Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 22:15
  • Data zakończenia: 19 grudnia 2025 22:56

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką funkcję pełnią diody Zenera w elektronice?

A. Prostują napięcie
B. Ograniczają prąd
C. Stabilizują napięcie
D. Modulują częstotliwość
Odpowiedzi dotyczące ograniczania prądu, modulacji częstotliwości i prostowania napięcia są nieprawidłowe w kontekście roli, jaką pełnią diody Zenera w układach elektronicznych. Ograniczanie prądu to funkcja diod szeregowych lub oporników, które są wykorzystywane do kontrolowania przepływu prądu w obwodzie. Diody Zenera, w przeciwieństwie do tych elementów, nie są zaprojektowane do ograniczania prądu, lecz do stabilizacji napięcia. Niepoprawne jest również twierdzenie, że diody Zenera modulują częstotliwość. Modulacja częstotliwości to proces zmieniający częstotliwość sygnału, co jest domeną specjalistycznych układów, takich jak modulatory, a nie diod Zenera. Ostatnim błędnym stwierdzeniem jest prostowanie napięcia. Prostowanie, które polega na przekształceniu prądu zmiennego na stały, realizowane jest zazwyczaj za pomocą prostowników, a nie diod Zenera. Typowe błędy myślowe, które prowadzą do tych nieprawidłowych wniosków, wynikają często z niepełnego zrozumienia podstawowych funkcji różnych typów diod. Wiedza na temat zastosowań diod jest kluczowa w projektowaniu układów elektronicznych, a ich niewłaściwe użycie może prowadzić do nieefektywnych i awaryjnych konstrukcji. Dlatego ważne jest, aby odpowiednio dobierać elementy elektroniczne zgodnie z ich funkcjami oraz charakterystyką, co jest fundamentem dobrych praktyk inżynieryjnych.

Pytanie 2

Silnik krokowy zastosowany w napędzie mechatronicznym sterowany jest za pomocą dedykowanego układu mikroprocesorowego. Która z wymienionych sekwencji komutacji spowoduje wirowanie wirnika silnika w prawo?

Ilustracja do pytania
A. (-P1)-(-P1)-(+P2)-(+P2)
B. (+P1)-(-P1)-(-P2)-(+P2)
C. (-P1)-(+P1)-(+P2)-(-P2)
D. (+P1)-(+P2)-(-P1)-(-P2)
Popatrzmy szerzej, dlaczego pozostałe sekwencje nie spowodują wirowania wirnika we właściwym kierunku. W silniku krokowym, szczególnie takim jak na rysunku, kolejność przełączania zasilania uzwojeń ma kluczowe znaczenie dla kierunku obrotu wirnika. Pojawiający się często błąd to założenie, że wystarczy dowolna zmiana stanu cewki, żeby silnik ruszył. Tymczasem tylko specyficzna logika, w której pole magnetyczne „ciągnie” wirnik wokół osi w sposób systematyczny, daje oczekiwany efekt. Przykładowo, sekwencje takie jak (-P1)-(-P1)-(+P2)-(+P2) czy (-P1)-(+P1)-(+P2)-(-P2) nie tworzą cyklicznego, przesuwającego się pola, lecz powodują losowe pobudzanie cewek, przez co wirnik może się zatrzymać lub zacząć „drgać”, zamiast obracać się w jednym kierunku. Stosowanie takich sekwencji prowadzi do nieefektywnej pracy – silnik nie wykonuje pełnych kroków, pojawiają się rezonanse, a czasem wręcz przepalenie uzwojeń przy dłuższym trzymaniu jednego stanu. Często spotykanym błędem jest mylenie logiki kolejności z logiką fazowania – nie wystarczy po prostu zmieniać polaryzacji, trzeba robić to w określonym rytmie. Gdy nie zachowasz odpowiedniej kolejności, silnik może nawet kręcić się w przeciwną stronę, co niestety jest nagminne przy pierwszych testach początkujących automatyków. Branżowe standardy (np. dokumentacje producentów silników krokowych) jasno opisują właściwe sekwencje dla danego kierunku obrotu – odstępstwa prowadzą do nieprzewidywalnych efektów. Moim zdaniem, żeby uniknąć tych błędów, najlepiej jest zawsze rozrysować sekwencje na osi czasu i przeanalizować zmianę kierunku pola magnetycznego. To bardzo pomaga w praktyce, szczególnie gdy projektuje się układy sterowania dla większych maszyn lub urządzeń precyzyjnych.

Pytanie 3

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. ochrony ramienia robota przed zderzeniem z operatorem
B. chwytania elementu z odpowiednią siłą
C. umieszczania elementu w odpowiedniej lokalizacji
D. ochrony ramienia robota przed przeciążeniem
Efektor umieszczony na końcu ramienia robota odgrywa kluczową rolę w procesie manipulacji obiektami, a jego podstawową funkcją jest chwytanie elementu z odpowiednią siłą. Efektory, w zależności od ich konstrukcji i przeznaczenia, mogą być wyposażone w różnorodne mechanizmy, takie jak szczęki, przyssawki czy chwytaki pneumatyczne, które umożliwiają precyzyjne uchwyty. Na przykład, w branży produkcyjnej, roboty stosowane do montażu często wykorzystują efektory do chwytania i manipulacji drobnymi komponentami, co zwiększa efektywność i precyzję procesu. Dobrą praktyką jest dostosowywanie siły chwytu do specyfiki materiałów – w przypadku delikatnych obiektów stosuje się mniejsze siły, aby uniknąć uszkodzeń. Efektory są również zaprojektowane zgodnie z normami bezpieczeństwa, co zapewnia, że ich działanie nie będzie zagrażać operatorom ani innym pracownikom. Wybór odpowiedniego efektora i jego parametrów jest zatem kluczowym elementem w projektowaniu systemów automatyzacji procesów.

Pytanie 4

Jaką liczbę stopni swobody posiada manipulator przedstawiony na diagramie?

A. 5 stopni swobody
B. 6 stopni swobody
C. 3 stopnie swobody
D. 4 stopnie swobody
Odpowiedzi, które mówią o mniejszych stopniach swobody, często wynikają z niepełnego zrozumienia, jak działają manipulatory w przestrzeni. Trzy czy cztery stopnie swobody mogą się sprawdzić w prostszych zadaniach, ale w bardziej skomplikowanych sytuacjach mogą nie dać rady. Na przykład manipulator z trzema stopniami swobody mógłby tylko ruszać się w trzech osiach, a to za mało, jeśli trzeba wykonywać trudniejsze operacje, które wymagają jednoczesnego ruchu i obrotu. Cztery stopnie swobody mogą sprawiać wrażenie, że robot jest bardziej zaawansowany, ale tak naprawdę ograniczają go do jednego, dość prostego ruchu. Ludzie często myślą, że mniej stopni swobody oznacza prostszą konstrukcję, ale w praktyce to może ograniczać roboty w ich działaniach. Jeśli chodzi o nowoczesną automatyzację, to pięć stopni swobody to minimum, by roboty mogły funkcjonować w dynamicznych warunkach. Rozumienie, jaką liczbę stopni swobody wybrać przy projektowaniu, jest naprawdę kluczowe, bo wpływa na efektywność i wszechstronność w automatyzacji.

Pytanie 5

Która kombinacja stanów logicznych wejść I2 i I3 sterownika w przedstawionym układzie wskazuje na poprawny montaż czujników?

Tłoczysko siłownika wsunięteTłoczysko siłownika wysunięte
Stan I2Stan I3Stan I2Stan I3
Zestaw 1.0011
Zestaw 2.1001
Zestaw 3.0110
Zestaw 4.1100
Ilustracja do pytania
A. Zestaw 4.
B. Zestaw 1.
C. Zestaw 3.
D. Zestaw 2.
Wybór innej odpowiedzi niż Zestaw 2. może wynikać z kilku powszechnych błędów myślowych, które są istotne w kontekście analizy stanów logicznych. Wiele osób może błędnie interpretować stany I2 i I3 jako niezależne, co prowadzi do założenia, że różne kombinacje mogą także spełniać wymagania montażowe. To podejście jest mylące, ponieważ w rzeczywistości stany te są ściśle powiązane z rzeczywistym działaniem systemu. Zestaw 1. mógłby sugerować, że zarówno tłoczysko jest w pozycji wciśniętej, co w praktyce nie odzwierciedla sytuacji, w której czujniki powinny sygnalizować stany logiczne. Zestaw 3. i 4. wprowadzają jeszcze większe zamieszanie, ponieważ zakładają stany, w których tłoczysko jest w pełni wysunięte lub w stanie neutralnym, co nie ma zastosowania w kontekście omawianego układu. W automatyce, kluczowe jest zrozumienie, że każdy stan logiczny ma swoje konsekwencje dla działania całego systemu. Przykładowo, błędna interpretacja tych stanów może prowadzić do niewłaściwej konfiguracji urządzeń, a tym samym do obniżenia wydajności systemu lub nawet jego uszkodzenia. Dlatego tak ważne jest, aby dokładnie analizować schematy i tabele stanów, stosując je do rzeczywistych warunków pracy czujników, aby uniknąć potencjalnych problemów związanych z ich działaniem.

Pytanie 6

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s
A. warunkowo.
B. impulsowo.
C. z opóźnieniem czasowym.
D. z ograniczeniem czasowym.
Odpowiedź "z opóźnieniem czasowym" jest poprawna, ponieważ zapis w metodzie Grafcet zawiera informację o opóźnieniu, które jest kluczowym elementem w automatyzacji procesów. Opóźnienia czasowe w systemach automatyki są często stosowane do synchronizacji działań, co zapewnia płynne działanie całego systemu. W tym przypadku, akcja otwarcia zaworu 1V1 następuje po upływie 2 sekund od momentu aktywacji danego kroku. Przykładem zastosowania takiego opóźnienia może być scenariusz, w którym otwarcie zaworu musi być zsynchronizowane z innymi procesami, na przykład uruchomieniem pompy, która dostarcza ciecz do zaworu. W takich sytuacjach, stosowanie opóźnień jest zgodne z najlepszymi praktykami w projektowaniu systemów automatyki, co zwiększa niezawodność i bezpieczeństwo operacji. Ponadto, standardy branżowe, takie jak IEC 61131-3, podkreślają znaczenie precyzyjnego definiowania czasów reakcji w systemach sterowania, co także odnosi się do omawianego przypadku.

Pytanie 7

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAM
B. CAE
C. CAD
D. SCADA
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest prawidłowa, ponieważ jest to system informatyczny służący do nadzorowania i kontrolowania procesów przemysłowych w czasie rzeczywistym. Systemy SCADA umożliwiają monitoring i zarządzanie urządzeniami zdalnymi, takimi jak pompy, maszyny czy systemy elektryczne, a także zbierają dane z tych urządzeń, które następnie przetwarzane są w celu analizy wydajności oraz optymalizacji procesów. Przykłady zastosowania SCADA obejmują przemysł petrochemiczny, energetykę oraz wodociągi, gdzie konieczne jest nieprzerwane monitorowanie parametrów operacyjnych. Kluczowe dla systemów SCADA jest ich zdolność do integracji z innymi technologiami, takimi jak PLC (Programowalne Sterowniki Logiczne) i HMI (Interfejsy Człowiek-Maszyna), co pozwala na stworzenie kompleksowego środowiska do zarządzania procesami. Wdrażanie standardów takich jak ISA-95 w kontekście integrowania SCADA z systemami zarządzania przedsiębiorstwem (ERP) jest również istotnym aspektem ich efektywności i nowoczesności. Dobrze zaprojektowane systemy SCADA są niezbędne dla zapewnienia bezpieczeństwa operacji i redukcji ryzyka awarii.

Pytanie 8

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Kluczy płaskich
B. Kluczy oczkowych
C. Szczypiec uniwersalnych
D. Szczypiec płaskich
Wybór niewłaściwych narzędzi do przykręcania przewodów hydraulicznych może prowadzić do poważnych problemów związanych z bezpieczeństwem i funkcjonalnością systemu. Szczypce uniwersalne, choć mogą wydawać się wszechstronnym narzędziem, nie są przeznaczone do precyzyjnego dokręcania nakrętek hydraulicznych. Ich konstrukcja sprawia, że siła aplikowana na nakrętki jest rozproszona, co może prowadzić do ich uszkodzenia. Użycie szczypiec płaskich również nie jest optymalne, ponieważ nie zapewniają one stabilności i precyzji, które są kluczowe podczas pracy z połączeniami hydraulicznymi. Z kolei klucze oczkowe, mimo że mogą być używane w niektórych zastosowaniach, często nie są wystarczająco uniwersalne do pracy z różnymi rozmiarami nakrętek w systemach hydraulicznych. Typowe błędy myślowe prowadzące do takich wniosków to brak zrozumienia, że przykręcanie połączeń hydraulicznych wymaga narzędzi zaprojektowanych do tego celu. Wybór odpowiedniego narzędzia, jakim są klucze płaskie, zapewnia nie tylko efektywność, ale również bezpieczeństwo pracy, co jest niezbędne w każdej instalacji hydraulicznej. Niezrozumienie znaczenia metodologii pracy z narzędziami może prowadzić do awarii systemu, co podkreśla znaczenie edukacji i praktyki w zakresie doboru właściwych narzędzi.

Pytanie 9

Olej mineralny wzbogacony składnikami, które poprawiają właściwości antykorozyjne oraz odporność na starzenie, a także z dodatkami zwiększającymi smarność, oznaczany jest jakim symbolem?

A. H
B. HVLP
C. HLP
D. HL
Odpowiedź HLP jest jak najbardziej na miejscu, bo chodzi tu o oleje mineralne, które mają różne dodatki, żeby lepiej działały w kwestii antykorozyjnej i smarności. HLP to oznaczenie, które mówi, że olej jest stworzony do hydrauliki, a w jego składzie znajdują się dodatki przeciwdziałające utlenianiu i zużyciu. Dzięki temu świetnie sprawdza się w systemach hydraulicznych, gdzie potrzebujemy czegoś naprawdę wydajnego. Na przykład, oleje HLP są często używane w maszynach przemysłowych czy hydraulice w pojazdach, bo są niezawodne i dobrze chronią przed korozją. W praktyce, te oleje trzymają się norm takich jak DIN 51524, co potwierdza ich jakość oraz odpowiednie właściwości. Wybierając olej HLP, zyskujemy nie tylko dłuższą żywotność maszyn, ale też mniejsze koszty eksploatacji i bardziej efektywną pracę.

Pytanie 10

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. zmierzyć rezystancję cewki
B. wymienić uszczelkę
C. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
D. wymienić membranę
Zwiększenie napięcia zasilania i podawanie go na cewkę elektrozaworu jest podejściem, które może prowadzić do poważnych problemów. Przede wszystkim, jeżeli elektrozawór nie otwiera się przy podanym napięciu znamionowym, może to sugerować, że cewka jest uszkodzona lub występuje inny problem, a niekoniecznie zbyt niskie napięcie. Podawanie wyższego napięcia może spowodować przegrzanie cewki i jej trwałe uszkodzenie, co jest niezgodne z zasadami bezpiecznej eksploatacji. Kolejnym błędem jest zakładanie, że membrana lub inne elementy zaworu są odpowiedzialne za jego niesprawność bez wcześniejszego zbadania stanu cewki. Takie podejście może prowadzić do niepotrzebnych kosztów i przedłużających się czasów napraw. Należy pamiętać, że elektrozawory powinny być diagnozowane w sposób systematyczny i zgodny z procedurami ustalonymi przez producentów oraz branżowe standardy, aby zminimalizować ryzyko błędnych decyzji naprawczych. Właściwą praktyką jest najpierw sprawdzenie wszystkich elementów, zanim podejmie się decyzje o ich wymianie.

Pytanie 11

Podzespół instalacji pneumatycznej, którego fragment dokumentacji technicznej przedstawiono poniżej, służy do usuwania

Dane techniczne:

  • całość można rozmontować i użyć jako osobne urządzenia (filtro-reduktor i olejarka)
  • filtr to podstawa do otrzymania czystego powietrza szczególnie w lakiernictwie
  • zalecany dla wszystkich pneumatycznych narzędzi takich jak: klucze, piły pneumatyczne, młotki itd.
  • ciśnienie jest dokładnie ustawialne dzięki zastosowanemu regulatorowi na filtrze
  • można też dokładnie ustawić wielkość mgły olejowej poprzez śrubę regulacyjną
  • filtr jest wyposażony w półautomatyczny spust kondensatu
  • przepływ powietrza na poziomie 750 l/min.
Ilustracja do pytania
A. zanieczyszczeń powietrza w postaci drobin stałych, redukowania ciśnienia i naolejania powietrza.
B. wilgoci z powietrza oraz stabilizowania jego ciśnienia i temperatury.
C. zanieczyszczeń powietrza w postaci drobin stałych i cząstek oleju.
D. oleju, wilgoci i wytwarzania nadciśnienia powietrza.
Wybór nieprawidłowej odpowiedzi wskazuje na pewne nieporozumienia dotyczące roli podzespołu instalacji pneumatycznej. Zanieczyszczenia powietrza to kluczowy element, który musi być skutecznie kontrolowany, aby zapewnić optymalną wydajność narzędzi pneumatycznych. Odpowiedzi sugerujące, że podzespół zajmuje się usuwaniem wilgoci lub stabilizowaniem ciśnienia i temperatury, mogą prowadzić do błędnych wniosków. Wilgoć w układzie pneumatycznym może prowadzić do korozji i uszkodzeń, a stabilizacja ciśnienia i temperatury to zadanie, które bardziej przypisane jest innym systemom. Niepoprawne odpowiedzi mogą także sugerować, że redukcja ciśnienia oraz naolejanie są niezwiązane z usuwaniem zanieczyszczeń, co jest nieprawdziwe. Te elementy są kluczowe w kontekście prawidłowego funkcjonowania systemów pneumatycznych, a ich niewłaściwe zrozumienie może prowadzić do nieefektywności w procesach przemysłowych. Właściwe zastosowanie filtrów, reduktorów i oliwiarek stanowi fundament dobrej praktyki w inżynierii pneumatycznej, a ich prawidłowe funkcjonowanie ma za zadanie nie tylko poprawić wydajność, ale również wydłużyć żywotność sprzętu. Niezrozumienie tych aspektów prowadzi do ryzyka awarii i zwiększenia kosztów związanych z konserwacją i naprawami.

Pytanie 12

Którą z przedstawionych na ilustracji nakrętek należy zastosować w połączeniach gwintowych, aby zapewnić ochronę przed zranieniem o powierzchnię gwintu oraz nadać im estetyczny wygląd?

Ilustracja do pytania
A. Nakrętkę 3.
B. Nakrętkę 4.
C. Nakrętkę 2.
D. Nakrętkę 1.
Wybór niewłaściwej nakrętki do połączeń gwintowych może prowadzić do wielu problemów, które mają zarówno praktyczne, jak i estetyczne konsekwencje. Nakrętki, które nie są wyposażone w zaślepki, nie tylko narażają użytkowników na potencjalne zranienia, ale także obniżają ogólną estetykę połączenia. Często myśli się, że nakrętki standardowe, które nie mają osłon, mogą być wystarczające, jednak w rzeczywistości ich ostrze krawędzie mogą być niebezpieczne, szczególnie w miejscach publicznych. Ponadto, brak osłony pozwala na gromadzenie się zanieczyszczeń w gwintach, co może prowadzić do korozji i uszkodzenia połączenia. W wielu przypadkach, takie zastosowanie może nie być zgodne z obowiązującymi normami bezpieczeństwa, co stawia na szali integralność konstrukcji. Warto pamiętać, że estetyka w projektowaniu nie jest drugorzędna - poprawnie dobrana nakrętka nie tylko wpływa na bezpieczeństwo, ale również na wrażenia wizualne i jakość produktu końcowego. Często występującym błędem jest również przekonanie, że nakrętka nie musi pasować do reszty projektu; w rzeczywistości każdy element ma znaczenie dla ogólnej funkcjonalności i wyglądu wyrobu. Wybierając niewłaściwie, można nie tylko pogorszyć bezpieczeństwo, ale również wartość estetyczną i funkcjonalną całego produktu.

Pytanie 13

Śrubę mikrometryczną do pomiaru głębokości otworów przedstawia rysunek

Ilustracja do pytania
A. A
B. C
C. D
D. B
Wybór niepoprawnej odpowiedzi może wynikać z niepełnego zrozumienia zasad działania śruby mikrometrycznej oraz jej konstrukcji. Narzędzia przedstawione w pozostałych odpowiedziach, takie jak A, Ds i C, nie spełniają kluczowych wymogów dla pomiaru głębokości. Śruba mikrometryczna została zaprojektowana tak, aby miała stabilną podstawę, co zapewnia odpowiednią pozycję pomiarową oraz eliminację błędów wynikających z ruchów rąk. Odpowiedzi, które nie posiadają wysuwanego pręta pomiarowego, nie mogą być używane do dokładnych pomiarów głębokości, ponieważ brak takiego elementu uniemożliwia dotarcie do dna otworu i odczytanie dokładnej wartości. Często zdarza się, że osoby nieprzygotowane technicznie mylą różne narzędzia pomiarowe z powodu ich podobnego wyglądu, co prowadzi do błędnych wniosków. Ważne jest zrozumienie, że każdy typ narzędzia ma swoje specyficzne zastosowanie i nie każdy sprzęt jest odpowiedni do pomiaru głębokości. Zrozumienie różnic między tymi narzędziami, a także znajomość ich właściwości jest kluczowe w kontekście zachowania rzetelności pomiarowej i jakości wykonywanych prac. Aby uniknąć takich pomyłek, warto zapoznać się z zasadami działania poszczególnych narzędzi oraz ich zastosowaniem w praktyce przemysłowej.

Pytanie 14

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Miernik przepływu powietrza
B. Miernik punktu rosy
C. Termomanometr bimetaliczny
D. Detektor wycieków
Miernik przepływu powietrza, detektor wycieków czy termomanometr bimetaliczny to urządzenia, które mają swoje zastosowania w systemach sprężonego powietrza, ale nie sprawdzą się, gdy chodzi o pomiar wilgotności i kondensatu. Miernik przepływu powietrza głównie ocenia, ile powietrza przechodzi przez system, co jest ważne, ale nie mówi nic o ilości wody w sprężonym powietrzu. Korzystanie z tego urządzenia może prowadzić do mylnych wniosków o jakości powietrza, zwłaszcza gdy nie jest odpowiednio osuszone. Detektor wycieków koncentruje się na znajdowaniu wycieków powietrza, co jest ważne dla efektywności, ale nie mówi nic o wilgotności. Z kolei termomanometr bimetaliczny mierzy temperaturę i ciśnienie, które też nie mają bezpośredniego związku z kondensatem w sprężonym powietrzu. Moim zdaniem, to może być mylące, bo mogą sugerować, że kontrola jakości powietrza to tylko monitorowanie przepływu czy wykrywanie wycieków, a tak naprawdę kluczowa jest kontrola wilgotności. Dlatego dobrze jest wybierać odpowiednie narzędzia do pomiaru, żeby utrzymać wysokie standardy jakości powietrza w przemysłowych systemach.

Pytanie 15

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 15 bar
B. 1 500 bar
C. 15 000 bar
D. 150 bar
Odpowiedź 150 bar jest prawidłowa z uwagi na zastosowanie wzoru na obliczenie ciśnienia w siłowniku hydraulicznym. Ciśnienie (p) oblicza się według wzoru p = F / A, gdzie F to siła wywierana przez siłownik, a A to powierzchnia czynna tłoka. W tym przypadku F wynosi 30 kN, co jest równoznaczne z 30 000 N, a A wynosi 20 cm², co należy przeliczyć na m² (20 cm² = 0,002 m²). Podstawiając wartości do wzoru: p = 30 000 N / 0,002 m² = 15 000 000 Pa, co daje 150 bar (1 bar = 100 000 Pa). W praktyce, w hydraulice przemysłowej, utrzymywanie właściwego ciśnienia ma kluczowe znaczenie dla efektywności działania układów, co wpływa na bezpieczeństwo oraz niezawodność maszyn. Technologie hydrauliczne są powszechnie stosowane w budownictwie, przemyśle motoryzacyjnym i lotniczym, gdzie precyzyjne sterowanie siłą i ruchem jest niezbędne.

Pytanie 16

Który z przekształtników używanych w systemach zasilania dla urządzeń mechatronicznych przekształca energię prądu stałego na energię prądu przemiennego z regulowanymi wartościami częstotliwości i napięcia?

A. Prostownik
B. Rozruch progresywny
C. Falownik
D. Regulator napięcia przemiennego
Falownik to urządzenie elektroniczne, które konwertuje energię prądu stałego (DC) na energię prądu przemiennego (AC) o regulowanych wartościach częstotliwości i napięcia. Jego podstawowym zastosowaniem jest zasilanie silników elektrycznych w układach mechatronicznych, gdzie wymagana jest precyzyjna kontrola prędkości obrotowej oraz momentu obrotowego. Dzięki falownikom możliwe jest dostosowanie parametrów zasilania do rzeczywistych potrzeb aplikacji, co prowadzi do zwiększenia efektywności energetycznej oraz wydajności urządzenia. Falowniki są szeroko stosowane w różnych gałęziach przemysłu, takich jak automatyka przemysłowa, wentylacja, klimatyzacja czy transport. Warto również wspomnieć o standardach, takich jak IEC 61800, które definiują wymagania dotyczące napędów elektrycznych i systemów sterowania. Stosowanie falowników przyczynia się do minimalizacji zużycia energii, a także poprawy jakości pracy urządzeń, dlatego są one kluczowym elementem nowoczesnych systemów mechatronicznych.

Pytanie 17

Który rodzaj obróbki ręcznej przedstawiono na rysunkach?

Ilustracja do pytania
A. Piłowanie.
B. Przecinanie.
C. Wiercenie.
D. Ścinanie.
Wybór odpowiedzi innych niż "Ścinanie" wskazuje na pewne nieporozumienia dotyczące procesów obróbczych. Przecinanie, na przykład, jest często mylone z ścinaniem, jednakże różni się od niego specyfiką narzędzi oraz kierunkiem działania siły. Przecinanie zazwyczaj dotyczy procesów, gdzie narzędzie przemieszcza się równolegle do materiału, co prowadzi do podziału materiału na części, a nie usuwania jego nadmiaru pod kątem. Wiercenie, z kolei, to proces polegający na tworzeniu otworów w materiałach, przy użyciu wierteł, co również nie ma nic wspólnego z opisaną techniką. W przypadku piłowania, chociaż używa się narzędzi tnących, to jednak technika ta polega na ruchu wzdłuż materiału, a nie na usuwaniu warstw przy użyciu kąta ostrza. Typowym błędem myślowym, który prowadzi do błędnych odpowiedzi, jest brak zrozumienia różnic między tymi procesami oraz ich zastosowań w praktyce. Dlatego ważne jest, aby szczegółowo zapoznać się z charakterystykami każdej z technik obróbczych oraz ich właściwościami, co pozwoli na dokładniejsze rozumienie i stosowanie ich w odpowiednich kontekstach.

Pytanie 18

Do którego urządzenia odnoszą się przedstawione w ramce informacje?

Stała wydajności (wydatek)
Cechy: objętość robocza 3,29 cm3/obr.,
prędkość obrotowa do 4800 obr./min.,
ciśnienie do 175 bar.
Zastosowanie: w hydraulicznych maszynach mobilnych i przemysłowych.
Zalecany napęd: bezpośredni współosiowy ze sprzęgłem elastycznym.
Wykorzystanie: jako urządzenie pomocnicze lub w instalacjach o niewielkich przepływach.
A. Pompy hydraulicznej.
B. Hydroakumulatora.
C. Silnika pneumatycznego.
D. Chłodnicy oleju hydraulicznego.
Pompa hydrauliczna jest kluczowym elementem w wielu systemach hydraulicznych, a informacje przedstawione w ramce doskonale odzwierciedlają jej charakterystykę. Pompy hydrauliczne charakteryzują się stałą wydajnością oraz możliwością regulacji ciśnienia roboczego, co jest niezbędne w aplikacjach przemysłowych i mobilnych. Zastosowanie pomp hydraulicznych jest szerokie, od układów sterowania w maszynach budowlanych, po systemy hydrauliczne w przemyśle motoryzacyjnym. W przypadku pomp z napędem współosiowym, elastyczne sprzęgła umożliwiają redukcję drgań oraz zwiększają żywotność układów. Zgodnie z najlepszymi praktykami branżowymi, dobór odpowiedniej pompy hydraulicznej powinien być oparty na analizie parametrów, takich jak objętość robocza, prędkość obrotowa oraz wymagane ciśnienie robocze, co pozwala na optymalne funkcjonowanie całego systemu hydraulicznego.

Pytanie 19

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
B. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
C. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
D. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 20

Próba włączenia napędu z prawidłowo działającym silnikiem trójfazowym za każdym razem powoduje włączenie wyłącznika instalacyjnego. Jakie działanie może potencjalnie rozwiązać ten problem?

A. Podłączenie kondensatora rozruchowego
B. Zastosowanie wyłącznika instalacyjnego zwłocznego
C. Zmiana kolejności faz
D. Odłączenie uziemienia silnika
Pojęcia związane z odłączeniem uziemienia silnika, podłączeniem kondensatora rozruchowego oraz zmianą kolejności faz nie są skutecznymi rozwiązaniami problemu zadziałania wyłącznika instalacyjnego. Odłączenie uziemienia może prowadzić do niebezpiecznych sytuacji, w których niekontrolowane napięcia mogą pojawić się na obudowie silnika, co stwarza ryzyko porażenia prądem elektrycznym. Uziemienie jest kluczowe dla bezpieczeństwa urządzeń elektrycznych, gdyż chroni zarówno operatorów, jak i urządzenia przed skutkami zwarcia. Z kolei zastosowanie kondensatora rozruchowego jest metodą, która może pomóc jedynie w przypadku silników jednofazowych, a nie trójfazowych. Silniki trójfazowe zazwyczaj nie wymagają kondensatorów rozruchowych, ponieważ ich konstrukcja pozwala na efektywny rozruch bez dodatkowego wsparcia. Zmiana kolejności faz, chociaż może wpłynąć na kierunek obrotów silnika, nie rozwiązuje problemu przeciążenia przy rozruchu. W rzeczywistości, zmiana ta może prowadzić do nieprawidłowej pracy silnika, a nawet jego uszkodzenia. Warto również zauważyć, że silniki trójfazowe posiadają obliczone wartości prądowe i odpowiedni dobór wyłączników instalacyjnych powinien brać pod uwagę te parametry, zamiast stosować metody, które mogą wprowadzić dodatkowe ryzyko i nieprawidłowości w działaniu systemu.

Pytanie 21

Na rysunku przedstawiono sprzęgło

Ilustracja do pytania
A. pierścieniowe.
B. jednokierunkowe.
C. elastyczne palcowe.
D. elastyczne kłowe.
Jeśli wybrałeś coś innego niż elastyczne kłowe, to może to być przez jakieś nieporozumienie co do nazw i rodzajów sprzęgieł. Na przykład, elastyczne palcowe różni się od kłowego tym, że ma elementy, które wyglądają jak palce i są mniej efektywne w tłumieniu wibracji. Sprzęgła pierścieniowe, które również nie były zaznaczone, nie mają elastyczności, przez co przenoszą większe drgania i obciążenia, co może wpływać negatywnie na trwałość systemu. Z jednokierunkowymi sprzęgłami sprawa jest podobna – przenoszą moment obrotowy tylko w jednym kierunku i nie redukują odchyleń, więc nie są dobre do sytuacji, gdzie potrzeba elastycznego połączenia. Zrozumienie różnic między tymi typami sprzęgieł i ich zastosowaniami jest kluczowe dla inżynierów. Często mylenie elastycznych sprzęgieł z ich sztywnymi odpowiednikami prowadzi do błędów, jak na przykład wybór sprzęgła, które nie redukuje drgań, co może powodować problemy z wydajnością i niezawodnością systemu.

Pytanie 22

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Pojemnościowego
B. Rezystancyjnego
C. Optycznego
D. Indukcyjnego
Zastosowanie czujników pojemnościowych, optycznych i indukcyjnych jako czujników zbliżeniowych opiera się na różnych zasadach fizycznych, które są fundamentalne dla ich funkcjonalności. Czujniki pojemnościowe działają na zasadzie zmian pojemności elektrycznej, gdy obiekt zbliża się do ich pola. To sprawia, że są w stanie wykrywać różne materiały, w tym dielektryki, co czyni je bardzo wszechstronnymi w zastosowaniach automatyki. Z kolei czujniki optyczne wykorzystują promieniowanie świetlne do detekcji obecności obiektów, co jest przydatne w wielu aplikacjach, takich jak zliczanie obiektów w linii produkcyjnej czy monitorowanie przepływu materiałów. Czujniki indukcyjne, bazujące na zmianach pola elektromagnetycznego, są idealne do wykrywania metalowych obiektów bez kontaktu, co jest niezwykle istotne w przemyśle, gdzie czystość i nienaruszalność komponentów są kluczowe. Wybór niewłaściwego czujnika, takiego jak rezystancyjny, może prowadzić do istotnych ograniczeń w aplikacjach, gdzie wymagana jest detekcja obiektów w ruchu lub w trudnych warunkach, co podkreśla znaczenie znajomości zasad działania różnych technologii czujnikowych. Dlatego ważne jest, aby zrozumieć różnice między tymi rodzajami czujników oraz ich właściwe zastosowania, aby zminimalizować ryzyko nieefektywności w projektach inżynieryjnych.

Pytanie 23

Jaką czynność należy przeprowadzić, aby zwiększyć średnicę otworu i umożliwić osadzenie w nim łba śruby?

A. Rozwiercanie
B. Wiercenie
C. Wiercenie wtórne
D. Pogłębianie
Wiercenie to proces robienia otworów, ale w tym przypadku to nie jest najlepszy wybór do powiększania średnicy otworu. Ono bardziej nadaje się do tworzenia nowych otworów, a nie do zmiany tych, które już są. Wiercenie wtórne też nie jest idealne, bo koncentruje się na uzupełnianiu istniejących otworów, a my potrzebujemy coś więcej. Rozwiercanie może działać w tej sytuacji, ale jest trudniejsze i może uszkodzić materiał, bo wymaga większej precyzji. Kiedy wybierasz metodę obróbcą, musisz brać pod uwagę wymagania projektu i materiał, z którego zrobiony jest element. Wiele osób myśli, że można te metody stosować zamiennie, a to prowadzi do problemów jak źle dobrane średnice otworów, co może zrujnować konstrukcję lub utrudnić montaż.

Pytanie 24

Jakiego materiału powinno się użyć do ekranowania urządzeń pomiarowych, aby zredukować wpływ pól elektromagnetycznych na ich funkcjonowanie?

A. Aluminium
B. Preszpan
C. Teflon
D. Szkło
Aluminium jest doskonałym materiałem do ekranowania urządzeń pomiarowych ze względu na swoje właściwości elektryczne. Ma wysoką przewodność elektryczną, co pozwala na skuteczne blokowanie pól elektromagnetycznych poprzez odbicie fal elektromagnetycznych oraz ich pochłanianie. W praktyce, ekranowanie aluminium znajduje zastosowanie w wielu aplikacjach, w tym w laboratoriach pomiarowych, gdzie precyzyjne pomiary są kluczowe. W branży inżynieryjnej aluminium jest szeroko stosowane do budowy obudów urządzeń, które wymagają ochrony przed zakłóceniami elektromagnetycznymi, zgodnie z normami takimi jak IEC 61000-4-3, które określają wymagania dotyczące odporności na zakłócenia elektromagnetyczne. Dobre praktyki inżynieryjne zalecają również łączenie ekranów z uziemieniem, co dodatkowo zwiększa skuteczność ekranowania. Wykorzystanie aluminium w tej roli umożliwia również redukcję masy urządzeń, co jest istotne w konstrukcji przenośnych aplikacji pomiarowych.

Pytanie 25

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 2 000 mm2
B. 1 000 mm2
C. 1 500 mm2
D. 3 000 mm2
Aby obliczyć powierzchnię czynną tłoka siłownika, należy skorzystać z równania związku między siłą, ciśnieniem i powierzchnią: F = P × A, gdzie F to siła, P to ciśnienie, a A to powierzchnia. W tym przypadku mamy siłę czynną równą 1600 N oraz ciśnienie wynoszące 1 MPa, co odpowiada 1 000 000 Pa. Przekształcamy równanie, aby znaleźć powierzchnię: A = F / P. Po podstawieniu wartości: A = 1600 N / 1 000 000 Pa = 0,0016 m², co po przeliczeniu na milimetry kwadratowe (1 m² = 1 000 000 mm²) daje 1600 mm². Jednak uwzględniając współczynnik sprawności równy 0,8, końcowy wynik wynosi: A = 1600 mm² / 0,8 = 2000 mm². Taka wiedza jest niezbędna w kontekście projektowania i analizy układów hydraulicznych, gdzie dokładność obliczeń ma kluczowe znaczenie dla bezpieczeństwa i efektywności działania systemów. W praktyce, dobrą praktyką jest również przeprowadzenie walidacji wyników przez pomiar rzeczywistych wartości w aplikacjach inżynieryjnych, co pomaga w optymalizacji projektów.

Pytanie 26

Które narzędzie przeznaczone jest do cięcia niezbrojonych przewodów pneumatycznych z tworzyw sztucznych?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Narzędzie oznaczone literą A, czyli nożyce do cięcia rur, zostało zaprojektowane specjalnie do precyzyjnego cięcia niezbrojonych przewodów pneumatycznych wykonanych z tworzyw sztucznych. Dzięki swojej konstrukcji, nożyce te zapewniają czyste i równe cięcia, co jest kluczowe w aplikacjach pneumatycznych, gdzie szczelność połączeń ma kluczowe znaczenie dla efektywności systemu. Użycie odpowiednich narzędzi do cięcia zapobiega uszkodzeniom materiału oraz minimalizuje ryzyko powstawania nieszczelności. W praktyce, zastosowanie nożyc do cięcia rur w instalacjach pneumatycznych jest powszechne w przemyśle, gdzie konieczne jest precyzyjne i szybkie przygotowanie przewodów do montażu, co jest zgodne z normami ISO 4414 dotyczącymi bezpieczeństwa w systemach pneumatycznych. Warto podkreślić, że stosowanie nożyc dedykowanych do tych materiałów jest najlepszą praktyką, która prowadzi do zwiększenia efektywności oraz bezpieczeństwa operacji.

Pytanie 27

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Konwersja kodu binarnego na format dziesiętny
B. Pobranie programu z kontrolera
C. Przetłumaczenie programu na kod binarny
D. Przesłanie programu do kontrolera
Polecenie COMPILE w środowisku do programowania urządzeń mechatronicznych polega na przetłumaczeniu programu na kod binarny, co jest kluczowym krokiem w procesie tworzenia aplikacji dla tych systemów. Tłumaczenie to jest niezbędne, ponieważ mikroprocesory i kontrolery w urządzeniach mechatronicznych operują na poziomie niskiego poziomu, gdzie jedynym zrozumiałym przez nie formacie jest kod binarny. Przykładem zastosowania tej procedury może być programowanie sterowników PLC, gdzie po napisaniu kodu w języku wysokiego poziomu, takim jak ladder diagram czy tekst strukturalny, następuje jego kompilacja do formatu binarnego, który jest następnie interpretowany przez sprzęt. Standardy takie jak IEC 61131-3 definiują różne języki programowania PLC, ale wszystkie wymagają etapu kompilacji. Poprawne przetłumaczenie programu gwarantuje, że algorytmy i logika działania będą realizowane zgodnie z założeniami projektowymi, co jest kluczowe dla funkcjonalności urządzeń mechatronicznych.

Pytanie 28

Jakie parametry mierzy prądnica tachometryczna?

A. napięcie elektryczne
B. prędkość liniową
C. prędkość obrotową
D. naprężenia mechaniczne
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału lub innego elementu mechanicznego. W praktyce, prądnicę tachometryczną wykorzystuje się w wielu zastosowaniach, takich jak systemy sterowania silnikami, automatyka przemysłowa czy w urządzeniach pomiarowych. Dzięki swojej precyzji, prądnice tachometryczne są standardem w pomiarach prędkości obrotowej, a ich stosowanie jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście automatyzacji, umożliwiają one monitorowanie i regulację procesów, co przekłada się na zwiększenie efektywności i bezpieczeństwa pracy maszyn. Przykładem mogą być systemy, w których prędkość obrotowa silnika musi być precyzyjnie kontrolowana, aby zapewnić optymalne warunki pracy.

Pytanie 29

Pokazany na rysunku sposób montowania podzespołów elektronicznych, na płytce obwodu drukowanego, to

Ilustracja do pytania
A. zgrzewanie.
B. spawanie.
C. lutowanie.
D. klejenie.
Lutowanie jest standardową metodą łączenia podzespołów elektronicznych na płytkach obwodów drukowanych (PCB). Proces ten polega na użyciu stopu lutowniczego, który po podgrzaniu w płynnej formie wypełnia szczeliny między elementami a płytką, a następnie po schłodzeniu tworzy trwałe połączenie. Zaletą lutowania jest jego zdolność do zapewnienia nie tylko solidnego połączenia elektrycznego, ale również wytrzymałości mechanicznej, co jest kluczowe w zastosowaniach elektronicznych. W praktyce lutowanie stosowane jest w produkcji urządzeń elektronicznych, takich jak komputery, telewizory czy telefony. Istnieją różne techniki lutowania, w tym lutowanie ręczne, lutowanie na fali czy lutowanie w piecu, które są dostosowane do różnych potrzeb produkcyjnych i typów urządzeń. Warto zaznaczyć, że lutowanie powinno być przeprowadzane zgodnie z normami IPC (Institute for Printed Circuits), które określają wymagania dotyczące jakości i niezawodności połączeń lutowanych.

Pytanie 30

Elastyczny przewód elektryczny, służący do łączenia elementów systemu elektrycznego w aplikacjach mechatronicznych, powinien być

A. zaizolowany na końcach
B. odizolowany na dowolną długość
C. równo przycięty na końcach
D. zakończony na końcach tulejkami
Zakończenie przewodu giętkiego tulejkami to naprawdę ważna sprawa, zwłaszcza z perspektywy bezpieczeństwa i skuteczności połączeń w systemach mechatronicznych. Tulejki, czyli końcówki przewodów, dają mocne i trwałe połączenia, co zmniejsza ryzyko różnych awarii, zarówno mechanicznych, jak i elektrycznych. Jak dobrze wiemy, dzięki tulejkom żyły przewodów są lepiej chronione przed uszkodzeniami mechanicznymi czy korozją, co na pewno wydłuża ich żywotność. Poza tym, użycie tulejek ułatwia podłączanie przewodów do różnych elementów systemu, jak złącza czy komponente elektroniczne. To jest w sumie istotne w układach mechatronicznych, bo często trzeba coś zmieniać. I jeszcze jedno: stosowanie tulejek jest zgodne z branżowymi normami i standardami, a to ma znaczenie nie tylko dla bezpieczeństwa operatorów, lecz także dla niezawodności całego systemu. Dlatego warto korzystać z tulejek w zakończeniach przewodów giętkich, bo to po prostu najlepsza praktyka w tej dziedzinie.

Pytanie 31

Prawidłowa kolejność dokręcania śrub lub nakrętek części przedstawionej na rysunku jest następująca:

Ilustracja do pytania
A. 1,2,3,4,5
B. 1,5,4,3,2
C. 2,4,1,3,5
D. 3,5,2,1,4
Wybór innej kolejności dokręcania, takiej jak 1,2,3,4,5, może prowadzić do poważnych problemów z równomiernym rozkładem siły, co jest kluczowym elementem w inżynierii mechanicznej. Dokręcanie w sekwencji liniowej, jak sugeruje ta odpowiedź, jest błędnym podejściem, które może prowadzić do skrzywienia części lub ich uszkodzenia w wyniku nierównomiernego docisku. W kontekście technicznym, takie działanie nie uwzględnia podstawowych zasad mechaniki, w tym równowagi sił i momentów, co jest fundamentalne dla stabilności konstrukcji. Typowym błędem, który może prowadzić do tego rodzaju myślenia, jest ignorowanie aspektów statyki i dynamiki, które powinny być podstawą każdej analizy związanej z dokręcaniem elementów. Dodatkowo, korzystanie z nieodpowiedniej sekwencji dokręcania, sugerowanej w odpowiedziach innych niż poprawna, może przyczynić się do przedwczesnego zużycia lub awarii komponentów, co w dłuższej perspektywie wiąże się z wysokimi kosztami napraw i przestojów produkcyjnych. Dlatego tak ważne jest, aby stosować się do sprawdzonych standardów oraz praktyk branżowych, które nie tylko zapewniają efektowność, lecz także bezpieczeństwo działania maszyn i urządzeń.

Pytanie 32

Jakiego rodzaju sprzęgła należy użyć do połączenia dwóch wałów przedstawionych na rysunku?

Ilustracja do pytania
A. Oldhama.
B. Łubkowego.
C. Kołnierzowego.
D. Tulejowego.
Sprzęgło Oldhama jest idealnym rozwiązaniem do połączenia wałów, które mogą być przesunięte względem siebie osiowo, co jest kluczowe w wielu zastosowaniach inżynieryjnych i przemysłowych. Jego konstrukcja pozwala na przenoszenie momentu obrotowego przy jednoczesnym zminimalizowaniu skutków przesunięcia osiowego. W praktyce, sprzęgła Oldhama znajdują zastosowanie w napędach, gdzie wały mogą być ustawione w różnych płaszczyznach, na przykład w robotyce czy automatyce. Ponadto, sprzęgła te charakteryzują się niskim zużyciem, co zwiększa ich trwałość oraz redukuje potrzebę konserwacji. Dobre praktyki inżynieryjne zalecają ich użycie w systemach, gdzie występują wibracje lub cykliczne obciążenia, ponieważ ich konstrukcja umożliwia tłumienie drgań. Przykładowo, w systemach napędowych samochodów elektrycznych czy maszyn CNC, sprzęgła Oldhama są powszechnie stosowane, co potwierdza ich wszechstronność i efektywność w różnych aplikacjach przemysłowych.

Pytanie 33

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. stabilizatora napięcia.
B. sterownika napięcia.
C. prostownika sterowanego.
D. prostownika niesterowanego.
Chociaż odpowiedzi na prostownik niesterowany, stabilizator napięcia i sterownik napięcia mogą wydawać się na pierwszy rzut oka uzasadnione, każda z nich zawiera istotne błędy w interpretacji funkcji i budowy przedstawionego schematu. Prostownik niesterowany, na przykład, opiera się na standardowych diodach, które nie mają możliwości regulacji momentu przewodzenia, co czyni go nieodpowiednim w kontekście omawianego rysunku. Bez możliwości regulacji, napięcie wyjściowe prostownika niesterowanego jest stałe, co ogranicza jego zastosowanie w systemach wymagających dostosowania. Z kolei stabilizatory napięcia, choć istotne w kontekście zapewnienia stabilnych wartości napięcia, działają na zupełnie innych zasadach, zazwyczaj stosując elementy takie jak tranzystory lub układy scalone, a nie tyrystory. Podobnie, sterowniki napięcia odnoszą się do szerszej kategorii urządzeń, które mogą regulować napięcie, ale niekoniecznie muszą mieć formę prostownika. Przykłady te ilustrują typowe błędy myślowe, które mogą prowadzić do niepoprawnych wniosków, takie jak mylenie funkcji regulacyjnych różnych układów czy niewłaściwe przypisywanie elementów do ich zastosowań. Aby poprawnie zrozumieć działanie układów prostowników oraz ich zastosowania, warto przyjrzeć się ich właściwościom oraz różnicom między różnymi typami, co pozwoli na lepsze odnalezienie się w tematyce zasilania i elektroniki.

Pytanie 34

Zamieniając stycznikowy system sterowania silnikiem elektrycznym na system oparty na sterowniku PLC, należy

A. usunąć przyciski sterujące i zastąpić je sterownikiem
B. odłączyć stycznik z układu i w jego miejsce wstawić sterownik
C. rozłączyć główny obwód i obwód sterujący silnikiem, a następnie podłączyć wszystkie elementy do sterownika
D. rozłączyć jedynie obwód sterujący silnikiem i podłączyć jego elementy do sterownika PLC
Rozłączenie obwodu głównego i obwodu sterowania silnika oraz podłączenie wszystkich elementów do sterownika nie jest praktycznym rozwiązaniem. W przypadku układu sterowania silnika elektrycznego, obwód główny zazwyczaj obejmuje elementy takie jak styczniki, zabezpieczenia termiczne czy przekaźniki, które są odpowiedzialne za bezpośrednie zasilanie silnika. Całkowite przeniesienie tych elementów do sterownika PLC mogłoby prowadzić do problemów z bezpieczeństwem oraz stabilnością działania systemu. Podobnie, odłączenie stycznika i zastąpienie go sterownikiem nie jest zalecane, ponieważ stycznik pełni kluczową rolę w zarządzaniu przepływem prądu do silnika. W kontekście automatyki, istotne jest, aby zachować rozdział funkcji sterowania i zasilania, co sprzyja bezpieczeństwu i niezawodności systemu. Wymontowanie przycisków sterowniczych i zastąpienie ich sterownikiem również ignoruje ważne zasady ergonomii i łatwości obsługi, które są kluczowe w projektowaniu systemów sterowania. Praktyki te mogą prowadzić do błędnych wniosków i nieefektywnego zarządzania systemem, co jest sprzeczne z najlepszymi praktykami w dziedzinie automatyki i sterowania.

Pytanie 35

Jakie urządzenie umożliwia pomiar temperatury łopat sprężarki o ruchu obrotowym?

A. pirometru
B. manometru
C. tensometru
D. termistora
Wybór tensometru do pomiaru temperatury wirujących łopat sprężarki przepływowej jest nieadekwatny, ponieważ tensometry służą do pomiaru deformacji materiałów, a nie temperatury. Ich działanie opiera się na pomiarze zmiany oporu elektrycznego w wyniku odkształcenia, co jest zupełnie inną kategorią pomiarów. Z kolei termistory, mimo że są czujnikami temperatury, działają na zasadzie zmiany oporu elektrycznego w odpowiedzi na zmiany temperatury, co może być stosunkowo powolne w kontekście dynamicznych warunków panujących w obrębie wirujących części sprężarki. Systemy kontroli w przemyśle często wymagają szybkich i dokładnych pomiarów, a termistory mogą nie zaspokajać tych potrzeb z uwagi na swoją konstrukcję i czas reakcji. Manometry, natomiast, służą do pomiaru ciśnienia gazów lub cieczy, co jest zupełnie innym parametrem niż temperatura. Pomiar ciśnienia nie ma bezpośredniego związku z temperaturą wirujących łopat, co czyni tę odpowiedź nieodpowiednią. Użycie niewłaściwych urządzeń pomiarowych prowadzi do błędnych wniosków i potencjalnych awarii, co podkreśla znaczenie wyboru odpowiednich narzędzi pomiarowych w kontekście specyficznych zastosowań inżynieryjnych. W praktyce inżynieryjnej istotne jest, aby wybierać urządzenia, które odpowiadają wymaganiom procesów, a zrozumienie różnic między różnymi typami czujników jest kluczowe dla zapewnienia efektywności operacyjnej i bezpieczeństwa systemów.

Pytanie 36

Na podstawie przedstawionej tabliczki znamionowej transformatora wskaż zależność, która określa jego przekładnię napięciową.

Ilustracja do pytania
A. K = 230/12 U
B. K = 12/0,83 U
C. K = 80/0,83 U
D. K = 12/230 U
Niepoprawne odpowiedzi pokazują, że można nie do końca zrozumieć relacje między napięciami na uzwojeniach w transformatorze. Na przykład, w przypadku pierwszej błędnej odpowiedzi, K = 12/230 U, to tak naprawdę mamy stosunek napięcia wtórnego do pierwotnego, co jest zupełnie odwrotne. Takie obliczenie może bardzo łatwo wprowadzić w błąd, sugerując że napięcie wtórne jest większe od pierwotnego, a to jest sprzeczne z zasadami działania transformatora, który tutaj działa jako obniżający napięcie. Druga błędna odpowiedź, K = 80/0,83 U, pokazuje złe wartości napięć, które w żaden sposób nie pasują do tego, co widnieje na tabliczce znamionowej. Wykorzystywanie przypadkowych value do obliczeń wskazuje na braki w zrozumieniu podstawowych zasad dotyczących transformacji napięć. Odpowiedź K = 12/0,83 U również jest niepoprawna, bo nie uwzględnia rzeczywistych napięć z specyfikacji transformatora. Takie pomyłki mogą wynikać z mylenia pojęć i złego podejścia do analizy danych technicznych. Ważne jest, aby zrozumieć, jak działa przekładnia napięciowa transformatora, bo to pozwala ocenić jego możliwości oraz odpowiednie zastosowania w inżynierii. Błędy w interpretacji mogą prowadzić do tego, że systemy elektryczne będą nieefektywne, a nawet niebezpieczne.

Pytanie 37

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. watomierz
B. omomierz
C. woltomierz
D. amperomierz
Wybór watomierza, woltomierza lub amperomierza do sprawdzenia ciągłości połączeń elektrycznych wskazuje na nieporozumienie w podstawowych funkcjach tych instrumentów. Watomierz służy do pomiaru mocy elektrycznej, co jest istotne w analizie zużycia energii, ale nie ma zastosowania w diagnozowaniu ciągłości przewodów. Woltomierz mierzy napięcie w obwodzie, co również nie jest bezpośrednio związane z oceną ciągłości połączeń. Może on wskazywać, czy napięcie istnieje w danym punkcie obwodu, ale nie informuje o jakości połączeń ani o możliwych przerwach. Amperomierz, z kolei, mierzy natężenie prądu, a jego użycie do sprawdzania ciągłości połączeń jest równie niewłaściwe, ponieważ wymaga on przepływu prądu przez obwód. Aby sprawdzić ciągłość, potrzebny jest pomiar rezystancji, co można zrobić tylko za pomocą omomierza. Stosowanie niewłaściwych narzędzi wynika często z braku zrozumienia ich funkcji oraz błędnych założeń, że pomiar innych wielkości może dostarczyć podobnych informacji. Kluczowe jest zatem, aby każdy technik i elektryk znał odpowiednie metody i narzędzia do diagnostyki instalacji elektrycznych, co pozwoli na skuteczną i bezpieczną pracę.

Pytanie 38

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Rozdzielający
B. Zwrotny
C. Odcinający
D. Przelotowy
Wybór niewłaściwego zaworu wynika z nieporozumienia dotyczącego funkcji poszczególnych typów zaworów. Zawór rozdzielający nie zapewnia jednokierunkowego przepływu czynnika roboczego, lecz ma na celu kierowanie przepływu do różnych sekcji systemu. Używany jest w aplikacjach, gdzie konieczne jest przełączanie między różnymi obiegami, co czyni go nieodpowiednim w kontekście wymagania o przepływie tylko w jednym kierunku. Zawór odcinający, z kolei, służy do całkowitego zamykania lub otwierania przepływu, a nie do jego kontrolowania w określonym kierunku. W praktyce, zawory odcinające są istotne w sytuacjach, gdzie konieczne jest całkowite odcięcie zasilania do danej linii, jednak nie regulują one kierunku przepływu, co jest kluczowe w kontekście pytania. Zawór przelotowy, podobnie jak zawór odcinający, nie ogranicza przepływu do jednego kierunku, ale raczej umożliwia swobodny przepływ w obu kierunkach. Zrozumienie charakterystyki tych zaworów jest kluczowe dla prawidłowego projektowania i eksploatacji systemów hydraulicznych i pneumatycznych, aby uniknąć błędów, które mogą prowadzić do awarii systemu.

Pytanie 39

Na rysunku przedstawiono elementy połączenia

Ilustracja do pytania
A. kołkowego.
B. sworzniowego.
C. gwintowego.
D. nitowego.
Wybór odpowiedzi dotyczących połączenia gwintowego, kołkowego lub nitowego wskazuje na nieporozumienie w zakresie identyfikacji elementów połączeniowych oraz ich funkcji. Połączenie gwintowe wykorzystuje zakręcone elementy, takie jak śruby i nakrętki, co nie znajduje odzwierciedlenia w przedstawionych elementach na zdjęciu. W tym przypadku nie dostrzega się widocznych gwintów, które są niezbędne do prawidłowego zrozumienia tego typu połączenia. W odniesieniu do połączenia kołkowego, jego zastosowanie opiera się na kołkach, które są wprowadzane w otwory i nie wymagają dodatkowych elementów zabezpieczających, jak pierścienie segera, co czyni je mało podobnymi do sworzniowego. Z kolei połączenie nitowe, które polega na użyciu nitów, również nie jest adekwatne w kontekście przedstawionego zdjęcia. Nity są stosowane w sytuacjach, w których wymagana jest stała, nieodwracalna forma połączenia, a zdjęcie wskazuje na możliwość demontażu, co jest typowe dla połączeń sworzniowych. Zrozumienie różnic między tymi rodzajami połączeń jest kluczowe w inżynierii, gdyż każdy typ ma swoje unikalne zastosowania oraz wymagania montażowe. Oceniając te alternatywy, istotne jest, aby zapoznać się z ich parametrami oraz zastosowaniem w rzeczywistych projektach inżynieryjnych.

Pytanie 40

Zadaniem czujnika kontaktronowego zamontowanego na siłowniku jest sygnalizacja

Ilustracja do pytania
A. miejsca nieszczelności siłownika.
B. przekroczenia wartości ciśnienia roboczego.
C. położenia tłoka siłownika.
D. przekroczenia wartości temperatury cylindra.
Czujnik kontaktronowy zamontowany na siłowniku pełni kluczową rolę w sygnalizacji położenia tłoka, co jest istotne w wielu aplikacjach automatyzacji i mechaniki. Działa na zasadzie reakcji na pole magnetyczne, które generowane jest przez magnes umieszczony na tłoku. Gdy tłok przesuwa się wzdłuż cylindra, magnes zbliża się do kontaktronu, co powoduje zamknięcie lub otwarcie obwodu elektrycznego, sygnalizując tym samym aktualne położenie tłoka. Dzięki zastosowaniu czujników kontaktronowych, operatorzy maszyn mogą zdalnie monitorować położenie tłoka, co zwiększa bezpieczeństwo i efektywność procesów przemysłowych. Przykładem praktycznego zastosowania są systemy automatyki przemysłowej, gdzie precyzyjne pozycjonowanie tłoków jest kluczowe dla synchronizacji ruchu różnych elementów maszyn. Standardy branżowe, takie jak ISO 13849 dotyczące bezpieczeństwa maszyny, podkreślają znaczenie monitorowania położenia elementów roboczych w kontekście bezpieczeństwa operacji, co czyni czujniki kontaktronowe niezbędnym elementem nowoczesnych systemów automatyki.