Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 10:35
  • Data zakończenia: 8 grudnia 2025 10:55

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który symbol graficzny oznacza sterowanie ręczne dźwignią?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór niewłaściwego symbolu do oznaczenia sterowania ręcznego dźwignią może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i efektywności operacyjnej. Symbol graficzny, który nie przedstawia dźwigni z rękojeścią, może sugerować inne mechanizmy lub metody sterowania, takie jak automatyczne lub zdalne sterowanie, co może wprowadzać w błąd operatorów. Takie zamieszanie nie tylko utrudnia prawidłową obsługę maszyn, ale także zwiększa ryzyko wypadków w miejscu pracy. Operatorzy, którzy nie rozumieją różnicy między tymi symbolami, mogą nieświadomie używać niewłaściwych procedur, co prowadzi do nieefektywnego wykorzystania sprzętu. W przemyśle, gdzie precyzyjne działanie jest kluczowe, każdy błąd w identyfikacji symboli może skutkować nieprawidłowym działaniem urządzeń, co w konsekwencji wpłynie na wydajność produkcji. Dlatego istotne jest, aby pracownicy byli odpowiednio przeszkoleni w zakresie rozpoznawania i interpretacji symboli graficznych, co jest częścią standardów bezpieczeństwa i jakości, takich jak normy ISO. Opanowanie tych umiejętności jest niezbędne dla zapewnienia bezpiecznego i efektywnego środowiska pracy.

Pytanie 2

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Dynamometrycznego
B. Imbusowego
C. Nasadowego
D. Płaskiego
Odpowiedzi płaskiego, nasadowego i dynamometrycznego są nieprawidłowe z różnych powodów. Klucz płaski, choć jest popularnym narzędziem, nie sprawdzi się w przypadku śrub z gniazdem sześciokątnym, ponieważ jego konstrukcja nie pasuje do kształtu gniazda. W takich sytuacjach zastosowanie klucza płaskiego może prowadzić do poślizgu i uszkodzenia zarówno narzędzia, jak i śruby. Klucz nasadowy, mimo iż jest użyteczny w wielu zastosowaniach, również nie jest odpowiedni, ponieważ jego gniazdo nie jest zoptymalizowane do pracy ze śrubami imbusowymi. Klucze nasadowe są przeznaczone głównie do śrub z łbem sześciokątnym zewnętrznym. Klucz dynamometryczny, z kolei, jest narzędziem służącym do przykręcania śrub z określonym momentem obrotowym, co oznacza, że jest stosowany w sytuacjach, gdzie ważne jest precyzyjne dokręcenie. Jednakże, bez odpowiedniego klucza do wstępnego luzowania takich śrub, dynamometryczny nie będzie miał zastosowania. Dlatego klucz imbusowy jest jedynym narzędziem, które zapewnia efektywne i bezpieczne wykręcanie śrub z łbem walcowym i gniazdem sześciokątnym, dzięki czemu unikamy błędów i potencjalnych uszkodzeń.

Pytanie 3

Rezystor o wartości znamionowej 1,2 kΩ i tolerancji 2% ma kod barwny

KolorWartośćMnożnikTolerancja
1 pasek2 pasek3 pasek4 pasek
brak---± 20 %
srebrny--10-2 Ω± 10 %
złoty--10-1 Ω± 5 %
czarny-0100 Ω-
brązowy11101 Ω± 1 %
czerwony22102 Ω± 2 %
pomarańczowy33103 Ω-
żółty44104 Ω-
zielony55105 Ω± 0,5 %
niebieski66106 Ω± 0,25 %
fioletowy77107 Ω± 0,1 %
szary88108 Ω± 0,05 %
biały99109 Ω-
A. czerwony, brązowy, czerwony, czerwony.
B. brązowy, czerwony, czerwony, czerwony.
C. brązowy, brązowy, czerwony, czerwony.
D. brązowy, czerwony, czerwony, złoty.
Zrozumienie wartości oznaczanych przez kolory pasków na rezystorach jest kluczowe w projektowaniu obwodów elektronicznych. W przypadku niepoprawnych odpowiedzi, można zauważyć kilka typowych błędów myślowych. Niektóre z nich mogą wynikać z błędnej interpretacji wartości cyfr przypisanych poszczególnym kolorom. Na przykład, odpowiadając na to pytanie z pomocą kolorów brązowego i czerwonego, można błędnie zinterpretować kolejność pasków. Niektórzy mogą sądzić, że drugi pasek powinien mieć inną wartość, co prowadzi do błędnych obliczeń. Przy niepoprawnym doborze kolorów, jak w przypadku odpowiedzi brązowy, brązowy, czerwony, czerwony, widać, że zinterpretowano dwa brązowe paski jako 1,1 zamiast 1,2. Innym problemem jest pomylenie mnożnika, co może zniszczyć cały dobór elementów w układzie. Mnożnik to kluczowy element, który wpływa na wartości rzeczywiste rezystorów; błędna interpretacja może prowadzić do zastosowania niewłaściwych komponentów. Zrozumienie, że rezystory o różnej tolerancji również różnią się w zastosowaniach, jest niezbędne. W przypadku rezystora 1,2 kΩ z tolerancją 2%, każdy błąd w obliczeniach może prowadzić do nieprawidłowego działania urządzenia. Dlatego tak ważne jest praktyczne podejście do nauki, które uwzględnia nie tylko teorię, ale i zastosowanie w rzeczywistych układach elektronicznych.

Pytanie 4

Jakie urządzenie pośredniczy w interakcji między urządzeniem mechatronicznym a jego użytkownikiem?

A. Robot przemysłowy
B. Sterownik PLC
C. Przekaźnik programowalny
D. Panel operatorski HMI
Sterownik PLC, robot przemysłowy i przekaźnik programowalny to urządzenia, które pełnią różne funkcje w systemach automatyki, ale nie służą jako bezpośredni interfejs komunikacyjny pomiędzy operatorem a maszyną. Sterownik PLC (Programmable Logic Controller) jest używany do automatyzacji procesów i zarządzania urządzeniami w zakładach produkcyjnych. Jego główną rolą jest monitorowanie sygnałów wejściowych z czujników i wykonywanie odpowiednich działań na wyjściu, jednak nie jest zaprojektowany do bezpośredniego interakcji z operatorem. Robot przemysłowy z kolei wykonuje precyzyjnie zaprogramowane ruchy i operacje, ale również nie komunikuje się bezpośrednio z użytkownikiem w sposób interaktywny. Przekaźnik programowalny działa na zasadzie przełączania sygnałów elektrycznych, co czyni go przydatnym w prostych aplikacjach, ale również nie spełnia roli interfejsu operatora. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji systemów mechatronicznych. Często mylnie zakłada się, że te urządzenia mogą pełnić rolę interfejsu, co prowadzi do nieefektywności w obsłudze i nadzoru nad procesami technologicznymi. Odpowiednie zastosowanie technologii HMI pozwala na lepsze zarządzanie systemami oraz poprawę wydajności pracy operatorów poprzez dostarczenie im narzędzi do efektywnej interakcji z maszynami.

Pytanie 5

Izolacja w kolorze niebieskim jest używana dla kabli

A. sygnałowych
B. neutralnych
C. fazowych
D. ochronnych
Izolacja niebieska w instalacjach elektrycznych jest standardowo stosowana dla przewodów neutralnych. W praktyce oznaczenie kolorystyczne przewodów ma na celu zabezpieczenie przed błędami w podłączeniach i zwiększenie bezpieczeństwa użytkowników. Przewód neutralny, zazwyczaj oznaczony kolorem niebieskim, pełni kluczową rolę w obwodach elektrycznych, umożliwiając powrót prądu do źródła zasilania. Zgodnie z normami międzynarodowymi, takimi jak IEC 60446, stosowanie jednolitych kolorów dla przewodów ma na celu ułatwienie identyfikacji ich funkcji oraz minimalizację ryzyka nieprawidłowego podłączenia. W praktyce, w przypadku domowych instalacji elektrycznych, przewody neutralne są często wykorzystywane w obwodach oświetleniowych i gniazdkowych, co sprawia, że ich prawidłowe oznaczenie jest kluczowe dla bezpieczeństwa oraz zgodności z przepisami budowlanymi. Właściwe stosowanie kolorów w identyfikacji przewodów jest istotnym elementem w pracy elektryków i instalatorów, co podkreśla znaczenie standardów w tej dziedzinie.

Pytanie 6

Którym kluczem należy dokręcić śruby podczas montażu elementu przedstawionego na rysunku?

Ilustracja do pytania
A. Dynamometrycznym.
B. Uniwersalnym.
C. Oczkowym.
D. Nasadowym.
Wybór niewłaściwego narzędzia do dokręcania śrub może prowadzić do poważnych konsekwencji, zarówno dla bezpieczeństwa, jak i trwałości konstrukcji. Klucze oczkowe, nasadowe i uniwersalne, choć popularne, nie są przeznaczone do precyzyjnego kontrolowania momentu dokręcania. Klucz oczkowy, na przykład, zapewnia świetny chwyt, ale nie ma możliwości ustawienia określonego momentu obrotowego, co może prowadzić do sytuacji, w której śruby są dokręcone zbyt luźno lub zbyt mocno. Klucz nasadowy również nie zapewnia tej funkcjonalności, a jego użycie w kontekście elementów wymagających precyzyjnego momentu dokręcenia może zakończyć się uszkodzeniem złączy. Klucze uniwersalne, choć wszechstronne, również nie są dostosowane do takich zadań, ponieważ ich konstrukcja nie umożliwia regulacji momentu dokręcania. W podejściu do montażu elementów technicznych, nie można lekceważyć znaczenia dobrych praktyk oraz standardów, które potwierdzają potrzebę użycia klucza dynamometrycznego w sytuacjach wymagających precyzyjnego momentu, co powinno być kluczowym punktem w procesie montażu.

Pytanie 7

Rurka Bourdona stanowi część

A. smarownicy
B. manometru
C. reduktora ciśnienia
D. filtru powietrza
Rurka Bourdona jest kluczowym elementem manometru, który służy do pomiaru ciśnienia gazów i cieczy. Działa na zasadzie deformacji, gdy ciśnienie wewnętrzne powoduje, że elastyczna rurka zmienia swój kształt. Zmiana ta jest następnie przekształcana na wskazanie na skali manometru, co pozwala na dokładny pomiar ciśnienia. Rurki Bourdona są powszechnie stosowane w różnych branżach, takich jak przemysł chemiczny, petrochemiczny, a także w systemach HVAC. Zgodnie z normami, takimi jak ISO 5171, manometry powinny być kalibrowane regularnie, aby zapewnić ich dokładność i zgodność z wymaganiami. Przykładem praktycznego zastosowania może być monitorowanie ciśnienia w kotłach parowych, gdzie precyzyjny pomiar jest kluczowy dla bezpieczeństwa i efektywności działania systemu. W ogólności, zastosowanie rurki Bourdona w manometrach jest nie tylko powszechne, ale także ściśle związane z zapewnieniem odpowiednich standardów bezpieczeństwa i jakości w różnych aplikacjach przemysłowych.

Pytanie 8

Pracownik upadł na twardą nawierzchnię z wysokości 4 metrów i doznał drobnego urazu głowy, jednak jest przytomny i odczuwa mrowienie w kończynach. Co należy zrobić w pierwszej kolejności?

A. przenieść poszkodowanego w bezpieczne miejsce i wezwać pomoc
B. posadzić poszkodowanego na krześle i opatrzyć ranę głowy
C. pozostawić poszkodowanego w pozycji leżącej i wezwać pomoc
D. podnieść poszkodowanego i opatrzyć ranę głowy
W sytuacji, gdy pracownik doznał urazu po upadku z wysokości, kluczowe jest zapewnienie mu bezpieczeństwa oraz niedopuszczenie do pogorszenia jego stanu. Pozostawienie poszkodowanego w pozycji leżącej minimalizuje ryzyko poważniejszych obrażeń, takich jak uraz kręgosłupa czy wstrząs mózgu. W takiej pozycji można również monitorować jego stan oraz ułatwić dostęp do oddechu, co jest istotne w przypadku potencjalnych problemów z oddychaniem. Natychmiastowe wezwanie pomocy medycznej jest niezbędne, ponieważ tylko wykwalifikowany personel medyczny może przeprowadzić szczegółową ocenę stanu poszkodowanego oraz zapewnić odpowiednie leczenie. Dobre praktyki w zakresie pierwszej pomocy podkreślają, że nie należy przemieszczać poszkodowanego, chyba że grozi mu bezpośrednie niebezpieczeństwo, takie jak pożar czy wybuch. Na przykład, w przypadku urazów głowy, stabilizacja kręgosłupa jest absolutnie priorytetowa. Zastosowanie standardów pierwszej pomocy, takich jak ABC (Airway, Breathing, Circulation), pozwala na efektywne zarządzanie sytuacją, zapewniając bezpieczeństwo i komfort poszkodowanego do czasu przybycia służb medycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Czynniki takie jak nacisk, długość gięcia, wysięg, przestrzeń między kolumnami, skok, prędkość dojścia, prędkość operacyjna, prędkość powrotu, pojemność zbiornika oleju oraz moc silnika to cechy charakterystyczne dla?

A. szlifierki narzędziowej
B. frezarki uniwersalnej
C. prasy krawędziowej
D. przecinarki plazmowej
Prawidłowa odpowiedź to prasa krawędziowa, która jest maszyną służącą do formowania blachy poprzez jej zginanie. Parametry, takie jak nacisk, długość gięcia czy odległość między kolumnami, są kluczowe dla efektywności i precyzji procesów gięcia blachy. Nacisk określa maksymalną siłę, jaką prasa może zastosować do zgięcia materiału, a długość gięcia wpływa na wielkość elementów, które mogą być formowane. Wysięg to odległość robocza narzędzi w prasie, co ma znaczenie przy obróbce dłuższych detali. Prędkości dojścia, robocza i powrotu są istotne dla optymalizacji cyklu pracy maszyny, co przekłada się na wydajność produkcji. Dodatkowo pojemność zbiornika oleju oraz moc silnika wpływają na wydajność i stabilność pracy prasy. W kontekście standardów branżowych, prasy krawędziowe muszą spełniać normy dotyczące bezpieczeństwa oraz jakości produkcji, takie jak normy ISO. W przemyśle metalowym prasy krawędziowe są często wykorzystywane do produkcji elementów konstrukcyjnych, obudów czy komponentów maszyn. Przykładem mogą być zastosowania w branży motoryzacyjnej, gdzie precyzyjne zgięcie blach jest kluczowe dla jakości finalnego produktu.

Pytanie 11

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Detektor wycieków
B. Miernik przepływu powietrza
C. Termomanometr bimetaliczny
D. Miernik punktu rosy
Miernik przepływu powietrza, detektor wycieków czy termomanometr bimetaliczny to urządzenia, które mają swoje zastosowania w systemach sprężonego powietrza, ale nie sprawdzą się, gdy chodzi o pomiar wilgotności i kondensatu. Miernik przepływu powietrza głównie ocenia, ile powietrza przechodzi przez system, co jest ważne, ale nie mówi nic o ilości wody w sprężonym powietrzu. Korzystanie z tego urządzenia może prowadzić do mylnych wniosków o jakości powietrza, zwłaszcza gdy nie jest odpowiednio osuszone. Detektor wycieków koncentruje się na znajdowaniu wycieków powietrza, co jest ważne dla efektywności, ale nie mówi nic o wilgotności. Z kolei termomanometr bimetaliczny mierzy temperaturę i ciśnienie, które też nie mają bezpośredniego związku z kondensatem w sprężonym powietrzu. Moim zdaniem, to może być mylące, bo mogą sugerować, że kontrola jakości powietrza to tylko monitorowanie przepływu czy wykrywanie wycieków, a tak naprawdę kluczowa jest kontrola wilgotności. Dlatego dobrze jest wybierać odpowiednie narzędzia do pomiaru, żeby utrzymać wysokie standardy jakości powietrza w przemysłowych systemach.

Pytanie 12

Na podstawie danych katalogowych napędu bramy garażowej wskaż zasilacz, którego należy użyć do zasilania akcesoriów tego napędu.

Napięcie zasilania (V ~/Hz)230/50
Napięcie zasilania akcesoriów (V DC)24
Maks. obciążenie akcesoriów (mA)200
Układ logicznyAutomatyczny/
półautomatyczny
Wyprowadzenia płytyOtwieranie/stop/
zabezpieczenia/
ukł. kontrolny/lampka
błyskowa 24 VDC
Czas świecenia lampy oświetleniowej2 min


Napięcie
wyjściowe
Natężenie prądu
wyjściowego
Zasilacz 1.24 V ~0,5 A
Zasilacz 2.24 V =0,2 A
Zasilacz 3.230 V ~0,5 A
Zasilacz 4.230 V =0,2 A
A. Zasilacza 4.
B. Zasilacza 2.
C. Zasilacza 1.
D. Zasilacza 3.
Wybór zasilacza 2 to strzał w dziesiątkę, bo jego parametry, czyli napięcie 24 V i prąd 0,2 A, idealnie pasują do wymagań tych napędów bramy garażowej. Napędy, które mamy w ofercie, zwykle potrzebują stabilnego zasilania 24 V DC, to takie standardowe napięcie w wielu systemach automatyzacji. Napięcie jest mega ważne, bo jak byśmy dali za wysokie, to to może popsuć elektronikę, a jak za niskie, to napęd nie będzie działał jak trzeba. Dzięki temu, że dobrze dobraliśmy zasilacz, zapewniamy nie tylko sprawne działanie, ale też dłuższą żywotność napędu. W praktyce, kiedy dobieramy zasilacz do napędu bramy, musimy zwracać uwagę nie tylko na napięcie, ale także na prąd – zasilacz musi dawać wystarczająco dużo prądu przy rozruchu. Wiele zasilaczy ma różne zabezpieczenia, jak zabezpieczenie przeciążeniowe, co rzecz jasna poprawia bezpieczeństwo. Zasilacz 2 świetnie sprawdzi się w automatyce, która obsługuje otwieranie i zamykanie bramy, co znacznie podnosi komfort i bezpieczeństwo użytkowania.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Śrubę mikrometryczną do pomiaru głębokości otworów przedstawia rysunek

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Śruba mikrometryczna do pomiaru głębokości otworów jest precyzyjnym narzędziem pomiarowym, które znajduje szerokie zastosowanie w inżynierii oraz w różnych dziedzinach produkcji, gdzie dokładność pomiaru jest kluczowa. W przypadku odpowiedzi B, prawidłowo zidentyfikowane zostały kluczowe cechy tego narzędzia: płaska podstawa, która stabilnie opiera się na krawędzi otworu, oraz pręt z końcówką pomiarową, który umożliwia dokładne wsunięcie w głąb otworu. Takie rozwiązanie zapewnia precyzyjne odczyty, co jest istotne w praktyce inżynierskiej, zwłaszcza w kontekście tolerancji i pasowania elementów. Warto również zauważyć, że standardy ISO dotyczące narzędzi pomiarowych zalecają regularne kalibracje takich urządzeń, aby zapewnić ich dokładność. Dzięki precyzyjnej konstrukcji, mikrometryczne śruby do pomiaru głębokości są nieocenione w procesach kontroli jakości, gdzie wymagane są szczegółowe pomiary głębokości otworów w materiałach. Dobre praktyki wskazują na konieczność przeszkolenia operatorów w zakresie użycia tych narzędzi, co zwiększa efektywność i dokładność pomiarów.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Na rysunku przedstawione zostały fragmenty dwóch elementów, które należy połączyć techniką połączenia wciskowego wtłaczanego. Jaka powinna być zależność pomiędzy wymiarami d1 i d2?

Ilustracja do pytania
A. dl < d2
B. dl > d2
C. dl ≤ d2
D. dl = d2
Zrozumienie związku między wymiarami d1 i d2 w połączeniu wciskowym wtłaczanym jest kluczowe dla projektowania trwałych i efektywnych połączeń. Odpowiedzi, które sugerują, że dl ≤ d2, dl < d2 lub dl = d2, są błędne i wynikają z nieprawidłowego zrozumienia zasady działania połączenia wciskowego. Przy założeniu, że d2 jest mniejsze lub równe d1, można by pomyśleć, że niewielkie różnice wymiarowe są wystarczające do zapewnienia stabilności. W rzeczywistości, aby zapewnić odpowiednie tarcie i uniknąć luzu, średnica wału musi być zdecydowanie większa od średnicy otworu. Jeśli d1 jest równe lub mniejsze od d2, połączenie nie będzie miało wystarczającej siły utrzymującej, co może prowadzić do przemieszczenia elementów lub ich uszkodzenia podczas pracy. W praktyce, takie błędne podejście można spotkać w przypadkach, gdzie inżynierowie nie uwzględniają odpowiednich tolerancji wymiarowych, co prowadzi do niepewnych i nietrwałych połączeń. Dlatego kluczowe jest zrozumienie, że połączenia wciskowe wymagają starannego doboru wymiarów, aby uniknąć nadmiernych naprężeń, które mogą uszkodzić zarówno element wciskany, jak i otwór. Właściwe projektowanie zgodnie z normami, takimi jak ISO lub ANSI, powinno opierać się na zasadzie, że d1 zdecydowanie przewyższa d2, co zapewnia niezawodność i efektywność połączenia.

Pytanie 20

~230V Zadaniem kondensatora C1 w układzie, którego schemat przedstawiono na rysunku, jest

Ilustracja do pytania
A. stabilizacja sygnału na wyjściu układu.
B. zmiana przebiegu napięcia wyjściowego z jednopołówkowego na dwupołówkowy.
C. zmiana przebiegu napięcia wyjściowego z dwupołówkowego na jednopołówkowy.
D. zmniejszenie tętnień.
Wybór odpowiedzi, która sugeruje, że kondensator zmienia przebieg napięcia wyjściowego na dwupołówkowy lub jednopołówkowy, jest nieporozumieniem dotyczącym zasad działania kondensatorów w układach prostowniczych. Kondensatory nie mają zdolności do przekształcania formy przebiegu napięcia; ich funkcja opiera się na gromadzeniu i oddawaniu ładunku, co wpływa na wygładzanie napięcia. Zmiana przebiegu napięcia, z jednopołówkowego na dwupołówkowy, jest realizowana przez inne elementy układu, takie jak mostki prostownicze, które umożliwiają wykorzystanie obu połówek cyklu prądu zmiennego. W kontekście stabilizacji sygnału, nie jest to bezpośrednia funkcja kondensatora, ponieważ stabilizatory napięcia pełnią tę rolę, zapewniając stałe napięcie wyjściowe niezależnie od zmian w obciążeniu czy napięciu zasilającym. W związku z tym, stwierdzenie, że kondensator stabilizuje sygnał, prowadzi do mylnych wniosków o jego właściwościach. Typowe błędy w myśleniu mogą wynikać z niewłaściwego zrozumienia roli kondensatorów w obwodach oraz ich funkcji w filtracji. Wiedza na temat właściwego zastosowania kondensatorów i ich ograniczeń jest kluczowa, aby uniknąć błędów projektowych oraz zapewnić prawidłowe funkcjonowanie układów elektronicznych.

Pytanie 21

Podzespół instalacji pneumatycznej, którego fragment dokumentacji technicznej przedstawiono poniżej, służy do usuwania

Dane techniczne:

  • całość można rozmontować i użyć jako osobne urządzenia (filtro-reduktor i olejarka)
  • filtr to podstawa do otrzymania czystego powietrza szczególnie w lakiernictwie
  • zalecany dla wszystkich pneumatycznych narzędzi takich jak: klucze, piły pneumatyczne, młotki itd.
  • ciśnienie jest dokładnie ustawialne dzięki zastosowanemu regulatorowi na filtrze
  • można też dokładnie ustawić wielkość mgły olejowej poprzez śrubę regulacyjną
  • filtr jest wyposażony w półautomatyczny spust kondensatu
  • przepływ powietrza na poziomie 750 l/min.
Ilustracja do pytania
A. zanieczyszczeń powietrza w postaci drobin stałych, redukowania ciśnienia i naolejania powietrza.
B. wilgoci z powietrza oraz stabilizowania jego ciśnienia i temperatury.
C. oleju, wilgoci i wytwarzania nadciśnienia powietrza.
D. zanieczyszczeń powietrza w postaci drobin stałych i cząstek oleju.
Poprawna odpowiedź odnosi się do kluczowego zadania podzespołu instalacji pneumatycznej, który obejmuje filtr, reduktor ciśnienia oraz oliwiarkę. Filtr jest odpowiedzialny za eliminację zanieczyszczeń powietrza, takich jak drobiny stałe, które mogą uszkodzić narzędzia pneumatyczne oraz obniżyć ich efektywność. Reduktor ciśnienia umożliwia precyzyjne dostosowanie ciśnienia powietrza, co ma istotne znaczenie w kontekście zapewnienia stabilnych warunków pracy urządzeń pneumatycznych. Zbyt wysokie ciśnienie może prowadzić do uszkodzeń, natomiast zbyt niskie może powodować niewłaściwe działanie. Oliwiarka natomiast odpowiedzialna jest za naolejanie powietrza, co zapewnia właściwe smarowanie ruchomych elementów narzędzi pneumatycznych, zmniejszając ich zużycie i przedłużając żywotność. Wzorcowe praktyki branżowe podkreślają znaczenie regularnej konserwacji tych komponentów, co przyczynia się do zwiększenia efektywności systemów pneumatycznych i zmniejszenia kosztów eksploatacyjnych.

Pytanie 22

Napięcie testowe, strata dielektryczna, maksymalne napięcie, opór izolacji, temperatury współczynnik pojemności - to parametry znamionowe

A. rezystora
B. kondensatora
C. solenoidu
D. diody pojemnościowej
Wybór rezystora jako odpowiedzi na to pytanie jest błędny, ponieważ parametry wymienione w pytaniu nie są typowe dla tego elementu. Rezystory są elementami, które służą do ograniczania przepływu prądu w obwodach elektrycznych, a ich podstawowe parametry to rezystancja, moc znamionowa oraz tolerancja. Rezystancja jest miarą oporu, który rezystor stawia przepływającemu prądowi, a moc znamionowa odnosi się do maksymalnej mocy, jaką rezystor może rozproszyć bez ryzyka uszkodzenia. W kontekście solenoidu, który jest również niewłaściwym wyborem, jego parametry dotyczą głównie indukcyjności oraz maksymalnego prądu, a nie napięcia probierczego czy stratności dielektrycznej. Dioda pojemnościowa, z drugiej strony, jest elementem, który może wykazywać pewne właściwości pojemnościowe, jednak nie jest odpowiednia w kontekście wymienionych parametrów, które są typowe dla kondensatorów. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to pomylenie funkcji elementów elektronicznych; zrozumienie różnic w zastosowaniach rezystorów, solenoidów i kondensatorów jest kluczowe dla właściwego doboru komponentów do projektów elektronicznych. W elektronice, precyzyjne rozróżnienie parametrów i ich zastosowań jest niezbędne dla zapewnienia efektywności i niezawodności układów.

Pytanie 23

W przedstawionym na rysunku siłowniku dwustronnego działania ruch tłoka odbywa się w kierunku wskazanym strzałką. Która komora oznaczona została literą B?

Ilustracja do pytania
A. Podtłokowa.
B. Nadtłokowa.
C. Tłoczna.
D. Spływowa.
Tak, odpowiedź "tłoczna" jest jak najbardziej trafna. Komora B w siłowniku dwustronnego działania to właśnie to miejsce, gdzie olej hydrauliczny wchodzi pod ciśnieniem, a to powoduje ruch tłoka w stronę strzałki. W siłownikach hydraulicznych ta komora tłoczna jest mega ważna, bo to ona przenosi energię do mechanizmu. Moim zdaniem, żeby siłowniki działały jak należy, trzeba zrozumieć, jak różnie te komory pełnią swoje funkcje. Komora tłoczna odpowiada za wytwarzanie siły, która zmienia energię hydrauliczną w ruch. W praktyce, zwłaszcza w maszynach budowlanych czy systemach automatyzacji, efektywność siłowników zależy od tego, jak dobrze znamy zasady hydrauliki i jak to zastosujemy w projektach. Standardy ISO 4413 czy ANSI B93 pomagają w tym, bo ich przestrzeganie podnosi niezawodność i wydajność układów hydraulicznych.

Pytanie 24

Licznik impulsów rewersyjnych to urządzenie

A. które wykonuje dodawanie i odejmowanie impulsów
B. które dokonuje odejmowania impulsów
C. które zapisuje w pamięci określoną liczbę impulsów
D. które zajmuje się dodawaniem impulsów
Wybór odpowiedzi, która ogranicza się do dodawania impulsów, nie oddaje pełnego zakresu funkcji rewersyjnego licznika impulsów. Liczniki te, jak sama nazwa wskazuje, mają zdolność do rewersji, co oznacza, że mogą nie tylko akumulować impulsy, ale także je odejmować. Podejście, które koncentruje się wyłącznie na dodawaniu, pomija kluczowy aspekt ich wszechstronności, co jest niezwykle istotne w zastosowaniach przemysłowych. W kontekście pomiarów, na przykład w systemach automatyki, często potrzebne jest nie tylko zliczanie, ale także korekta błędów, co wymaga funkcji odejmowania. Zrozumienie zasady działania rewersyjnych liczników impulsów jest kluczowe, aby uniknąć nieporozumień dotyczących ich zastosowania. Próba wyboru opcji, która mówi tylko o zliczaniu impulsów w pamięci, również jest myląca, ponieważ nie oddaje ona dynamiki działania takich urządzeń. W praktyce, liczniki te muszą reagować na zmieniające się warunki operacyjne, co wymaga zarówno dodawania, jak i odejmowania impulsów. Ignorowanie tej funkcji prowadzi do uproszczonego postrzegania złożonych systemów automatyki, co może skutkować błędnymi decyzjami w inżynierii i projektowaniu układów sterujących.

Pytanie 25

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 5,1 kW
B. 85,0 kW
C. 8,5 kW
D. 51,0 kW
Obliczanie mocy hydraulicznej siłownika wymaga zrozumienia podstawowych wzorów oraz jednostek, co często prowadzi do błędnych interpretacji wśród osób mniej doświadczonych. Na przykład, przyjęcie mocy 5,1 kW bywa wynikiem nieprawidłowego przeliczenia ciśnienia lub natężenia przepływu. Niektórzy mogą błędnie zakładać, że ilość energii zużytej przez siłownik jest po prostu suma ciśnienia i przepływu bez uwzględnienia jednostek, co prowadzi do mylnych konkluzji. Z kolei odpowiedź 51,0 kW może wynikać z błędnego pomnożenia ciśnienia przez natężenie bez właściwej konwersji jednostek, co jest kluczowym krokiem w tego typu obliczeniach. Często w takich błędach ludzie zapominają, że moc hydrauliczna jest inna od mocy mechanicznej, co może prowadzić do nieporozumień przy projektowaniu systemów hydraulicznych. Ostatecznie, ignorując odpowiednie konwersje jednostek oraz właściwe zastosowanie wzorów, można nadmiernie ocenić moc siłownika, co skutkuje niewłaściwym doborem komponentów i potencjalnymi problemami w operacyjności systemu hydraulicznego. W związku z tym, kluczowe jest, aby inżynierowie stosowali się do odpowiednich norm i dobrych praktyk, takich jak te zawarte w normach ISO oraz normach branżowych dotyczących hydrauliki, aby uniknąć takich pułapek w obliczeniach.

Pytanie 26

Który z przedstawionych na rysunkach podzespołów zapewnia redukcję ciśnienia i zatrzymanie cząstek stałych w układzie zasilania urządzenia pneumatycznego powietrzem?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Podzespół oznaczony literą D to filtr z regulatorem ciśnienia, który pełni kluczową rolę w układach pneumatycznych. Jego funkcja polega na oczyszczaniu powietrza z cząstek stałych oraz regulacji ciśnienia, co jest niezbędne dla zapewnienia prawidłowego działania urządzeń pneumatycznych. Zastosowanie takiego podzespołu jest szczególnie istotne w systemach, gdzie jakość powietrza ma bezpośredni wpływ na efektywność i trwałość urządzeń. Filtry z regulatorami ciśnienia są często stosowane w przemyśle, na przykład w systemach automatyki przemysłowej, gdzie wymagana jest stabilizacja ciśnienia dostarczanego powietrza oraz eliminacja zanieczyszczeń. Takie podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają stosowanie filtrów w celu zminimalizowania ryzyka uszkodzeń sprzętu i poprawy efektywności procesów. Użycie podzespołu D zapewnia nie tylko bezpieczeństwo, ale również optymalizację pracy całego układu pneumatycznego.

Pytanie 27

Jakie znaczenie mają parametry zaworu pneumatycznego rozdzielającego: Gl/8; 550 Nl/min; 12 V AC; 3 VA w podanej kolejności?

A. przyłącze walcowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc czynna cewki
B. przyłącze stożkowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc pozorna cewki
C. przyłącze walcowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc pozorna cewki
D. przyłącze stożkowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc czynna cewki
Analizując błędne odpowiedzi, warto zwrócić uwagę na kilka kluczowych nieporozumień. Przyłącze stożkowe, które sugeruje część niepoprawnych odpowiedzi, nie jest typowe dla zaworów pneumatycznych o parametrach podanych w pytaniu. W praktyce, przyłącza walcowe są szeroko stosowane ze względu na ich łatwość montażu oraz kompatybilność z większością systemów. Z kolei pojęcie 'ciśnienia nominalnego powietrza' jest mylące w kontekście podanych parametrów, ponieważ bardziej odpowiednim określeniem w tym przypadku jest 'przepływ nominalny', który bezpośrednio odnosi się do wydajności zaworu. Napięcie 'stałe', zaproponowane w jednej z odpowiedzi, również jest błędne; parametry wskazują, że zawór działa na napięciu zmiennym, co jest istotne w kontekście zastosowań, w których wykorzystuje się zasilanie AC. Dodatkowo, moc pozorna cewki powinna być zrozumiana jako wartość, która wskazuje, ile energii jest potrzebne do pracy zaworu, a nie jako moc czynna, jak sugeruje jedna z odpowiedzi. Te nieporozumienia mogą prowadzić do niewłaściwego doboru komponentów, co z kolei może mieć negatywne konsekwencje dla efektywności i bezpieczeństwa całego systemu pneumatycznego. Właściwe zrozumienie specyfikacji technicznych zaworów i ich parametrów jest kluczowe dla projektowania oraz eksploatacji systemów automatyki przemysłowej.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Podnośnik hydrauliczny do samochodów dysponuje tłokiem roboczym o średnicy 100 mm. Tłoczek pompy w tym urządzeniu ma średnicę 10 mm. Kiedy podnośnik unosi obciążenie wynoszące 20 kN, jaka jest siła działająca na tłoczek pompy?

A. 2 N
B. 20 N
C. 2000 N
D. 200 N
Wybór odpowiedzi innej niż 200 N często wynika z nieprawidłowego zrozumienia podstawowych zasad działania układów hydraulicznych. Warto zauważyć, że siły w takich systemach są ze sobą powiązane poprzez zasadę Pascala, która mówi, że ciśnienie wywierane na ciecz w zamkniętym układzie rozkłada się równomiernie. Niepoprawne odpowiedzi mogą wynikać z błędnych obliczeń lub mylenia jednostek. Na przykład, odpowiedź 20 N sugeruje zbyt małą siłę, co nie odpowiada podniesionemu ciężarowi 20 kN. To zrozumienie jest kluczowe, ponieważ w praktyce oznaczałoby to, że podnośnik nie byłby w stanie podnieść zadanej masy. Odpowiedź 2 N jest wynikiem jeszcze większego niedoszacowania i może wskazywać na nieprawidłowe zrozumienie relacji między siłą, ciśnieniem a powierzchnią tłoka. Odpowiedzi takie jak 2000 N również są błędne, ponieważ sugerują, że ciśnienie jest obliczane na podstawie zbyt dużej powierzchni tłoka, co prowadzi do mylnego wyobrażenia o działaniu układu. Kluczowym błędem jest nieuwzględnienie różnicy w powierzchniach tłoków; to właśnie dzięki małemu tłoczkowi pompy uzyskujemy dużą siłę na tłoku roboczym. Dobrą praktyką jest zawsze staranne przeliczenie wszystkich danych, aby upewnić się, że wyniki są zgodne z rzeczywistością oraz przepisami dotyczącymi bezpieczeństwa i skuteczności urządzeń hydraulicznych.

Pytanie 30

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. przycisku ręcznego zwiernego.
B. przycisku ręcznego rozwiernego.
C. zestyku normalnie zamkniętego.
D. zestyku normalnie otwartego.
Twoja odpowiedź jest trafiona! Wskazuje na przycisk ręczny rozwierny, który jest naprawdę powszechnie używany w elektryce i automatyce. To ciekawe, bo przycisk rozwierny działa tak, że obwód jest otwarty, a prąd zaczyna płynąć tylko, gdy go wciśniesz. To jest coś, co ma kluczowe znaczenie w kontekście bezpieczeństwa, zwłaszcza w różnych aplikacjach przemysłowych. Na przykład, w sytuacjach awaryjnych te przyciski są super ważne, bo zapobiegają przypadkowemu uruchomieniu maszyn. Dobrze jest wiedzieć, że zgodnie z normami IEC 60947, takie przyciski powinny być odpowiednio oznaczone, żeby w razie czego były łatwo dostępne. Zrozumienie symboliki to podstawa dla każdego technika, który zajmuje się projektowaniem lub naprawą systemów elektrycznych. Naprawdę warto zainwestować czas w tę wiedzę!

Pytanie 31

Jakiego urządzenia należy użyć do określenia natężenia prądu płynącego przez urządzenie bez konieczności przerywania obwodu?

A. Multimetra uniwersalnego
B. Multimetra analogowego
C. Amperomierza cęgowego
D. Amperomierza tablicowego
Amperomierz cęgowy jest narzędziem, które pozwala na pomiar natężenia prądu w obwodzie bez konieczności przerywania go. Działa na zasadzie pomiaru pola magnetycznego generowanego przez przepływający prąd. W praktyce oznacza to, że wystarczy nałożyć cęgowy uchwyt na przewód, przez który płynie prąd, aby uzyskać dokładny odczyt. Takie podejście jest niezwykle przydatne w sytuacjach, gdy wyłączenie obwodu mogłoby spowodować zakłócenia w pracy urządzeń, na przykład w przypadku urządzeń przemysłowych czy elektronicznych. Amperomierze cęgowe są często stosowane w branży elektroenergetycznej oraz przy konserwacji i naprawach sprzętu elektrycznego. Warto również zauważyć, że nowoczesne modele amperomierzy cęgowych mogą mieć dodatkowe funkcje, takie jak pomiar napięcia, rezystancji czy częstotliwości, co czyni je wielofunkcyjnymi narzędziami, które spełniają standardy branżowe dotyczące bezpieczeństwa i wydajności.

Pytanie 32

Na rysunku przedstawiono

Ilustracja do pytania
A. przekaźnik czasowy.
B. wyłącznik silnikowy.
C. zabezpieczenie przeciążeniowe.
D. układ antyprzepięciowy.
Przykładem prawidłowej odpowiedzi jest przekaźnik czasowy, którego główną funkcją jest zarządzanie czasem w procesach automatyki. Urządzenie to umożliwia opóźnienie włączenia lub wyłączenia obwodów elektrycznych, co jest kluczowe w wielu aplikacjach przemysłowych. Przekaźniki czasowe znajdują zastosowanie w automatyzacji procesów, takich jak zarządzanie oświetleniem, wentylacją czy włączanie urządzeń w odpowiednich przedziałach czasowych. Dzięki regulowanym pokrętłom do ustawiania czasu, operatorzy mogą dostosować czas działania urządzenia do specyficznych potrzeb systemu. Standardy branżowe, takie jak IEC 60947-5-1, definiują wymagania dla takich urządzeń, co zapewnia ich niezawodność i bezpieczeństwo użytkowania. Znajomość i umiejętność prawidłowego używania przekaźników czasowych jest fundamentalna w projektowaniu układów automatyki, co pozwala na efektywne wykorzystanie zasobów i redukcję kosztów operacyjnych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. napawania
B. lutowania
C. spawania
D. polerowania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

W układzie hydraulicznym zainstalowano zawór dławiąco-zwrotny w sposób pokazany na rysunku. Jaką reakcję wywołuje w tym układzie odkręcanie pokrętła ręcznego?

Ilustracja do pytania
A. Stabilizuje ciśnienie pracy.
B. Zmniejsza prędkość wysuwu tłoka.
C. Zwiększa prędkość powrotu tłoka.
D. Reguluje skok siłownika.
Wybór odpowiedzi dotyczącej stabilizacji ciśnienia pracy lub zmniejszenia prędkości wysuwu tłoka wynika z niepełnego zrozumienia funkcji zaworu dławiąco-zwrotnego. Zawór ten nie działa na zasadzie stabilizowania ciśnienia w układzie hydraulicznym, lecz reguluje przepływ płynu, co wpływa na dynamikę ruchu tłoka. Można błędnie założyć, że regulacja oporu przepływu jest równoważna stabilizacji ciśnienia, jednak w rzeczywistości ciśnienie w układzie hydraulicznie zmienia się w zależności od oporu oraz przepływu. Zmniejszenie prędkości wysuwu tłoka również nie jest właściwe, ponieważ odkręcanie pokrętła dławiącego redukuje opór, co skutkuje przeciwnie - przyspieszeniem ruchu. Problem leży w tym, że często mylone są pojęcia związane z ciśnieniem i przepływem, co prowadzi do błędnych konkluzji. W przypadku hydrauliki, kluczowe jest zrozumienie, że ciśnienie to siła wywierana na jednostkę powierzchni, a przepływ to objętość płynu przechodząca przez przekrój w jednostce czasu. Dlatego odpowiedzi, które nie uwzględniają tej różnicy, są błędne i mogą prowadzić do nieefektywnej pracy układów hydraulicznych oraz potencjalnych uszkodzeń lub awarii systemu.

Pytanie 37

Na podstawie zamieszczonych danych technicznych wybierz model zasilacza do układu elektropneumatycznego, w którym cewki elektrozaworów przystosowane są do zasilania napięciem stałym o wartości 24 V.

Dane techniczne

ModelMDR-40-5MDR-40-12MDR-40-24MDR-40-48
WyjścieNapięcie wyjściowe DC5V12V24V48V
Prąd znamionowy6A3,33A1,7A0,83A
Zakres prądu0-6A0~3,33A0-1,7A0-0,83A
Moc znamionowa30W40W40W40W
Tętnienia i szumy (max.)2)80mVp-p120mVp-p150mVp-p200mVp-p
Regulacja napięcia5-6V12-15V24-30V48-56V
Tolerancja napięcia3)±2,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach zasilania
±1,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach obciążenia
±5,0%±3,0%±3,0%±2,0%
Czas ustalania, narastania500ms, 30ms/230VAC500ms, 30ms/115VAC przy znamionowym obciążeniu
Czas podtrzymania50ms/230VAC20ms/115VAC przy znamionowym obciążeniu
WejścieZakres napięcia85-264VAC120-370VDC
Zakres częstotliwości47-63 Hz
Sprawność (typ.)78%86%88%88%
A. MDR-40-5
B. MDR-40-24
C. MDR-40-12
D. MDR-40-48
Model zasilacza MDR-40-24 jest właściwy dla układu elektropneumatycznego z cewkami elektrozaworów zaprojektowanymi do zasilania napięciem stałym 24 V. W kontekście aplikacji przemysłowych, takie zasilacze są kluczowe, ponieważ zapewniają stabilne i niezawodne napięcie, co jest niezbędne do prawidłowego działania elektrozaworów. Użycie odpowiedniego zasilacza wpływa bezpośrednio na wydajność systemu pneumatycznego, a także na jego bezpieczeństwo, zapobiegając uszkodzeniom komponentów z powodu niewłaściwego napięcia. Przykładowo, w systemach automatyki przemysłowej, wybór zasilacza zgodnego z wymaganiami napięciowymi cewki elektrozaworów gwarantuje, że siłowniki będą mogły działać w odpowiednich parametrach. Stosując zasilacz MDR-40-24, spełniamy normy wydajności i niezawodności, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki oraz elektropneumatyki.

Pytanie 38

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. sztuczne oddychanie oraz masaż serca
B. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
C. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
D. ustawienie na boku, sztuczne oddychanie
Wybór innych odpowiedzi wskazuje na pewne nieporozumienia dotyczące kolejności działań przy udzielaniu pomocy osobie porażonej prądem elektrycznym. Na przykład, w sytuacjach, w których krążenie jest zachowane, ale oddech jest zatrzymany, kluczowe jest najpierw zapewnienie drożności dróg oddechowych, a następnie przystąpienie do sztucznego oddychania. Wybór odpowiedzi, która pomija ten krok, może prowadzić do poważnych konsekwencji zdrowotnych, takich jak niedotlenienie mózgu, które może nastąpić w ciągu kilku minut. Ułożenie na boku, które można znaleźć w niektórych odpowiedziach, jest istotne w kontekście ochrony dróg oddechowych, jednak stosuje się je głównie w przypadku, gdy pacjent wykazuje oznaki świadomego oddychania lub po epizodach wymiotów, a nie w sytuacji całkowitego zatrzymania oddechu. Dodatkowo, przeprowadzanie masażu serca w sytuacji, gdy krążenie jest zachowane, jest nieuzasadnione i może prowadzić do niepotrzebnych uszkodzeń klatki piersiowej oraz zaburzeń rytmu serca. Takie podejścia mogą wskazywać na niepełne zrozumienie zasad pierwszej pomocy, co może zagrażać życiu poszkodowanego. W sytuacji udzielania pomocy przedlekarskiej, kluczowe znaczenie ma znajomość właściwej sekwencji działań, co opiera się na wiedzy z zakresu medycyny ratunkowej i wytycznych resuscytacyjnych.

Pytanie 39

Który z komponentów powinien zostać wymieniony w podnośniku hydraulicznym, gdy tłoczysko siłownika unosi się, ale po pewnym czasie samoistnie opada?

A. Zawór bezpieczeństwa
B. Filtr oleju
C. Tłokowy pierścień uszczelniający
D. Sprężynę zaworu zwrotnego
Tłokowy pierścień uszczelniający jest kluczowym elementem w podnośniku hydraulicznym, który zapewnia nieprzepuszczalność pomiędzy tłokiem a cylindrem. Gdy ten pierścień jest uszkodzony lub zużyty, może dochodzić do wycieków oleju hydraulicznego, co prowadzi do niepożądanych spadków ciśnienia i samoczynnego opadania tłoczyska siłownika. Zastosowanie odpowiednich materiałów do produkcji pierścieni uszczelniających, takich jak elastomery odpornie na działanie wysokich temperatur oraz chemikaliów, jest zgodne z najlepszymi praktykami w branży hydrauliki. Bardzo ważne jest regularne sprawdzanie i wymiana tłokowych pierścieni uszczelniających, co wpływa na niezawodność i bezpieczeństwo pracy urządzenia. Przykładowo, w zastosowaniach przemysłowych, takich jak podnośniki używane w warsztatach samochodowych, skuteczna uszczelka pozwala na stabilne podnoszenie pojazdów, eliminując ryzyko opadania, co z kolei chroni zdrowie pracowników oraz mienie. Właściwe utrzymanie tych elementów przyczynia się do długowieczności urządzenia i jego efektywności operacyjnej.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.