Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:25
  • Data zakończenia: 7 grudnia 2025 10:43

Egzamin niezdany

Wynik: 9/40 punktów (22,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Przewód OMY 2x0,5 300/300 V przedstawia zdjęcie

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybierając jedną z pozostałych odpowiedzi, można wpaść w pułapkę niepełnego zrozumienia charakterystyki przewodów elektrycznych. Przewody OMY, które mają specyficzne właściwości, takie jak elastyczność i odpowiedni przekrój, są kluczowe w zastosowaniach niskonapięciowych. Wiele z błędnych odpowiedzi może przedstawiać przewody o innym przekroju, innej liczbie żył lub wykonane z materiałów, które nie spełniają standardów przewidzianych dla instalacji elektrycznych. Przykładowo, wybór przewodu o większym przekroju może sugerować, że jest on bardziej odpowiedni do intensywnego obciążenia, co jednak nie jest zgodne z wymogami danej instalacji. Ponadto, niewłaściwe zrozumienie norm dotyczących izolacji może prowadzić do wyboru przewodów, które nie są przystosowane do warunków panujących w danym środowisku. Często błędne odpowiedzi wynikają z nieprecyzyjnego rozpoznawania właściwości technicznych, takich jak rodzaj izolacji, liczba żył czy przekrój, co może prowadzić do niebezpiecznych sytuacji w użytkowaniu. W praktyce, dobór odpowiednich przewodów jest kluczowy dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych. Zrozumienie tych podstawowych różnic i znajomość specyfikacji technicznych są niezbędne dla każdego zajmującego się projektowaniem lub montażem instalacji elektrycznych.

Pytanie 2

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Pomiar rezystancji uziemienia.
B. Lokalizacja przewodów pod tynkiem.
C. Sprawdzanie wyłączników różnicowoprądowych.
D. Badanie kolejności faz.
Odpowiedzi, które nie wskazują na funkcję testera wyłączników różnicowoprądowych, mogą prowadzić do wielu nieporozumień dotyczących zastosowania tego przyrządu. Pomiar rezystancji uziemienia, na przykład, to proces, który polega na ocenie skuteczności systemu uziemiającego w celu ochrony przed wyładowaniami elektrycznymi. Choć jest to ważne zadanie w kontekście bezpieczeństwa elektrycznego, nie jest to funkcja testera różnicowoprądowego. Podobnie, lokalizacja przewodów pod tynkiem wymaga użycia innych narzędzi, takich jak detektory przewodów, które są zaprojektowane do identyfikacji położenia kabli i rur w ścianach, a nie do testowania wyłączników. Z kolei badanie kolejności faz jest związane z analizą instalacji trójfazowych, gdzie ważne jest, aby odpowiednia sekwencja zasilania była zachowana dla poprawnej pracy urządzeń. Takie pomyłki mogą wynikać z niezrozumienia podstawowych funkcji urządzeń elektrycznych oraz ich zastosowań w praktyce. Właściwe rozpoznawanie i stosowanie narzędzi, jak i znajomość ich funkcji jest kluczowe dla profesjonalnego podejścia do instalacji elektrycznych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 3

Przyporządkuj rodzaje trzonków świetlówek kompaktowych, w kolejności jak na rysunku.

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedź B. jest poprawna, ponieważ zgodnie z przedstawionym rysunkiem, trzonki świetlówek kompaktowych są uporządkowane w oparciu o ich standardy montażowe. Trzonek B22d, który znajduje się w świetlówce nr 2, jest powszechnie stosowany w oświetleniu domowym, ze względu na łatwość w instalacji i szeroką dostępność. Użytkownicy często spotykają się z tym rodzajem trzonka w żarówkach przeznaczonych do lamp sufitowych oraz lamp stołowych. W praktyce, znajomość typów trzonków świetlówek jest kluczowa podczas zakupu nowych źródeł światła, ponieważ błędny wybór może prowadzić do problemów z kompatybilnością. Warto zaznaczyć, że różne trzonki mają różne zastosowania, co wpływa na efektywność i bezpieczeństwo użycia. Trzonek E14, E27 oraz GU10 również mają swoje specyficzne przeznaczenie i zastosowania, dlatego ważne jest, aby zrozumieć ich różnice oraz odpowiednio je dobierać, aby zapewnić optymalne warunki oświetleniowe w różnych przestrzeniach.

Pytanie 4

Symbol graficzny przedstawiony na rysunku oznacza w instalacjach elektrycznych

Ilustracja do pytania
A. skrzyżowanie przewodów bez połączenia elektrycznego.
B. przewód ochronny uziemiony.
C. połączenie elektryczne z korpusem, obudową (masą).
D. przewód ochronny nieuziemiony.
Wydaje mi się, że wybór złej odpowiedzi może wynikać z nieporozumień na temat podstawowych zasad połączeń elektrycznych. Przewód ochronny, ten uziemiony, ma na celu zmniejszenie ryzyka porażenia prądem, ale nie oddaje do końca tego, co znaczy połączenie z korpusem. To jest kluczowy element, żeby wszystko działało jak należy. Z kolei przewód ochronny, który nie jest uziemiony, to też zła opcja, bo nie oferuje wystarczającego bezpieczeństwa. Oba wybory pomijają jedną z podstawowych zasad – w instalacjach elektrycznych musimy dążyć do najlepszego uziemienia, by chronić zarówno urządzenia, jak i ludzi. Dodatkowo nie można mylić połączenia elektrycznego z korpusem z zjawiskiem skrzyżowania przewodów, gdzie nie ma złączenia. To może prowadzić do błędnych interpretacji schematów elektrycznych. A te schematy są zaprojektowane tak, żeby dokładnie pokazać, jak i gdzie przewody mają być podłączone. Zrozumienie ich znaczenia to klucz do prawidłowego wykonania instalacji. Jeśli się tego nie zrozumie, mogą się pojawić poważne problemy, jak większe ryzyko pożaru czy uszkodzenia sprzętu. Dlatego korzystanie z odpowiednich oznaczeń, które są zgodne z normami, jest naprawdę istotne dla bezpieczeństwa i efektywnego działania systemów elektrycznych.

Pytanie 5

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
B. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
C. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
D. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
Pomiar impedancji pętli zwarciowej w momencie, gdy sieć jest odłączona, prowadzi do znacznych zniekształceń wyników. W takim przypadku nie uwzględniamy rzeczywistej interakcji między elementami systemu, co skutkuje pomiarami, które nie odzwierciedlają rzeczywistych warunków pracy. Odpowiedzi, które zakładają odłączenie sieci i pomijają impedancję transformatorów, zapominają o fundamentalnej roli, jaką te urządzenia odgrywają w systemach zasilania. W przypadku zwarcia, transformatorzy przyczyniają się do zmiany impedancji, poprzez swoją własną impedancję zwarciową, co może znacząco wpłynąć na prąd zwarciowy i czas reakcji zabezpieczeń. Pomiar przeprowadzony w tej konfiguracji może prowadzić do zbyt niskich lub zbyt wysokich wartości impedancji, co w praktyce może skutkować nieadekwatnym dobraniem zabezpieczeń. Typowym błędem myślowym jest przekonanie, że pomiar w czasie odłączenia jest wystarczający i dostarcza pełnego obrazu zachowania systemu. Należy pamiętać, że odpowiednie wytyczne, takie jak normy IEC, zalecają przeprowadzanie tych pomiarów w warunkach operacyjnych, aby zapewnić rzetelność i bezpieczeństwo instalacji elektrycznych.

Pytanie 6

Po połączeniu układu sterowania oświetlenia przekaźnikiem bistabilnym przeprowadzono kilkukrotnie próbę działania. Na podstawie diagramu działania przekaźnika i powtarzającej się tabeli działania układu można stwierdzić, że

Ilustracja do pytania
A. występuje błąd w podłączeniu przekaźnika.
B. uszkodzona jest jedna z żarówek.
C. nieprawidłowo działa użyty przekaźnik.
D. układ działa prawidłowo.
Wybór odpowiedzi dotyczącej błędów w podłączeniu przekaźnika, uszkodzenia żarówek lub prawidłowego działania układu, wskazuje na zrozumienie problematyki, jednak nie na właściwe rozpoznanie sytuacji. W pierwszym przypadku, błędne podłączenie przekaźnika mogłoby prowadzić do braku reakcji całego układu, co nie jest potwierdzone przez przedstawione dane. Jeśli diagram i tabela działania układu są zgodne, to nieprawidłowe podłączenie w tym scenariuszu wydaje się mało prawdopodobne. Kolejną możliwą mylną koncepcją jest przypisanie winy uszkodzonym żarówkom. W rzeczywistości, gdy przekaźnik działa nieprawidłowo, jego potencjalny wpływ na zasilanie żarówek może maskować problemy z ich funkcjonowaniem. Prawidłowe działanie żarówek można ocenić niezależnie, ale wiedząc, że przekaźnik jest kluczowym elementem w cyklu włączania i wyłączania, to on powinien być priorytetem w diagnostyce. Ostatnia myśl o tym, że układ działa prawidłowo, pomija fundamentalne informacje z diagramu i tabeli, które jasno wskazują na rozbieżności. Uznawanie układu za sprawny bez dokładnej analizy wszystkich komponentów, szczególnie przekaźnika, może prowadzić do fałszywych wniosków i pomijać istotną diagnostykę. Rozpoznawanie problemów w takich systemach wymaga zastosowania metodyki analizy przyczyn źródłowych, aby skutecznie zidentyfikować problem i uniknąć błędnych interpretacji wyników.

Pytanie 7

Na zdjęciu przedstawiono puszkę elektroinstalacyjną

Ilustracja do pytania
A. PK-2x60/43 MS
B. PK-3x60/43 MS
C. PU.PP-F3X60GŁ-N
D. PU.PP-F2X60PŁ-N
Wybór puszki elektroinstalacyjnej z innymi oznaczeniami opiera się na nieprawidłowym zrozumieniu specyfikacji i zastosowań. Odpowiedzi takie jak "PK-2x60/43 MS" i "PU.PP-F2X60PŁ-N" sugerują, że osoba udzielająca odpowiedzi mogła nie zauważyć istotnych cech puszki z trzema przegródkami. Puszki z dwiema przegródkami nie spełniają tego samego celu, co puszki z trzema, szczególnie w kontekście instalacji wymagających większej ilości przewodów lub złożonych połączeń. Oznaczenie "PU.PP-F3X60GŁ-N" również wskazuje na nieprawidłowy wybór, gdyż odnosi się do innego rodzaju puszki, która może nie być zgodna z normami i praktykami w budownictwie elektrycznym. Wybierając puszkę elektroinstalacyjną, należy wziąć pod uwagę zarówno ilość niezbędnych przegródek, jak i ich wymiary, tak aby zapewnić odpowiednią przestrzeń dla przewodów oraz ich bezpieczne prowadzenie. Ignorowanie tych aspektów prowadzi do nieefektywności w instalacji oraz zwiększa ryzyko związane z bezpieczeństwem elektrycznym, co jest kluczowe w kontekście przepisów budowlanych oraz norm branżowych. Właściwy dobór puszki kablowej nie tylko wpływa na funkcjonalność, ale także na trwałość całej instalacji.

Pytanie 8

Urządzenie przedstawione na zdjęciu służy do

Ilustracja do pytania
A. sprawdzania ciągłości przewodów.
B. pomiaru rezystancji uziemienia urządzenia.
C. kontroli prądu upływu.
D. określania kolejności faz zasilających.
Odpowiedzi wskazujące na sprawdzanie ciągłości przewodów, pomiar rezystancji uziemienia urządzenia czy kontrolę prądu upływu są niepoprawne, ponieważ każda z tych funkcji wymaga innych narzędzi oraz metodologii pomiarowej. Sprawdzanie ciągłości przewodów za pomocą multimetru lub testera ciągłości ma na celu zapewnienie, że przewody nie są uszkodzone i zapewniają nieprzerwaną drogę elektryczną. Natomiast pomiar rezystancji uziemienia wiąże się z użyciem specjalistycznych mierników, które są w stanie zmierzyć opór ziemi, co jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Kontrola prądu upływu natomiast z reguły przeprowadzana jest za pomocą wyłączników różnicowoprądowych, które wykrywają różnice w prądzie wpływającym i wypływającym z obwodu, co jest niezbędne do ochrony przed porażeniem prądem elektrycznym. Warto zauważyć, że wszystkie te procesy, chociaż istotne, są odrębne od kwestii kolejności faz, która jest kluczowa dla prawidłowego funkcjonowania systemów zasilających. Prawidłowe zrozumienie funkcji testerów i ich zastosowania w różnych kontekstach jest kluczowe dla prawidłowego wykonywania prac elektrycznych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 9

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. zasilającego gniazdka w łazience oraz kuchni
B. oddzielnego dla zmywarki
C. oddzielnego dla urządzeń gospodarstwa domowego
D. zasilającego gniazdka jedynie w kuchni
Zasilanie zmywarki z obwodu z gniazda w łazience i kuchni jest nieodpowiednie, ponieważ takie podejście może prowadzić do wielu problemów związanych z bezpieczeństwem oraz funkcjonalnością. Przede wszystkim, gniazda w łazience są zaprojektowane z myślą o niskiej mocy i specyficznych wymaganiach urządzeń, a ich użycie do zasilania zmywarki może skutkować przeciążeniem obwodu. Użycie wspólnego obwodu dla różnych urządzeń, zwłaszcza w kontekście sprzętu AGD, może prowadzić do nieprzewidywalnych sytuacji, takich jak wyzwolenie zabezpieczeń. Kolejnym problemem jest to, że gniazda w łazience muszą spełniać rygorystyczne normy ochrony przed porażeniem elektrycznym, co w przypadku zmywarki, która działa w wodzie, stwarza dodatkowe ryzyko. Zasilanie zmywarki z jednego obwodu z innym sprzętem gospodarstwa domowego, takim jak lodówka, również jest niewłaściwe, ponieważ może doprowadzić do przeciążeń, co w konsekwencji może skutkować uszkodzeniem urządzeń. Warto więc przestrzegać zasad dotyczących oddzielnych obwodów dla dużych urządzeń, co jest zgodne z normami bezpieczeństwa oraz praktyką instalatorską, aby zapewnić efektywne i bezpieczne działanie wszystkich urządzeń w domu.

Pytanie 10

W jaki sposób odbywa się sterowanie oświetleniem w układzie wykonanym według schematu montażowego przedstawionego na rysunku?

Ilustracja do pytania
A. Klawisze 1a i 2a sterują żarówką A, a klawisze 1b i 2b sterują żarówką B
B. Klawisze 1a i 1b sterują żarówką A, a klawisze 2a i 2b sterują żarówką B
C. Klawisze 1a i 2a sterują żarówką B, a klawisze 1b i 2b sterują żarówką A
D. Klawisze 1a i 1b sterują żarówką B, a klawisze 2a i 2b sterują żarówką A
Wiele osób ma trudności ze zrozumieniem działania układów schodowych, co prowadzi do błędnych wniosków dotyczących ich funkcjonalności. W przypadku odpowiedzi wskazujących, że klawisze 1a i 1b sterują żarówką B, a klawisze 2a i 2b żarówką A, należy zwrócić uwagę na fakt, że nie jest to zgodne z zasadą działania układu schodowego. Klawisze w takim układzie są połączone w sposób, który pozwala na kontrolowanie jednej żarówki z dwóch różnych lokalizacji, a nie na podział sterowania między różnymi żarówkami w sposób zasugerowany w tych odpowiedziach. Typowym błędem jest mylenie funkcji klawiszy w kontekście ich połączenia oraz nieznajomość zasad działania obwodów elektrycznych, co prowadzi do błędnego przyporządkowania klawiszy i żarówek. Układ schodowy opiera się na zasadzie, że każda para klawiszy działa niezależnie, ale zawsze w odniesieniu do tej samej żarówki. W konsekwencji, brak zrozumienia tego mechanizmu może prowadzić do nieprawidłowego podłączenia i w efekcie do nieefektywnego działania systemu oświetleniowego. Zrozumienie działania układów schodowych jest kluczowe w praktyce elektrycznej, zwłaszcza przy projektowaniu układów oświetleniowych w obiektach mieszkalnych oraz komercyjnych.

Pytanie 11

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 0,56 Ω
B. 1,15 Ω
C. 3,83 Ω
D. 2,30 Ω
Wybór błędnych wartości impedancji pętli zwarcia może wynikać z niewłaściwego zrozumienia zasad działania wyłączników nadprądowych oraz ich charakterystyk. Na przykład, 0,56 Ω i 1,15 Ω to wartości znacznie zbyt niskie, co może sugerować, że osoba odpowiedzialna za projektowanie lub pomiar nie uwzględniała wymaganych parametrów dla wyłącznika B20. Tego rodzaju wartości mogą prowadzić do nieefektywnej ochrony, gdyż w przypadku zwarcia obwód może zadziałać zbyt szybko, zanim układ zabezpieczeń zdąży dopełnić swojej funkcji. Wartości 3,83 Ω również są nieprawidłowe, ponieważ przekraczają dopuszczalny limit. W praktyce, zbyt wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być niewystarczający, aby wyzwolić zabezpieczenie. Należy zauważyć, że zgodnie z normami, takimi jak PN-IEC 60364, odpowiednie wartości impedancji są kluczowe dla działania systemów zabezpieczeń. Dlatego ważne jest, aby przy projektowaniu oraz ocenie instalacji elektrycznych przestrzegać wytycznych, by zapewnić odpowiedni poziom bezpieczeństwa, eliminując słabe punkty, które mogą prowadzić do niebezpiecznych sytuacji.

Pytanie 12

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. prawidłowe działanie wyłącznika
B. brak możliwości zadziałania załączonego wyłącznika
C. niemożność załączenia wyłącznika pod obciążeniem
D. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
W przypadku niewłaściwego podłączenia przewodu PE zamiast N, pojawiają się różne nieporozumienia dotyczące funkcji i działania wyłącznika różnicowoprądowego. Wiele osób może błędnie sądzić, że takie podłączenie nie wpłynie na działanie urządzenia, jednak jest to dalekie od prawdy. Wyłącznik różnicowoprądowy działa na zasadzie porównywania prądów w przewodach fazowym i neutralnym, a jego funkcją jest zabezpieczenie użytkowników przed porażeniem prądem oraz uszkodzeniem urządzeń. Podłączenie PE zamiast N spowoduje, że wyłącznik nie będzie w stanie prawidłowo monitorować różnic prądowych, co jest niezbędne do jego działania. W związku z tym, pojawi się sytuacja, w której wyłącznik nie zadziała w przypadku wystąpienia prądu upływu, co zwiększa ryzyko porażenia prądem. Ponadto, istnieje przekonanie, że wyłącznik będzie działał przy mniejszych prądach upływu, ale to również jest błędne, ponieważ z powodu braku właściwego podłączenia, nie będzie on mógł zareagować w żadnej sytuacji. Takie nieprawidłowe założenia mogą prowadzić do niebezpiecznych konsekwencji, które mogą zagrażać zdrowiu i życiu użytkowników. Ostatecznie, kluczowe jest, aby stosować się do standardów dotyczących instalacji elektrycznych oraz przestrzegać zasad bezpieczeństwa, aby uniknąć tego typu pomyłek.

Pytanie 13

Podczas sprawdzania samoczynnego wyłączenia zasilania jako metody ochrony przeciwporażeniowej w sieciach TN-S, realizowanego poprzez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia, należy dla danego wyłącznika ustalić

A. próg zadziałania wyzwalacza przeciążeniowego
B. zwarciową zdolność łączeniową
C. czas zadziałania wyzwalacza zwarciowego
D. wartość prądu wyłączającego
Wybór niewłaściwej odpowiedzi może prowadzić do błędnych wniosków dotyczących istoty samoczynnego wyłączenia zasilania w systemach TN-S. Na przykład, określenie zwarciowej zdolności łączeniowej jest ważne, jednak nie jest to parametr, który bezpośrednio wpływa na działanie wyłącznika w kontekście jego reakcji na prąd wyłączający. Zwarciowa zdolność łączeniowa odnosi się do maksymalnego prądu zwarciowego, który dany wyłącznik jest w stanie bezpiecznie przerwać, co jest kluczowe dla bezpieczeństwa instalacji, ale nie ma bezpośredniego związku z szybkością zadziałania na prąd wyłączający. Podobnie, próg zadziałania wyzwalacza przeciążeniowego dotyczy innego aspektu ochrony i nie odnosi się do wyłączenia w przypadku porażenia prądem. Czas zadziałania wyzwalacza zwarciowego również jest istotny, ale to wartość prądu wyłączającego decyduje o tym, czy wyłącznik zadziała w odpowiednim czasie, aby chronić użytkowników przed skutkami porażenia. Niezrozumienie różnicy pomiędzy tymi parametrami może prowadzić do niewłaściwego doboru wyłączników oraz ryzyka nieodpowiedniej ochrony w instalacjach elektrycznych. Kluczowe jest, aby zrozumieć, że wartość prądu wyłączającego musi być dostosowana do specyfikacji danego obwodu oraz wymagań ochrony przeciwporażeniowej, co jest fundamentem bezpieczeństwa w instalacjach elektrycznych.

Pytanie 14

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt mała powierzchnia styku szczotek z komutatorem
B. Zbyt małe wzbudzenie silnika
C. Zbyt duży nacisk szczotek na komutator
D. Zbyt duże wzbudzenie silnika
Wybór odpowiedzi związanej z zbyt dużym wzbudzeniem silnika opiera się na błędnym wrażeniu, że większa moc wzbudzenia prowadzi do zmniejszenia iskrzenia na komutatorze. W rzeczywistości, nadmierne wzbudzenie może skutkować zwiększeniem prędkości obrotowej silnika, co pogarsza warunki pracy szczotek. Wzrost obrotów prowadzi do intensywniejszego kontaktu szczotek z komutatorem, co w połączeniu z niewłaściwą powierzchnią styku może zaostrzyć problem iskrzenia. Kolejne nieporozumienie dotyczy zbyt małego wzbudzenia, które często jest mylone z zaniżonym napięciem czy słabą mocą, co może prowadzić do niestabilności pracy silnika, ale nie jest bezpośrednim czynnikiem powodującym iskrzenie. Z kolei odpowiedź sugerująca zbyt duży nacisk szczotek na komutator, mimo że może prowadzić do ich szybszego zużycia, nie wyjaśnia przyczyny iskrzenia. Zbyt duży nacisk powoduje, że szczotki zużywają się szybciej, ale to nie jest głównym czynnikiem iskrzenia, które, jak pokazuje praktyka, jest w głównej mierze związane z samą powierzchnią styku. Aby unikać problemów z iskrzeniem, kluczowe jest zrozumienie wpływu właściwego wzbudzenia i siły nacisku na wydajność szczotek oraz regularne monitorowanie ich stanu, co powinno stać się standardową praktyką w każdej aplikacji silników prądu stałego.

Pytanie 15

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 2,00 Ω
B. 2,30 Ω
C. 3,83 Ω
D. 1,15 Ω
Przy ocenie maksymalnej dopuszczalnej wartości impedancji pętli zwarcia, istotne jest zrozumienie, że wartości takie jak 2,00 Ω, 3,83 Ω czy 2,30 Ω są niewłaściwe i mogą prowadzić do niebezpiecznych sytuacji. Impedancja pętli zwarcia jest kluczowym parametrem dla zadziałania wyłączników nadprądowych w przypadku zwarcia. Wyłącznik C20 działa na zasadzie detekcji nadmiernego prądu, a jego skuteczność jest w dużej mierze uzależniona od wartości impedancji pętli. Przy zbyt wysokiej impedancji, czas wyłączenia może się wydłużyć, co stwarza ryzyko porażenia prądem. Wartości takie jak 2,00 Ω czy 3,83 Ω nie spełniają wymagań dla bezpiecznych instalacji, które powinny być projektowane zgodnie z normami oraz zaleceniami branżowymi. Typowe błędy myślowe, które mogą prowadzić do wyboru nieprawidłowych wartości, obejmują niepełne zrozumienie zasad działania wyłączników oraz ich czasów reakcji w różnych warunkach obciążeniowych. Wartości impedancji pętli zwarcia muszą być starannie obliczane i regularnie sprawdzane w praktyce, aby uniknąć zagrożeń związanych z porażeniem prądem oraz uszkodzeniami instalacji elektrycznych. Zastosowanie niewłaściwych wartości impedancji może prowadzić do długotrwałych kompromisów w zakresie bezpieczeństwa elektrycznego.

Pytanie 16

Na którym rysunku przedstawiono prawidłowy sposób wykorzystania zacisku śrubowego?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Niewłaściwe wykorzystanie zacisku śrubowego może prowadzić do poważnych problemów związanych z bezpieczeństwem i stabilnością połączeń. W przypadku sytuacji, gdzie śruba nie jest dokręcona, elementy mogą ulegać ruchowi, co prowadzi do luzów i potencjalnych uszkodzeń. Takie podejście zagraża nie tylko integralności konstrukcji, ale również bezpieczeństwu osób pracujących w jej otoczeniu. Z kolei dokręcanie śruby poza elementem, które jest przedstawione w jednym z rysunków, skutkuje brakiem prawidłowego kontaktu, co może prowadzić do osłabienia całej konstrukcji. Ponadto, jeśli śruba jest dokręcona, ale nie zapewnia stabilnego połączenia z powodu złego ułożenia elementu, to również naraża całą strukturę na uszkodzenia, które mogą być trudne do zdiagnozowania w przyszłości. Kluczowe jest zrozumienie, że każdy element musi być prawidłowo ułożony i przygotowany do połączenia przed użyciem zacisku, aby zapewnić bezpieczeństwo i efektywność. Niewłaściwe praktyki mogą prowadzić do kosztownych napraw oraz przestojów w pracy, co w dłuższym okresie wpływa negatywnie na wydajność i ekonomię projektów.

Pytanie 17

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 250 V
B. 1000 V
C. 500 V
D. 120 V
Wybór wartości poniżej 500 V jako minimalnego napięcia izolacji narzędzi przy pracach pod napięciem w instalacjach elektrycznych jest nieodpowiedni i może prowadzić do poważnych zagrożeń. Odpowiedzi takie jak 120 V, 250 V czy 1000 V nie uwzględniają kluczowych aspektów bezpieczeństwa. Narzędzia izolowane muszą oferować odpowiednią ochronę, a zbyt niska wartość napięcia izolacji, taka jak 120 V czy 250 V, może nie zapewnić wystarczającej ochrony przy standardowych napięciach w domowych instalacjach elektrycznych, które często sięgają 230 V. Z kolei przyjęcie 1000 V jako minimalnej wartości wydaje się przesadzone w kontekście standardowych prac w instalacjach mieszkaniowych, co może prowadzić do niepotrzebnego obciążenia techników i zwiększenia kosztów narzędzi. Kluczową zasadą jest stosowanie narzędzi, które są odpowiednio dopasowane do warunków pracy i napięcia, w jakim będą używane. Zastosowanie narzędzi o odpowiedniej izolacji, zgodnych z normami, jest niezbędne dla zapewnienia bezpieczeństwa i ochrony przed porażeniem prądem elektrycznym. Ignorowanie tych zasad naraża pracowników na ryzyko i może prowadzić do wypadków, co podkreśla znaczenie wiedzy na temat specyfikacji sprzętu w kontekście bezpieczeństwa elektrycznego.

Pytanie 18

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć wszystkie wyłączniki nadprądowe.
B. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
C. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
D. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
Wyłączenie wszystkich wyłączników różnicowoprądowych lub nadprądowych przed wymianą uszkodzonego wyłącznika nadprądowego B16 może prowadzić do niezamierzonych konsekwencji. Wybierając tę opcję, wprowadza się ryzyko, że zasilanie w całym obwodzie zostanie przerwane, co może być nieodpowiednie w sytuacji, gdy inne urządzenia, takie jak płyta grzewcza czy piekarnik, również są zasilane z tej samej instalacji. Wyłączając wszystkie wyłączniki, nie tylko ryzykuje się utratę zasilania w lokalach, ale także narusza się zasady efektywności energetycznej i dobrych praktyk przy pracy z instalacjami elektrycznymi. Ponadto, wyłączanie wszystkich wyłączników jest nieefektywne i czasochłonne, co w praktyce staje się uciążliwe, zwłaszcza w obiektach komercyjnych, gdzie ciągłość zasilania jest kluczowa. W kontekście ochrony przeciwporażeniowej, wyłącznik różnicowoprądowy powinien być regularnie testowany, a jego wyłączenie powinno być uzasadnione potrzebą konserwacji lub naprawy tylko w określonych obwodach. Z tego powodu, nieprzemyślane wyłączenie wszystkich zabezpieczeń narusza zasady bezpieczeństwa i efektywności w zarządzaniu instalacjami elektrycznymi.

Pytanie 19

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 6,0 kV
B. 1,5 kV
C. 2,5 kV
D. 4,0 kV
Wybór wytrzymałości udarowej 2,5 kV, 4,0 kV czy 6,0 kV może wynikać z błędnych założeń co do tego, jakie normy powinny być stosowane w instalacjach elektrycznych. Może się wydawać, że wyższa wytrzymałość oznacza lepszą ochronę przed przepięciami, ale norma PN-IEC 664-1 jasno określa konkretne wartości dla różnych kategorii urządzeń. Jeśli wybierzesz zbyt wysoką wytrzymałość w I kategorii, to tak naprawdę może generować niepotrzebne koszty, które nie przekładają się na większe bezpieczeństwo. Dodatkowo, nadmierne wymagania mogą ograniczać dostępność i wybór sprzętu na rynku, co w efekcie wpływa na innowacyjność. Często też zdarza się, że nie odróżnia się kategorii urządzeń i ich rzeczywistych zastosowań, co jest naprawdę istotne. W praktyce wyższe wartości udarowe są używane w trudniejszych warunkach, jak II kategoria, gdzie ryzyko większych przepięć jest realne. Dlatego ważne, żeby spojrzeć na wymagania dotyczące wytrzymałości udarowej w kontekście konkretnych sytuacji i zagrożeń, żeby podejmować lepsze decyzje projektowe.

Pytanie 20

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Regulator oświetlenia.
C. Przekaźnik bistabilny.
D. Regulator temperatury.
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.

Pytanie 21

Rysunek przedstawia pomiar

Ilustracja do pytania
A. rezystancji uziemień metodą techniczną.
B. rezystywności gruntu metodą pośrednią.
C. rezystywności gruntu metodą bezpośrednią.
D. rezystancji uziemień metodą kompensacyjną.
Wybór innych odpowiedzi sugeruje pewne nieporozumienia dotyczące metod pomiaru rezystancji i rezystywności gruntu oraz ich zastosowań. Rezystywność gruntu, na przykład, odnosi się do właściwości materiału, który wpływa na przewodnictwo elektryczne, jednak do jej pomiaru stosuje się metody różniące się od pomiaru rezystancji uziemienia. Odpowiedzi sugerujące pomiar rezystywności metodą bezpośrednią lub pośrednią zakładają, że rysunek dotyczy pomiaru właściwości gruntu zamiast pomiaru samego uziemienia, co jest nieprawidłowe. Pomiar rezystywności gruntu ma swoje zastosowanie w badaniach geotechnicznych i inżynierii lądowej, ale nie jest tożsamy z oceną efektywności systemów uziemiających. Z kolei odpowiedź dotycząca metody kompensacyjnej, która jest wykorzystywana w specyficznych warunkach pomiarowych, również nie odnosi się do przedstawionego rysunku. W praktyce, błędne wybranie metody pomiarowej może prowadzić do poważnych konsekwencji, takich jak niewłaściwe zabezpieczenie instalacji elektrycznych, co może skutkować zagrożeniem dla osób oraz mienia. Zrozumienie różnic między tymi metodami oraz ich odpowiednich zastosowań jest kluczowe dla prawidłowego wykonywania pomiarów w inżynierii elektrycznej.

Pytanie 22

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór niewłaściwego narzędzia do montażu zworek w tabliczce silnikowej może prowadzić do różnych problemów. Użycie klucza imbusowego, jak w odpowiedzi oznaczonej jako 'A.', jest nieadekwatne, ponieważ klucze imbusowe są projektowane do obsługi śrub o łbie sześciokątnym, a nie nakrętek stosowanych w tabliczkach silnikowych. Dodatkowo, takie narzędzie nie zapewnia stabilności, co może prowadzić do uszkodzenia łbów śrub lub ich poluzowania. Podobnie, użycie śrubokręta z rękojeścią typu 'T' z odpowiedzi 'B.' nie ma sensu, ponieważ nie jest on przeznaczony do pracy z nakrętkami, lecz do wkrętów, co również nie przyniesie zamierzonego efektu. Warto również zauważyć, że próbnik napięcia, oznaczony jako 'D.', ma zupełnie inne zastosowanie i służy do pomiaru napięcia w obwodach elektrycznych, a nie do montażu elementów. Wybór narzędzi powinien zawsze opierać się na ich funkcjonalności oraz zgodności z wymaganiami technicznymi danego zadania. Ignorowanie tych zasad może prowadzić do poważnych błędów w instalacjach elektrycznych, a także do zwiększonego ryzyka awarii sprzętu. Dlatego kluczowe jest, aby przed przystąpieniem do pracy znać specyfikację narzędzi oraz ich odpowiednie zastosowania.

Pytanie 23

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych Un = 500 V, In = 25 A?

Ilustracja do pytania
A. Wstawkę 3.
B. Wstawkę 1.
C. Wstawkę 4.
D. Wstawkę 2.
Jak źle dobierzesz wstawkę kalibrową, to mogą być poważne kłopoty z bezpieczeństwem instalacji. W przypadku bezpiecznika typu D gL ważne, żeby wstawkę dopasować nie tylko pod napięcie, ale też prąd znamionowy. Jeśli wybierzesz wstawkę z niższym prądem, to może się przepalić w normalnym użytkowaniu i wtedy narazisz całą instalację na przeciążenie. Z drugiej strony, jak wstawisz wstawkę z za wysokim prądem, to może nie być ochrony przy zwarciu, co jest niebezpieczne dla sprzętu i użytkowników. Takie błędy mogą wynikać z niepełnego zrozumienia zasad dotyczących zabezpieczeń i norm, które obowiązują w branży. Dlatego ważne jest, żeby zawsze mieć w głowie parametry katalogowe i dobrego praktyki przy doborze zabezpieczeń elektrycznych.

Pytanie 24

Który symbol graficzny oznacza na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór innej odpowiedzi niż C może być spowodowany nieporozumieniem, jeśli chodzi o oznaczenia w instalacjach elektrycznych. Ważne jest, żeby zrozumieć, że każdy symbol na planie ma swoje konkretne znaczenie, które powinno być zgodne z normami. Wiele osób myśli, że inne symbole są podobne do tego samego sposobu prowadzenia przewodów, ale to nie zawsze prawda. Na przykład, jeśli ktoś wybierze symbol A, to może pomyśleć, że oznacza to coś analogicznego do kanału kablowego, ale w rzeczywistości chodzi o instalacje powierzchniowe i to inna sprawa. Takie błędy zdarzają się najczęściej, bo brakuje znajomości standardów rysunku technicznego i jest problem z interpretacją symboli. W projektowaniu instalacji elektrycznych granie na tych zasadach jest kluczowe, by mieć dobrą wiedzę teoretyczną i praktyczną o oznaczeniach. Często ludzie upraszczają sprawy i nie biorą pod uwagę kontekstu, w jakim instalacja jest realizowana. Zrozumienie symboli graficznych jest istotne dla bezpieczeństwa i efektywności projektowania instalacji elektrycznych.

Pytanie 25

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Klasę II
B. Klasę 0
C. Klasę I
D. Klasę III
Odpowiedź "Klasę I" jest prawidłowa, ponieważ symbol przedstawiony na zdjęciu jednoznacznie wskazuje na tę klasę ochronności. Klasa I opraw oświetleniowych charakteryzuje się tym, że są one wyposażone w uziemienie, co jest kluczowe dla bezpieczeństwa użytkowników. Uziemienie zapewnia, że w przypadku wystąpienia awarii, prąd będzie odprowadzany do ziemi, minimalizując ryzyko porażenia elektrycznego. W praktyce, oprawy tej klasy stosowane są w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w obiektach przemysłowych, gdzie warunki eksploatacji są trudniejsze. Warto zauważyć, że zgodnie z normą IEC 60598-1, wszystkie oprawy oświetleniowe klasy I muszą posiadać odpowiednie połączenie z przewodem ochronnym. W konsekwencji, stosowanie opraw klasy I w odpowiednich warunkach zwiększa bezpieczeństwo, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 26

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Wymienić wszystkie przewody na nowe o większym przekroju
B. Wymienić uszkodzony przewód na nowy o takim samym przekroju
C. Założyć gumowy wężyk na uszkodzoną izolację przewodu
D. Pomalować uszkodzoną izolację przewodu
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest kluczowym działaniem w zapewnieniu bezpieczeństwa i funkcjonalności instalacji elektrycznej. Uszkodzenie izolacji przewodu, które prowadzi do utraty elastyczności i zmiany koloru, wskazuje na problem, który może prowadzić do porażenia prądem lub zwarcia. Zgodnie z normami IEC oraz Polskimi Normami (PN), przewody elektryczne powinny być zawsze w dobrym stanie technicznym. W praktyce, wymiana uszkodzonego przewodu na nowy o takim samym przekroju zapewnia, że instalacja elektryczna będzie w pełni sprawna i zgodna z wymaganiami dotyczącymi obciążalności prądowej oraz ochrony przed przeciążeniem. Przykładem może być wymiana przewodu w domowej instalacji, gdzie zgodność z przekrojem przewodu zabezpiecza przed zjawiskiem przegrzewania się instalacji oraz potencjalnym uszkodzeniem urządzeń elektrycznych. Stanowisko to jest zgodne z dobrą praktyką inżynieryjną i zapewnia trwałość oraz bezpieczeństwo eksploatacji systemów elektrycznych.

Pytanie 27

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. YKY
B. OMY
C. AsXSn
D. GsLGs
Przewody samonośne są specyficznym typem przewodów używanych w instalacjach elektrycznych, a ich oznaczenie jest ściśle regulowane przez normy branżowe. YKY, OMY oraz GsLGs to oznaczenia, które nie odnoszą się do przewodów samonośnych. YKY to przewód z izolacją PVC, stosowany głównie do instalacji wewnętrznych oraz zewnętrznych, ale nie jest przystosowany do montażu samonośnego. OMY to przewód stosowany w zastosowaniach niskonapięciowych, również nie przewidziany do samonośnych instalacji. GsLGs to przewód przeznaczony do użytku w obszarach o dużej wilgotności, jednak jego konstrukcja nie spełnia wymogów dla przewodów samonośnych. Typowe błędy myślowe w tej kwestii polegają na myleniu różnych typów przewodów i nieznajomości ich zastosowań. Właściwe rozpoznanie przewodów samonośnych jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności energetycznej, dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych.

Pytanie 28

Jaką rolę pełni uzwojenie pomocnicze w silniku prądu stałego?

A. Eliminuje niekorzystne zjawiska oddziaływania wirnika
B. Obniża rezystancję obwodu twornika
C. Wytwarza pole magnetyczne wzbudzenia
D. Generuje napięcie remanentu
Uzwojenie pomocnicze w silniku prądu stałego to naprawdę ważny element. Dzięki niemu można lepiej kontrolować, jak silnik działa, a to pomaga w unikaniu różnych dziwnych problemów, jak wibracje czy drgania. To wszystko może wpłynąć na trwałość silnika, więc to nie jest mała sprawa. W praktyce uzwojenie pomocnicze działa trochę jak pomocnik, który sprawia, że moment obrotowy jest optymalizowany w różnych warunkach. Jak dobrze się nad tym zastanowić, to silniki z takim uzwojeniem są bardziej efektywne i mogą lepiej działać w sytuacjach, gdzie precyzja jest na wagę złota, jak w robotyce czy automatyce. Wiem, że to może wydawać się skomplikowane, ale standardy jak IEC 60034 pokazują, jak te rzeczy najlepiej zaprojektować, więc warto się z nimi zapoznać.

Pytanie 29

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Tworzy nieruchome, stałe pole magnetyczne
B. Generuje moment magnetyczny o stałym kierunku
C. Redukuje hałas podczas eksploatacji
D. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
W odpowiedziach, które nie są poprawne, pojawiają się koncepcje, które mylnie opisują funkcję uzwojenia biegunów komutacyjnych. Na przykład, generowanie jednokierunkowego momentu magnetycznego nie jest właściwym opisem roli tego uzwojenia. Moment magnetyczny w maszynach prądu stałego jest kształtowany głównie przez uzwojenia wirnika i pola magnetyczne wytwarzane przez magnesy lub uzwojenia stojana. Wytwarzanie nieruchomego, stałego pola magnetycznego to również mylne podejście, ponieważ uzwojenie biegunów komutacyjnych nie tworzy statycznego pola, lecz dynamicznie reaguje na zmiany prądu, co ma na celu ułatwienie komutacji. Ponadto, zredukowanie hałasu podczas pracy nie jest celem uzwojenia komutacyjnego, ale może być efektem ubocznym prawidłowego działania całego systemu, związanego z efektywnym komutowaniem prądu. W kontekście projektowania maszyn prądu stałego, nieprawidłowe rozumienie roli uzwojenia biegunów komutacyjnych może prowadzić do problemów z wydajnością energetyczną oraz trwałością komponentów, dlatego kluczowe jest zrozumienie jego rzeczywistej funkcji w konstrukcji maszyny.

Pytanie 30

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
B. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
C. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
D. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
Wybór odpowiedzi "Ołówek, poziomnica, przymiar taśmowy, sznurek traserski" jest właściwy, ponieważ te narzędzia są kluczowe dla precyzyjnego trasowania instalacji elektrycznej podtynkowej w pomieszczeniach mieszkalnych. Ołówek służy do nanoszenia punktów oraz linii na ścianach, co ułatwia późniejsze wiercenie i układanie kabli. Poziomnica jest niezastąpiona przy sprawdzaniu poziomu instalacji, co jest niezbędne dla zachowania estetyki i funkcjonalności. Przymiar taśmowy pozwala na dokładne mierzenie odległości, co jest kluczowe dla precyzyjnego układania kabli, gniazdek oraz przełączników. Sznurek traserski umożliwia szybkie i łatwe zaznaczanie prostych linii na dużych powierzchniach, co znacznie przyspiesza proces trasowania. Te narzędzia są zgodne z najlepszymi praktykami branżowymi oraz standardami bezpieczeństwa, co czyni je niezbędnymi w procesie przygotowawczym przed wykonaniem instalacji elektrycznej.

Pytanie 31

Jak należy interpretować przedstawiony na zdjęciu wynik pomiaru rezystancji izolacji przewodu o napięciu znamionowym 300 V/300 V wykonany miernikiem MIC-2 ustawionym na zakres 500 V?

Ilustracja do pytania
A. Miernik ma rozładowaną baterię.
B. Miernik jest uszkodzony.
C. Rezystancja izolacji przewodu jest wystarczająca.
D. Zbyt mała rezystancja izolacji przewodu.
Wybór innej odpowiedzi może wynikać z kilku błędnych założeń dotyczących działania miernika oraz interpretacji wyników pomiaru. Przykładowo, uznanie, że rezystancja izolacji przewodu jest zbyt mała, jest nieuzasadnione. Wartość '>999MΩ' wyraźnie wskazuje na właściwy stan izolacji, znacznie przewyższający minimalne wymagania. W przypadku przewodów o napięciu znamionowym 300 V/300 V, jak wspomniano wcześniej, minimalna wartość izolacji powinna wynosić przynajmniej 1 MΩ, a wynik pomiaru wskazuje na znacznie wyższy poziom. Ponadto, jeśli użytkownik zauważyłby problemy z działaniem miernika, takie jak rozładowana bateria czy uszkodzenie urządzenia, nie powinno to wpływać na wyniki pomiarów, które są już interpretowane jako bardzo wysokie. Często spotykanym błędem jest także zakładanie, że jakiekolwiek odchylenia od oczekiwanej wartości są oznaką uszkodzenia, jednak w przypadku tego pomiaru nie ma dowodów na to, by miernik działał nieprawidłowo. Warto zaznaczyć, że umiejętność właściwej interpretacji wyników pomiarów oraz zrozumienie ich znaczenia w kontekście bezpieczeństwa instalacji elektrycznych jest kluczowa dla każdej osoby pracującej w branży elektrotechnicznej. Wiedza ta jest nie tylko podstawą odpowiedzialnego zachowania w pracy, ale także fundamentem budowania zaufania do systemów elektrycznych w ogóle.

Pytanie 32

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 200 V AC
B. 500 V AC
C. 500 V DC
D. 200 V DC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 33

Na którym rysunku przedstawiono świetlówkę kompaktową?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór odpowiedzi A, B lub C może wynikać z nieporozumienia dotyczącego różnic między różnymi rodzajami lamp. Tradycyjne żarówki mają inny, bardziej okrągły kształt i emitują światło w sposób mniej efektywny, co może prowadzić do błędnego utożsamiania ich z świetlówkami kompaktowymi. Odpowiedzi te nie odzwierciedlają charakterystycznych cech świetlówek typu CFL, które są projektowane z myślą o maksymalizacji wydajności oraz minimalizacji zużycia energii. Innym częstym błędem jest pomylenie świetlówki kompaktowej z innymi rodzajami lamp, np. LED, które również oferują oszczędność energii, ale mają zupełnie inny kształt i budowę. Kluczowe dla rozróżnienia tych lamp jest zrozumienie ich konstrukcji oraz zasad działania. Świetlówki kompaktowe wykorzystują gaz i fosfor, co sprawia, że są bardziej skomplikowane w produkcji i wymagają innej technologii niż tradycyjne żarówki. Osoby, które mylnie identyfikują świetlówki kompaktowe, mogą nie doceniać ich zalet w kontekście oszczędności energii oraz wpływu na środowisko. W związku z powyższym, istotne jest, aby przed podjęciem decyzji o wyborze odpowiedniego źródła światła, zrozumieć ich zastosowanie i korzyści, jakie mogą przynieść w codziennym użytkowaniu.

Pytanie 34

Uszkodzenie poprawnie działającej instalacji elektrycznej budynku przedstawione na rysunku jest skutkiem

Ilustracja do pytania
A. wpływu prądu piorunowego do instalacji.
B. przeciążenia instalacji.
C. zwarcia doziemnego.
D. zwarcia międzyfazowego w instalacji.
Odpowiedź wskazująca na wpływ prądu piorunowego do instalacji jako przyczynę uszkodzeń jest słuszna. Prąd piorunowy, ze względu na swoje ekstremalne natężenie i napięcie, jest w stanie spowodować znaczne uszkodzenia instalacji elektrycznych, co widać na przedstawionym rysunku. Zjawisko to jest szczególnie niebezpieczne, ponieważ może prowadzić do uszkodzeń zarówno sprzętu elektrycznego, jak i struktury budynku. Przykładowo, w praktyce budowlanej i elektrycznej, rekomenduje się instalowanie systemów odgromowych, które mają na celu ochronę przed skutkami uderzenia pioruna. Systemy te powinny być zgodne z normami IEC 62305, co wymaga odpowiedniego zaprojektowania oraz instalacji, aby skutecznie kierować prąd piorunowy do ziemi. Dobre praktyki w tej dziedzinie podkreślają znaczenie regularnych przeglądów instalacji oraz świadomości zagrożeń związanych z wyładowaniami atmosferycznymi. Dodatkowo, ważne jest, aby osoby odpowiedzialne za instalacje elektryczne były odpowiednio przeszkolone i znały zasady projektowania w kontekście ochrony przeciwprzepięciowej.

Pytanie 35

Osoba powinna kontrolować działanie stacjonarnych urządzeń różnicowoprądowych poprzez naciśnięcie przycisku kontrolnego

A. przeszkolona, co 6 miesięcy
B. posiadająca uprawnienia SEP, co rok
C. przeszkolona, co rok
D. mająca uprawnienia SEP, co 6 miesięcy
Wybór odpowiedzi, że osoba posiadająca uprawnienia SEP powinna sprawdzać urządzenia raz na rok, może prowadzić do nieporozumień w zakresie odpowiedzialności za bezpieczeństwo elektryczne. Uprawnienia SEP (Stowarzyszenia Elektryków Polskich) są ważne, ale samo posiadanie takich uprawnień nie zastępuje potrzeby regularnego przeszkolenia i aktualizacji wiedzy na temat najnowszych standardów oraz zasad działania urządzeń elektrycznych. Osoby z uprawnieniami SEP, które nie są regularnie przeszkolone, mogą nie być w pełni świadome aktualnych procedur bezpieczeństwa, co może prowadzić do niepoprawnych wniosków dotyczących stanu urządzeń. Z kolei odpowiedzi sugerujące, że przeszkolona osoba powinna sprawdzać urządzenia raz na rok, przeczą zaleceniom praktycznym dotyczącym częstotliwości testowania, które powinno być przeprowadzane znacznie częściej, aby zapewnić ciągłe bezpieczeństwo. Częste kontrole są kluczowe, ponieważ urządzenia różnicowoprądowe mogą ulegać degradacji, co w dłuższym czasie może prowadzić do ich niesprawności. Ponadto, co sześć miesięcy wykonywane kontrole są zgodne z kodeksami bezpieczeństwa, które zalecają, aby personel był regularnie przeszkalany w zakresie obsługi oraz identyfikacji potencjalnych zagrożeń związanych z wykorzystaniem energii elektrycznej. Ignorowanie tych zaleceń może prowadzić do poważnych wypadków oraz narażenia użytkowników na niebezpieczeństwo.

Pytanie 36

Podaj skuteczność świetlną źródła światła o etykiecie przedstawionej na rysunku.

Ilustracja do pytania
A. 1 180,0 lm/W
B. 81,4 lm/W
C. 14,5 lm/W
D. 206,9 lm/W
Podstawowym błędem w przypadku wyboru nieprawidłowej odpowiedzi jest niezrozumienie, jak oblicza się skuteczność świetlną źródła światła. Osoby, które wskazały inne wartości, mogą nie dostrzegać, że skuteczność świetlna jest określana poprzez bezpośrednie podzielenie strumienia świetlnego przez moc elektryczną. Często w takich przypadkach dochodzi do pomyłki w przeliczeniach lub pominięcia istotnych danych. Przykładowo, wybór odpowiedzi 206,9 lm/W sugeruje, że respondent błędnie zinterpretował dane, być może dodając wartości zamiast je dzielić. Z kolei odpowiedzi 14,5 lm/W i 1 180,0 lm/W mogą wynikać z mylenia strumienia świetlnego z mocą lub innymi parametrami technicznymi. Warto również zauważyć, że skuteczność świetlna w granicach 80-100 lm/W jest uznawana za bardzo dobrą dla nowoczesnych źródeł LED, co czyni odpowiedź 81,4 lm/W zgodną z aktualnymi standardami branżowymi. Zrozumienie tych koncepcji i umiejętność ich stosowania jest kluczowa w projektowaniu efektywnych systemów oświetleniowych oraz w podejmowaniu decyzji zakupowych dotyczących źródeł światła.

Pytanie 37

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. ADY 500 V 2,5 mm2
B. YDY 500 V 2,5 mm2
C. YLY 500 V 2,5 mm2
D. ALY 500 V 2,5 mm2
No, niestety, nie wszystkie inne odpowiedzi są poprawne. Odpowiedź ALY 500 V 2,5 mm2 ma poważny błąd, bo 'L' sugeruje, że przewód wykonany jest z miedzi, a nie z aluminium. W przypadku YDY 500 V 2,5 mm2, 'Y' mówi, że to przewód jednożyłowy, ale 'D' jest tu problematyczne, bo powinno dotyczyć PVC przy żyłach aluminiowych. Co do YLY 500 V 2,5 mm2, to znowu 'L' sugeruje miedź, co jest sprzeczne z informacjami w pytaniu. Często ludzie popełniają błąd, ignorując materiał żyły, co może prowadzić do różnych problemów w instalacji. Mylimy symbole różnych typów przewodów, co może później skutkować ich niewłaściwym doborem i zwiększa ryzyko awarii. W inżynierii elektrycznej, ogarnięcie tych oznaczeń jest mega ważne, żeby wszystko działało bezpiecznie i sprawnie.

Pytanie 38

Który rodzaj osprzętu został użyty w instalacji elektrycznej przedstawionej na ilustracji?

Ilustracja do pytania
A. Podtynkowy.
B. Wodoszczelny.
C. Natynkowy.
D. Pyłoszczelny.
Odpowiedź "Podtynkowy" jest prawidłowa, ponieważ przedstawiona instalacja elektryczna charakteryzuje się tym, że wszystkie przewody są ukryte w bruzdach w ścianach, a gniazdka elektryczne są umieszczone w puszkach montażowych, które są zainstalowane wewnątrz ściany. Taki sposób montażu nazywamy instalacją podtynkową, co oznacza, że elementy są schowane pod tynkiem, co nie tylko poprawia estetykę wnętrza, ale również zapewnia większe bezpieczeństwo, zmniejszając ryzyko uszkodzenia osprzętu. Zastosowanie instalacji podtynkowej jest powszechne w nowoczesnym budownictwie, gdzie dąży się do minimalistycznego wyglądu oraz zachowania porządku w przestrzeni. Zgodnie z normami i dobrymi praktykami, instalacja podtynkowa wymaga odpowiedniego zaprojektowania i wykonania, aby zapewnić zgodność z wymaganiami bezpieczeństwa oraz estetyki. Ważne jest także, aby stosować materiały i urządzenia certyfikowane, które spełniają normy europejskie, co dodatkowo zwiększa bezpieczeństwo użytkowania.

Pytanie 39

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 4 godziny
B. 3 godziny
C. 2 godziny
D. 1 godzinę
Chociaż krótszy czas działania oświetlenia ewakuacyjnego, jak 1 godzina, może wydawać się w porządku w niektórych sytuacjach, to jednak nie spełnia norm i nie bierze pod uwagę różnych zagrożeń, które mogą się zdarzyć w krytycznych momentach. Gdy ewakuacja zajmie więcej czasu, może być naprawdę niebezpiecznie, zwłaszcza w dużych obiektach, gdzie ludzie mogą być rozproszeni na różnych piętrach. Z kolei, wydłużenie tego czasu do 3 czy 4 godzin, mimo że brzmi lepiej, nie jest wymagane przepisami i może prowadzić do marnotrawienia zasobów i wyższych kosztów związanych z utrzymywaniem oświetlenia ewakuacyjnego. Czasami można spotkać się z błędnym myśleniem, że wystarczy jedynie zaświecić drogę ewakuacyjną. Kluczowe jest, by system oświetlenia dawał stabilne i jasne światło przez cały czas ewakuacji. To można osiągnąć tylko dzięki dobrym rozwiązaniom technicznym i regularnemu serwisowi, żeby mieć pewność, że wszystko działa. Bezpieczeństwo osób opuszczających budynek w kryzysowych sytuacjach jest absolutnie priorytetowe, a czas działania oświetlenia ewakuacyjnego jest jednym z kluczowych elementów, które to bezpieczeństwo zapewniają.

Pytanie 40

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Błędne odpowiedzi mogą być wynikiem nieporozumień co do tego, jak działają liczniki energii i ich podłączenie w obwodach elektrycznych. Schematy A, B i D mogą mieć błędy w połączeniu przewodów fazowych i neutralnych, co prowadzi do złego pomiaru energii. Często myli się, że licznik może być podłączony równolegle do obciążenia, a to wcale nie działa, bo licznik wtedy nie zmierzy przepływu prądu. Właściwy pomiar wymaga szeregowego połączenia, żeby licznik był w torze prądowym. Dodatkowo, jeśli źle rozumie się rolę przewodów, można mieć problem z ich zidentyfikowaniem, co może być niebezpieczne. Warto zwrócić uwagę na normy i przepisy dotyczące instalacji elektrycznych, bo pokazują, jak ważne jest bezpieczeństwo i poprawność podłączeń. Zrozumienie zasad działania systemów pomiarowych oraz ich prawidłowego podłączenia jest kluczowe, żeby zapewnić bezpieczeństwo i efektywność energetyczną w codziennym użytkowaniu energii.