność wyników i niezawodność procesów analitycznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jak nazywa się naczynie o płaskim dnie, które wykorzystuje się do pozyskiwania substancji stałej poprzez stopniowe odparowanie rozpuszczalnika z roztworu?

A. Krystalizator
B. Eksykator
C. Tygiel Schotta
D. Kolba Kjeldahla
Krystalizator to takie płaskodenne naczynie, które często widzimy w laboratoriach chemicznych. Używamy go do uzyskiwania substancji stałej w wyniku krystalizacji, co jest dosyć fajnym procesem. Krystalizacja polega na tym, że powoli odparowujemy rozpuszczalnik z roztworu, a to sprzyja tworzeniu się ładnych kryształów. Dobrze zaprojektowane krystalizatory mają dużą powierzchnię parowania, więc to przyspiesza cały proces. W praktyce, często korzystamy z krystalizatorów, żeby oczyścić różne substancje chemiczne, ale też w produkcji soli czy związków organicznych. Z mojego doświadczenia, w laboratoriach ważne jest, żeby monitorować temperaturę i ciśnienie, bo to wpływa na efektywność krystalizacji. A jeśli chodzi o świetne wyniki, to można wspomagać wytrącanie kryształów poprzez dodanie zarodków krystalicznych – to też dobrze mieć na uwadze.

Pytanie 33

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 3,49 mol/dm3
B. 6,30 mol/dm3
C. 5,30 mol/dm3
D. 3,60 mol/dm3
Aby obliczyć stężenie molowe kwasu azotowego(V) w 20% roztworze, należy zastosować wzór na stężenie molowe, który określa ilość moli substancji chemicznej w jednostce objętości roztworu. W pierwszej kolejności obliczamy masę kwasu azotowego w 100 g roztworu: 20% oznacza, że w 100 g roztworu znajduje się 20 g kwasu azotowego. Następnie przeliczymy tę masę na mole, korzystając z masy molowej kwasu azotowego(V), która wynosi 63,0 g/mol. Dzieląc masę kwasu przez jego masę molową, uzyskujemy liczbę moli: 20 g / 63,0 g/mol = 0,317 mol. Teraz musimy obliczyć objętość roztworu. Gęstość roztworu wynosi 1,1 g/cm³, co oznacza, że 100 g roztworu ma objętość 100 g / 1,1 g/cm³ = 90,91 cm³, czyli 0,09091 dm³. Wreszcie, stężenie molowe obliczamy dzieląc liczbę moli przez objętość roztworu: 0,317 mol / 0,09091 dm³ ≈ 3,49 mol/dm³. Takie obliczenia są istotne w chemii analitycznej i laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskania wiarygodnych wyników analiz chemicznych.

Pytanie 34

Jaką objętość zasady sodowej o stężeniu 1,0 mol/dm3 należy dodać do 56,8 g kwasu stearynowego, aby otrzymać mydło sodowe (stearynian sodu)?

C17H35COOH + NaOH → C17H35COONa + H2O
(MC17H35COOH = 284 g/mol, MC17H35COONa = 306 g/mol, MNaOH = 40 g/mol, MH2O= 18 g/mol)
A. 150 cm3
B. 250 cm3
C. 100 cm3
D. 200 cm3
Odpowiedź 200 cm3 jest poprawna, ponieważ do syntezy mydła sodowego z kwasu stearynowego potrzebujemy odpowiedniej ilości zasady sodowej, która zneutralizuje kwas. W przypadku kwasu stearynowego, którego masa wynosi 56,8 g, obliczamy liczbę moli, korzystając z jego masy molowej wynoszącej około 284 g/mol. Obliczamy liczbę moli kwasu stearynowego: 56,8 g / 284 g/mol = 0,2 mol. Zasada sodowa w stężeniu 1,0 mol/dm3 oznacza, że w 1 dm3 roztworu znajduje się 1 mol NaOH. Aby zneutralizować 0,2 mola kwasu, potrzebujemy 0,2 dm3 roztworu NaOH, co odpowiada 200 cm3. Zastosowanie odpowiednich proporcji w syntezie mydeł jest kluczowe dla uzyskania właściwej struktury chemicznej produktu końcowego, co wpływa na jego właściwości użytkowe. Prawidłowe przygotowanie mydeł sodowych znajduje zastosowanie w przemyśle kosmetycznym oraz chemicznym, gdzie jakość surowców oraz ilości reagentów są ściśle normowane przez odpowiednie standardy.

Pytanie 35

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. chlorek cynku i wodorotlenek sodu
B. chlorek cynku i wodę
C. tlenek cynku i wodorotlenek sodu
D. cynk i wodę
Chociaż chlorek cynku i woda mogą wydawać się logicznym połączeniem, reakcja ta nie prowadzi do wytworzenia nierozpuszczalnego wodorotlenku cynku. Chlorek cynku jest dobrze rozpuszczalny w wodzie, co oznacza, że nie dojdzie do wytrącenia Zn(OH)2, ponieważ wymagany jest dodatkowy reagent, który dostarczy jony hydroksylowe. Podobnie, reakcja samego cynku z wodą nie prowadzi do powstania wodorotlenku cynku. Cynk w reakcji z wodą tworzy cynkowy wodorotlenek dopiero w obecności wysokich temperatur lub w odpowiednich warunkach, co czyni ten proces niepraktycznym w standardowych warunkach laboratoryjnych. Z kolei tlenek cynku, będący azotkiem, z wodorotlenkiem sodu nie wyprodukuje wodorotlenku cynku, gdyż tlenek cynku nie wykazuje odpowiednich właściwości do tego typu reakcji. Pojawiają się tutaj typowe błędy myślowe związane z niepełnym zrozumieniem reakcji chemicznych oraz ich warunków, a także z myleniem etapów reakcji i produktów. Kluczowe jest zrozumienie, że do uzyskania nierozpuszczalnego osadu wymagane są odpowiednie reagenty oraz warunki reakcji, co podkreśla znaczenie wiedzy teoretycznej w praktycznych zastosowaniach chemicznych.

Pytanie 36

Jakie jest znaczenie skrótu: cz. na etykiecie reagentu chemicznego?

A. Czystość do analizy
B. Czysty
C. Czystość spektralna
D. Czystość chemiczna
Skrót 'cz.' na etykiecie odczynnika chemicznego oznacza 'czysty'. Jest to termin powszechnie używany w chemii, który wskazuje, że dany odczynnik jest odpowiedniej jakości i spełnia określone standardy czystości. Czystość odczynnika jest kluczowym aspektem w badaniach analitycznych, gdyż zanieczyszczenia mogą wpływać na wyniki pomiarów oraz jakość przeprowadzanych reakcji chemicznych. Na przykład w spektroskopii czy chromatografii ważne jest, aby stosowane substancje były jak najbardziej czyste, aby uniknąć interferencji. W praktyce, odczynniki oznaczone jako czyste są używane w laboratoriach do analizy chemicznej, syntezy chemicznej oraz w innych zastosowaniach, gdzie zanieczyszczenia mogą prowadzić do błędnych wyników. Standardy takie jak ASTM i ISO dostarczają wytycznych dotyczących jakości odczynników, co pomaga w zapewnieniu ich odpowiedniej czystości.

Pytanie 37

Próbkę uzyskaną z próbki ogólnej poprzez jej zmniejszenie nazywa się

A. śladową
B. ogólną
C. średnią
D. pierwotną
Wybór odpowiedzi 'pierwotna', 'ogólna' czy 'śladowa' opiera się na nieporozumieniach dotyczących podstawowych pojęć związanych z przygotowaniem próbek. Odpowiedź 'pierwotna' sugeruje, że próbka jest reprezentatywna dla całej populacji, co jednak nie jest prawdą. W rzeczywistości, pierwotna próbka to ta, która została zebrana bez jakiejkolwiek obróbki, co nie odzwierciedla rzeczywistych właściwości populacji. Odpowiedź 'ogólna' jest myląca, ponieważ termin ten w kontekście próbek mógłby oznaczać całą zbieraną populację, a nie jej analizowaną reprezentację. Z kolei odpowiedź 'śladowa' odnosi się do próbek, które są w tak małej ilości, że mogą nie być użyteczne do rzetelnej analizy statystycznej lub chemicznej. Przygotowanie śladowej próbki może prowadzić do błędnych wniosków, gdyż nie przedstawia ona wiarygodnego obrazu całości, co może być szczególnie niebezpieczne w zastosowaniach przemysłowych czy medycznych. W teorii próbkowania istotne jest zrozumienie, że każda z tych błędnych odpowiedzi nie uwzględnia faktu, iż średnia próbka jest niezbędna do zapewnienia reprezentatywności i dokładności w pomiarach, co jest kluczowe w kontekście analizy danych i podejmowania decyzji.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Intensywna reakcja z FeCl3 jest wykorzystywana do identyfikacji

A. alkenów
B. fenoli
C. amin
D. aldehydów
Aldehydy, amin i alkeny, mimo że są istotnymi klasami związków chemicznych, nie reagują w sposób, który mógłby być wykryty przy użyciu chlorku żelaza(III). Aldehydy, chociaż mogą wykazywać różne reakcje, w których zmieniają barwę, nie wchodzą w interakcję z chlorkiem żelaza(III) w sposób dający charakterystyczne zabarwienie. Zamiast tego, aldehydy często są wykrywane za pomocą prób redoks, takich jak reakcja z odczynnikiem Tollensa czy odczynnikiem Fehlinga, gdzie ich zdolność do redukcji jest kluczowym czynnikiem. Aminy, z drugiej strony, mogą tworzyć sole z kwasami, ale nie tworzą kolorowych kompleksów z chlorkiem żelaza(III), co czyni je niewłaściwymi do tego rodzaju testów. Alkeny, z kolei, są związkami nienasyconymi, które mogą uczestniczyć w reakcjach addycji, ale brak im grupy hydroksylowej, co uniemożliwia im reagowanie z chlorkiem żelaza(III) w sposób, który dałby barwną reakcję. Typowym błędem myślowym jest mylenie reakcji barwnych z reakcjami, które nie prowadzą do widocznych zmian kolorystycznych w przypadku tych substancji. W rzeczywistości, niektóre z tych związków mogą nie wykazywać widocznych reakcji w obecności chlorku żelaza(III), co powinno skłonić do głębszej analizy chemicznych właściwości i reakcji, które mogą występować w różnych klasach związków organicznych.