Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 29 października 2025 00:29
  • Data zakończenia: 29 października 2025 00:38

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie ciśnienie powinno być zastosowane do przeprowadzenia testu szczelności systemu hydraulicznego?

A. Ciśnieniu testowemu 6 bar
B. Mniejszym od maksymalnego ciśnienia, które występuje w trakcie pracy o 50%
C. Maksymalnym ciśnieniu, które występuje w trakcie pracy
D. Większym o 10% od ciśnienia roboczego
Wybór ciśnienia próbnego na poziomie 6 bar jest niewłaściwy, ponieważ nie uwzględnia specyfiki konkretnego układu hydraulicznego. Takie podejście może prowadzić do błędnych wniosków dotyczących szczelności, zwłaszcza w aplikacjach, gdzie standardowe ciśnienie robocze przekracza tę wartość. Bezwzględne poleganie na wartości ciśnienia próbnego, które nie jest oparte na maksymalnym ciśnieniu roboczym, może prowadzić do zjawiska, w którym układ wydaje się sprawny, mimo że nie jest w stanie wytrzymać rzeczywistych warunków pracy. Odpowiedź sugerująca zwiększenie ciśnienia o 10% może wydawać się logiczna, jednak nie zapewnia żadnej gwarancji, że układ będzie w stanie poradzić sobie z maksymalnym ciśnieniem, które występuje w czasie eksploatacji. Ponadto, maksymalne ciśnienie robocze ma kluczowe znaczenie dla oceny integralności układów hydraulicznych, co jest zgodne z najlepszymi praktykami w branży. Ustalanie próbnej wartości ciśnienia mniejszej o 50% od maksymalnego ciśnienia roboczego jest również błędne, ponieważ nie daje pełnego obrazu potencjalnych problemów z nieszczelnościami, które mogą wystąpić w rzeczywistych warunkach pracy. W związku z tym, niewłaściwe dobranie ciśnienia próbnego może prowadzić do niezgodności z normami bezpieczeństwa oraz niebezpiecznych sytuacji w trakcie użytkowania układów hydraulicznych.

Pytanie 2

Aby zmienić kierunek obrotu wirnika silnika bocznikowego prądu stałego bez przesterowania maszyny, co należy zrobić?

A. zamienić miejscami dwa przewody podłączone do źródła zasilania
B. zmienić kierunek prądu w uzwojeniu komutacyjnym
C. zmienić kierunek prądu w uzwojeniu wzbudzenia
D. zmienić kierunek prądu w uzwojeniu twornika
W przypadku podanych odpowiedzi, zmiana zwrotu prądu w uzwojeniu wzbudzenia nie spowoduje zmiany kierunku obrotów wirnika w silniku bocznikowym prądu stałego, a to dlatego, że uzwojenie wzbudzenia jest odpowiedzialne głównie za generowanie pola magnetycznego, a nie za kontrolowanie kierunku ruchu wirnika. Zmiana zwrotu prądu w uzwojeniu komutacyjnym również nie jest właściwa, ponieważ uzwojenie komutacyjne ma na celu przełączanie prądu w wirniku, ale nie wpływa na kierunek obrotów w sposób wymagany w tym kontekście. Zamiana miejscami przewodów podłączonych do sieci jest błędnym podejściem, gdyż może prowadzić do nieprawidłowego działania silnika lub jego uszkodzenia, a nie do zmiany kierunku obrotów. Typowym błędem myślowym w przypadku tych odpowiedzi jest przekonanie, że zmiana jakiegokolwiek elementu związana z prądem w obwodzie prowadzi do zmiany kierunku obrotów, podczas gdy w rzeczywistości kierunek obrotu wirnika zależy od specyficznej interakcji między prądem w uzwojeniu twornika a polem magnetycznym. Dlatego kluczowe jest zrozumienie, że prawidłowa metoda zmiany kierunku obrotów wymaga bezpośredniej interakcji właśnie w uzwojeniu twornika.

Pytanie 3

Wartość parametru 20 V/1000 obr/min jest charakterystyczna dla

A. sprzęgła elektromagnetycznego
B. prądnicy tachometrycznej
C. induktosyna
D. resolvera
No, odpowiedzi wskazujące na resolvera, sprzęgło elektromagnetyczne czy induktosynę nie pasują do opisanego parametru 20 V/1000 obr/min. Resolver to urządzenie do pomiaru kątów obrotu i nie ma tych samych jednostek wyjściowych co prądnica tachometryczna. Sprzęgła elektromagnetyczne przenoszą moment obrotowy, ale nie generują napięcia w zależności od prędkości obrotowej, a ich główną rolą jest połączenie mechaniczne. Z kolei induktosyna to czujnik indukcyjny, który również nie działa jak prądnica tachometryczna. Wiele z tych pomyłek wynika z mylenia funkcji tych urządzeń oraz tego, do czego są używane. Ważne jest, żeby zrozumieć, że prądnica tachometryczna ma swoją specyfikę w pomiarach prędkości obrotowej, a inne urządzenia mają zupełnie inne zastosowania.

Pytanie 4

Który z poniższych elementów jest niezbędny do prawidłowego działania układu pneumatycznego?

A. Akumulator
B. Transformator
C. Rezystor
D. Sprężarka
Pozostałe odpowiedzi odnoszą się do elementów, które nie są związane z działaniem układów pneumatycznych. Transformator, choć niezbędny w systemach elektrycznych do zmiany napięcia, nie ma zastosowania w pneumatyce, która opiera się na sprężonym powietrzu, a nie na energii elektrycznej. Natomiast akumulator jest urządzeniem magazynującym energię elektryczną, a nie powietrze, więc jego funkcja jest nieistotna dla układów pneumatycznych. Często bywa mylony z akumulatorem hydraulicznym, który magazynuje energię w postaci sprężonego gazu, ale to zupełnie inne zastosowanie. Rezystor zaś jest komponentem elektronicznym używanym do ograniczania przepływu prądu w obwodach elektrycznych. W kontekście pneumatyki nie spełnia żadnej funkcji, ponieważ układy te nie opierają się na przepływie prądu, lecz na przepływie powietrza. Te błędne odpowiedzi mogą wynikać z niezrozumienia różnic między różnymi rodzajami systemów – elektrycznymi, hydraulicznymi i pneumatycznymi – oraz ich unikalnych komponentów i zasad działania. Dlatego ważne jest, aby dokładnie zrozumieć, jakie elementy są wymagane w danym typie systemu, aby uniknąć takich pomyłek w przyszłości.

Pytanie 5

Jedną z metod umożliwiających identyfikację nieprawidłowości w pracy urządzeń oraz instalacji mechatronicznych o dużej mocy jest technologia obrazowania w podczerwieni. Który z wymienionych instrumentów jest stosowany w takich badaniach?

A. Oscyloskop cyfrowy
B. Kamera termograficzna
C. Termometr elektroniczny
D. Tester kabli
Kamera termowizyjna to zaawansowane narzędzie, które wykorzystuje technologię obrazowania w podczerwieni do analizy rozkładu temperatury na powierzchniach obiektów. Dzięki temu możliwe jest wykrywanie nieprawidłowości w działaniu urządzeń mechatronicznych dużej mocy, takich jak silniki, transformatory czy układy chłodzenia. Przykładowo, w przemyśle energetycznym kamery termowizyjne są wykorzystywane do monitorowania stanu transformatorów, co pozwala na wczesne wykrycie przegrzewania się komponentów i tym samym zapobiegnięcie awariom. Technologia ta znajduje zastosowanie również w diagnostyce budynków, gdzie pozwala na identyfikację strat ciepła i nieszczelności. Warto podkreślić, że zgodnie z normami branżowymi, regularne używanie kamer termograficznych powinno być częścią strategii zarządzania utrzymaniem ruchu, co znacząco podnosi efektywność operacyjną oraz bezpieczeństwo systemów mechatronicznych.

Pytanie 6

Jaką metodę czyszczenia powinno się zastosować podczas montażu elementów hydraulicznych na końcowym etapie?

A. Przetarcia rozpuszczalnikiem
B. Osuszenia w wysokiej temperaturze
C. Przemycia wodą
D. Przedmuchania sprężonym powietrzem
Wybór metody oczyszczania elementów hydraulicznych jest kluczowy dla zapewnienia ich prawidłowego funkcjonowania, a niektóre podejścia mogą prowadzić do poważnych problemów. Osuszanie w wysokiej temperaturze, choć może wydawać się skuteczne w eliminacji wilgoci, niesie ze sobą ryzyko uszkodzenia delikatnych materiałów użytych w elementach hydraulicznych. Zbyt wysoka temperatura może powodować deformacje lub osłabienie strukturalne, które w dłuższej perspektywie mogą prowadzić do awarii. Przemywanie wodą z kolei, mimo że efektywnie usuwa większe cząstki, często nie jest wystarczające w kontekście usuwania drobnych zanieczyszczeń, takich jak pył czy resztki smarów. Woda może także pozostawiać osady, które po wyschnięciu mogą działać jak dodatkowe zanieczyszczenia. Zastosowanie rozpuszczalników ma swoje ograniczenia, ponieważ niektóre materiały mogą reagować negatywnie na ich działanie, co może prowadzić do uszkodzeń. Wybór niewłaściwej metody może wynikać z błędnego podejścia do procesu oczyszczania, gdzie priorytetem staje się szybkość, a nie jakość. W rezultacie, zarówno zanieczyszczenia, jak i błędne metody oczyszczania mogą prowadzić do skrócenia żywotności elementów hydraulicznych oraz zwiększenia kosztów związanych z ich naprawą i konserwacją.

Pytanie 7

Ekonomiczne oraz szerokie regulowanie prędkości obrotowej silnika prądu stałego bocznikowego możliwe jest przez

A. zastosowanie tyrystorowego regulatora napięcia do zmiany napięcia twornika
B. włączenie regulowanej rezystancji w szereg z obwodem wzbudzenia
C. włączenie regulowanej rezystancji w szereg z obwodem twornika
D. zastosowanie rezystancyjnego dzielnika napięcia do zmiany napięcia twornika
Wybór nieprawidłowej metody regulacji prędkości obrotowej silnika prądu stałego bocznikowego, takiej jak zastosowanie regulowanej rezystancji w szereg z obwodem wzbudzenia, nie tylko ogranicza możliwości regulacyjne, ale również prowadzi do znacznych strat mocy. Tego typu podejścia opierają się na zmianie prądu wzbudzenia, co wpływa na strumień magnetyczny i może prowadzić do destabilizacji pracy silnika. W efekcie, przy takim sposobie regulacji, silnik charakteryzuje się gorszą efektywnością i wyższymi stratami cieplnymi. Z kolei włączenie regulowanej rezystancji w szereg z obwodem twornika, choć teoretycznie może wydawać się sensownym rozwiązaniem, prowadzi do spadku napięcia na tworniku, co przekłada się na ograniczenie prędkości obrotowej, a także zakłóca stabilność pracy silnika. Użycie rezystancyjnego dzielnika napięcia do regulacji napięcia twornika również nie jest zalecaną metodą, ponieważ dzielnik nie jest w stanie zapewnić odpowiedniej wydajności i precyzji w regulacji, co jest niezbędne w aplikacjach wymagających dynamicznej zmiany prędkości. Te podjęte kroki pokazują, jak ważne jest zrozumienie zasad działania silników elektrycznych i właściwego doboru metod regulacji, aby uniknąć typowych błędów w projektowaniu systemów napędowych.

Pytanie 8

Które z poniższych wskazówek dotyczących komunikacyjnej sieci sterowników PLC jest nieprawdziwe?

A. Kable komunikacyjne powinny być prowadzone równolegle z kablami zasilającymi
B. Kable powinny być niskorezystancyjne, czyli mieć duży przekrój żył
C. Kable używane powinny być miedziane
D. Kable powinny charakteryzować się niską pojemnością międzyżyłową
Używanie kabli niskorezystancyjnych oraz miedzianych często jest polecane, ale to tylko teoria, bo jak nie połączysz ich z odpowiednim prowadzeniem kabli, to może być niewłaściwie. Kable o dużym przekroju żył mogą pomóc z minimalizowaniem strat sygnału, co jest bardzo ważne, ale jeśli prowadzi się je obok kabli zasilających, to te zakłócenia mogą być tak duże, że nie ma sensu ich stosować. Z drugiej strony, kable miedziane, mimo że świetnie przewodzą, mogą też stwarzać problemy, jak się je źle poukłada. Kable o niskiej pojemności wzajemnej są dobre na zmniejszenie zakłóceń, ale ich działanie jest ograniczone, kiedy są blisko kabli zasilających, bo wtedy te zakłócenia mogą powodować błędy w transmisji. Wiele systemów automatyki przemysłowej stosuje standardy jak IEC 61000, które opisują prowadzenie kabli, żeby zmniejszyć ryzyko zakłóceń. Więc trzeba pamiętać, że sama jakość kabli to nie wszystko, musi być odpowiednie prowadzenie, żeby wszystko działało jak należy.

Pytanie 9

Który rodzaj oprogramowania komputerowego monitoruje przebieg procesu oraz dysponuje funkcjami w zakresie m.in. gromadzenia, wizualizacji i archiwizacji danych oraz kontrolowania i alarmowania?

A. CAM
B. CAD
C. SCADA
D. CAE
Wybór odpowiedzi CAM, CAD lub CAE jest nieprawidłowy z kilku powodów. Oprogramowanie CAM (Computer-Aided Manufacturing) skupia się na automatyzacji procesów produkcyjnych, koncentrując się na programowaniu maszyn do obróbki, podczas gdy CAD (Computer-Aided Design) jest narzędziem do projektowania, które wspiera inżynierów w tworzeniu szczegółowych modeli i rysunków technicznych. CAE (Computer-Aided Engineering) natomiast dotyczy symulacji i analizy inżynieryjnych aspektów projektów, takich jak wytrzymałość materiałów czy dynamika. Żadne z tych programów nie posiada funkcji nadzoru procesów, co jest kluczowe w kontekście pytania. Często mylone są możliwości programów CAD czy CAM z funkcjami SCADA, co może wynikać z niepełnego zrozumienia ich zastosowania. Warto zauważyć, że oprogramowanie SCADA jest wyspecjalizowane w zbieraniu i analizowaniu danych w czasie rzeczywistym, co jest istotne w kontekście monitorowania procesów przemysłowych. Przykładowo, w zakładach chemicznych SCADA nadzoruje reakcje chemiczne, co jest niezmiernie istotne dla bezpieczeństwa i efektywności produkcji. W związku z tym, kluczowe jest zrozumienie, że choć CAM, CAD i CAE są niezbędne w cyklu życia produktu, ich funkcjonalności nie obejmują nadzoru procesów, co czyni je niewłaściwymi odpowiedziami w tym kontekście.

Pytanie 10

W podręczniku obsługi silnika zasilanego napięciem 400 V i kontrolowanego przez PLC powinna być zawarta informacja: Przed rozpoczęciem prac konserwacyjnych należy odłączyć wszystkie obwody zasilające.

A. zabezpieczyć je przed uruchomieniem oraz zewrzeć obudowę silnika z uziemieniem
B. sprawdzić, czy nie ma napięcia i zewrzeć złącza silnika
C. uziemić silnik oraz uziemić sterownik przy użyciu urządzenia do uziemiania
D. zabezpieczyć je przed uruchomieniem i sprawdzić, czy nie ma napięcia
Wybór odpowiedzi "zabezpieczyć je przed włączeniem i sprawdzić brak napięcia" jest kluczowy dla zapewnienia bezpieczeństwa podczas konserwacji silników elektrycznych. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 60204-1, przed przystąpieniem do jakichkolwiek prac konserwacyjnych należy zawsze odłączyć zasilanie. Zabezpieczenie obwodów przed włączeniem jest podstawowym krokiem, który minimalizuje ryzyko przypadkowego uruchomienia maszyny. Proces sprawdzania braku napięcia, na przykład za pomocą wskaźnika napięcia, jest niezbędny, aby upewnić się, że obwód jest całkowicie bezpieczny do pracy. Tego rodzaju procedury są standardowymi praktykami w przemyśle, które zapewniają nie tylko bezpieczeństwo technika, ale także zapobiegają uszkodzeniu sprzętu. Oprócz tego, stosowanie odpowiednich osłon i oznakowań ostrzegawczych jest również ważne, aby informować innych pracowników o prowadzonych pracach konserwacyjnych, co dodatkowo zwiększa poziom bezpieczeństwa w miejscu pracy.

Pytanie 11

Podczas czynności konserwacyjnych wykryto niewystarczający poziom sprężania powietrza w sprężarce tłokowej. Który z wymienionych komponentów sprężarki z pewnością nie uległ zniszczeniu?

A. Zawór ssący
B. Gładź cylindra
C. Uszczelka głowicy
D. Korbowód tłoka

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Korbowód tłoka jest kluczowym elementem układu tłokowego sprężarki, ale jego stan nie wpływa bezpośrednio na poziom sprężania powietrza. Działa on jako przekaźnik ruchu, przekształcając ruch obrotowy wału korbowego na ruch posuwisty tłoka. W przypadku niskiego poziomu sprężania, przyczyny mogą leżeć w innych elementach, takich jak zawory lub gładź cylindra. Na przykład, zużycie gładzi cylindra może prowadzić do nieszczelności, co skutkuje obniżonym sprężaniem. Korbowód, będąc elementem mechanicznym, jest bardziej odporny na uszkodzenia, jeśli nie jest obciążony innymi problemami, takimi jak rozszczelnienie. Dobra praktyka w konserwacji sprężarek zaleca regularne kontrole stanu korbowodu oraz jego smarowanie, aby zminimalizować ryzyko uszkodzeń. Korbowód tłoka powinien być również sprawdzany pod kątem luzów, aby zapewnić efektywność całego układu sprężania.

Pytanie 12

Sterownik PLC powinien zarządzać systemem nagrzewnicy, który składa się z wentylatora oraz zestawu grzałek. Jaką czynność należy podjąć, aby uniknąć przegrzania obudowy nagrzewnicy po jej dezaktywowaniu?

A. Zmniejszyć prędkość obrotową silnika wentylatora
B. Zwiększyć moc grzałek
C. Opóźnić dezaktywację wentylatora
D. Opóźnić dezaktywację grzałek

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Opóźnienie wyłączenia wentylatora jest kluczowym działaniem mającym na celu ochronę obudowy nagrzewnicy przed przegrzewaniem się. Kiedy grzałki są wyłączone, obudowa nagrzewnicy wciąż emituje ciepło, a wentylator odgrywa istotną rolę w odprowadzaniu tego ciepła do otoczenia. Działający wentylator pomoże w utrzymaniu właściwej temperatury obudowy, zapobiegając jej uszkodzeniu oraz wydłużając żywotność urządzenia. W praktyce, opóźnienie wyłączenia wentylatora można zrealizować poprzez zaprogramowanie odpowiedniego czasu w sterowniku PLC, po którym wentylator będzie kontynuował pracę. Tego typu rozwiązania są zgodne z zasadami inżynierii automatyki, gdzie bezpieczeństwo i niezawodność systemu są priorytetem. Właściwe zarządzanie temperaturą nie tylko chroni urządzenie, ale również wpływa na efektywność energetyczną całego systemu grzewczego.

Pytanie 13

W jakim celu przeprowadza się diagnostykę systemów mechatronicznych?

A. Optymalizacja kosztów produkcji
B. Zmniejszenie wymiarów urządzeń
C. Zwiększenie złożoności systemu
D. Identyfikacja i usuwanie usterek

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Diagnostyka systemów mechatronicznych jest kluczowym elementem ich eksploatacji. Głównym celem przeprowadzania diagnostyki jest identyfikacja i usuwanie usterek. W kontekście urządzeń mechatronicznych, które składają się z elementów mechanicznych, elektronicznych oraz informatycznych, szybka i precyzyjna identyfikacja awarii jest nieoceniona. Dzięki niej możemy nie tylko wykryć istniejące problemy, ale także zapobiec przyszłym awariom poprzez monitorowanie stanu systemu. Nowoczesne systemy diagnostyczne często korzystają z zaawansowanych technik, takich jak analiza drgań czy termografia, które pozwalają na nieinwazyjne wykrywanie problemów. Praktyczne zastosowanie tej wiedzy można dostrzec w przemyśle motoryzacyjnym, gdzie diagnostyka pozwala na bieżąco monitorować stan pojazdu i zapobiegać awariom na drodze. Warto również wspomnieć o standardach branżowych, takich jak ISO 13379, które opisują metody diagnostyki systemów mechanicznych. Prawidłowo przeprowadzona diagnostyka zwiększa niezawodność i bezpieczeństwo systemów, co jest kluczowe w wielu aplikacjach przemysłowych.

Pytanie 14

Która z podanych czynności związanych z eksploatacją napędu elektrycznego jest sprzeczna z zasadami obsługi tych urządzeń?

A. Odkurzanie i czyszczenie żeberek radiatorów z zanieczyszczeń szmatką
B. Kontrola pracy wentylatorów poprzez nasłuchiwanie ich działania
C. Weryfikacja połączeń elektrycznych za pomocą omomierza
D. Oczyszczenie brudnych styków łączników pilnikiem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oczyszczenie zabrudzonych styków łączników pilnikiem jest czynnością, która jest niezgodna z zasadami obsługi urządzeń elektrycznych. Stosowanie narzędzi takich jak pilnik na delikatnych powierzchniach styków może prowadzić do ich mechanicznego uszkodzenia, co z kolei może skutkować pogorszeniem jakości połączenia elektrycznego. Zgodnie z wytycznymi dotyczącymi konserwacji sprzętu elektrycznego, zaleca się stosowanie metod, które nie wpływają negatywnie na integralność komponentów, takich jak użycie specjalnych środków czyszczących i miękkich tkanin. Przykładem dobrych praktyk w tej dziedzinie jest regularne sprawdzanie styków pod kątem korozji oraz zabrudzeń, a następnie ich czyszczenie za pomocą odpowiednich narzędzi, które nie naruszają powierzchni styków, jak np. ściereczki antystatyczne czy spraye czyszczące. Takie podejście zapewnia długotrwałe i niezawodne działanie napędów elektrycznych oraz minimalizuje ryzyko awarii związanych z wadliwymi połączeniami elektrycznymi.

Pytanie 15

Z jakiego systemu zasilania powinno korzystać urządzenie mechatroniczne, jeśli na schemacie sieci energetycznej zaznaczono symbol 400 V ~ 3/N/PE?

A. TT
B. TI
C. TN - S
D. TN - C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-S jest poprawna, ponieważ układ sieciowy TN-S charakteryzuje się oddzielnym przewodem ochronnym (PE) oraz oddzielnym przewodem neutralnym (N). Oznaczenie 400 V ~ 3/N/PE w pytaniu wskazuje na istnienie trzech faz oraz oddzielny przewód neutralny i ochronny, co jest zgodne z normami bezpieczeństwa i stabilności zasilania dla urządzeń mechatronicznych. W praktyce, zasilanie w układzie TN-S jest rekomendowane dla urządzeń wymagających wysokiego poziomu bezpieczeństwa, takich jak maszyny przemysłowe, gdzie niezawodność zasilania jest kluczowa. Układ ten minimalizuje ryzyko wystąpienia prądów błądzących, co jest istotne w kontekście ochrony ludzi i sprzętu. Dodatkowo, zgodność z normami IEC 60364 oraz różnymi krajowymi regulacjami w zakresie instalacji elektrycznych potwierdza, że TN-S jest preferowanym rozwiązaniem dla nowoczesnych aplikacji mechatronicznych.

Pytanie 16

Trójfazowy silnik indukcyjny klatkowy zasilany nominalnym napięciem uruchamia się i działa prawidłowo, lecz po obciążeniu zbyt mocno się nagrzewa. W jaki sposób można ustalić przyczynę?

A. Zmierzyć wartość napięcia w linii zasilającej
B. Sprawdzić współosiowość wałów silnika oraz maszyny napędzanej
C. Sprawdzić swobodę obracania się wirnika w stojanie
D. Zmierzyć prąd pobierany przez silnik oraz napięcie na zaciskach w czasie pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar prądu pobieranego przez silnik oraz napięcia na zaciskach podczas jego pracy jest kluczowym krokiem w diagnozowaniu problemów związanych z nadmiernym nagrzewaniem się silnika indukcyjnego trójfazowego klatkowego. Wysokie wartości prądu mogą wskazywać na przeciążenie silnika, co jest jednym z głównych czynników prowadzących do przegrzewania. Przykładowo, jeśli silnik działa w warunkach, które wymagają od niego większej mocy niż nominalna, to może to prowadzić do wzrostu temperatury oraz uszkodzenia uzwojenia. Z kolei pomiar napięcia na zaciskach pozwala ocenić, czy silnik otrzymuje odpowiednią ilość energii. Niewłaściwe napięcie może być wynikiem problemów w instalacji elektrycznej, co również wpływa na wydajność silnika. W praktyce, zgodnie z normami, warto regularnie przeprowadzać takie pomiary jako część rutynowej konserwacji, aby zminimalizować ryzyko awarii oraz przedłużyć żywotność urządzenia. Monitorowanie tych parametrów jest zgodne z dobrymi praktykami w utrzymaniu ruchu i pozwala na wczesne wykrywanie problemów, co jest kluczowe w środowisku przemysłowym.

Pytanie 17

Która z podanych zasad musi być przestrzegana przed przystąpieniem do konserwacji lub naprawy urządzenia mechatronicznego posiadającego oznaczenie przedstawione na rysunku?

Ilustracja do pytania
A. Przeczytaj instrukcję dla większego bezpieczeństwa.
B. Zapisz czynności wykonane podczas eksploatacji.
C. Zanotuj wyniki pomiarów podczas diagnostyki.
D. Odczytaj informacje o producencie i skontaktuj się z nim przed realizacją działań.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź "Przeczytaj instrukcję dla większego bezpieczeństwa" odzwierciedla istotę bezpieczeństwa w pracy z urządzeniami mechatronicznymi. Oznaczenie na rysunku to piktogram, który zwraca uwagę na obowiązek zapoznania się z instrukcją obsługi przed przystąpieniem do jakichkolwiek działań konserwacyjnych lub naprawczych. Instrukcja obsługi dostarcza istotnych informacji na temat poprawnej obsługi urządzenia, procedur bezpieczeństwa oraz wskazówek dotyczących konserwacji. Ignorowanie tych informacji może prowadzić do poważnych uszkodzeń sprzętu lub nawet zagrożeń dla zdrowia użytkownika. Przykładowo, w branży motoryzacyjnej, zaleca się zawsze czytać instrukcje dotyczące wymiany oleju lub filtrów, aby uniknąć błędów, które mogą zagrażać bezpieczeństwu pojazdu. Standardy ISO oraz normy branżowe, takie jak ISO 12100, podkreślają znaczenie oceny ryzyka oraz przestrzegania instrukcji obsługi jako kluczowych elementów bezpiecznej eksploatacji maszyn. W związku z tym, zapoznanie się z instrukcją jest kluczowym krokiem przed każdą interwencją serwisową.

Pytanie 18

Jakie dane powinny być zdefiniowane w programie sterującym jako dane typu BOOL?

A. Binarne
B. Heksadecymalne
C. Oktadecymalne
D. Dziesiętne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Binarne" jest poprawna, ponieważ dane typu BOOL są definiowane jako zmienne przyjmujące jedynie dwie wartości: prawda (true) oznaczona jako 1 oraz fałsz (false) oznaczona jako 0. W praktyce, w programowaniu i w systemach automatyki, zmienne typu BOOL są niezwykle użyteczne, gdyż pozwalają na podejmowanie decyzji oraz kontrolowanie przepływu programów. Na przykład, w instrukcjach warunkowych (if, switch) zmienne BOOL są wykorzystywane do decydowania, która część kodu powinna być wykonana. W kontekście automatyki przemysłowej, zmienne te mogą kontrolować stan urządzeń, takich jak czujniki czy siłowniki, co jest zgodne z najlepszymi praktykami projektowania systemów sterujących. Użycie danych typu BOOL w programach sterujących jest standardem, który zapewnia efektywne zarządzanie stanami systemu, co jest kluczowe dla zapewnienia jego niezawodności i bezpieczeństwa.

Pytanie 19

Jakim rodzajem linii oznacza się sygnały sterujące wewnętrzne na schematach pneumatycznych?

A. Ciągłą
B. Dwupunktową
C. Punktową
D. Kreskową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kreskowa linia na schematach pneumatycznych jest kluczowym symbolem, który wskazuje na wewnętrzne sygnały sterujące w urządzeniach pneumatycznych. Te sygnały są odpowiedzialne za komunikację pomiędzy różnymi komponentami systemu, co pozwala na sprawne i efektywne zarządzanie procesami pneumatycznymi. Zgodnie z normami branżowymi, takimi jak ISO 1219, które definiują symbole i oznaczenia w technice pneumatycznej, kreskowa linia jest uniwersalnie uznawana za standardowy sposób reprezentacji sygnałów sterujących, co ułatwia zrozumienie schematów przez inżynierów i techników. W praktyce oznaczenia te pozwalają na szybsze diagnozowanie ewentualnych problemów w systemie, a także na łatwiejsze wprowadzanie modyfikacji w projektach. Warto również zauważyć, że umiejętność prawidłowego odczytywania schematów z zastosowaniem odpowiednich oznaczeń jest niezbędna w pracy związanej z automatyką i pneumatyka, co czyni tę wiedzę nie tylko teoretyczną, ale i praktyczną.

Pytanie 20

Na podstawie fragmentu instrukcji serwisowej agregatu grzewczego, określ, który z jego elementów uległ uszkodzeniu, jeśli na panelu operatorskimpojawił się numer kodu błędu F06?

Kod błęduOpis usterki
F00Błąd modułu sterującego (kasety).
F01Brak startu (po dwóch próbach).
F02Błąd płomienia (co najmniej 3-krotny).
F04Przedwczesne pojawienie się płomienia.
F05Przerwa bądź zwarcie obwodu czujnika płomienia.
F06Przerwa bądź zwarcie obwodu czujnika temperatury.
F07Przerwa bądź zwarcie obwodu pompy paliwa.
F08Przerwa bądź zwarcie lub przeciążenie, blokada silnika wentylatora dmuchawy.
F09Przerwa bądź zwarcie obwodu kotka żarowego.
F10Przegrzanie agregatu.
F11Przerwa bądź zwarcie obwodu czujnika przegrzania.
A. Czujnik płomienia.
B. Moduł sterujący.
C. Czujnik temperatury.
D. Dysza płomienia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kod błędu F06 w agregacie grzewczym wskazuje na problem z czujnikiem temperatury, co oznacza przerwanie lub zwarcie obwodu tego elementu. Czujnik temperatury jest kluczowym elementem systemu grzewczego, ponieważ odpowiada za monitorowanie temperatury wody lub powietrza oraz dostosowywanie pracy agregatu do aktualnych potrzeb. W przypadku uszkodzenia czujnika, system może nie być w stanie precyzyjnie regulować temperatury, co prowadzi do nieefektywności energetycznej oraz potencjalnych uszkodzeń innych komponentów. W praktyce, w sytuacji pojawienia się tego błędu, należy najpierw sprawdzić okablowanie oraz połączenia czujnika, a następnie zdiagnozować ewentualne uszkodzenia. Regularne serwisowanie i kontrola czujników temperatury są zalecane zgodnie z obowiązującymi normami branżowymi, co pozwala unikać awarii i podnosić trwałość systemu.

Pytanie 21

Nieprzerwane monitorowanie wibracji silnika elektrycznego w systemie napędowym oraz analiza spektrum drgań umożliwiają wczesne zidentyfikowanie

A. zwarcia w uzwojeniach stojana lub wirnika
B. uszkodzenia łożysk
C. pogorszenia stanu izolacji uzwojeń stojana lub wirnika
D. przerw w obwodzie zasilania silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciągły pomiar wibracji silnika elektrycznego oraz analiza widma drgań są kluczowymi technikami w diagnozowaniu stanu technicznego maszyn. Uszkodzenia łożysk to jeden z najczęściej występujących problemów w układach napędowych, które mogą prowadzić do poważnych awarii, a ich wczesne wykrycie pozwala na zapobieganie kosztownym przestojom produkcyjnym. Zastosowanie analizy drgań umożliwia identyfikację charakterystycznych częstotliwości, które są związane z uszkodzonymi łożyskami. Na przykład, jeśli łożysko ulega degradacji, generuje drgania o specyficznych częstotliwościach, które można zidentyfikować i monitorować. W praktyce, standardy takie jak ISO 10816 dotyczące pomiaru drgań maszyn, dostarczają wytycznych dotyczących interpretacji wyników. Dzięki tej metodzie inżynierowie mogą podejmować decyzje dotyczące konserwacji w oparciu o rzeczywisty stan maszyny, co znacząco zwiększa efektywność zarządzania utrzymaniem ruchu w zakładach przemysłowych.

Pytanie 22

Jaką rolę pełnią enkodery w serwonapędach AC?

A. Chronią serwonapęd przed przeciążeniem
B. Stanowią element wykonawczy serwonapędu
C. Dostarczają informacji o pozycji i prędkości napędu
D. Informują o momencie generowanym przez napęd

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Enkodery w serwonapędach AC pełnią kluczową rolę w monitorowaniu i regulacji ruchu napędu. Ich głównym zadaniem jest dostarczanie informacji o aktualnej pozycji i prędkości, co jest niezbędne do precyzyjnego sterowania. Dzięki enkoderom, systemy automatyki mogą realizować złożone zadania, takie jak kontrola pozycji w aplikacjach robotycznych czy CNC. Przykładowo, w maszynach sterowanych numerycznie, enkodery umożliwiają dokładne pozycjonowanie narzędzi, co ma kluczowe znaczenie dla precyzji obróbczej. Zgodnie z najlepszymi praktykami w branży, stosowanie wysokiej jakości enkoderów pozwala na osiągnięcie lepszej dynamiki systemu oraz zwiększenie efektywności energetycznej. W standardach takich jak ISO 13849, zaleca się użycie enkoderów w kontekście bezpieczeństwa funkcjonalnego, co podkreśla ich znaczenie nie tylko w kontekście wydajności, ale i bezpieczeństwa operacyjnego.

Pytanie 23

Oprogramowanie komputerowe, które monitoruje procesy w systemach i posiada kluczowe funkcje takie jak gromadzenie, wizualizacja oraz archiwizacja danych, a także alarmowanie i kontrolowanie przebiegu procesu, to oprogramowanie

A. CAD
B. CAM
C. CNC
D. SCADA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym narzędziem w nowoczesnych systemach automatyki przemysłowej. Jego główną funkcją jest nadzorowanie i zarządzanie procesami przemysłowymi poprzez zbieranie, wizualizację i archiwizację danych w czasie rzeczywistym. SCADA umożliwia operatorom monitorowanie różnych parametrów procesów, takich jak temperatura, ciśnienie czy poziom substancji, co pozwala na szybkie podejmowanie decyzji oraz reagowanie na potencjalne awarie. Przykłady zastosowania SCADA obejmują przemysł energetyczny, wodociągi, zakłady chemiczne oraz produkcję. Dzięki integracji z systemami alarmowymi, SCADA informuje o nieprawidłowościach i niebezpieczeństwach, umożliwiając automatyczne lub manualne korekty w czasie rzeczywistym. Warto również zwrócić uwagę, że zgodność z międzynarodowymi standardami, takimi jak ISA-95, zapewnia interoperacyjność i skuteczność systemów SCADA w złożonych środowiskach przemysłowych.

Pytanie 24

W systemie pneumatycznym schładzanie powietrza przy użyciu agregatu chłodniczego do ciśnieniowego punktu rosy +2°C ma na celu

A. nasycenie powietrza parą wodną
B. zwiększenie ciśnienia powietrza
C. osuszenie powietrza
D. zmniejszenie ciśnienia powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oziębianie powietrza za pomocą agregatu chłodniczego do ciśnieniowego punktu rosy +2°C ma na celu osuszenie powietrza, co jest kluczowym procesem w instalacjach pneumatycznych. W miarę obniżania temperatury powietrza, jego zdolność do utrzymywania pary wodnej zmniejsza się, co prowadzi do kondensacji wilgoci. Ten proces jest niezwykle istotny, ponieważ nadmiar wilgoci w układzie pneumatycznym może prowadzić do korozji elementów, obniżenia efektywności działania urządzeń oraz zwiększenia ryzyka awarii. W praktyce, zastosowanie agregatów chłodniczych do osuszania powietrza jest standardem w wielu branżach, takich jak przemysł spożywczy, farmaceutyczny czy motoryzacyjny, gdzie kontrola wilgotności jest kluczowa. Ponadto, stosowanie takich rozwiązań jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie utrzymania optymalnych warunków operacyjnych, co przyczynia się do wydłużenia żywotności systemów pneumatycznych oraz poprawy ich niezawodności.

Pytanie 25

Jaką z podanych zależności logicznych należy uwzględnić w programie kontrolnym, aby można było każdorazowo sygnalizować aktywność tylko jednego z trzech czujników podłączonych do kolejnych wejść sterownika?

A. Równowartość
B. Koniunkcję
C. Alternatywę
D. Alternatywę wykluczającą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Alternatywa wykluczająca jest kluczowym elementem w kontekście projektowania systemów sterowania z wykorzystaniem sensorów. W sytuacji, gdy mamy do czynienia z trzema sensorami, których zadziałanie ma być zgłaszane w sposób jednoznaczny, zastosowanie alternatywy wykluczającej zapewnia, że tylko jeden z sensorów może być aktywny w danym momencie. Oznacza to, że jeśli jeden sensor zostanie aktywowany, pozostałe muszą pozostać nieaktywne, co jest istotne w wielu aplikacjach, takich jak automatyka przemysłowa, systemy alarmowe czy urządzenia zabezpieczające. Przykładowo, w systemie alarmowym, aktywacja jednego czujnika ruchu powinna wykluczać sygnalizację z innych czujników, aby uniknąć fałszywych alarmów. W praktyce, stosowanie tej logiki pozwala na uniknięcie konfliktów w sygnałach, co jest zgodne z zasadami projektowania opartego na standardzie IEC 61131-3, który opisuje metody programowania systemów sterowania. Zrozumienie i umiejętność implementacji alternatywy wykluczającej jest kluczowe dla inżynierów automatyki, a także dla efektywnego rozwiązywania problemów związanych z detekcją i sygnalizacją zdarzeń.

Pytanie 26

Zidentyfikuj sieć przemysłową z topologią w kształcie pierścienia.

A. LonWorks
B. Profibus DP
C. InterBus-S
D. Modbus

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
InterBus-S jest standardem komunikacyjnym wykorzystywanym w automatyce przemysłowej, który charakteryzuje się topologią pierścieniową. Ta struktura sieciowa umożliwia efektywną komunikację między urządzeniami oraz zapewnia wysoki poziom niezawodności i elastyczności. W topologii pierścieniowej każde urządzenie jest połączone z dwoma innymi, co oznacza, że sygnał przechodzi przez wszystkie węzły sieci w jednym kierunku. Dzięki temu, w przypadku awarii jednego z urządzeń, możliwe jest kontynuowanie komunikacji, co jest istotne dla utrzymania ciągłości procesów przemysłowych. InterBus-S znajduje zastosowanie w różnych aplikacjach, takich jak systemy automatyki w zakładach produkcyjnych, gdzie kontrola i monitoring procesów są kluczowe. Przykładem praktycznego zastosowania może być integracja czujników i napędów w systemach robotyki przemysłowej, gdzie szybkość i niezawodność komunikacji są kluczowe. W branży automatyki stosuje się najlepsze praktyki, takie jak projektowanie z uwzględnieniem redundancji, co czyni InterBus-S odpowiednim wyborem dla krytycznych aplikacji przemysłowych.

Pytanie 27

Jakim akronimem opisuje się systemy wspomagania komputerowego w procesie produkcji?

A. CAE
B. CNC
C. CAD
D. CAM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź CAM oznacza Computer Aided Manufacturing, co w tłumaczeniu na polski oznacza systemy komputerowego wspomagania wytwarzania. Systemy te są kluczowe w nowoczesnym przemyśle, ponieważ umożliwiają automatyzację procesów produkcyjnych, co zwiększa efektywność, precyzję oraz redukuje koszty produkcji. Przykładowo, w przemyśle motoryzacyjnym, systemy CAM są używane do sterowania maszynami CNC (Computer Numerical Control), które wykonują złożone operacje obróbcze na metalowych komponentach. Dzięki CAM inżynierowie mogą tworzyć skomplikowane modele w oprogramowaniu CAD (Computer Aided Design) i następnie bezpośrednio przesyłać je do maszyn produkcyjnych. To podejście nie tylko zwiększa dokładność, ale również umożliwia szybszą adaptację do zmieniających się potrzeb rynku, co jest zgodne z najlepszymi praktykami w zakresie Lean Manufacturing i Industry 4.0.

Pytanie 28

Badanie szczelności układu hydraulicznego powinno być wykonane przy ciśnieniu

A. równym ciśnieniu roboczemu
B. wyższym o 50% od ciśnienia roboczego
C. wyższym o 100% od ciśnienia roboczego
D. niższym o 20% od ciśnienia roboczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ocena szczelności układu hydraulicznego przy ciśnieniu większym o 50% od ciśnienia roboczego jest kluczowym standardem w branży inżynieryjnej. Taki test ma na celu zapewnienie, że układ jest w stanie wytrzymać wszelkie potencjalne przeciążenia, które mogą wystąpić w trakcie normalnej eksploatacji. Przykładowo, w aplikacjach przemysłowych, takich jak maszyny hydrauliczne czy systemy transportu cieczy, presja robocza często osiąga wysokie wartości, dlatego ważne jest, aby podczas testów przekroczyć te wartości o 50%. Takie podejście jest zgodne z normami takimi jak ISO pressures standaryzacja, które zalecają przeprowadzanie testów na ciśnienie wyższe niż robocze w celu eliminacji ryzyka awarii. Dzięki temu można zidentyfikować potencjalne nieszczelności lub słabości w konstrukcji układu, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności systemu. Umożliwia to również wcześniejsze wykrycie problemów, co może zaoszczędzić znaczne koszty związane z naprawami i przestojami w produkcji.

Pytanie 29

Jaki jest cel użycia oscyloskopu w diagnostyce układów elektronicznych?

A. Zwiększenie częstotliwości sygnałów
B. Zasilanie obwodów niskim napięciem
C. Pomiar rezystancji izolacji
D. Obserwacja kształtu sygnałów elektrycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oscyloskop to niezwykle przydatne narzędzie w diagnostyce układów elektronicznych, ponieważ pozwala na obserwację kształtu sygnałów elektrycznych. Dzięki temu możemy wizualizować przebiegi czasowe, co jest kluczowe dla zrozumienia, jak sygnały przepływają przez układ. Wyobraź sobie, że masz do czynienia z układem, który nie działa prawidłowo. Dzięki oscyloskopowi możesz zidentyfikować, gdzie dokładnie występuje problem, czy to w postaci zakłóceń, zniekształceń, czy też nietypowych amplitud sygnałów. To narzędzie umożliwia również pomiar parametrów takich jak częstotliwość, amplituda, czas narastania czy opóźnienia sygnału. W praktyce inżynierskiej, umiejętność korzystania z oscyloskopu jest niezbędna, zwłaszcza w dziedzinach takich jak automatyka przemysłowa, elektronika użytkowa czy inżynieria telekomunikacyjna. Moim zdaniem, to jedno z tych narzędzi, które każdy inżynier powinien umieć obsługiwać, ponieważ daje ono wgląd w działanie układów na poziomie, którego nie można osiągnąć za pomocą innych urządzeń pomiarowych.

Pytanie 30

W jakim celu stosuje się enkodery w systemach automatyki?

A. Zwiększanie mocy silnika
B. Pomiar przemieszczenia i prędkości
C. Redukcja zużycia energii
D. Poprawa jakości dźwięku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Enkodery są niezbędnym elementem w systemach automatyki, ponieważ pozwalają na precyzyjny pomiar przemieszczenia i prędkości. Te urządzenia przetwarzają ruch mechaniczny na sygnał elektryczny, co umożliwia dokładne śledzenie pozycji i ruchu elementów w maszynach. Na przykład w robotyce, enkodery są używane do precyzyjnej kontroli położenia ramion robotów, co jest kluczowe dla dokładności i powtarzalności operacji. W przemyśle maszynowym, enkodery pomagają monitorować prędkość obrotową silników, co jest istotne dla synchronizacji procesów produkcyjnych. Stosowanie enkoderów to standard w branży automatyki, ponieważ ich zdolność do dostarczania dokładnych danych w czasie rzeczywistym znacząco poprawia efektywność i bezpieczeństwo systemów przemysłowych. Enkodery mogą być inkrementalne lub absolutne, w zależności od potrzeb aplikacji, co dodatkowo zwiększa ich wszechstronność. Dzięki temu, firmy mogą implementować bardziej zaawansowane systemy sterowania, które są w stanie dynamicznie reagować na zmiany w procesie produkcyjnym, optymalizując tym samym działanie całego systemu.

Pytanie 31

Jakie oprogramowanie komputerowe, które między innymi zajmuje się zbieraniem, wizualizacją, archiwizowaniem danych oraz alarmowaniem i kontrolą procesów, monitoruje przebieg procesów w systemach?

A. CAD
B. CNC
C. SCADA
D. CAM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
SCADA, czyli Supervisory Control and Data Acquisition, to naprawdę fajne oprogramowanie, które ma kluczowe znaczenie w automatyzacji różnych procesów w przemyśle. Głównie zajmuje się zbieraniem danych z różnych czujników i urządzeń, a potem pokazuje je w zrozumiały sposób na ładnych interfejsach graficznych. W dodatku, SCADA archiwizuje te informacje, żeby można było je później analizować. Co ciekawe, jeżeli coś idzie nie tak, to potrafi alarmować operatorów, a także kontrolować urządzenia na bieżąco. Jest to mega ważne dla zachowania ciągłości i bezpieczeństwa. Na przykład, w energetyce SCADA monitoruje różne parametry, jak ciśnienie czy temperatura, co jest kluczowe dla prawidłowego działania. Jeśli chodzi o standardy, to ISA-95 mówi o tym, jak skutecznie integrować SCADA z innymi systemami, co naprawdę może poprawić efektywność i zminimalizować błędy.

Pytanie 32

Wysokoobrotowy silnik pneumatyczny o budowie turbinowej powinien być smarowany olejem mineralnym w sposób

A. ciągły, podawanym pompą olejową o stałej wydajności
B. cykliczny, smarownicą przed uruchomieniem silnika
C. ciągły, naolejonym powietrzem z instalacji zasilającej
D. cykliczny, smarownicą co dwa tygodnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "ciągły, naolejonym powietrzem z instalacji zasilającej." Silniki pneumatyczne wysokoobrotowe o konstrukcji turbinowej wymagają ciągłego smarowania, aby zapewnić ich prawidłowe działanie i minimalizować zużycie komponentów. W praktyce, smarowanie ciągłe przy użyciu naolejonego powietrza z instalacji zasilającej pozwala na dostarczenie oleju do wszystkich ruchomych części silnika równomiernie i bez przerw. Taki system smarowania jest bardziej efektywny niż smarowanie okresowe, ponieważ eliminuje ryzyko niewystarczającego smarowania w trakcie pracy silnika. W branży inżynieryjnej stosuje się go zgodnie z normami, które podkreślają znaczenie ciągłego smarowania w aplikacjach wymagających dużych prędkości obrotowych, co przekłada się na dłuższą żywotność urządzenia i większą wydajność. Dodatkowo, odpowiednie smarowanie wpływa na redukcję tarcia oraz minimalizację ryzyka awarii, co jest kluczowe w zastosowaniach przemysłowych i energetycznych.

Pytanie 33

Zakres działań eksploatacyjnych dla urządzenia mechatronicznego powinien być określony na podstawie

A. dokumentacji techniczno-ruchowej urządzenia
B. protokółu przekazania urządzenia do eksploatacji
C. dowodu zakupu urządzenia
D. karty gwarancyjnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dokumentacja techniczno-ruchowa urządzenia mechatronicznego jest kluczowym źródłem informacji dotyczących jego eksploatacji, konserwacji oraz napraw. Zawiera szczegółowe specyfikacje techniczne, instrukcje obsługi oraz harmonogramy przeglądów, co pozwala użytkownikom na odpowiednie przygotowanie się do pracy z urządzeniem. Przykładowo, regularne przeglądy oraz konserwacja zgodnie z wytycznymi zawartymi w dokumentacji są niezbędne dla zapewnienia długotrwałej i bezawaryjnej pracy urządzenia. Dobre praktyki branżowe wskazują, że niewłaściwa eksploatacja sprzętu, wynikająca z braku znajomości zasad zawartych w dokumentacji, może prowadzić do poważnych usterek oraz zwiększonych kosztów napraw. Ponadto, dokumentacja techniczno-ruchowa zapewnia również aktualizacje dotyczące zmian w procedurach eksploatacyjnych, co jest istotne w kontekście dostosowania się do nowych standardów i norm bezpieczeństwa. Rzetelne przestrzeganie zawartych tam wytycznych jest zatem fundamentem dla efektywnej i bezpiecznej eksploatacji urządzeń mechatronicznych.

Pytanie 34

Aby na rysunku oznaczyć promień łuku, należy zastosować literę

A. Φ
B. D
C. X
D. R

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "R" jest poprawna, ponieważ w rysunku technicznym promień łuku oznacza się literą "R". Termin ten wywodzi się od angielskiego słowa "radius", które z kolei oznacza promień. Użycie symbolu "R" jest standardem w praktyce inżynieryjnej oraz architektonicznej, zgodnym z normami ISO oraz innymi wytycznymi branżowymi. W kontekście rysunku technicznego, precyzyjne oznaczenie promienia jest kluczowe dla zachowania właściwych proporcji oraz parametrów konstrukcyjnych. Na przykład, w projektowaniu elementów mechanicznych, takich jak wały, zębatki czy różnego rodzaju połączenia, właściwe oznaczenie promieni łuków ma kluczowe znaczenie dla prawidłowego dopasowania komponentów. Dobre praktyki w rysunku technicznym zalecają stosowanie jasnych i zrozumiałych symboli, co pozwala uniknąć błędów w interpretacji rysunków przez różnych wykonawców. Warto również dodać, że w przypadku bardziej złożonych projektów, w których występują różne promienie, stosowanie symbolu "R" jako oznaczenia jest niezwykle pomocne w identyfikacji i weryfikacji tych parametrów na etapie wytwarzania.

Pytanie 35

Do którego segmentu pamięci w sterowniku PLC podczas wykonywania programu są generowane odniesienia do sprawdzania stanów fizycznych wejść urządzenia?

A. Użytkowej
B. Systemowej
C. Roboczej
D. Programu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "Systemowej", ponieważ odwołania do stanów fizycznych wejść sterownika PLC są zarządzane w bloku pamięci systemowej. To właśnie w tym obszarze pamięci gromadzone są informacje o aktualnym stanie wszystkich wejść i wyjść urządzenia, co jest kluczowe dla prawidłowego działania aplikacji sterującej. Przykładowo, w aplikacjach automatyki przemysłowej, gdzie czas reakcji jest istotny, programista musi mieć pewność, że wszystkie odczyty stanów wejść są wykonywane w czasie rzeczywistym. Wykorzystanie pamięci systemowej pozwala na efektywne przetwarzanie informacji, co w konsekwencji prowadzi do szybszego podejmowania decyzji przez systemy sterujące. Dobrą praktyką w programowaniu PLC jest regularne monitorowanie i aktualizacja stanów wejść, aby zminimalizować ryzyko błędów operacyjnych. Dodatkowo, zgodnie z normami branżowymi, takie jak IEC 61131, zarządzanie pamięcią systemową powinno być dobrze udokumentowane, aby zapewnić łatwość w diagnostyce i konserwacji systemu.

Pytanie 36

Jaka liczba w systemie heksadecymalnym odpowiada liczbie binarnej 1010110011BIN?

A. 2B3H
B. 1A4H
C. 10EH
D. 1F3H

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2B3H jest poprawna, ponieważ liczba binarna 1010110011 składa się z 10 cyfr binarnych, co odpowiada potrzebie przekształcenia jej na 2 cyfry szesnastkowe. W systemie heksadecymalnym każda cyfra reprezentuje 4 bity, co oznacza, że do reprezentacji 10 bitów (2^10 = 1024) wystarczą 3 cyfry szesnastkowe, ale w tym przypadku zdefiniowaliśmy ją w sposób, który dokładnie odpowiada. Pierwsza cyfra '2' w heksadecymalnym systemie reprezentuje wartość 2 * 16^1, a druga cyfra 'B' oznacza 11 * 16^0, co daje 2*16 + 11 = 32 + 11 = 43 w systemie dziesiętnym. Kolejnym krokiem jest zrozumienie, jak swobodnie można przechodzić pomiędzy systemami liczbowymi, co jest kluczową umiejętnością w informatyce, szczególnie w programowaniu i projektowaniu systemów cyfrowych. Przykładowo, umiejętność konwersji między tymi systemami jest niezbędna w pracy z adresami pamięci w komputerach czy komunikacji w sieciach komputerowych.

Pytanie 37

Na tabliczce znamionowej silnika indukcyjnego symbol "S1" wskazuje na

A. tryb pracy ciągłej
B. maksymalną temperaturę otoczenia
C. typ chłodzenia silnika
D. kategorię izolacji uzwojenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol "S1" na tabliczce znamionowej silnika indukcyjnego rzeczywiście oznacza pracę ciągłą. W kontekście silników elektrycznych, oznaczenie to sugeruje, że konstrukcja silnika pozwala na jego nieprzerwaną pracę przez dłuższy czas bez ryzyka przegrzania. Silniki oznaczone jako "S1" są projektowane z myślą o osiąganiu nominalnych parametrów, takich jak moc, prąd czy moment obrotowy, w sposób stabilny i efektywny. W praktyce oznacza to, że silniki te można stosować w aplikacjach, gdzie wymagana jest ciągła praca, jak na przykład w wentylatorach, pompach czy kompresorach. Zgodnie z normą IEC 60034-1 tryby pracy silników elektrycznych są precyzyjnie zdefiniowane, co pozwala inżynierom i projektantom na wybór odpowiednich urządzeń do konkretnych zastosowań, minimalizując ryzyko awarii oraz utrzymując wysoką efektywność energetyczną.

Pytanie 38

Jaką linią powinno się przedstawiać niewidoczne kontury oraz krawędzie obiektów?

A. Grubą przerywaną
B. Cienką ciągłą
C. Cienką przerywaną
D. Grubą ciągłą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cienka przerywana linia to naprawdę ważny element w rysunku technicznym. Zwłaszcza jak chodzi o pokazywanie krawędzi, których nie widać, czy zarysów różnych przedmiotów. W inżynierii i architekturze to jest wręcz standard, bo te linie są subtelne i nie psują odbioru najważniejszych detali rysunku. Dzięki cienkiej przerywanej linii łatwiej zauważyć elementy, które są zasłonięte przez inne części modelu. To jest kluczowe, zwłaszcza w projektach budowlanych, gdzie takie linie mogą wskazywać ukryte okna czy drzwi. Poza tym, trzymanie się tych norm ułatwia komunikację między projektantami a wykonawcami, minimalizując ryzyko nieporozumień. Takie podejście, zgodne z normami ISO 128 i ANSI Y14.2, gwarantuje, że nasze dokumentacje są na odpowiednim poziomie i dobrze zrozumiane przez wszystkich.

Pytanie 39

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Grubą linią punktową.
B. Cienką z długą kreską oraz kropką.
C. Cienką ciągłą linią zygzakową.
D. Grubą kreską.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cienka ciągła zygzakowa linia jest standardem stosowanym w rysunku technicznym do oznaczania urwań i przerwań przedmiotów. W praktyce inżynieryjnej, użycie tej linii pozwala na jasne i jednoznaczne przedstawienie elementów, które nie są w pełni widoczne, co jest kluczowe w dokumentacji technicznej. Zygzakowa linia wskazuje, że dany fragment obiektu nie jest przedstawiony w całości, co może mieć znaczenie podczas produkcji czy montażu. Warto pamiętać, że zgodnie z normami ISO, stosowanie odpowiednich linii ma kluczowe znaczenie w komunikacji wizualnej w inżynierii. Umożliwia to projektantom i inżynierom lepsze zrozumienie zamysłu konstrukcyjnego oraz uniknięcie błędów w realizacji projektu. To zastosowanie podkreśla rolę standardów w procesie projektowania, gdzie nawet drobne szczegóły, jak typ linii, mogą mieć duże znaczenie dla finalnej jakości i funkcjonalności produktu.

Pytanie 40

Które z poniższych narzędzi CAD pozwala na wykonanie analizy wytrzymałościowej korbowodu podczas etapu projektowania?

A. DWG
B. MES
C. ERA
D. PMI

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda Elementów Skończonych, czyli MES, to naprawdę fajna technika, która inżynierom pozwala na dokładne modelowanie i symulację tego, jak różne obiekty będą się zachowywać pod różnymi obciążeniami. W przypadku analizy korbowodu, MES jest super przydatne, bo możesz określić geometrię i materiały, co jest mega ważne, by ocenić, jak dobrze ten korbowód będzie działał, a przede wszystkim czy będzie bezpieczny. Rozdzielając skomplikowany obiekt na mniejsze fragmenty, można dokładnie obliczyć, jakie siły na niego działają. Przykładowo, inżynierowie mogą sprawdzić, jak korbowód zniesie obciążenia dynamiczne, które pojawiają się podczas pracy silnika. To pomaga znaleźć te newralgiczne punkty, które mogą się uszkodzić. W inżynierii MES to standard, który naprawdę ułatwia projektowanie i zmniejsza ryzyko, że coś pójdzie nie tak z ostatecznym produktem. To jest zgodne z najlepszymi praktykami w inżynierii mechanicznej.