Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 2 lutego 2026 01:39
  • Data zakończenia: 2 lutego 2026 01:52

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Montażu zacisków zakleszczających.
B. Formowania oczek na końcach żył.
C. Zaprasowywania przewodów w połączeniach wsuwanych.
D. Zaciskania końcówek tulejkowych na żyłach przewodu.
Poprawna odpowiedź to formowanie oczek na końcach żył, co jest kluczowym zastosowaniem kleszczy w instalacjach elektrycznych. Narzędzie to, o charakterystycznym kształcie szczęk, pozwala na precyzyjne formowanie oczek, które są następnie używane do trwałego mocowania przewodów na zaciskach w rozdzielnicach elektrycznych. Przygotowanie końcówek przewodów w postaci oczek jest zgodne z najlepszymi praktykami branżowymi, ponieważ zapewnia ono zarówno bezpieczeństwo, jak i stabilność połączeń. Odpowiednio uformowane oczka minimalizują ryzyko wystąpienia luzów i zwarć, co jest kluczowe dla właściwego działania instalacji elektrycznej. Dobrze przygotowane połączenia wpływają również na estetykę instalacji, co jest istotne w kontekście zewnętrznych przeglądów oraz konserwacji. W praktyce, formowanie oczek przed podłączeniem do zacisków pozwala na łatwiejsze i szybsze wykonywanie prac instalacyjnych, a także na ich późniejsze modyfikacje.

Pytanie 2

Które z przedstawionych narzędzi, oprócz lutownicy, jest niezbędne przy naprawie przeciętego przewodu LY przez połączenie lutowane?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybór innej odpowiedzi, która nie wskazuje na szczypce do ściągania izolacji, może wynikać z nieporozumienia dotyczącego procesu lutowania i przygotowania przewodów. Kluczowym etapem w naprawie przewodów jest usunięcie izolacji, co jest niezbędne do zapewnienia dobrego kontaktu elektrycznego. Bez odpowiedniego narzędzia do ściągania izolacji nie będzie możliwe prawidłowe przygotowanie przewodów, co może prowadzić do nietrwałych połączeń. Ważne jest zrozumienie, że lutownica sama w sobie nie wystarcza do naprawy uszkodzonego przewodu. Wiele osób może mylnie zakładać, że lutowanie można przeprowadzić na przewodach z izolacją, co jest błędnym podejściem. Tego typu myślenie może prowadzić do uszkodzenia przewodów oraz nieefektywnych połączeń, które mogą stwarzać zagrożenie w przyszłości. Prawidłowa wiedza na temat narzędzi i technik stosowanych w elektryce jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności pracy. Warto pamiętać, że każdy profesjonalista powinien być świadomy znaczenia odpowiednich narzędzi w kontekście lutowania, ponieważ niewłaściwe przygotowanie może prowadzić do problemów z przewodnictwem elektrycznym oraz zwiększać ryzyko awarii.

Pytanie 3

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. I
B. III
C. 0
D. II
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 4

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Neutralny.
B. Wyrównawczy.
C. Uziemiający.
D. Ochronny.
Odpowiedź "Ochronny" jest prawidłowa, ponieważ symbol przedstawiony na rysunku odnosi się do przewodu ochronnego PE (Protective Earth). Przewód ten jest kluczowym elementem instalacji elektrycznej, mającym na celu zabezpieczenie użytkowników przed porażeniem prądem elektrycznym. W sytuacji awaryjnej, przewód ochronny odprowadza niebezpieczne napięcie do ziemi, co znacząco zmniejsza ryzyko porażenia. W standardach, takich jak Polska Norma PN-IEC 60445:2017, przewód ten powinien być jednoznacznie oznaczony w schematach montażowych, co ułatwia identyfikację i prawidłowy montaż instalacji. Przykładowo, w przypadku uszkodzenia izolacji urządzenia elektrycznego, prawidłowe podłączenie przewodu ochronnego zapewnia, że prąd nie przepłynie przez ciało użytkownika, lecz zostanie skierowany do ziemi. Dzięki temu, stosowanie przewodów ochronnych zgodnie z normami jest fundamentem bezpieczeństwa w każdej instalacji elektrycznej.

Pytanie 5

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. pięć lat
B. trzy lata
C. dwa lata
D. rok
Wybór odpowiedzi, która sugeruje dłuższy okres między przeglądami, jest błędny i może prowadzić do poważnych konsekwencji. W kontekście przeglądów przeciwpożarowych wyłączników prądu, istotne jest, aby każde urządzenie było regularnie monitorowane pod kątem sprawności. Wiele osób mylnie uważa, że rzadkie przeglądy, takie jak co dwa lub trzy lata, są wystarczające, co w rzeczywistości może prowadzić do niedopuszczalnego ryzyka. Wyłączniki prądu są kluczowymi elementami systemów zabezpieczeń elektrycznych, a ich awaria w momencie, gdy są najbardziej potrzebne, może prowadzić do katastrofalnych skutków. Użytkownicy często zapominają, że komponenty elektryczne mogą ulegać zużyciu oraz że czynniki zewnętrzne, takie jak wilgoć czy zanieczyszczenia, mogą wpływać na ich działanie. Dlatego przegląd roczny jest nie tylko zalecany, ale wręcz obligatoryjny, aby zapewnić ich prawidłowe funkcjonowanie. Ponadto, regulacje prawne w wielu krajach określają, że organizacje powinny mieć opracowane procedury konserwacji urządzeń elektrycznych, w tym wyłączników, co dodatkowo podkreśla znaczenie regularnych przeglądów. Ignorowanie tego aspektu jest niezgodne z dobrą praktyką inżynierską oraz wymogami normatywnymi, co może prowadzić do konieczności ponoszenia kosztów naprawy uszkodzeń lub nawet strat materialnych i osobowych w wyniku awarii.

Pytanie 6

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Przekaźnik priorytetowy
B. Czujnik zaniku fazy
C. Stycznik elektromagnetyczny
D. Odgromnik
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 7

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. ADY 2,5 mm2
B. ALY 2,5 mm2
C. YLY 2,5 mm2
D. YDY 2,5 mm2
Odpowiedź ALY 2,5 mm2 jest poprawna, ponieważ odnosi się do przewodu jednożyłowego z aluminiową żyłą wielodrutową, który jest powszechnie stosowany w instalacjach elektrycznych. W oznaczeniu tym, litera 'A' wskazuje na materiał przewodnika - aluminium, co jest istotne, ponieważ różni się on właściwościami od miedzi, na przykład mniejszą przewodnością elektryczną i wyższą wagą przy tej samej długości. Litera 'L' oznacza, że przewód jest wielodrutowy, co zwiększa elastyczność i ułatwia instalację w trudnych warunkach. Przewody te są zwykle stosowane w instalacjach oświetleniowych oraz w zasilaniu urządzeń domowych, gdzie ich parametry elektryczne, takie jak maksymalne obciążenie prądowe, są dostosowane do standardów, takich jak PN-IEC 60228. Stosowanie przewodów o odpowiedniej specyfikacji jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w systemach elektrycznych.

Pytanie 8

Kabel oznaczony symbolem DYd 750 jest wykonany z

A. drutu pokrytego gumą
B. linki pokrytej polwinitem
C. linki pokrytej gumą
D. drutu pokrytego polwinitem
Wybór odpowiedzi wskazujący na linki izolowane gumą lub drut izolowany gumą jest błędny z kilku powodów. Po pierwsze, linki izolowane gumą są zazwyczaj stosowane w specyficznych warunkach, gdzie wymagana jest elastyczność, ale nie oferują one takich właściwości mechanicznych i elektrycznych jak drut izolowany polwinitem. Guma, jako materiał izolacyjny, ma ograniczoną odporność na działanie wysokich temperatur oraz chemikaliów, co może prowadzić do szybszego starzenia się izolacji oraz ryzyka uszkodzenia przewodu. Druty izolowane gumą również nie są preferowane w zastosowaniach wymagających dużej stabilności mechanicznej, co jest istotne w standardach takich jak PN-EN 60228. Ponadto, wybór drutu izolowanego polwinitem zapewnia lepsze parametry przewodzenia prądu, co jest kluczowe w kontekście ograniczenia strat energetycznych i efektywności instalacji. W przypadku użycia linki izolowanej polwinitem, chociaż materiał izolacyjny jest poprawny, forma linki zmienia charakterystykę przewodu. Linki często stosuje się w aplikacjach wymagających elastyczności, natomiast w przypadku przewodu DYd 750, korzyści płynące z użycia drutu są bardziej adekwatne do jego zastosowania w stałych instalacjach elektrycznych, co czyni tę odpowiedź także niewłaściwą. Dlatego, aby uniknąć powszechnych błędów w rozumieniu właściwości materiałów izolacyjnych oraz konstrukcji przewodów, należy zapoznać się z odpowiednimi normami oraz dobrymi praktykami w branży elektrotechnicznej.

Pytanie 9

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. YDY 2,5 mm2
B. ALY 2,5 mm2
C. ADY 2,5 mm2
D. YLY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 10

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
B. Naciskając przycisk TEST na załączonym wyłączniku
C. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
D. Naciskając przycisk TEST na wyłączonym wyłączniku
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 11

Jaką rurę instalacyjną przedstawia symbol RKLF 20?

A. Sztywną o przekroju 20 mm2
B. Karbowaną o średnicy 20 mm
C. Karbowaną o przekroju 20 mm2
D. Sztywną o średnicy 20 mm
Odpowiedź 'Karbowaną o średnicy 20 mm' jest prawidłowa, ponieważ symbol RKLF odnosi się do rur karbowanych, które charakteryzują się elastycznością i możliwością łatwego formowania. Rura o średnicy 20 mm jest standardowym rozmiarem stosowanym w instalacjach elektrycznych i telekomunikacyjnych, co czyni ją praktycznym wyborem w projektach budowlanych. Kiedy stosuje się rury karbowane, ich struktura pozwala na łatwe dopasowanie do różnych kształtów oraz ułatwia układanie w trudnych warunkach, co jest istotne w przypadku instalacji w miejscach o ograniczonej przestrzeni. Rury te są również odporne na działanie czynników atmosferycznych i chemicznych, co zwiększa ich trwałość. Zgodnie z obowiązującymi standardami w branży budowlanej, użycie rur karbowanych w instalacjach elektrycznych zapewnia bezpieczeństwo oraz zgodność z przepisami. W związku z tym, znajomość oznaczeń takich jak RKLF jest kluczowa dla każdego profesjonalisty zajmującego się instalacjami. Przykładem zastosowania są instalacje w budynkach mieszkalnych oraz przemysłowych, gdzie elastyczność rur karbowanych pozwala na zminimalizowanie ryzyka uszkodzeń i ułatwienie konserwacji.

Pytanie 12

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
B. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
C. Kontrola zabezpieczeń i stanu osłon części wirujących
D. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 13

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 2,30 Ω
B. 1,15 Ω
C. 3,83 Ω
D. 0,56 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, przy zastosowaniu instalacyjnego wyłącznika nadprądowego B20, wynosi 2,30 Ω. Zrozumienie tej wartości jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej, ponieważ wyłącznik nadprądowy B20 ma charakterystykę, która wymaga odpowiedniej impedancji, aby w przypadku zwarcia mógł zadziałać w odpowiednim czasie. Przy wartościach impedancji powyżej 2,30 Ω czas wyłączenia może być zbyt długi, co zwiększa ryzyko porażenia prądem. Przykładowo, w praktyce, przy pomiarach używa się specjalistycznych instrumentów do określenia impedancji pętli zwarcia, co pozwala na weryfikację zgodności instalacji z normami, takimi jak PN-IEC 60364. Ponadto, dla zapewnienia bezpieczeństwa, projektowanie instalacji elektrycznych powinno obejmować dokładne obliczenia oraz pomiary impedancji, co wpisuje się w dobre praktyki inżynierskie.

Pytanie 14

Którą funkcję pełni układ elektryczny przedstawiony na schemacie?

Ilustracja do pytania
A. Zamienia prąd przemienny na jednokierunkowy.
B. Reguluje częstotliwość prądu przemiennego.
C. Steruje mocą prądu stałego.
D. Zamienia prąd stały na przemienny.
Na schemacie pokazano trójfazowy mostek prostowniczy z sześciu diod półprzewodnikowych. Typowym błędem przy takim rysunku jest mylenie funkcji „prostowania” z regulacją mocy albo częstotliwości. Diody w tym układzie działają jak zawory jednokierunkowe: przepuszczają prąd tylko w jednym kierunku i w ten sposób z przebiegów sinusoidalnych trzech faz wycinają odpowiednie fragmenty, które na wyjściu składają się na napięcie jednokierunkowe o stosunkowo małych tętnieniach. To nie jest jednak ani regulator mocy DC, ani falownik, ani przekształtnik częstotliwości. Sterowanie mocą prądu stałego wymaga dodatkowych elementów, zwykle tranzystorów IGBT, MOSFET albo tyrystorów z układem sterowania, które modulują czas przewodzenia (np. PWM). Sam prostownik diodowy pracuje „pasywnie” – przewodzi zawsze, gdy dioda jest spolaryzowana w kierunku przewodzenia. Dlatego nie ma możliwości płynnej regulacji napięcia czy mocy, jedynie prostuje to, co dostaje z sieci lub transformatora. Z kolei zamiana prądu stałego na przemienny to zadanie falownika. Tam kierunek przepływu energii jest odwrotny: z DC na AC, a do tego dochodzi pełna elektronika sterująca, która kształtuje przebieg napięcia wyjściowego, jego częstotliwość i często też amplitudę. Na schematach falowników nie zobaczysz prostego układu sześciu diod po stronie AC, tylko zazwyczaj mostki tranzystorowe po stronie DC. Regulacja częstotliwości prądu przemiennego też nie zachodzi w prostowniku diodowym. Frequencję AC po stronie sieci narzuca system elektroenergetyczny (50 Hz) i prostownik jej nie zmienia, on tylko „skleja” półokresy w przebieg jednokierunkowy. Typowym błędem myślowym jest założenie, że skoro układ wygląda na dość złożony i jest trójfazowy, to na pewno coś „reguluje” albo „przekształca częstotliwość”. W rzeczywistości jego rola jest dużo prostsza: zamienić trójfazowe napięcie przemienne na napięcie jednokierunkowe, które dalej może być filtrowane, magazynowane w kondensatorach i dopiero potem użyte w bardziej zaawansowanych przekształtnikach. W dobrych praktykach projektowych traktuje się taki prostownik jako pierwszy, bardzo podstawowy etap toru zasilania.

Pytanie 15

Jaki minimalny przekrój, ze względu na obciążalność długotrwałą, powinny mieć przewody DY ułożone w rurze izolacyjnej, zasilające odbiornik trójfazowy o mocy 10 kW z sieci trójfazowej o napięciu 400 V?

Ilustracja do pytania
A. 6 mm2
B. 4 mm2
C. 2,5 mm2
D. 1,5 mm2
Wybór przekroju przewodu w instalacjach elektrycznych jest kluczowym elementem projektowania układów zasilających. Odpowiedzi, które wskazują na większe przekroje, jak 6 mm2, 4 mm2 oraz 2,5 mm2, mogą sugerować nadmierne zabezpieczenie, jednak nie uwzględniają one rzeczywistych potrzeb obciążeniowych. Przykładowo, wybór 6 mm2 dla obciążenia 14,5 A jest nie tylko nieekonomiczny, ale i zbędny, ponieważ istnieją bardziej odpowiednie przekroje, które spełniają wymagania. Z kolei odpowiedź 2,5 mm2, choć jest bardziej zbliżona do właściwego przekroju, również nie jest zgodna z normami, ponieważ przy takiej obciążalności przewody 1,5 mm2 są wystarczające. Warto przypomnieć, że dobór przekroju przewodu powinien być oparty na rzeczywistym obciążeniu oraz warunkach ułożenia. W praktyce, przed podjęciem decyzji, należy przeanalizować obciążenie prądowe w kontekście całej instalacji oraz zastosować odpowiednie współczynniki korekcyjne. Niezastosowanie się do tych zasad może prowadzić do nieprawidłowości w funkcjonowaniu instalacji, co w dłuższym czasie może skutkować awariami lub niebezpiecznymi sytuacjami, takimi jak przegrzewanie się przewodów. Ostatecznie, kluczowe jest, aby decyzje o doborze przekroju przewodów były zgodne z obowiązującymi normami, co nie tylko zapewnia bezpieczeństwo, ale także przyczynia się do efektywności energetycznej systemów elektrycznych.

Pytanie 16

Na podstawie wybranych informacji dobierz wyłącznik nadprądowy do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym In = 5,5 A?

A. In = 6 A, charakterystyka C, krotność In = 5 do 10
B. In = 16 A, charakterystyka C, krotność In = 5 do 10
C. In = 6 A, charakterystyka B, krotność In = 3 do 5
D. In = 16 A, charakterystyka B, krotność In = 3 do 5
Wybór wyłączników nadprądowych dla silników trójfazowych wymaga zrozumienia kilku kluczowych aspektów, które niestety nie zostały uwzględnione w niepoprawnych odpowiedziach. Po pierwsze, wyłącznik o prądzie znamionowym 16 A jest zdecydowanie zbyt wysoki dla silnika o prądzie znamionowym 5,5 A. Taki wybór może prowadzić do braku odpowiedniego zabezpieczenia obwodu, co skutkuje ryzykiem uszkodzenia silnika w przypadku przeciążenia lub zwarcia. Wyłącznik powinien być dostosowany do wartości prądu roboczego, aby szybko reagował na niebezpieczne warunki. Kolejnym aspektem jest charakterystyka wyłącznika. Wybór charakterystyki B jest niewłaściwy, ponieważ jest ona zaprojektowana tak, aby zadziałać przy znacznie mniejszych prądach rozruchowych, co może prowadzić do fałszywych zadziałań podczas normalnej pracy silnika. Silniki klatkowe, zwłaszcza podczas rozruchu, mogą generować wysokie prądy, a charakterystyka C jest odpowiednia do ich tolerowania. Ponadto, krotności In w przedziale 3 do 5 mogą nie uwzględniać wszystkich wymagań bezpieczeństwa i wydajności. W praktyce, niewłaściwe dobranie wyłącznika może prowadzić do częstych awarii instalacji oraz zwiększonego ryzyka uszkodzenia urządzeń. Dlatego kluczowe jest przestrzeganie norm i zasad doboru zabezpieczeń, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 17

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. zamiana miejscami dwóch faz
B. zamiana jednej fazy z przewodem neutralnym
C. brak podłączenia dwóch faz
D. brak podłączenia jednej fazy
Niepodłączenie dwóch faz, niepodłączenie jednej fazy oraz zamiana jednej fazy z przewodem neutralnym to błędne koncepcje wynikające z niepełnego zrozumienia zasad działania silników elektrycznych i trójfazowych układów zasilania. W przypadku niepodłączenia dwóch faz, silnik nie mógłby w ogóle pracować, ponieważ potrzebne są co najmniej trzy fazy do wygenerowania wirującego pola magnetycznego. Silniki asynchroniczne nie mogą działać na zasilaniu jednofazowym, ponieważ nie są w stanie wytworzyć wymaganego momentu obrotowego. Z kolei w sytuacji niepodłączenia jednej fazy, silnik mógłby działać, ale z obniżoną mocą, co również niebywale rzadko prowadziłoby do zmiany kierunku obrotu. Zamiana jednej fazy z przewodem neutralnym jest również niewłaściwym podejściem, ponieważ w takim przypadku silnik nie byłby w stanie uzyskać wystarczającego napięcia do poprawnej pracy, co skutkowałoby jego zatrzymaniem lub uszkodzeniem. Pamiętajmy, że prawidłowe podłączenie faz jest kluczowe nie tylko dla właściwego działania silników, ale także dla bezpieczeństwa całej instalacji elektrycznej. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują nieznajomość zasad trójfazowego zasilania oraz nieuwzględnianie znaczenia kolejności faz w kontekście pracy silnika. Dlatego istotne jest, aby każdy technik lub elektryk posiadał wiedzę na temat konfiguracji oraz standardów instalacyjnych, aby uniknąć tego typu błędów w praktyce.

Pytanie 18

Według którego schematu należy podłączyć miernik parametrów RCD w celu pomiaru prądu wyzwolenia i czasu zadziałania wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Schemat C jest poprawny, ponieważ umożliwia prawidłowe podłączenie miernika parametrów RCD, co jest kluczowe do wykonania pomiarów prądu wyzwolenia oraz czasu zadziałania wyłącznika różnicowoprądowego. W tym schemacie miernik jest podłączony do przewodów fazowego (L) i neutralnego (N), a także do przewodu ochronnego (PE). Taki sposób połączenia pozwala na symulację warunków, które występują w sytuacji awaryjnej, kiedy to prąd upływu przekracza wartość progową wyłącznika. Przykładowo, w przypadku wystąpienia prądu różnicowego, wyłącznik RCD powinien zadziałać i odciąć zasilanie, co zapobiega porażeniu prądem. Podłączenie miernika według schematu C jest zgodne z normami PN-HD 60364 oraz z dobrą praktyką w elektrotechnice, co zapewnia bezpieczeństwo oraz efektywność przeprowadzanych pomiarów. Prawidłowe pomiary pozwalają na monitorowanie stanu instalacji elektrycznych oraz ich bezpieczeństwa, co ma kluczowe znaczenie w kontekście ochrony przed porażeniem prądem elektrycznym.

Pytanie 19

Którym symbolem graficznym oznacza się w dokumentacji sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych?

Ilustracja do pytania
A. Symbolem 1.
B. Symbolem 4.
C. Symbolem 3.
D. Symbolem 2.
Wybór błędnych symboli graficznych w dokumentacji instalacji elektrycznych może prowadzić do poważnych nieporozumień i problemów w realizacji projektów. Symbole 1, 2 oraz 4 nie są zgodne z normą PN-IEC 60617 odnoszącą się do oznaczeń w dokumentacji elektrycznej. Wybór symbolu 1 może sugerować zupełnie inną metodę prowadzenia przewodów, co nie odpowiada rzeczywistości w kontekście instalacji w listwach przypodłogowych. Z kolei symbole 2 i 4 mogą być używane w innych kontekstach, jednak nie mają zastosowania w sytuacji, gdy przewody muszą być zabezpieczone oraz estetycznie zamaskowane wzdłuż ścian. Takie błędne wybory mogą wynikać z pomyłek w zapamiętywaniu symboli, co podkreśla znaczenie znajomości standardów oraz umiejętności ich prawidłowej interpretacji. Ważne jest, aby projektanci instalacji elektrycznych oraz ich wykonawcy przestrzegali ustalonych norm i wytycznych w celu zapewnienia nie tylko funkcjonalności, ale również bezpieczeństwa instalacji. Prawidłowe oznaczenie przewodów jest niezbędne dla późniejszej konserwacji oraz diagnozowania ewentualnych usterek. Właściwe symbole graficzne powinny być integralną częścią każdej dokumentacji technicznej, aby zapewnić prawidłowe zrozumienie i wykonanie instalacji zgodnie z najlepszymi praktykami branżowymi.

Pytanie 20

Jaką wartość ma znamionowa sprawność silnika jednofazowego, którego dane to: PN = 3,7 kW (moc mechaniczna na wale), UN = 230 V, IN = 21,4 A, cos φ = 0,95?

A. 0,71
B. 0,75
C. 0,95
D. 0,79
Znamionowa sprawność silnika jednofazowego wynosi 0,79, co oznacza, że 79% energii elektrycznej dostarczonej do silnika przekształca się w moc mechaniczną na wale. Obliczenie sprawności silnika można przeprowadzić na podstawie wzoru: η = P_N / (U_N * I_N * cos φ), gdzie P_N to moc mechaniczna na wale, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ to współczynnik mocy. Dla tego silnika mamy: η = 3,7 kW / (230 V * 21,4 A * 0,95) = 0,79. Taka sprawność jest typowa dla silników elektrycznych, które są projektowane z myślą o jak najwyższej efektywności energetycznej. W praktyce, silniki o wysokiej sprawności są szczególnie poszukiwane w przemyśle, ponieważ pozwalają na znaczne oszczędności kosztów energii, a także redukcję emisji CO2. W dobie rosnących cen energii elektrycznej i rosnącej presji na ochronę środowiska, wybór silników o wysokiej sprawności staje się kluczowy.

Pytanie 21

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Napięcie w sieci oraz prąd obciążeniowy
B. Prąd różnicowy oraz czas reakcji
C. Obciążenie prądowe i czas reakcji
D. Napięcie w sieci oraz prąd różnicowy
Odpowiedź, która wskazuje na pomiar prądu różnicowego oraz czasu zadziałania wyłącznika różnicowoprądowego, jest poprawna, ponieważ te parametry są kluczowe dla oceny skuteczności działania tego urządzenia. Prąd różnicowy to różnica między prądami wpływającymi i wypływającymi z obwodu, a jego pomiar pozwala zidentyfikować potencjalne nieprawidłowości, takie jak upływ prądu do ziemi. Czas zadziałania, z kolei, określa, jak szybko wyłącznik reaguje na wykrycie tego prądu różnicowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. Przykładem zastosowania jest sytuacja, gdy osoba dotyka uszkodzonego przewodu; w tym przypadku wyłącznik różnicowoprądowy powinien natychmiast zadziałać, aby uniknąć porażenia prądem. Zgodnie z normami IEC 61008 oraz IEC 61009, wyłączniki różnicowoprądowe powinny mieć określone wartości prądu różnicowego i czasu zadziałania, co podkreśla ich znaczenie w systemach zabezpieczeń. Regularne testowanie tych parametrów jest niezbędne do utrzymania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 22

Który symbol graficzny na schemacie ideowym projektowanej instalacji elektrycznej oznacza sposób prowadzenia przewodów w tynku?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Poprawna odpowiedź to B, ponieważ w polskich normach dotyczących schematów instalacji elektrycznych, sposób prowadzenia przewodów w tynku jest zazwyczaj reprezentowany przez symbol składający się z dwóch równoległych linii. Jedna z tych linii jest ciągła, co wskazuje na przewód zamontowany w tynku, a druga jest przerywana, sugerując ewentualne miejsce, w którym przewód jest ukryty lub prowadzenie w trudnych warunkach. Tego rodzaju symbol nie tylko ułatwia zrozumienie schematu instalacji, ale również przyczynia się do zachowania bezpieczeństwa oraz efektywności w projektowaniu i wykonywaniu instalacji elektrycznych. Przykładowo, w praktyce, stosowanie się do tego symbolu pozwala instalatorom na dokładne zaplanowanie trasy przewodów w ścianach budynków, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności instalacji. Ponadto, stosowanie jednolitych symboli zgodnych z normami branżowymi, jak PN-EN 60617, zapewnia, że wszyscy uczestnicy procesu budowlanego mają wspólne zrozumienie projektu, co minimalizuje ryzyko błędów w realizacji.

Pytanie 23

Jaki rodzaj źródła światła pokazano na zdjęciu?

Ilustracja do pytania
A. Sodowe.
B. Luminescencyjne.
C. Wolframowe.
D. Halogenowe.
Odpowiedź 'Halogenowe' jest poprawna, ponieważ na zdjęciu widoczna jest żarówka halogenowa, która wyróżnia się swoimi unikalnymi cechami. Żarówki halogenowe to zaawansowana forma żarówek wolframowych, w których stosuje się halogen, co pozwala na ich pracy w wyższej temperaturze. W rezultacie włókno wolframowe jest bardziej efektywne, a żywotność żarówki się wydłuża. Dodatkowo, halogeny sprawiają, że światło emitowane przez te żarówki jest bardziej naturalne, co czyni je doskonałym wyborem do oświetlenia wnętrz oraz w zastosowaniach wymagających wysokiej jakości oświetlenia, takich jak wystawy, galerie, czy przestrzenie komercyjne. Warto również zwrócić uwagę, że żarówki halogenowe charakteryzują się wysokim wskaźnikiem oddawania barw (CRI), co oznacza, że kolory oświetlanych obiektów są przedstawiane w sposób zbliżony do rzeczywistego, co jest istotne w wielu branżach. Zastosowanie żarówek halogenowych jest zgodne z nowoczesnymi standardami efektywności energetycznej, a ich popularność wciąż rośnie w kontekście oświetlenia LED.

Pytanie 24

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Piła do metalu
B. Ściągacz izolacji
C. Poziomnica
D. Młotek
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 25

Co oznacza przeciążenie instalacji elektrycznej?

A. Przekroczeniu wartości prądu znamionowego danej instalacji
B. Bezpośrednim połączeniu ze sobą dwóch faz w instalacji
C. Nagłym wzroście napięcia elektrycznego w sieci, który przekracza wartość znamionową
D. Pojawieniu się w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym
Przeciążenie instalacji elektrycznej to nic innego jak przekroczenie prądu, który jest dla niej bezpieczny. Kiedy podłącza się za dużo urządzeń do jednego obwodu, przewody mogą się strasznie nagrzewać, co nie jest dobre. Standardy jak PN-HD 60364-5-52 mówią, że trzeba to wszystko dobrze zaplanować i wymierzyć, żeby zapewnić bezpieczeństwo użytkownikom i żeby instalacja długo działała. Jak się projektuje instalacje elektryczne, to warto pomyśleć o przewidywanych obciążeniach i zastosować odpowiednie zabezpieczenia, na przykład wyłączniki nadprądowe. Znajomość tych rzeczy jest istotna, nie tylko przy projektowaniu, ale też kiedy trzeba naprawiać coś, co już działa, bo może to pomóc w diagnozowaniu różnych problemów.

Pytanie 26

Która z wymienionych maszyn elektrycznych jest wykorzystywana jako czujnik prędkości obrotowej?

A. Selsyn.
B. Silnik krokowy.
C. Kompensator.
D. Prądnica tachometryczna.
W tym zadaniu bardzo łatwo pomylić różne typy maszyn i urządzeń elektrycznych, bo wszystkie brzmią dość specjalistycznie, ale tylko jedna z nich jest typowym czujnikiem prędkości obrotowej. Klucz jest taki: czujnik prędkości musi dawać sygnał jednoznacznie zależny od prędkości wału, najlepiej w postaci napięcia, częstotliwości albo impulsów, które można łatwo przetworzyć w układzie pomiarowym lub sterującym. Silnik krokowy często budzi skojarzenie z precyzją i pozycjonowaniem, więc wielu osobom wydaje się, że może on „mierzyć” prędkość. W rzeczywistości silnik krokowy jest elementem wykonawczym, a nie pomiarowym. Pozwala bardzo dokładnie ustawić kąt obrotu wału poprzez zliczanie kroków, ale sam z siebie nie generuje sygnału informującego o aktualnej prędkości – wręcz przeciwnie, to układ sterowania narzuca mu częstotliwość kroków. W zastosowaniach, gdzie trzeba znać faktyczną prędkość lub pozycję, dokładamy do niego enkoder lub inny czujnik, bo sam krokowiec nie pełni funkcji tachometru. Kompensator kojarzy się z wyrównywaniem, korygowaniem, „kompensacją” czegoś, i to skojarzenie jest w sumie trafne, ale nie w kontekście pomiaru prędkości. W elektrotechnice kompensatory służą najczęściej do kompensacji mocy biernej, regulacji napięcia czy wyrównywania zaburzeń w sieci. Ich rolą jest poprawa parametrów pracy układu, a nie dostarczanie informacji pomiarowej o prędkości wału. To zupełnie inna bajka, bardziej związana z jakością energii elektrycznej niż z automatyką napędową. Selsyn natomiast to specyficzna maszyna elektryczna używana do zdalnego przekazywania położenia kątowego, np. w starych układach sterowania, na okrętach, w lotnictwie czy w aparaturze wojskowej. Dwa selsyny połączone odpowiednio przewodami tworzą parę nadajnik–odbiornik: kąt obrotu jednego jest odtwarzany przez drugi. Owszem, istnieje związek między położeniem, a pośrednio i prędkością, ale selsyn zasadniczo jest przetwornikiem położenia, nie klasycznym czujnikiem prędkości obrotowej. Typowy błąd myślowy w tym pytaniu polega na tym, że jeśli urządzenie coś „obraca” albo „mierzy kąt”, to od razu traktujemy je jako czujnik prędkości. Tymczasem w praktyce automatyki napędowej do bezpośredniego pomiaru prędkości stosuje się właśnie prądnice tachometryczne albo enkodery, a silniki krokowe, kompensatory i selsyny pełnią zupełnie inne role w układach elektrycznych i sterowania.

Pytanie 27

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,69
B. 0,99
C. 0,57
D. 0,82
Aby zrozumieć, dlaczego pozostałe odpowiedzi są niewłaściwe, ważne jest, aby przeanalizować proces obliczania współczynnika mocy. Wiele osób myli pojęcia związane z mocą czynną, mocą bierną i mocą pozorną. Odpowiedzi takie jak 0,69, 0,99 czy 0,57 mogą wynikać z błędnych założeń dotyczących tego, co oznacza współczynnik mocy. Na przykład, wartość 0,99 sugeruje praktycznie idealny współczynnik mocy, co rzadko zdarza się w rzeczywistych aplikacjach przemysłowych, szczególnie w przypadku silników indukcyjnych, które nie osiągają tak wysokiej efektywności. Z kolei współczynnik mocy 0,57 wskazuje na słabe wykorzystanie energii, co prowadzi do wysokich strat w systemie. W praktyce, niskie wartości współczynnika mocy mogą skutkować koniecznością stosowania dodatkowych kondensatorów w celu poprawy jakości energii elektrycznej, co wiąże się z dodatkowymi kosztami. Typowym błędem myślowym w ocenie współczynnika mocy jest pomijanie wpływu obciążeń indukcyjnych oraz ich charakterystyki na całkowite zużycie energii. Ważnym aspektem jest także to, że obliczając współczynnik mocy, należy uwzględnić zarówno moc czynną, jak i moc bierną, co pozwala na bardziej precyzyjne zaplanowanie wymagań energetycznych dla danej instalacji. Dlatego też, zrozumienie i poprawne obliczenie współczynnika mocy jest kluczowe dla efektywności energetycznej i optymalizacji kosztów związanych z eksploatacją silników elektrycznych.

Pytanie 28

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Badanie kolejności faz.
B. Sprawdzanie wyłączników różnicowoprądowych.
C. Lokalizacja przewodów pod tynkiem.
D. Pomiar rezystancji uziemienia.
Odpowiedzi, które nie wskazują na funkcję testera wyłączników różnicowoprądowych, mogą prowadzić do wielu nieporozumień dotyczących zastosowania tego przyrządu. Pomiar rezystancji uziemienia, na przykład, to proces, który polega na ocenie skuteczności systemu uziemiającego w celu ochrony przed wyładowaniami elektrycznymi. Choć jest to ważne zadanie w kontekście bezpieczeństwa elektrycznego, nie jest to funkcja testera różnicowoprądowego. Podobnie, lokalizacja przewodów pod tynkiem wymaga użycia innych narzędzi, takich jak detektory przewodów, które są zaprojektowane do identyfikacji położenia kabli i rur w ścianach, a nie do testowania wyłączników. Z kolei badanie kolejności faz jest związane z analizą instalacji trójfazowych, gdzie ważne jest, aby odpowiednia sekwencja zasilania była zachowana dla poprawnej pracy urządzeń. Takie pomyłki mogą wynikać z niezrozumienia podstawowych funkcji urządzeń elektrycznych oraz ich zastosowań w praktyce. Właściwe rozpoznawanie i stosowanie narzędzi, jak i znajomość ich funkcji jest kluczowe dla profesjonalnego podejścia do instalacji elektrycznych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 29

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn > UL
B. RA ∙ IΔn ≥ UL
C. RA ∙ IΔn < UL
D. RA ∙ IΔn ≤ UL
Odpowiedź RA ∙ IΔn ≤ UL jest prawidłowa, ponieważ odnosi się do zasad ochrony przeciwporażeniowej w instalacjach elektrycznych typu TT. W tym typie sieci, urządzenia ochronne różnicowoprądowe (RCD) mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników. Zależność RA ∙ IΔn ≤ UL oznacza, że rezystancja uziemienia (RA) pomnożona przez wartość prądu różnicowego, przy którym urządzenie zaczyna działać (IΔn), musi być mniejsza lub równa poziomowi napięcia dotykowego (UL). W praktyce oznacza to, że w momencie, gdy dojdzie do uszkodzenia izolacji, a prąd różnicowy przekroczy wartość IΔn, urządzenie RCD zadziała, odcinając zasilanie i minimalizując ryzyko porażenia prądem. Standardy, takie jak PN-EN 61008, podkreślają znaczenie prawidłowego doboru wartości IΔn oraz zapewnienia odpowiedniej rezystancji uziemienia, co jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania tej zasady może być instalacja w budynku mieszkalnym, gdzie odpowiedni dobór RCD chroni domowników przed skutkami ewentualnych awarii elektrycznych.

Pytanie 30

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęciowa.
B. halogenowa.
C. rtęci owo-żarowa.
D. sodowa.
Lampa halogenowa, jaką widzisz na zdjęciu, jest doskonałym przykładem nowoczesnego źródła światła, które charakteryzuje się wyższą efektywnością energetyczną oraz dłuższą żywotnością w porównaniu do tradycyjnych żarówek. Jej budowa składa się z małej bańki, w której znajduje się drucik wolframowy, oraz ze specjalnego naczynia kwarcowego lub szklanego wypełnionego gazem halogenowym, co pozwala na regenerację wolframu i zmniejsza jego parowanie. Dzięki temu, lampa halogenowa emituje jasne i naturalne światło, które jest doskonałe do oświetlenia wnętrz oraz zastosowań w oświetleniu akcentującym. Warto dodać, że lampy halogenowe są powszechnie stosowane w domach, biurach oraz w oświetleniu wystawowym, a ich zastosowanie w przemyśle i motoryzacji jest również znaczące. Przemiany w sektorze oświetleniowym wskazują na rosnącą popularność źródeł LED, jednak lampy halogenowe pozostają cenione za swoje unikalne właściwości w określonych zastosowaniach, takich jak reflektory czy lampy punktowe.

Pytanie 31

Który rodzaj pomiaru pokazany jest na rysunku?

Ilustracja do pytania
A. Napięcia dotykowego.
B. Impedancji zwarciowej.
C. Rezystancji izolacji stanowiska.
D. Ciągłości przewodów.
Pomiar rezystancji izolacji to naprawdę ważny element, jeśli chodzi o ocenę stanu instalacji elektrycznych. Bez tego nie da się mówić o bezpieczeństwie użytkowników, zwłaszcza w różnych warunkach. Na rysunku widzisz miernik rezystancji, który jest podłączony do badanego elementu i do ziemi. Taki sposób pomiaru pozwala ocenić jakość izolacji oraz wykryć ewentualne usterki. To ważne, bo niektóre problemy mogą prowadzić do groźnych sytuacji, jak na przykład porażenie prądem. W instalacjach przemysłowych regularne pomiary rezystancji izolacji to konieczność, żeby zapewnić, że wszystko działa jak należy, zgodnie z normami IEC 61557. Mierzenie z odpowiednim dociskiem elektrody, w tym przypadku 750 N, też jest kluczowe. Wartości rezystancji powinny być zgodne z normami, a przynajmniej 1 MΩ, żeby mieć pewność, że wszystko jest w porządku i bezpieczne. Znajomość tych parametrów i umiejętność ich analizy jest mega ważna dla każdego, kto zajmuje się elektryką.

Pytanie 32

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy na schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór symbolu D. jako oznaczenia łącznika świecznikowego jest prawidłowy, ponieważ ten symbol odpowiada branżowym standardom reprezentującym urządzenia do sterowania oświetleniem. Łącznik świecznikowy, znany również jako łącznik grupowy, umożliwia kontrolowanie kilku obwodów oświetleniowych jednocześnie, co jest szczególnie przydatne w dużych pomieszczeniach, takich jak sale konferencyjne lub przestrzenie otwarte. W takich zastosowaniach zastosowanie łącznika grupowego pozwala na efektywne zarządzanie oświetleniem, a także oszczędność energii. Zgodnie z normą PN-IEC 60617 dotyczącą symboli graficznych w elektrotechnice, symbol D. jest uznawany za standardowy sposób przedstawiania tego typu urządzenia. W praktyce, poprawne użycie symboli graficznych na schematach ideowych jest kluczowe dla zrozumienia i prawidłowego wykonania instalacji elektrycznych, co pozwala na bezpieczne i efektywne korzystanie z oświetlenia w różnych środowiskach.

Pytanie 33

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. N i PE
B. L1 i L3
C. N i L3
D. L1 i PE
Odpowiedzi L1 i PE, N i L3 oraz L1 i L3 są błędne z kilku powodów. Przede wszystkim, przy analizie wyników pomiarów rezystancji kluczowe jest zrozumienie, że rezystancja wynosząca 0 Ω wskazuje na bezpośrednie zwarcie, podczas gdy nieskończona rezystancja (∞) sugeruje odseparowane obwody. Wybranie odpowiedzi L1 i PE sugeruje, że te przewody są ze sobą zwarte, co jest sprzeczne z wynikami pomiarów. Takie błędne wnioski mogą wynikać z nieprawidłowej interpretacji danych pomiarowych. Z kolei odpowiedź N i L3 implikuje, że przewód neutralny jest w połączeniu z przewodem fazowym, co w rzeczywistości jest niewłaściwe, ponieważ nie powinno się łączyć przewodów fazowych z neutralnymi w sposób, który mógłby prowadzić do zwarcia. Odpowiedź L1 i L3 także jest błędna, ponieważ nie wykazuje żadnego zwarcia, a w praktyce powinna być traktowana jako odrębne obwody. Te nieporozumienia mogą wskazywać na brak zrozumienia przyczyn i skutków oraz standardów bezpieczeństwa elektrycznego, takich jak PN-IEC 60364, które zalecają szczegółowe analizy i stosowanie właściwych metod pomiarowych w celu zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 34

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,4 sekundy
B. 1 sekundę
C. 5 sekund
D. 0,2 sekundy
Maksymalny czas samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie obciążenia do 32 A w sieci TN wynoszący 0,4 sekundy jest zgodny z normami obowiązującymi w dziedzinie bezpieczeństwa elektrycznego, takimi jak norma PN-EN 61140. Czas ten określa, jak szybko system ochronny powinien zareagować w przypadku wystąpienia zwarcia lub awarii, aby zminimalizować ryzyko porażenia prądem. W praktyce oznacza to, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe, muszą być zdolne do zadziałania w tym krótkim czasie. Takie szybkie reakcje są kluczowe w warunkach użytkowania, zwłaszcza w środowisku domowym i komercyjnym, gdzie obecność ludzi jest stała. Przykładem zastosowania tej zasady mogą być obwody zasilające w łazienkach oraz innych pomieszczeniach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacznie wyższe. Odpowiednie zabezpieczenia w postaci wyłączników, które działają w ciągu 0,4 sekundy, mogą uratować życie, eliminując zasilanie w przypadku niebezpiecznych sytuacji.

Pytanie 35

Które określenie instalacji dotyczy ich podziału ze względu na rodzaje obiektów budowlanych?

A. Prądu stałego.
B. Biurowe.
C. Podtynkowe w rurach.
D. Oświetleniowe.
Prawidłowa odpowiedź to „biurowe”, bo pytanie dotyczy podziału instalacji ze względu na rodzaje obiektów budowlanych, czyli mówiąc prościej: w jakim typie budynku dana instalacja ma pracować. W praktyce w branży mówi się o instalacjach biurowych, mieszkalnych, przemysłowych, magazynowych, w obiektach użyteczności publicznej itp. Ten podział wynika z różnych wymagań funkcjonalnych, obciążeniowych i bezpieczeństwa dla danego typu obiektu. Instalacja w biurowcu ma inną strukturę obwodów gniazd niż np. w mieszkaniu – jest więcej obwodów komputerowych, gniazd dedykowanych pod sprzęt biurowy, często wydzielone obwody pod klimatyzację, serwerownie, systemy SSWiN, CCTV, BMS. Moim zdaniem to jest właśnie ten moment, gdzie widać, że teoria łączy się z praktyką: projektant zgodnie z normami, np. PN‑HD 60364, uwzględnia przeznaczenie obiektu i na tej podstawie dobiera przekroje przewodów, liczbę obwodów, rodzaje zabezpieczeń i sposób prowadzenia instalacji. W biurowych budynkach często stosuje się podłogi techniczne, kanały instalacyjne w listwach przypodłogowych, systemowe koryta kablowe nad sufitami podwieszanymi – wszystko po to, żeby łatwo dołożyć nowe stanowiska pracy lub przebudować układ biurek. W mieszkaniówce raczej się tego nie robi. Wymagania dotyczą też oświetlenia: w biurach trzeba zapewnić odpowiednie natężenie oświetlenia na stanowisku pracy, ograniczyć olśnienie, czasem zastosować systemy sterowania DALI, czujniki obecności, sceny świetlne. To z kolei wpływa na projekt instalacji oświetleniowej w takim obiekcie. Dlatego określenie „biurowe” idealnie pasuje do podziału według rodzaju obiektu budowlanego, a pozostałe odpowiedzi odnoszą się do zupełnie innych kryteriów klasyfikacji instalacji.

Pytanie 36

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 250 V
B. 1 000 V
C. 500 V
D. 750 V
Odpowiedź 500 V jest prawidłowa, ponieważ zgodnie z normami i zaleceniami dotyczącymi pomiarów rezystancji izolacji, napięcie testowe powinno być na poziomie 500 V dla maszyn elektrycznych o napięciu znamionowym 230/400 V. Pomiar taki ma na celu wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji. W praktyce, napięcie testowe 500 V jest standardem branżowym, szczególnie w przypadku sprzętu niskonapięciowego, gdyż zapewnia wystarczającą moc do przetestowania izolacji bez ryzyka uszkodzenia elementów wrażliwych. Dodatkowo, w wielu krajach stosowane są normy IEC 60364 oraz IEC 61557, które precyzują wymagania dotyczące pomiarów izolacji, a ich przestrzeganie jest kluczowe dla zapewnienia bezpieczeństwa użytkowania maszyn. Przykładowo, w przypadku stacji transformatorowych, regularne pomiary izolacji przy użyciu napięcia 500 V pozwalają na wczesne wykrywanie problemów i zapobieganie awariom, co przekłada się na dłuższą żywotność urządzeń oraz zwiększone bezpieczeństwo operacyjne.

Pytanie 37

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
B. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
C. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
D. pomiar rezystancji uziemienia
Pomiar rezystancji uziemienia to kluczowy element zapewnienia bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie ma na celu odprowadzenie nadmiaru prądu do ziemi, co chroni przed porażeniem elektrycznym i uszkodzeniem urządzeń. Przykładowo, w instalacjach przemysłowych, gdzie stosowane są maszyny o wysokich mocach, pomiar rezystancji uziemienia jest niezbędny do zapewnienia, że układ uziemiający jest skuteczny. Zgodnie z normą PN-EN 61557-4, rezystancja uziemienia powinna być mniejsza niż 10 Ω, co zapewnia odpowiednią ochronę przed skutkami udarów elektrycznych. Regularne pomiary rezystancji uziemienia pozwalają na wczesne wykrywanie problemów, takich jak korozja elementów uziemiających, co może prowadzić do ich degradacji. W praktyce, takie pomiary powinny być przeprowadzane co najmniej raz w roku lub częściej w przypadku instalacji narażonych na zmienne warunki atmosferyczne. Właściwe utrzymanie systemu uziemiającego jest nie tylko wymogiem prawnym, ale także kluczowym elementem ochrony osób i mienia.

Pytanie 38

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Przeciążenie
B. Zwarcie bezimpedancyjne
C. Przepięcie
D. Prąd błądzący
Wybór odpowiedzi dotyczącej zwarcia bezimpedancyjnego sugeruje błędne zrozumienie mechanizmu działania wyłączników instalacyjnych. Zwarcie bezimpedancyjne, charakteryzujące się bardzo małą opornością, prowadzi do natychmiastowego wzrostu prądu, co skutkuje natychmiastowym zadziałaniem zabezpieczeń. Zazwyczaj przy zwarciu wyłącznik zadziała praktycznie od razu, a nie po 10 minutach. Z kolei przepięcia, które mogą być wynikiem działania pioruna bądź włączenia dużych urządzeń elektrycznych, również prowadzą do wyzwolenia zabezpieczeń, ale zazwyczaj w znacznie krótszym czasie. Prąd błądzący, który może występować w instalacji z uszkodzoną izolacją, także nie jest przyczyną samoczynnego zadziałania wyłącznika po tak długim czasie. Zwykle wykrycie prądu błądzącego skutkuje natychmiastową reakcją urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. Błędy w diagnozowaniu problemów mogą prowadzić do niepotrzebnych napraw czy kosztów, dlatego ważne jest, aby zrozumieć, że wyłączniki instalacyjne działają na podstawie określonych norm i nie reagują na przeciążenia w sposób, w jaki reagowałyby na zwarcia czy przepięcia. Kluczowe jest także stosowanie się do zasad doboru urządzeń zabezpieczających w instalacjach elektrycznych, aby zminimalizować ryzyko wystąpienia problemów związanych z przeciążeniem.

Pytanie 39

Oprawa oświetleniowa przedstawiona na zdjęciu ma być zamontowana za pomocą wkrętów i dybli, pokazanych na zdjęciu. Jakich narzędzi należy użyć do tego montażu?

Ilustracja do pytania
A. Wkrętaka płaskiego, wkrętaka PH, wkrętaka bit M10, ściągacza izolacji.
B. Wiertarki, wkrętaka płaskiego, klucza płaskiego, noża monterskiego, ściągacza izolacji.
C. Wiertarki, wkrętaka płaskiego, klucza nasadowego, noża monterskiego, ściągacza izolacji.
D. Wkrętaka płaskiego, wkrętaka PH, klucza nasadowego, wiertarki, noża monterskiego.
No, wybrałeś dobrą odpowiedź! Do montażu oprawy oświetleniowej potrzebujesz paru specjalnych narzędzi. Wiertarka jest mega ważna, bo to ona pozwala nawiercić otwory w ścianie, żeby wsadzić dyble. Klucz nasadowy przyda się do wkręcania śrub, a to ważne, żeby oprawa była stabilna. Wkrętak płaski może być użyty do drobnych poprawek, żeby wszystko ładnie pasowało. Nóż monterski z kolei dobrze posłuży do przygotowania przewodów, a ściągacz izolacji to konieczność, by pozbyć się izolacji z końców, bo musimy je dobrze podłączyć. Jak znasz te narzędzia i wiesz, do czego służą, to już jesteś na dobrej drodze w elektrotechnice, a to zwiększa bezpieczeństwo i jakość naszej pracy.

Pytanie 40

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. wielodrutowe
B. płaskie
C. sektorowe
D. jednodrutowe
Jeśli wybrałeś niewłaściwą odpowiedź na temat przewodów SMYp, to pewnie wynika to z niezrozumienia ich specyfikacji oraz zastosowań. Odpowiedzi dotyczące żył sektorowych, płaskich czy jednodrutowych nie pasują do przewodów SMYp. Żyły sektorowe są używane w kablach zasilających o większych przekrojach, często w instalacjach energetycznych, gdzie są wymagane specjalne parametry dotyczące rozkładu pola elektrycznego. Żyły płaskie też mają swoje miejsce w różnych aplikacjach, głównie w konstrukcji kabli instalacyjnych, ale nie spełniają wymagań przewodów SMYp. Co do żył jednodrutowych, to chociaż mogą być używane w prostych instalacjach, to niestety nie zapewniają elastyczności, która jest ważna w sytuacjach, gdzie przewody muszą się poruszać. Wiesz, błędne odpowiedzi mogą wynikać z pomylenia różnych typów przewodów elektrycznych i ich właściwości. Ważne jest, żeby dobrać odpowiednie przewody w instalacjach elektrycznych, bo to kluczowe dla bezpieczeństwa i efektywności energetycznej. Zrozumienie różnic między typami żył i ich stosowaniem powinno być podstawą przy planowaniu i realizacji instalacji elektrycznych.