Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 9 lutego 2026 23:07
  • Data zakończenia: 9 lutego 2026 23:19

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Największa dopuszczalna różnica w sile hamowania pomiędzy kołami tej samej osi wynosi

A. 20%
B. 40%
C. 30%
D. 10%
Maksymalna dopuszczalna różnica sił hamowania pomiędzy kołami tej samej osi wynosząca 30% jest zgodna z normami i standardami bezpieczeństwa w motoryzacji. Taki limit ma na celu zapewnienie równomiernego rozkładu siły hamowania, co jest kluczowe dla stabilności pojazdu podczas hamowania. Nierównomierne hamowanie może prowadzić do utraty kontroli nad pojazdem, zwłaszcza w trudnych warunkach, takich jak mokra lub śliska nawierzchnia. Przykładem może być sytuacja, gdy jedno z kół hamuje znacznie mocniej niż drugie, co może spowodować obrót pojazdu lub zablokowanie kół. Dobrą praktyką w diagnostyce układów hamulcowych jest regularne sprawdzanie wydajności hamowania oraz równowagi sił na osiach, co może być realizowane podczas przeglądów technicznych. Spełnianie norm dotyczących siły hamowania jest istotne nie tylko z punktu widzenia bezpieczeństwa, ale także w kontekście przepisów prawa, które regulują dopuszczalne parametry techniczne pojazdów.

Pytanie 2

Po prawidłowej realizacji naprawy związanej z wymianą czujnika prędkości obrotowej koła?

A. należy odłączyć klemę masową akumulatora na 15 sekund
B. kontrolka ABS wyłączy się automatycznie po osiągnięciu odpowiedniej prędkości jazdy
C. należy dziesięciokrotnie uruchomić silnik w celu przeprowadzenia samodiagnozy układu ABS
D. konieczne jest ponowne przeprowadzenie diagnostyki układu oraz usunięcie kodów błędów
Odłączenie klem masowej akumulatora na 15 sekund w celu resetu układów elektronicznych mogłoby rzeczywiście wpływać na stan niektórych systemów w pojeździe, jednak nie jest to standardowe podejście do układów ABS po wymianie czujnika prędkości obrotowej. Tego typu działanie nie zmienia faktu, że kontrolka ABS może pozostać aktywna, a system niekoniecznie przeprowadzi pełną samodiagnozę. W przypadku układów ABS, które są zaawansowane technologicznie, ważne jest, aby po wymianie czujnika przeprowadzić odpowiednie testy diagnostyczne zamiast liczyć na reset systemu przez odłączenie zasilania. Ponadto, samodzielne uruchamianie silnika dziesięciokrotnie w celu „samodiagnozy” nie jest uzasadnione, ponieważ system ABS dokonuje oceny i diagnostyki w trakcie normalnej pracy pojazdu. Co więcej, ponowna diagnostyka układu oraz usunięcie ewentualnych kodów błędów powinny być nieodłącznie związane z każdą interwencją w układach elektronicznych pojazdu. Dlatego ważne jest, aby mechanicy stosowali się do najlepszych praktyk i standardów diagnostycznych, aby uniknąć błędnych wniosków oraz zapewnić pełną funkcjonalność systemów bezpieczeństwa w pojazdach.

Pytanie 3

Jaką nazwą oznaczoną symbolem określa się technologię wykorzystywaną w produkcji opon, która umożliwia jazdę po utracie ciśnienia?

A. AFS
B. PAX
C. PDC
D. ICC
Wybór innych symboli, takich jak PDC, AFS czy ICC, nazywa się powszechnie myleniem technologii i ich zastosowań w kontekście opon samochodowych. System PDC, na przykład, nie odnosi się do technologii opon, lecz może być używany w zupełnie innych kontekstach, takich jak zarządzanie danymi. AFS, z kolei, jest często związany z systemami zapewniającymi adaptacyjne oświetlenie w pojazdach, co również nie ma bezpośredniego związku z technologią opon. Z kolei ICC może odnosić się do różnych systemów komunikacji w pojazdach, ale nie jest związany z oponami zdolnymi do jazdy po utracie ciśnienia. Te nieporozumienia mogą wynikać z braku znajomości terminologii oraz funkcji stosowanych w nowoczesnych pojazdach. Kluczowym elementem skutecznej nauki o technologiach w motoryzacji jest zrozumienie, że różne akronimy i symbole odnoszą się do specyficznych zastosowań, które nie zawsze są ze sobą powiązane. Dlatego ważne jest, aby dogłębnie zapoznać się z każdą technologią i jej faktycznym zastosowaniem, co pomoże uniknąć błędnych wniosków i poprawi ogólną wiedzę na temat innowacji w branży motoryzacyjnej.

Pytanie 4

Głównym surowcem używanym do produkcji bębnów hamulcowych jest

A. aluminium
B. stal
C. żeliwo
D. brąz
Żeliwo jest głównym materiałem stosowanym do produkcji bębnów hamulcowych ze względu na swoje właściwości mechaniczne i termiczne. Posiada doskonałą zdolność do odprowadzania ciepła, co jest kluczowe w procesie hamowania, gdzie temperatura bębnów może znacznie wzrosnąć. Dodatkowo, żeliwo ma wysoką odporność na ścieranie, co zwiększa trwałość elementów hamulcowych. W praktyce, bębny hamulcowe wykonane z żeliwa są powszechnie stosowane w pojazdach osobowych oraz ciężarowych, a ich konstrukcja często spełnia normy takie jak ISO 9001, które zapewniają wysoką jakość i niezawodność. Żeliwo jest również łatwe do obróbki, co umożliwia precyzyjne dopasowanie bębnów do reszty układu hamulcowego, co jest istotne dla poprawnej pracy całego systemu. Użycie żeliwa w produkcji bębnów hamulcowych jest więc zgodne z najlepszymi praktykami branżowymi, co świadczy o jego niezawodności i efektywności w aplikacjach motoryzacyjnych.

Pytanie 5

Nadmierny luz pierścieni w gniazdach tłoka silnika spalinowego może prowadzić do

A. spadku stopnia sprężania
B. wzrostu zużycia paliwa
C. wzrostu zużycia oleju silnikowego
D. wzrostu ciśnienia sprężania
Nadmierny luz pierścieni w rowkach tłoka silnika spalinowego ma istotny wpływ na wydajność silnika oraz jego trwałość. Zwiększone zużycie oleju silnikowego jest bezpośrednim konsekwencją tego zjawiska. Pierścienie tłokowe mają za zadanie nie tylko uszczelniać komorę spalania, ale także regulować ilość oleju, który smaruje ściany cylindrów. Przy nadmiernym luzie pierścieni, olej może łatwiej przedostawać się do komory spalania, co prowadzi do jego spalania. To zjawisko może skutkować zwiększonym zużyciem oleju, co z kolei oznacza częstsze uzupełnianie oleju oraz może prowadzić do większego zanieczyszczenia spalin. Zgodnie z dobrymi praktykami branżowymi, regularna kontrola luzu pierścieni oraz ich stanu powinna być częścią rutynowej konserwacji silnika. Przykładem może być kontrola luzu pierścieni w silnikach wysokoprężnych, gdzie normalne zużycie oleju jest kluczowe dla efektywności i ekologiczności działania jednostki napędowej. Właściwe utrzymanie luzu pierścieni jest także rekomendowane przez wiele producentów silników, jako sposób na zapewnienie optymalnej pracy silnika.

Pytanie 6

Silnik spalinowy chłodzony cieczą nie osiąga odpowiedniej temperatury. Jakie uszkodzenie w układzie chłodzenia może powodować takie symptomy?

A. Chłodnicy
B. Nagrzewnicy
C. SCS Termostatu
D. Wentylatora
Termostat w silniku spalinowym pełni kluczową rolę w zarządzaniu temperaturą pracy układu chłodzenia. Jego głównym zadaniem jest kontrolowanie przepływu cieczy chłodzącej pomiędzy silnikiem a chłodnicą. Po osiągnięciu odpowiedniej temperatury silnika, termostat otwiera się, co pozwala na krążenie cieczy chłodzącej, a tym samym utrzymanie optymalnych warunków pracy silnika. Jeśli termostat jest uszkodzony i pozostaje w pozycji zamkniętej, ciecz chłodząca nie może swobodnie krążyć, co prowadzi do przegrzewania silnika, lub w przypadku, gdy nie otwiera się w ogóle, silnik może nie osiągnąć optymalnej temperatury roboczej. Optymalna temperatura pracy silnika jest kluczowa dla jego wydajności i zmniejszenia emisji szkodliwych substancji. Dbanie o sprawność termostatu to nie tylko kwestia wydajności, ale także oszczędności paliwa oraz ochrony silnika przed nadmiernym zużyciem. W praktyce, jeśli zauważysz, że silnik nie osiąga właściwej temperatury, warto zbadać działanie termostatu, co jest zgodne z dobrymi praktykami w zakresie konserwacji układów chłodzenia.

Pytanie 7

Oparzenia spowodowane gorącymi elementami oraz cieczami mogą wystąpić w trakcie

A. sprawdzania komponentów silnika
B. zajmowania się działającym silnikiem
C. pielęgnacji karoserii
D. instalacji części synchronizatorów
Odpowiedź "obsługi pracującego silnika" jest prawidłowa, ponieważ oparzenia gorącymi częściami i płynami najczęściej zdarzają się w trakcie pracy silnika, gdy jego elementy osiągają wysokie temperatury. W takich sytuacjach, szczególnie przy kontaktach z elementami układu chłodzenia, układem wydechowym czy innymi gorącymi komponentami, ryzyko oparzeń jest znacznie zwiększone. Przykładem może być wymiana oleju silnikowego, podczas której silnik musi być rozgrzany do pracy, a kontakt z gorącym olejem lub innymi cieczami może prowadzić do poważnych oparzeń. Zgodnie z normami BHP w przemyśle motoryzacyjnym, pracownicy powinni nosić odpowiednie środki ochrony osobistej, takie jak rękawice odporne na wysoką temperaturę oraz odzież ochronną, aby minimalizować ryzyko urazów. Weryfikacja procedur bezpieczeństwa oraz odpowiednie szkolenia z zakresu obsługi silników przyczyniają się do zmniejszenia liczby wypadków związanych z oparzeniami.

Pytanie 8

Jakie informacje z dowodu rejestracyjnego pojazdu będzie potrzebował mechanik przy zamawianiu części zamiennych do naprawy pojazdu?

A. Numer rejestracyjny oraz dane właściciela pojazdu
B. Numer identyfikacyjny pojazdu
C. Datę pierwszej rejestracji w kraju
D. Datę ważności przeglądu technicznego
Numer identyfikacyjny pojazdu (VIN) jest kluczowym elementem przy zamawianiu części zamiennych, gdyż jest unikalnym identyfikatorem danego pojazdu. Mechanik korzysta z VIN, aby precyzyjnie zidentyfikować model, rok produkcji oraz szczegółowe dane techniczne, co jest niezbędne do zamówienia odpowiednich części. Przykładowo, w przypadku zamówienia elementów zawieszenia, różne modele pojazdów mogą mieć różne specyfikacje, a VIN pozwala na wyeliminowanie pomyłek. Wiele systemów zamówień części opiera się na bazach danych, które przetwarzają dane VIN i oferują odpowiednie komponenty, co minimalizuje ryzyko błędów. Standardy branżowe, takie jak ISO 3833, definiują system identyfikacji pojazdów, co dodatkowo podkreśla znaczenie VIN w obiegu informacji o częściach zamiennych. Zrozumienie tej procedury jest fundamentalne dla efektywnej pracy w warsztatach samochodowych oraz dla zapewnienia bezpieczeństwa i jakości napraw.

Pytanie 9

Na rysunku przedstawiono proces

Ilustracja do pytania
A. zerowania średnicówki mikrometrycznej.
B. kompensacji średnicówki mikrometrycznej.
C. kalibracji manometrycznego czujnika ciśnienia.
D. zerowania średnicówki czujnikowej.
Wybór odpowiedzi związanej z zerowaniem średnicówki mikrometrycznej lub kalibracją manometrycznego czujnika ciśnienia nie uwzględnia specyfiki procesu, który został przedstawiony na rysunku. Zerowanie średnicówki mikrometrycznej odnosi się do mechanicznego przyrządu, który jest używany do pomiarów wymiarów zewnętrznych lub wewnętrznych, a nie do pomiaru wartości ciśnienia, jak sugeruje odpowiedź związana z manometrycznym czujnikiem ciśnienia. Kalibracja manometrów wymaga zupełnie innego podejścia i nie jest tym samym co zerowanie czujników. Typowym błędem jest mylenie różnych metod pomiarowych oraz ich kalibracji. Ponadto, zerowanie czujnika powinno być zrozumiane jako proces, który zapewnia idealne warunki do uzyskania rzetelnych i powtarzalnych danych, co jest kluczowe w kontekście norm jakościowych w przemysłach, gdzie precyzyjne pomiary są niezbędne. Brak znajomości tych różnic może prowadzić do błędów pomiarowych, które mogą negatywnie wpłynąć na jakość produkcji oraz bezpieczeństwo użytkowników końcowych. Dlatego zrozumienie, na czym polega zerowanie średnicówki czujnikowej, i jakie standardy są z tym związane, jest niezbędne w każdym laboratorium metrologicznym.

Pytanie 10

Jakie jest zastosowanie użebrowania cylindrów w silniku, który jest chłodzony bezpośrednio?

A. odprowadzanie ciepła z cylindrów, które są chłodzone cieczą
B. wzmocnienie struktury cylindra, który jest chłodzony cieczą
C. wzmocnienie struktury cylindra, który jest chłodzony powietrzem
D. odprowadzanie ciepła z cylindrów, które są chłodzone powietrzem
Użebrowanie cylindra w silniku chłodzonym powietrzem ma kluczowe znaczenie dla efektywnego odprowadzania ciepła generowanego podczas pracy silnika. W silnikach chłodzonych powietrzem, gdzie nie ma systemu chłodzenia cieczą, cykl odprowadzania ciepła musi opierać się głównie na konwekcji i przewodnictwie cieplnym. Żebra zwiększają powierzchnię kontaktu między cylindrem a otaczającym powietrzem, co pozwala na szybsze i skuteczniejsze rozpraszanie ciepła. Przykładem zastosowania użebrowania cylindra są silniki w motocyklach oraz niektórych modelach silników lotniczych, gdzie efektywne chłodzenie jest kluczowe dla osiągów i niezawodności. W branży motoryzacyjnej i lotniczej, stosowanie użebrowania jest zgodne z najlepszymi praktykami inżynieryjnymi, co zapewnia nie tylko wydajność, ale także dłuższą żywotność komponentów silnika. Warto również zauważyć, że odpowiednie projektowanie użebrowania ma istotny wpływ na aerodynamikę silnika, co w rezultacie może poprawić ogólną efektywność energetyczną pojazdu.

Pytanie 11

Aby zamontować tłok z pierścieniami w cylindrze, należy użyć

A. opaski zaciskowej do pierścieni
B. szczypiec do pierścieni
C. prasy hydraulicznej
D. prasy śrubowej
Wybór innych odpowiedzi, takich jak prasę hydrauliczną, szczypce do pierścieni lub prasę śrubową, wskazuje na pewne nieporozumienia związane z procesem montażu tłoka w cylindrze. Użycie prasy hydraulicznej do montażu pierścieni jest niewłaściwe, ponieważ siła generowana przez prasę może uszkodzić delikatne pierścienie lub prowadnice cylindrów, co prowadzi do ich deformacji. W przemyśle motoryzacyjnym i maszynowym zaleca się unikanie nadmiernego nacisku, który może mieć negatywny wpływ na integralność komponentów. Z kolei szczypce do pierścieni, choć mogą być użyteczne w pewnych sytuacjach, nie zapewniają odpowiedniego rozkładu siły i kontroli, co jest kluczowe dla prawidłowego montażu. Mogą również powodować nieodwracalne uszkodzenia pierścieni, szczególnie przy nieostrożnym użytkowaniu. Prasa śrubowa, z drugiej strony, chociaż może oferować stabilność, jest również nieodpowiednia, ze względu na ryzyko zbyt dużego nacisku oraz niewłaściwego ustawienia pierścieni, co może prowadzić do ich zacięcia w cylindrze. Właściwe podejście do montażu tłoka wymaga zastosowania narzędzi, które są specyficznie zaprojektowane do tego celu, co zapewnia bezpieczeństwo komponentów oraz ich długotrwałą funkcjonalność.

Pytanie 12

Oktanowa liczba paliwa wskazuje na

A. odporność paliwa na spalanie detonacyjne
B. wartość opałową paliwa
C. odporność paliwa na samozapłon
D. skłonność paliwa do samozapłonu
Liczba oktanowa paliwa jest miarą odporności paliwa na spalanie detonacyjne, co jest kluczowym parametrem w kontekście silników spalinowych, szczególnie tych o wysokim stopniu sprężania. Im wyższa liczba oktanowa, tym lepsza odporność paliwa na niekontrolowane zapłony, co pozwala na efektywniejsze i bardziej stabilne działanie silnika. Używając paliw o odpowiedniej liczbie oktanowej, inżynierowie mogą optymalizować wydajność silnika, zmniejszać emisję zanieczyszczeń oraz minimalizować ryzyko uszkodzenia komponentów silnika. Na przykład w silnikach sportowych często stosuje się paliwa o wysokiej liczbie oktanowej, co pozwala na uzyskanie lepszych osiągów. Standardy branżowe, takie jak ASTM D2699 i ASTM D2700, definiują metody pomiaru liczby oktanowej, co jest istotne przy produkcji i stosowaniu paliw. Zrozumienie roli liczby oktanowej jest zatem kluczowe dla każdego, kto pracuje w przemyśle motoryzacyjnym lub energetycznym.

Pytanie 13

Podczas testu po naprawie pojazdu zauważono samoczynny wzrost poziomu oleju w układzie smarowania silnika. Co może być przyczyną tej sytuacji?

A. uszkodzenie uszczelki pod głowicą
B. zużycie czopów wału korbowego
C. nadmierne zabrudzenie filtra oleju
D. uszkodzenie pompy olejowej
Jak się okazuje, uszkodzenie uszczelki pod głowicą to dość poważna sprawa, bo może prowadzić do niebezpiecznego wzrostu poziomu oleju w silniku. Kiedy ta uszczelka nie działa, płyny chłodzące czy olej mogą przedostać się tam, gdzie nie powinny – do komory spalania albo do układu smarowania. Jak olej dostaje się do układu chłodzenia, to robi się nieciekawie, bo może to być sygnał, że coś jest nie tak, i trzeba być ostrożnym. Z mojej perspektywy, jeśli widzisz, że poziom oleju nagle rośnie, szczególnie po jakiejś naprawie, to warto to zbadać. Jeśli chodzi o silniki, to regularne kontrole uszczelki pod głowicą są kluczowe. No i nie zapominaj o przeglądach technicznych oraz monitorowaniu poziomu oleju – to naprawdę może pomóc wychwycić problemy zanim przerodzą się w większe kłopoty.

Pytanie 14

Podczas przyjmowania pojazdu do naprawy mechanik zauważył uszkodzenie układu wydechowego. W protokole zdawczo-odbiorczym powinien również zanotować informację uzyskaną od właściciela pojazdu na temat

A. numeru kontaktowego do przedstawiciela ubezpieczalni pojazdu
B. zakresu prac do wykonania w trakcie naprawy pojazdu
C. innych uszkodzeń wykrytych w pojeździe
D. najdłuższego czasu realizacji naprawy
Wybór odpowiedzi dotyczącej zakresu czynności w czasie naprawy pojazdu jest błędny, ponieważ nie odnosi się bezpośrednio do informacji, które mechanik powinien uzyskać od właściciela pojazdu w kontekście stanu technicznego. Zakres czynności jest często określany przez mechanika na podstawie diagnozy i nie jest to informacja, którą właściciel pojazdu powinien dostarczać. Innym błędnym aspektem jest skupienie na numerze telefonu przedstawiciela ubezpieczyciela pojazdu. Choć kontakt z ubezpieczycielem może być istotny, to jednak nie jest to informacja dotycząca stanu pojazdu, a protokół zdawczo-odbiorczy powinien koncentrować się na technicznych aspektach pojazdu. Maksymalny czas przeprowadzenia naprawy również nie jest kluczową informacją, którą mechanik powinien uzyskać w momencie przyjęcia pojazdu. Czas naprawy jest często uzależniony od dostępności części oraz złożoności usunięcia uszkodzeń, co czyni tę informację mniej wartościową w kontekście protokołu. Zrozumienie, które aspekty są istotne w kontekście protokołu, jest kluczowe dla prawidłowego zarządzania naprawami oraz budowania pozytywnych relacji z klientami.

Pytanie 15

Zawroty kół napędowych o różnych promieniach są możliwe dzięki wykorzystaniu

A. kolumn McPhersona
B. mechanizmu różnicowego
C. trapezowego układu kierowniczego
D. drążków skrętnych
Kolumny McPhersona to popularny typ zawieszenia stosowany w samochodach, który jednak nie wpływa na możliwość pokonywania zakrętów o różnych promieniach. Ich główną rolą jest zapewnienie stabilności pojazdu, a nie zarządzanie prędkością obrotową kół. Drążki skrętne również nie mają wpływu na różnicowanie prędkości obrotowej kół, lecz są elementami układów zawieszenia, które zwykle pomagają w utrzymaniu kontaktu kół z nawierzchnią drogi, co nie ma bezpośredniego związku z pokonywaniem zakrętów. Trapezowy układ kierowniczy z kolei służy do przenoszenia ruchu kierownicy na koła, jednak nie rozwiązuje problemu różnicy prędkości między kołami podczas pokonywania zakrętów. Błędem jest mylenie tych systemów z mechanizmem różnicowym, który ma na celu właśnie umożliwienie kołom napędowym obracania się z różnymi prędkościami. Zrozumienie funkcji każdego z tych elementów jest kluczowe dla prawidłowej analizy układów napędowych pojazdów, a także dla skutecznego projektowania nowych rozwiązań w motoryzacji.

Pytanie 16

Mechanik, który wymienia wahacze przedniej osi, ma możliwość dokręcenia

A. śruby/nakrętki sworznia dopiero po dokonaniu ustawienia zbieżności kół
B. śrub znajdujących się w poziomej płaszczyźnie wyłącznie w normalnej pozycji pracy zawieszenia
C. wszystkich śrub w dowolnym ustawieniu zawieszenia
D. śrub usytuowanych w pionowej płaszczyźnie tylko w normalnej pozycji pracy zawieszenia
Istnieje kilka koncepcji związanych z dokręcaniem śrub, które mogą wprowadzać w błąd. Zaczynając od pierwszej, idea, że śrubę lub nakrętkę sworznia można dokręcić tylko po ustawieniu zbieżności kół, jest niepoprawna. Zbieżność kół jest istotnym aspektem regulacji układu zawieszenia, ale nie ma bezpośredniego związku z momentem dokręcania wahaczy. Właściwe dokręcenie śrub powinno odbywać się w odpowiednim położeniu zawieszenia, aby zapobiec nieprawidłowym naprężeniom, które mogą wynikać z ich wcześniejszego luzowania. Kolejna koncepcja dotycząca dokręcania śrub w płaszczyźnie pionowej w położeniu normalnej pracy zawieszenia jest również myląca. W rzeczywistości, dokręcanie śrub w tej płaszczyźnie wymaga szczególnej uwagi i powinno odbywać się z zachowaniem zasad bezpieczeństwa oraz odpowiednich standardów. Ostatnia opcja, sugerująca, że wszystkie śruby można dokręcać w dowolnym ułożeniu zawieszenia, jest nie tylko niebezpieczna, ale także sprzeczna z najlepszymi praktykami w branży. Praca w niewłaściwym położeniu zawieszenia może prowadzić do nieprawidłowego dokręcania, a w konsekwencji do awarii układu zawieszenia, co stwarza poważne zagrożenie dla bezpieczeństwa jazdy. W związku z powyższym, kluczowe jest zrozumienie zasad dotyczących dokręcania śrub w odpowiednich położeniach oraz stosowanie się do wytycznych producenta, co zapewnia nie tylko bezpieczeństwo, ale i długowieczność elementów zawieszenia.

Pytanie 17

Wybór zamienników świec zapłonowych do silnika z zapłonem iskrowym, oprócz podstawowych wymiarów gwintów, uwzględnia także istotny parametr, którym jest

A. kształt elektrod
B. liczba elektrod
C. wartość cieplna
D. rezystancja wewnętrzna
Wartość cieplna świecy zapłonowej jest kluczowym parametrem, który wpływa na jej odpowiednie działanie w silniku z zapłonem iskrowym. Oznacza ona zdolność świecy do prowadzenia ciepła z rdzenia do gwintu, co jest istotne dla zapobiegania przegrzewaniu się świecy oraz dla efektywnego spalania mieszanki paliwowo-powietrznej. Optymalna wartość cieplna zapewnia, że świeca nie będzie się zbytnio nagrzewać ani nie będzie się zbyt szybko chłodzić. Zbyt wysoka wartość cieplna może prowadzić do przegrzewania się elektrod, co z kolei może powodować 'wypalanie' elektrod, a w efekcie do problemów z zapłonem. Z drugiej strony zbyt niska wartość cieplna może powodować gromadzenie się nagaru, co obniża efektywność silnika. Stosując świecę o odpowiedniej wartości cieplnej, można poprawić osiągi silnika oraz zmniejszyć emisję szkodliwych substancji. Przykładami standardów, które regulują te parametry, są normy producentów silników i standardy branżowe takie jak ISO 4250, które określają metody testowania i klasyfikacji świec zapłonowych w kontekście ich wartości cieplnych.

Pytanie 18

Narzędzie przedstawione na rysunku służy do wykonywania

Ilustracja do pytania
A. oczyszczania świec zapłonowych.
B. gwintów wewnętrznych.
C. gwintów zewnętrznych.
D. elementów kształtowych wykonywanych metodą przeciągania.
Narzędzie przedstawione na rysunku to gwintownik, który jest kluczowym narzędziem w obróbce skrawaniem. Jego głównym zadaniem jest wykonywanie gwintów zewnętrznych, które są niezwykle istotne w wielu zastosowaniach inżynieryjnych oraz produkcyjnych. Gwinty zewnętrzne znajdują zastosowanie w połączeniach śrubowych, gdzie elementy muszą być odpowiednio ze sobą skomponowane, aby zapewnić trwałość oraz bezpieczeństwo konstrukcji. W przemyśle, przykładami zastosowania gwintów zewnętrznych są komponenty maszyn, wkręty oraz różnego rodzaju połączenia w systemach hydraulicznych i pneumatycznych. Dobre praktyki w zakresie używania gwintowników obejmują odpowiednią selekcję narzędzi do danego materiału, jak również zachowanie właściwej prędkości obrotowej i posuwu podczas gwintowania, co pozwala na uzyskanie gwintów o wysokiej jakości oraz trwałości. Ważne jest również przestrzeganie norm dotyczących tolerancji wymiarowych, co zazwyczaj regulowane jest przez odpowiednie normy, takie jak ISO 965 dla gwintów metrycznych.

Pytanie 19

Jakie są powody nadmiernego przegrzewania się bębna hamulcowego podczas prowadzenia pojazdu?

A. Nieodpowiednie napięcie linki hamulca ręcznego
B. Standardowe zużycie okładzin szczęk hamulcowych
C. Nieszczelność pompy hamulcowej
D. Zatarły rozpieracz hamulcowy
Nieszczelność pompy hamulcowej, luźne linki hamulca ręcznego oraz normalne zużycie okładzin szczęk hamulcowych są problemami, które często mogą wprowadzać w błąd osoby zajmujące się diagnostyką układów hamulcowych. Nieszczelność pompy hamulcowej może prowadzić do utraty ciśnienia w układzie, co jednak objawia się głównie zmniejszoną skutecznością hamowania, a nie bezpośrednim przegrzewaniem bębna. Luźne linki hamulca ręcznego mogą powodować, że hamulec ręczny nie zwalnia całkowicie, co prowadzi do ciągłego tarcia, ale to również nie jest najczęstszą przyczyną przegrzewania się bębna. Normalne zużycie okładzin hamulcowych to efekt naturalnego procesu eksploatacyjnego, który nie powoduje nadmiernego nagrzewania się bębna, chyba że okładziny są zużyte w stopniu, który obniża ich skuteczność, co prowadzi do intensywniejszego użytkowania układu. W praktyce, wiele osób myli objawy związane z układami hamulcowymi, co może prowadzić do niewłaściwej diagnozy i nieefektywnego zarządzania konserwacją pojazdu. Ważne jest, aby zawsze przeprowadzać dokładną diagnostykę i stosować się do zaleceń producentów oraz standardów branżowych, takich jak ISO (International Organization for Standardization) dotyczących konserwacji i naprawy układów hamulcowych.

Pytanie 20

Do zestawu elementów układu kierowniczego nie należy

A. drążek reakcyjny
B. przekładnia ślimakowa
C. końcówka drążka kierowniczego
D. drążek kierowniczy
Drążek reakcyjny nie wchodzi w skład układu kierowniczego, ponieważ jest to element, który nie jest używany w standardowych systemach kierowniczych samochodów. W przeciwieństwie do przekładni ślimakowej, która przekształca ruch obrotowy na ruch liniowy i jest kluczowym elementem w układach kierowniczych, drążek kierowniczy oraz końcówka drążka kierowniczego, które przewodzą ruch z kierownicy do kół, mają bezpośredni wpływ na sterowność pojazdu. Przykładowo, drążki kierownicze są wykorzystywane w różnych typach pojazdów, w tym w samochodach osobowych i ciężarowych, gdzie ich właściwe działanie jest niezbędne dla bezpieczeństwa i komfortu jazdy. Zrozumienie, które elementy składają się na układ kierowniczy, jest kluczowe dla diagnostyki usterek oraz przeprowadzania odpowiednich napraw, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 21

Do kontroli kadłuba oraz głowicy silnika wykorzystywane są liniał krawędziowy i szczelinomierz, aby zmierzyć

A. płaskość
B. prostopadłość
C. szczelność
D. równoległość
Płaskość kadłuba i głowicy silnika jest kluczowym parametrem, który wpływa na ich funkcjonowanie oraz trwałość. Liniał krawędziowy oraz szczelinomierz to narzędzia pomiarowe, które pozwalają na precyzyjne mierzenie i weryfikację płaskości powierzchni. W praktyce, jeśli powierzchnie te nie są płaskie, może to prowadzić do nieprawidłowego montażu komponentów, co z kolei wpływa na osiągi silnika oraz jego żywotność. Na przykład, nieprawidłowa płaskość głowicy silnika może prowadzić do problemów z uszczelnieniem, co skutkuje wyciekami płynów eksploatacyjnych. Zgodnie z normami branżowymi, takimi jak ISO 1101 dotyczące geometrii wyrobów, weryfikacja płaskości jest standardową procedurą w procesach produkcji oraz konserwacji silników. Dlatego regularne kontrole płaskości za pomocą tych narzędzi są niezbędne dla zapewnienia jakości i niezawodności silników.

Pytanie 22

Zjawisko to występuje najczęściej przy niskich prędkościach oraz dużych naciskach - w sytuacjach niewystarczającego smarowania lub jego braku. W takich warunkach, występy oraz nierówności powierzchni są ze sobą złączane, a potem poddawane ścinaniu. Jakiego rodzaju zużycia dotyczy ten opis?

A. Chemicznego
B. Elektrochemicznego
C. Mechanicznego
D. Adhezyjnego
Zużycie adhezyjne to zjawisko, które występuje, gdy powierzchnie stykające się ze sobą są ze sobą sczepiane z powodu sił adhezyjnych, a następnie ulegają ścinaniu, co prowadzi do usunięcia materiału. Zjawisko to ma miejsce szczególnie przy małych prędkościach i dużych naciskach, kiedy warunki smarowania są niewystarczające lub całkowicie brak. Umożliwia to powstanie mikroskopijnych punktów kontaktowych pomiędzy powierzchniami, co skutkuje ich wzajemnym przyleganiem. Przykładem zastosowania tej wiedzy może być analiza zużycia w łożyskach tocznych, gdzie niewłaściwe smarowanie może prowadzić do uszkodzeń wynikających z zjawisk adhezyjnych. Dobrą praktyką jest regularne monitorowanie stanu smarowania oraz stosowanie odpowiednich środków smarnych, aby zminimalizować ryzyko wystąpienia zużycia adhezyjnego, co jest zgodne z normami ISO 281, które dotyczą oceny żywotności łożysk tocznych.

Pytanie 23

Po zakończeniu wymiany zaworów dolotowych w silniku należy

A. frezować gniazda zaworowe
B. sprawdzić szczelność zaworów
C. zweryfikować twardość sprężyn zaworowych
D. usunąć zabezpieczenie trzonka zaworu
Sprawdzanie szczelności zaworów jest kluczowym krokiem po wymianie zaworów dolotowych silnika. Zawory są odpowiedzialne za regulację przepływu mieszanki paliwowo-powietrznej do cylindrów oraz za wydobywanie spalin. Nieszczelność zaworów może prowadzić do znacznych strat mocy silnika, zwiększonego zużycia paliwa oraz nieprawidłowego działania jednostki napędowej. W praktyce, podczas sprawdzania szczelności zaworów, można wykorzystać metody takie jak próba ciśnieniowa, która polega na wprowadzeniu powietrza do cylindra i obserwacji, czy ciśnienie utrzymuje się na odpowiednim poziomie. Dobrą praktyką jest również użycie specjalistycznych narzędzi, takich jak zestawy do testowania szczelności, które umożliwiają dokładne określenie ewentualnych wycieków. Należy pamiętać, że zgodnie z normami branżowymi, regularne sprawdzanie szczelności zaworów powinno być częścią rutynowej konserwacji silnika, co pozwala na utrzymanie jego optymalnej wydajności oraz przedłużenie żywotności komponentów.

Pytanie 24

Działanie stetoskopu opiera się na zjawisku

A. grawitacyjnym
B. elektrycznym
C. akustycznym
D. hydraulicznych
Działanie stetoskopu opiera się na zjawisku akustycznym, które jest kluczowe dla analizy dźwięków wydobywających się z ciała pacjenta. Stetoskop, poprzez swoje membrany i rurki, jest w stanie wykrywać i wzmacniać dźwięki, takie jak tonacja serca czy szmery oddechowe. Zjawisko akustyczne oznacza, że dźwięki są falami, które rozprzestrzeniają się w medium – w tym przypadku w powietrzu. Dzięki zastosowaniu stetoskopu lekarze mogą dokładnie osłuchiwać pacjentów, co jest nieodłącznym elementem diagnostyki medycznej. Przykładowo, osłuchiwanie bicia serca pozwala na wykrycie arytmii czy szmerów, które mogą wskazywać na problemy z zastawkami serca. Warto zaznaczyć, że w praktyce medycznej stosuje się różne typy stetoskopów, w tym elektroniczne, które jeszcze bardziej zwiększają czułość i jakość słyszalnych dźwięków. Stetoskop jest zatem nie tylko narzędziem, ale i nieocenionym wsparciem w diagnozowaniu i monitorowaniu stanu zdrowia pacjentów, zgodnym z najlepszymi praktykami w medycynie.

Pytanie 25

Podczas serwisowania układu hamulcowego, mechanik zauważył, że okładzina jednego z klocków hamulcowych jest uszkodzona. Jaką decyzję powinien podjąć mechanik w tej sytuacji?

A. wymianę uszkodzonego klocka hamulcowego na używany o takiej samej grubości okładziny
B. wymianę wszystkich klocków hamulcowych na danej osi pojazdu
C. wymianę klocków hamulcowych tego konkretnego koła pojazdu
D. wymianę uszkodzonego klocka hamulcowego na nowy
Wybór wymiany wszystkich klocków hamulcowych danej osi pojazdu jest zgodny z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności działania układu hamulcowego. Klocki hamulcowe na jednej osi powinny być wymieniane parami, ponieważ różnice w ich grubości i właściwościach mogą prowadzić do nierównomiernego zużycia hamulców, co z kolei może wpłynąć na stabilność pojazdu podczas hamowania. W przypadku stwierdzenia uszkodzenia jednego klocka, jest to sygnał, że także pozostałe mogą być w podobnym stanie, zwłaszcza jeśli były używane w tym samym czasie. Wymiana wszystkich klocków na jednej osi zapewnia równomierne działanie układu hamulcowego, co jest kluczowe dla bezpieczeństwa jazdy. Przykładowo, jeśli na osi przedniej wymienimy tylko jeden klocek, może to prowadzić do sytuacji, w której jeden z klocków będzie hamował bardziej efektywnie niż drugi, co może skutkować przegrzewaniem się i przedwczesnym zużyciem hamulców. Zgodnie z wytycznymi producentów pojazdów oraz zasadami techniki samochodowej, wymiana wszystkich klocków na osi jest zalecana, co podkreśla znaczenie dbałości o integralność układu hamulcowego.

Pytanie 26

Hybrydowy napęd to wykorzystanie w pojeździe jednostki napędowej

A. spalinowej z elektryczną
B. z zapłonem iskrowym
C. elektrycznej
D. wysokoprężnej
Napęd hybrydowy w pojazdach oznacza zastosowanie zarówno silnika spalinowego, jak i elektrycznego w celu optymalizacji efektywności energetycznej oraz zmniejszenia emisji spalin. W praktyce oznacza to, że pojazdy hybrydowe mogą korzystać z mocy silnika spalinowego podczas jazdy na autostradzie, gdzie wymagana jest większa moc, natomiast w warunkach miejskich, gdzie prędkości są niższe, silnik elektryczny może działać samodzielnie. Taki system przyczynia się do znacznego obniżenia zużycia paliwa i redukcji emisji CO2, co jest zgodne z globalnymi standardami w zakresie ochrony środowiska. Przykłady zastosowania obejmują popularne modele samochodów takie jak Toyota Prius czy Honda Insight, które udowodniły, że hybrydowe napędy są nie tylko technologicznie zaawansowane, ale również ekonomicznie opłacalne dla użytkowników. Standardy dotyczące emisji spalin, takie jak Euro 6, kładą nacisk na rozwój technologii hybrydowych, co potwierdza ich rosnące znaczenie w branży motoryzacyjnej.

Pytanie 27

Dokument, który jest wymagany do przyjęcia pojazdu na diagnostykę, to

A. zlecenie wstępne
B. kosztorys realizacji zlecenia
C. faktura VAT
D. protokół naprawy
Zlecenie wstępne jest kluczowym dokumentem, który pozwala na formalne przyjęcie pojazdu do diagnostyki i naprawy. Zawiera ono istotne informacje dotyczące rodzaju usługi, jaką ma przejść pojazd, oraz szczegóły dotyczące problemów zgłoszonych przez właściciela. Umożliwia to diagnostom i mechanikom skuteczne ustalenie priorytetów oraz planu działania. W praktyce, zlecenie wstępne pomaga w organizacji pracy warsztatu, umożliwiając przypisanie odpowiednich zasobów i czasu do konkretnego zlecenia. Jest także dokumentem, który stanowi dowód na zlecenie wykonania pracy, co jest istotne z perspektywy rozliczeń oraz ewentualnych reklamacji. Przyjęcie pojazdu bez zlecenia wstępnego narusza standardy zarządzania jakością w warsztatach samochodowych, co może prowadzić do nieefektywności i problemów w komunikacji z klientami.

Pytanie 28

Amortyzatory na tej samej osi powinny być wymieniane w parach, ponieważ

A. unika się ich czyszczenia
B. zapobiega to przyspieszonemu ich zużywaniu
C. obniża koszty napraw
D. upraszcza to ich demontaż oraz montaż
Wymiana amortyzatorów parami jest kluczowa dla zapewnienia równomiernego działania zawieszenia pojazdu. Każdy amortyzator pełni rolę w kontrolowaniu ruchu sprężyn i tłumieniu drgań, co wpływa bezpośrednio na stabilność i komfort jazdy. W przypadku wymiany tylko jednego amortyzatora, jego nowa charakterystyka pracy może nie odpowiadać zużytemu elementowi po przeciwnej stronie osi, co prowadzi do asymetrycznego działania zawieszenia. Taki stan rzeczy powoduje przyspieszone zużycie obu amortyzatorów, a także innych komponentów układu zawieszenia. Przykładem może być sytuacja, gdy nowy amortyzator z twardszym tłumieniem jest wymieniony bez wymiany starego, co może prowadzić do nieprawidłowego prowadzenia pojazdu i zwiększonego ryzyka awarii. W praktyce, wielu producentów i serwisów motoryzacyjnych zaleca wymianę amortyzatorów w parach, co jest zgodne z najlepszymi praktykami w branży, zapewniając zarówno bezpieczeństwo, jak i optymalne właściwości jezdne pojazdu.

Pytanie 29

Termostat nie ma wpływu na

A. szybkie nagrzewanie silnika
B. zużycie płynu chłodzącego
C. utrzymywanie temperatury silnika
D. zużycie paliwa
Można się pogubić w temacie termostatu i jego wpływu na silnik, bo wiele osób nie do końca rozumie, jak to działa. Wiesz, termostat pomaga w szybkim rozgrzaniu silnika, bo reguluje przepływ płynu chłodzącego, co pozwala szybciej osiągnąć tę optymalną temperaturę. Jak się nie wie, co to oznacza, to można nie doceniać, jak ważny jest termostat, zwłaszcza w kontekście oszczędności paliwa i zmniejszenia emisji szkodliwych substancji. Prawda jest taka, że odpowiednia temperatura silnika, którą reguluje termostat, to podstawa. Jak jest za ciepło lub za zimno, to może być nieefektywne spalanie paliwa, co w efekcie podnosi koszty. Poza tym, awarie w układzie chłodzenia mogą prowadzić do przegrzewania silnika, co też zwiększa zużycie paliwa i ryzyko uszkodzeń. Dlatego warto, żeby kierowcy i mechanicy mieli świadomość, jak istotny jest ten element w szerszym kontekście wydajności silnika.

Pytanie 30

Kluczowym czynnikiem wpływającym na możliwości dalszej eksploatacji instalacji LPG jest

A. stan techniczny układu zasilania benzyną
B. stan układu chłodzenia silnika
C. ważność legalizacji butli gazowej
D. ważność okresu gwarancyjnego instalacji LPG
Ważność legalizacji butli gazowej jest kluczowym czynnikiem wpływającym na dalszą eksploatację instalacji LPG. Butle gazowe muszą być regularnie legalizowane, co jest zgodne z przepisami prawa oraz standardami bezpieczeństwa. Legalizacja polega na sprawdzeniu stanu technicznego butli oraz jej elementów, co zapewnia bezpieczeństwo użytkowania. Przykładem praktycznym jest konieczność przeprowadzenia legalizacji butli gazowej co 10 lat. W przypadku stwierdzenia nieprawidłowości, butla może zostać wycofana z eksploatacji, co w skrajnych sytuacjach może prowadzić do poważnych zagrożeń, w tym wycieków gazu. Właściwie przeprowadzona legalizacja pozwala na uniknięcie problemów związanych z bezpieczeństwem i dyskomfortem użytkowania, co jest istotne dla osób korzystających z instalacji LPG w pojazdach.

Pytanie 31

Aby zmierzyć zużycie gładzi cylindrowej w silniku spalinowym, powinno się zastosować

A. mikroskop warsztatowy
B. suwmiarkę
C. szczelinomierz
D. średnicówkę czujnikową
Średnicówka czujnikowa jest narzędziem pomiarowym, które zapewnia wysoką precyzję w pomiarach średnicy otworów oraz gładzi cylindrowej w silnikach spalinowych. Jest to kluczowe, gdyż precyzyjne określenie wymiarów gładzi cylindrowej ma bezpośredni wpływ na efektywność silnika oraz jego żywotność. Gładź cylindrowa musi być idealnie gładka i o odpowiednich wymiarach, aby zapewnić prawidłową współpracę z tłokiem oraz optymalne smarowanie. Użycie średnicówki czujnikowej pozwala na dokładne pomiary, które są istotne w kontekście diagnostyki oraz remontów silników. W praktyce, przy pomocy tego narzędzia można z łatwością określić, czy gładź cylindrowa wymaga regeneracji, czy też można pozostawić ją w jej obecnym stanie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach produkcyjnych i serwisowych, a średnicówki czujnikowe są doskonałym przykładem narzędzi, które spełniają te wymagania.

Pytanie 32

Na rysunku układu wydechowego cyfrą 4 został oznaczony

Ilustracja do pytania
A. tłumik końcowy.
B. tłumik środkowy.
C. tłumik wstępny.
D. katalizator.
Element oznaczony cyfrą 4 na rysunku układu wydechowego to tłumik środkowy, który pełni kluczową rolę w redukcji hałasu oraz emisji spalin. Tłumik środkowy znajduje się pomiędzy tłumikiem wstępnym, który ma za zadanie wstępną redukcję hałasu, a tłumikiem końcowym, który finalizuje proces wygłuszania dźwięków wydobywających się z silnika. Umożliwia to uzyskanie optymalnych parametrów pracy układu wydechowego, co jest istotne w kontekście ochrony środowiska oraz zgodności z normami emisji spalin, takimi jak Euro 6. W praktyce, odpowiedni dobór tłumika środkowego pozwala na uzyskanie lepszej charakterystyki dźwiękowej pojazdu, co wpływa na jego komfort użytkowania. Warto również zauważyć, że nie tylko hałas jest redukowany, ale także przyspiesza to proces przepływu spalin, co może przyczynić się do zwiększenia efektywności pracy silnika. Tłumik środkowy stanowi więc istotny element układu, który łączy efektywność z komfortem.

Pytanie 33

Cechą charakterystyczną bezstopniowej mechanicznej skrzyni biegów CVT jest

A. element synchronizujący
B. pas napędowy
C. satelita
D. wałek napędowy
Zdecydowanie nie powinniśmy wybierać innych części, jak wałek atakujący czy synchronizator, bo to nie ma sensu w kontekście skrzyni CVT. Wałek atakujący jest ważny w tradycyjnych skrzyniach biegów, gdzie przenosi moc z silnika do mechanizmu różnicowego. W CVT tę rolę spełnia pas napędowy, więc to jakby nie ten temat. Synchronizatory też są stosowane do synchronizacji obrotów w tradycyjnych skrzyniach podczas zmiany biegów, a w CVT nie ma biegów do zmieniania, tylko płynnie wszystko działa. Satelity z kolei są w automatycznych skrzyniach, a w CVT to się nie odnosi. Jeśli mylimy te elementy, to możemy nie zrozumieć, jak działa nowoczesna motoryzacja i jak różne są te systemy przeniesienia napędu.

Pytanie 34

Reperacja uszkodzonego elastycznego elementu gumowego w zawieszeniu układu wydechowego polega na jego

A. spajaniu
B. wymianie
C. zakręceniu
D. klejeniu
Wymiana uszkodzonego gumowego elastycznego elementu zawieszenia układu wydechowego jest kluczowym procesem w utrzymaniu prawidłowego działania systemu wydechowego pojazdu. Gumowe elementy, takie jak poduszki, są projektowane w celu absorpcji wibracji oraz ułatwienia ruchu podzespołów, co wzmacnia ich trwałość. W przypadku uszkodzenia, na przykład pęknięcia lub utraty elastyczności, ich wymiana staje się niezbędna, ponieważ naprawy takie jak klejenie czy spajanie mogą nie zapewnić odpowiedniego poziomu bezpieczeństwa oraz wydajności. Wymiana powinna być przeprowadzana zgodnie z zaleceniami producenta pojazdu, co obejmuje wykorzystanie oryginalnych części zamiennych lub ich wysokiej jakości odpowiedników. Przykładem zastosowania tej praktyki może być wymiana poduszki zawieszenia w samochodzie osobowym, co zapobiega przenoszeniu niepożądanych drgań do kabiny pasażerskiej, a także minimalizuje ryzyko uszkodzeń innych elementów układu wydechowego. Warto również zwrócić uwagę na regularne przeglądy tych elementów, co może zwiększyć ich żywotność oraz zredukować koszty napraw.

Pytanie 35

Jakim przyrządem pomiarowym powinno się zastąpić badany czujnik ciśnienia oleju, aby potwierdzić jego prawidłowość działania?

A. Refraktometrem
B. Pirometrem
C. Barometrem
D. Manometrem
Manometr to odpowiedni przyrząd kontrolno-pomiarowy do weryfikacji wskazań czujnika ciśnienia oleju. Jego głównym zadaniem jest pomiar ciśnienia gazów lub cieczy, co czyni go idealnym narzędziem do oceny poprawności działania czujników ciśnienia. Manometry stosowane są w różnych dziedzinach, w tym w motoryzacji, hydraulice czy technologii procesowej. Standardowe manometry są kalibrowane zgodnie z normami takimi jak PN-EN 837-1, co zapewnia ich dokładność i niezawodność. W praktyce, jeśli manometr wskazuje wartości zgodne z danymi odczytanymi z czujnika, można uznać, że czujnik działa prawidłowo. W przypadku rozbieżności należy przeprowadzić dalsze analizy, aby ustalić, czy problem leży w czujniku, czy w manometrze. Dzięki manometrom możliwe jest także monitorowanie ciśnienia w systemach hydraulicznych, co jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa.

Pytanie 36

Za dostarczenie paliwa do cylindra w silniku Diesla odpowiada

A. gaźnik
B. wtryskiwacz
C. pompa paliwowa
D. pompa wtryskowa
Wtryskiwacz jest kluczowym elementem układu zasilania silnika wysokoprężnego, odpowiedzialnym za precyzyjne wtryskiwanie paliwa do cylindrów. W przeciwieństwie do silników benzynowych, w których stosuje się gaźniki, silniki wysokoprężne korzystają z bezpośredniego wtrysku, co pozwala na osiągnięcie lepszej wydajności spalania i niższej emisji spalin. Wtryskiwacze działają na zasadzie atomizacji paliwa, co zwiększa powierzchnię kontaktu paliwa z powietrzem, umożliwiając efektywne spalanie. Przykładem zastosowania wtryskiwaczy są nowoczesne silniki diesla, które wykorzystują wtryskiwacze piezoelektryczne, umożliwiające bardzo szybkie i dokładne wtryskiwanie paliwa, co jest kluczowe w kontekście osiągania wysokiej sprawności energetycznej oraz spełniania rygorystycznych norm emisji. W branży motoryzacyjnej, standardy takie jak Euro 6 wymuszają stosowanie zaawansowanych technologii wtrysku, co podkreśla znaczenie wtryskiwaczy w nowoczesnych konstrukcjach silnikowych.

Pytanie 37

Jakie narzędzie należy zastosować do pomiaru średnicy czopów wału korbowego?

A. przymiaru kreskowego
B. czujnika zegarowego
C. śruby mikrometrycznej
D. suwmiarki o dokładności 0,1 mm
Śruba mikrometryczna jest narzędziem pomiarowym o wysokiej precyzji, które pozwala na dokładne mierzenie średnicy czopów wału korbowego z dokładnością do 0,01 mm. Dzięki swojej konstrukcji, umożliwia ona stopniowe przesuwanie się wzdłuż osi, co pozwala na uzyskanie dokładnych i powtarzalnych wyników pomiarowych. W kontekście precyzyjnych pomiarów w inżynierii mechanicznej, stosowanie śrub mikrometrycznych jest standardową praktyką, zwłaszcza przy pomiarach elementów krytycznych, takich jak czopy wału korbowego, gdzie tolerancje wymiarowe są bardzo istotne. Na przykład, przy produkcji silników, niedokładność w wymiarach czopów może prowadzić do niewłaściwego dopasowania elementów, co w konsekwencji może wpłynąć na wydajność silnika oraz jego trwałość. W związku z tym, śruba mikrometryczna jest nie tylko narzędziem, ale także kluczowym elementem zapewniającym jakość i niezawodność w procesie produkcyjnym.

Pytanie 38

W pojeździe, w którym występuje szarpanie podczas ruszania, należy przede wszystkim zweryfikować stopień zużycia

A. silnika w związku z "wypadaniem zapłonów"
B. układu hamulcowego (blokowanie kół)
C. elementów sprzęgła
D. synchronizatora pierwszego biegu
Elementy sprzęgła są kluczowym układem w pojazdach, który umożliwia płynne przekazywanie momentu obrotowego z silnika na skrzynie biegów. Szarpanie podczas ruszania z miejsca często wskazuje na problemy z tym układem, takie jak zużycie tarcz sprzęgłowych lub niewłaściwe ustawienie pedału sprzęgła. W przypadku zużycia tarcz, ich niewłaściwe zgrzewanie może prowadzić do szarpania, ponieważ tarcze nie zaciskają się równomiernie. W praktyce, diagnozując problemy ze sprzęgłem, mechanicy często sprawdzają grubość tarcz, a także działanie łożyska oporowego, które także może wpłynąć na komfort ruszania. Dobre praktyki w diagnostyce obejmują również testowanie działania sprzęgła w różnych warunkach, co pozwala na dokładne zidentyfikowanie problemu. Warto również pamiętać o regularnym przeglądzie układu sprzęgłowego, co może zapobiec poważnym awariom w przyszłości.

Pytanie 39

Przekładnia ślimakowo-kulkowa wykorzystywana jest w systemie

A. hamulcowym
B. napędowym
C. zawieszenia
D. kierowniczym
Przekładnia ślimakowo-kulkowa jest szczególnie wykorzystywana w układach kierowniczych ze względu na swoją zdolność do precyzyjnego przenoszenia ruchu oraz zapewnienia odpowiedniego momentu obrotowego. Działa na zasadzie ślimaka i kulki, co pozwala na płynne przejście ruchu obrotowego na liniowy. Taki mechanizm jest kluczowy w systemach kierowniczych, gdzie precyzja i kontrola są niezbędne dla bezpieczeństwa pojazdu. Przykładem zastosowania przekładni ślimakowo-kulkowej jest układ kierowniczy w samochodach sportowych, gdzie wymagana jest szybsza i bardziej responsywna reakcja na ruchy kierownicy. Ponadto, przekładnie te są często wykorzystywane w nowoczesnych układach kierowniczych z napędem elektrycznym, co zwiększa ich znaczenie w kontekście współczesnych technologii motoryzacyjnych. W branży motoryzacyjnej standardem jest dążenie do minimalizacji luzów w układzie kierowniczym, a przekładnia ślimakowo-kulkowa, dzięki swojej konstrukcji, efektywnie spełnia te wymagania.

Pytanie 40

Który płyn eksploatacyjny oznaczany jest symbolem 10W/40?

A. Płyn do hamulców
B. Płyn chłodzący do silnika
C. Olej silnikowy
D. Płyn do spryskiwaczy
Odpowiedź, że płyn eksploatacyjny oznaczany symbolem 10W/40 to olej silnikowy, jest poprawna. Symbol 10W/40 odnosi się do klasy lepkości oleju silnikowego, podlegającej normom SAE (Society of Automotive Engineers). Liczba '10W' wskazuje na lepkość oleju w niskich temperaturach (W oznacza 'winter'), co oznacza, że olej zachowuje odpowiednią płynność w zimnych warunkach, co jest kluczowe przy uruchamianiu silnika w niskich temperaturach. Druga liczba '40' odnosi się do lepkości w wysokich temperaturach, co czyni olej odpowiednim do użycia w wyższych temperaturach roboczych silnika. Dzięki tym właściwościom, olej 10W/40 zapewnia odpowiednią ochronę silnika, zmniejsza tarcie i zużycie komponentów, a także minimalizuje ryzyko przegrzania. Jest to jeden z najczęściej stosowanych rodzajów olejów silnikowych, szczególnie w pojazdach osobowych oraz dostawczych, co wynika z ich uniwersalności i efektywności w szerokim zakresie warunków eksploatacyjnych.