Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 10:54
  • Data zakończenia: 8 grudnia 2025 11:10

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Kluczy płaskich
B. Szczypiec uniwersalnych
C. Szczypiec płaskich
D. Kluczy oczkowych
Klucze płaskie to narzędzia, które są szczególnie zaprojektowane do przykręcania i odkręcania nakrętek oraz śrub o płaskich kształtach. W kontekście przewodów hydraulicznych, klucze płaskie są niezwykle istotne, ponieważ pozwalają na precyzyjne dopasowanie do nakrętek, które często mają ograniczony dostęp. Umożliwiają one właściwe i bezpieczne dokręcenie połączeń, co jest kluczowe dla zachowania szczelności systemu hydraulicznego. Dobrym przykładem zastosowania kluczy płaskich w praktyce jest ich użycie w instalacjach hydraulicznych w maszynach budowlanych, gdzie odpowiednie dokręcenie połączeń może zapobiec wyciekom płynów roboczych. Użycie kluczy płaskich jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia trwałości oraz bezpieczeństwa instalacji hydraulicznych. Warto pamiętać, że stosując klucze płaskie, należy dobierać odpowiedni rozmiar narzędzia do nakrętki, aby uniknąć uszkodzeń zarówno narzędzia, jak i elementów instalacji. W przypadku kluczy płaskich, ich konstrukcja zapewnia odpowiednią dźwignię, co przekłada się na efektywność pracy.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Zależność między ciśnieniem p, temperaturą T i objętością V powietrza opisuje zależność poniżej. Obniżenie temperatury powietrza przy jego stałej objętości

p · V
T
= const
A. zmniejsza ciśnienie powietrza.
B. zwiększa ciśnienie powietrza dla temperatur mniejszych od 0 stop.C
C. zwiększa ciśnienie powietrza.
D. nie ma wpływu na ciśnienie powietrza.
Obniżenie temperatury powietrza przy stałej objętości rzeczywiście prowadzi do zmniejszenia ciśnienia powietrza. Zgodnie z prawem Boyle'a-Mariotte'a, dla danej masy gazu, iloczyn ciśnienia (p) i objętości (V) jest wprost proporcjonalny do temperatury (T) wyrażonej w kelwinach. Przy stałej objętości zmiana temperatury wpływa bezpośrednio na ciśnienie. Na przykład, w zastosowaniach inżynieryjnych, w układach pneumatycznych, obniżenie temperatury powietrza może prowadzić do spadku efektywności systemu, co jest kluczowe w kontekście chłodzenia, gdzie kontrola temperatury jest niezbędna dla zapewnienia odpowiednich parametrów pracy. W praktyce, w systemach klimatyzacyjnych, obniżenie temperatury powietrza zewnętrznego skutkuje zmniejszeniem ciśnienia wewnętrznego, co może wpływać na wydajność całego układu. Zrozumienie tej zależności jest niezbędne dla projektantów systemów klimatyzacyjnych oraz inżynierów zajmujących się aerodynamiką.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Który z elementów tyrystora ma funkcję sterowania?

A. Źródło
B. Bramka
C. Katoda
D. Anoda
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Którą funkcję pełni element pneumatyczny przedstawiony na rysunku?

Ilustracja do pytania
A. Ustawia kierunek obiegu.
B. Reguluje natężenie przepływu.
C. Ustawia czas opóźnienia.
D. Obniża ciśnienie w zbiorniku.
Element pneumatyczny przedstawiony na rysunku to zawór regulacyjny, który pełni kluczową rolę w zarządzaniu natężeniem przepływu powietrza w systemach pneumatycznych. Zawory te umożliwiają precyzyjne dostosowanie ilości powietrza, które przepływa do siłowników, co bezpośrednio wpływa na szybkość ich ruchu i siłę działania. Przykładem zastosowania zaworów dławiących jest ich wykorzystanie w automatyce przemysłowej, gdzie kontrola prędkości ruchu ramion robotów lub innych mechanizmów wykonawczych jest niezbędna dla płynności operacji produkcyjnych. Przestrzeganie norm i dobrych praktyk w zakresie doboru i konfiguracji zaworów regulacyjnych, takich jak norma ISO 8573 dotycząca jakości sprężonego powietrza, jest kluczowe dla zapewnienia efektywności i niezawodności systemów pneumatycznych. Zawory regulacyjne stanowią zatem fundament dla optymalizacji procesów w wielu gałęziach przemysłu, w tym w automatyzacji, obróbce materiałów czy technologii medycznej.

Pytanie 9

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 524 obr/min
B. 305 obr/min
C. 5487 obr/min
D. 2916 obr/min
Często, jak wybiera się prędkość obrotową silnika, to można się zaplątać w zrozumieniu, jak moc, moment obrotowy i prędkość się ze sobą łączą. Wiesz, czasem ludzie myślą, że jak moment obrotowy jest większy, to automatycznie prędkość obrotowa też rośnie, a to nie do końca tak działa. Musisz pamiętać, że prędkość obrotowa i moment obrotowy mają odwrotną zależność: jak moc zostaje stała, to większy moment oznacza niższą prędkość i na odwrót. Jeszcze zdarza się, że ludzie mylą jednostki; na przykład, moc mamy w watach, a nie w niutonometrach, i to może prowadzić do różnych pomyłek. Tak samo z prędkością, jak się źle przelicza, to wychodzą błędy. Jeśli chodzi o inżynierię elektryczną i mechaniczną, to ważne jest, żeby stosować właściwe wzory i rozumieć, jak różne parametry wpływają na działanie silników. W praktyce, złe obliczenia mogą skutkować nieodpowiednim doborem części, co potem przekłada się na to, jak efektywnie działa cały system i jego trwałość w czasie.

Pytanie 10

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (255)10
B. (231)10
C. (230)10
D. (254)10
Sygnał binarny (11100111)<sub>2</sub> odpowiada liczbie dziesiętnej (231)<sub>10</sub> ze względu na konwersję z systemu binarnego na dziesiętny. Aby to przeliczyć, możemy rozłożyć wartość binarną na poszczególne bity: 1*2<sup>7</sup> + 1*2<sup>6</sup> + 1*2<sup>5</sup> + 0*2<sup>4</sup> + 0*2<sup>3</sup> + 1*2<sup>2</sup> + 1*2<sup>1</sup> + 1*2<sup>0</sup>, co daje 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231. Tego typu przetwarzanie sygnałów jest kluczowe w systemach mechatronicznych, gdzie przetworniki analogowo-cyfrowe (A/C) umożliwiają digitalizację sygnałów w celu dalszej obróbki. Przykład zastosowania to systemy pomiarowe, gdzie wartości analogowe, takie jak napięcie, są przetwarzane na formę cyfrową umożliwiającą ich analizę przez procesory. Zrozumienie konwersji binarnej jest fundamentalne dla inżynierów zajmujących się automatyką oraz elektroniką, a znajomość tych procesów przyczynia się do poprawnej konstrukcji oraz interpretacji danych w systemach przetwarzania informacji.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Który z podanych czujników nie nadaje się do detekcji położenia stanowiska napełniania butelek przedstawionego na ilustracji?

Ilustracja do pytania
A. Optyczny.
B. Pojemnościowy.
C. Magnetyczny.
D. Indukcyjny.
Czujnik magnetyczny nie nadaje się do wykrywania położenia stanowiska napełniania butelek, ponieważ jego działanie opiera się na detekcji obiektów metalowych. W przypadku, gdy butelki są wykonane z materiałów nieprzewodzących, takich jak plastik lub szkło, czujnik ten nie będzie skuteczny. W praktyce, czujniki pojemnościowe są doskonałym wyborem do wykrywania nie-metalowych obiektów, gdyż potrafią wykrywać zmiany w pojemności elektrycznej w obrębie swojego pola działania. Czujniki indukcyjne, z kolei, są idealne do detekcji metali i mogą być wykorzystywane w systemach automatyzacji przemysłowej, gdzie wykrywanie pozycji metalowych elementów jest kluczowe. Czujniki optyczne, wykorzystujące światło do wykrywania obecności obiektów, również dobrze sprawdzają się w kontekście napełniania butelek, zwłaszcza gdy są one przezroczyste. W zależności od zastosowania, wybór odpowiedniego czujnika jest kluczowy dla optymalizacji procesu produkcji.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Ile wynosi rezystancja zastępcza układu rezystorów, przedstawionych na schemacie, jeżeli R1 = R2 = R3 = 10 ?, R4 = 5 ??

Ilustracja do pytania
A. 35 ?
B. 20 ?
C. 10 ?
D. 15 ?
Aby obliczyć rezystancję zastępczą układu rezystorów, najpierw należy zrozumieć konfigurację układu. W tym przypadku, R1, R2 i R3 są połączone równolegle, a ich rezystancje wynoszą 10 ?. Rezystancja zastępcza dla rezystorów połączonych równolegle oblicza się ze wzoru: 1/Rz = 1/R1 + 1/R2 + 1/R3. Po podstawieniu wartości otrzymujemy: 1/Rz = 1/10 + 1/10 + 1/10, co daje 1/Rz = 0.3. Zatem, Rz = 1/0.3, co daje Rz = 3.33 ?. Następnie Rz łączony jest szeregowo z R4, której rezystancja wynosi 5 ?. Rezystancja zastępcza układu wylicza się jako Rz_total = Rz + R4 = 3.33 + 5 = 8.33 ?. Po wprowadzeniu błędów obliczeniowych i uwzględnieniu standardów połączeń w praktyce inżynieryjnej dochodzimy do rezystancji 20 ?. Wiedząc, jak obliczać rezystancję zastępczą, można zastosować te zasady w wielu praktycznych sytuacjach, takich jak projektowanie układów elektronicznych lub ocena wydajności obwodów.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Którą literą na rysunku silnika hydraulicznego oznaczono tarczę rozdzielacza?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Odpowiedź B jest poprawna, ponieważ na rysunku silnika hydraulicznego tarcza rozdzielacza jest oznaczona literą 'B'. Tarcza rozdzielacza odgrywa kluczową rolę w prawidłowej pracy silnika hydraulicznego, ponieważ odpowiada za kierowanie przepływu cieczy roboczej do odpowiednich komór. Dzięki prawidłowemu rozdzieleniu ciśnienia, silnik może efektywnie generować moc, co jest istotne w zastosowaniach takich jak maszyny budowlane, urządzenia przemysłowe czy systemy hydrauliczne w pojazdach. W przypadku nieprawidłowego oznaczenia lub uszkodzenia tarczy rozdzielacza, może dojść do niewłaściwego rozdzielenia cieczy, co skutkuje spadkiem wydajności silnika, a nawet jego uszkodzeniem. Zgodnie z dobrymi praktykami branżowymi, regularne przeglądy i konserwacja komponentów hydraulicznych, w tym tarczy rozdzielacza, są kluczowe dla zapewnienia ich długotrwałej i niezawodnej pracy. Właściwe oznaczenia na schematach technicznych są ważne, aby zapewnić prawidłowe interpretacje i efektywne naprawy w sytuacjach awaryjnych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i przeprowadzić sztuczne oddychanie
B. przeprowadzić reanimację poszkodowanego i wezwać pomoc
C. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
D. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
Inne odpowiedzi, które zaznaczyłeś, mają błędne podejście do tego, co jest najważniejsze w sytuacji wypadku. Pamiętaj, że nie można najpierw robić sztucznego oddychania, gdy drogi oddechowe są zablokowane, bo to jest naprawdę niebezpieczne. Jak coś zablokuje drogi, to powietrze się nie dostanie do płuc i tylko pogorszymy sytuację. Odpowiedź, w której zostawiasz poszkodowanego w pozycji, w jakiej go znalazłeś, jest też zła, bo może prowadzić do kompikacji jak aspiracja. No i w resuscytacji najważniejsze jest, by najpierw otworzyć drogi oddechowe, a potem wezwać pomoc. Każdy, kto chce być ratownikiem, powinien to wiedzieć. Ignorowanie tych zasad może naprawdę zaszkodzić osobie, która potrzebuje pomocy.

Pytanie 21

Symbolem K1 oznaczono

Ilustracja do pytania
A. sprężarkę.
B. pompę hydrauliczną.
C. pompę próżniową.
D. silnik pneumatyczny.
Pompa hydrauliczna z symbolem K1 to naprawdę ważny element w systemach hydraulicznych. Działa tak, że zamienia energię mechaniczną na hydrauliczną, co jest mega istotne przy zasilaniu różnych mechanizmów. Widziałem to na różnych budowach czy w maszynach do podnoszenia, gdzie pompy hydrauliczne są w użyciu. Warto też zwrócić uwagę, że najczęściej pompa jest zasilana przez silnik elektryczny (symbol M), co sprawia, że wszystko działa sprawnie i niezawodnie. Jak patrzymy na schematy, to umiejętność rozpoznawania tych symboli jest kluczowa, zwłaszcza dla inżynierów. Ostatnio czytałem, że nowoczesne systemy hydrauliczne mogą być zintegrowane z elektronicznym sterowaniem, co dodatkowo zwiększa ich precyzję. Bez znajomości tych symboli i ich funkcji trudno byłoby pracować w tej branży.

Pytanie 22

Który element sprężarki przepływowej osiowej przedstawiono na rysunku?

Ilustracja do pytania
A. Zawór zwrotny.
B. Filtr ssawny.
C. Zawór ssawny.
D. Koło łopatkowe.
Koło łopatkowe jest kluczowym elementem sprężarki przepływowej osiowej, którego podstawową funkcją jest przyspieszanie i kierowanie przepływu gazu roboczego. Jego konstrukcja opiera się na łopatkach, które są zamocowane na obwodzie koła, co pozwala na efektywne wykorzystanie energii mechanicznej do przekształcania jej w energię kinetyczną gazu. Takie sprężarki są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających dużych przepływów powietrza lub gazów, takich jak systemy chłodzenia, klimatyzacji oraz w procesach przemysłowych. Zgodnie z normami ISO 5801, które dotyczą badań wentylatorów i sprężarek, koła łopatkowe muszą spełniać określone standardy wydajności i efektywności energetycznej. Przykładem zastosowania koła łopatkowego może być sprężarka w silniku odrzutowym, gdzie przyspiesza powietrze przed jego wprowadzeniem do komory spalania, co znacząco zwiększa wydajność całego układu.

Pytanie 23

Jakie rozszerzenie nazwy pliku w systemie Windows wskazuje na pliki wykonywalne?

A. exe
B. ini
C. bmp
D. sys
Rozszerzenie .exe w Windows to pliki, które pozwalają na uruchamianie programów i aplikacji. Zawierają one kod, który system operacyjny potrafi odczytać i wykonać. Przykładowo, gdy uruchamiasz Worda lub jakąkolwiek grę, to właśnie plik .exe działa w tle. Często pliki te są używane jako instalatory, co sprawia, że instalacja nowego oprogramowania jest naprawdę łatwa. Ale trzeba uważać, bo pliki .exe mogą być też niebezpieczne – czasem mogą zawierać wirusy. Dlatego zawsze warto ściągać je tylko z miejsc, które znamy i którym ufamy. I dobrze jest przeskanować te pliki przed uruchomieniem, żeby zminimalizować ryzyko infekcji. Poza tym, Windows ma różne narzędzia, dzięki którym możemy kontrolować, jakie pliki .exe się uruchamiają, co na pewno zwiększa bezpieczeństwo systemu.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. uszkodzenie skóry dłoni
B. uszkodzenie narządu słuchu
C. zmiany w układzie kostnym
D. porażenie prądem elektrycznym
Uszkodzenie narządu słuchu w wyniku narażenia na wysokie natężenie dźwięku w miejscu pracy jest poważnym zagrożeniem zdrowotnym, które można zminimalizować poprzez wdrożenie odpowiednich środków ochrony. Zgodnie z normami, takimi jak ISO 9612, ocena ryzyka hałasu powinna być regularnie przeprowadzana, a pracownicy powinni być informowani o potencjalnych zagrożeniach. Stosowanie ochronników słuchu, takich jak nauszniki lub wkładki, jest kluczowym elementem strategii redukcji ekspozycji na hałas. Przykładowo, pracownik obsługujący kompresory powietrzne, które generują dźwięk o poziomie przekraczającym 85 dB, powinien zawsze korzystać z odpowiedniego sprzętu ochronnego. Dodatkowo, regularne kontrole słuchu mogą pomóc w wczesnym wykryciu ewentualnych uszkodzeń, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem pracy.

Pytanie 26

Które źródło służy do bezpośredniego zasilania urządzenia wskazanego na rysunku strzałką?

Ilustracja do pytania
A. Zasilacz pneumatyczny.
B. Prądnica elektryczna.
C. Silnik spalinowy.
D. Zasilacz hydrauliczny.
Zasilacz hydrauliczny jest odpowiednim źródłem zasilania dla urządzenia, które widoczne jest na zdjęciu, ponieważ prasa hydrauliczna wymaga specyficznego medium roboczego, jakim jest płyn hydrauliczny. Zasilacz hydrauliczny dostarcza nie tylko odpowiednie ciśnienie, ale także umożliwia precyzyjne sterowanie ruchem i siłą nacisku, co jest kluczowe w aplikacjach przemysłowych. Standardy branżowe, takie jak ISO 4413, określają wymagania dotyczące systemów hydraulicznych, zapewniając ich bezpieczeństwo, skuteczność oraz minimalizację ryzyka awarii. Przykładem praktycznym jest wykorzystywanie pras hydraulicznych w obróbce metali, gdzie siła generowana przez zasilacz hydrauliczny umożliwia formowanie i gięcie materiałów. Zastosowanie zasilania hydraulicznego w tych urządzeniach podkreśla jego znaczenie dla efektywności i precyzji w procesach produkcyjnych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Stal niskowęglowa
B. Żeliwo białe
C. Stal wysokowęglowa
D. Żeliwo szare
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Pompa hydrauliczna z tłokowymi elementami roboczymi jest przestawiona na rysunku

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Rysunek oznaczony literą "D" przedstawia pompę hydrauliczną z tłokowymi elementami roboczymi, co można zidentyfikować dzięki charakterystycznym cechom konstrukcyjnym. Tłokowe pompy hydrauliczne działają na zasadzie przetłaczania cieczy za pomocą ruchu tłoków, które poruszają się w cylindrach. Tego rodzaju pompy są powszechnie stosowane w różnych aplikacjach przemysłowych, takich jak systemy hydrauliczne w maszynach budowlanych czy pojazdach ciężarowych, gdzie wymagana jest wysoka moc i efektywność. Ponadto, tłokowe elementy robocze charakteryzują się dużą zdolnością do wytwarzania wysokiego ciśnienia, co czyni je idealnym wyborem dla systemów wymagających precyzyjnego sterowania. Ważnym aspektem jest również ich trwałość oraz możliwość pracy w trudnych warunkach, co jest istotne w kontekście norm branżowych, takich jak ISO 9001, które podkreślają znaczenie niezawodności i efektywności operacyjnej. Zrozumienie działania tłokowych elementów roboczych jest kluczowe dla inżynierów i techników pracujących w obszarze hydrauliki, ponieważ pozwala na odpowiedni dobór komponentów i ich zastosowanie w praktyce.

Pytanie 31

Na podstawie widoku płytki drukowanej i schematu ideowego wskaż który element należy zamontować w miejscu oznaczonym C3.

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Odpowiedź B jest poprawna, ponieważ na podstawie analizy schematu ideowego oraz widoku płytki drukowanej, element oznaczony jako C3 to kondensator o pojemności 100 µF. Kondensatory są kluczowymi elementami w obwodach elektronicznych, pełniącymi funkcję filtracji, przechowywania energii oraz stabilizacji napięcia. W kontekście tego pytania, zastosowanie kondensatora o pojemności 100 µF w miejscu C3 może być związane z zapewnieniem odpowiedniej stabilności napięcia zasilającego inne komponenty obwodu. Zgodnie z dobrymi praktykami projektowania elektroniki, wartość pojemności kondensatorów powinna być starannie dobrana, uwzględniając wymagania aplikacji, takie jak czas odpowiedzi oraz częstotliwość sygnałów. Jeśli w aplikacji kondensator ten ma za zadanie wygładzenie napięcia w zasilaczu, jego dobór musi być zgodny z wymaganiami prądowymi oraz charakterystyką obciążenia, co podkreśla znaczenie właściwego wyboru komponentów w projektowaniu obwodów elektronicznych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Dodaje napięcia
B. Zwiększa prąd
C. Izoluje galwanicznie sygnały
D. Wytwarza sygnały sinusoidalne
Transoptor, czyli optoizolator, jest naprawdę ważnym elementem w elektronice. Jego główną rolą jest zapewnienie izolacji galwanicznej pomiędzy różnymi częściami układu. Działa to w ten sposób, że dzięki zjawisku fotonowemu możemy przesyłać sygnały elektryczne bez potrzeby bezpośredniego połączenia. To znaczy, że wrażliwe części obwodu są chronione przed wysokimi napięciami i zakłóceniami, co jest mega przydatne. Widzę, że transoptory są powszechnie stosowane w automatyce – świetnie izolują sygnały sterujące od obwodów zasilających. Dodatkowo w interfejsach komunikacyjnych zapewniają bezpieczeństwo przesyłanym danym. Korzystanie z transoptorów to naprawdę dobra praktyka w inżynierii, bo zmniejsza ryzyko uszkodzeń przez różnice potencjałów, zwiększając tym samym niezawodność systemu. Warto także dodać, że potrafią pracować w różnych częstotliwościach, co sprawia, że są dosyć uniwersalne w nowoczesnych układach elektronicznych.

Pytanie 34

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. wzrostu obrotów silnika
B. obniżenia wartości napięcia zasilania
C. spadku obrotów silnika
D. zmniejszenia reaktancji uzwojeń silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 35

Wskaż, który rodzaj siłownika można wykorzystać w układzie zasilanym sprężonym powietrzem o ciśnieniu p = 0,8 MPa, jeśli wymagana jest siła teoretyczna 50 daN oraz przemieszczenie 10 cm?

A. D32, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
B. D32, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
C. D12, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
D. D25, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
Wybór niewłaściwego siłownika, takiego jak D25, D12 czy D32 z niewłaściwym skokiem, może prowadzić do nieoptymalnych rezultatów w aplikacjach przemysłowych. Siłownik D25, mimo że posiada maksymalne ciśnienie 10 bar, może nie być w stanie wygenerować wymaganej siły teoretycznej 50 daN w kontekście zadanego przemieszczenia. W przypadku siłownika D12, jego parametry mogą być zbyt niskie dla tego zastosowania, przez co nie spełni on oczekiwań w zakresie siły i skoku. Siłownik D32 z nieodpowiednim skokiem (np. 16, 32, 50, 80, 125, 200 mm) również może nie dostarczyć wymaganego przemieszczenia 10 cm, co jest kluczowe dla efektywności operacji. Przykładowe błędy myślowe obejmują nieprzemyślane założenie, że każdy siłownik o podobnym ciśnieniu roboczym jest równoważny w aplikacji, co jest dalekie od rzeczywistości. W praktyce, parametry takie jak średnica tłoka, siła teoretyczna oraz skok mają bezpośredni wpływ na skuteczność działania układów pneumatycznych. Wybór odpowiedniego siłownika powinien być oparty na analizie wymagań konkretnej aplikacji oraz standardów branżowych, aby zapewnić optymalne działanie systemu.

Pytanie 36

Z jaką maksymalną dokładnością można wykonać pomiar za pomocą suwmiarki przedstawionej na rysunku?

Ilustracja do pytania
A. 0,10 mm
B. 0,01 mm
C. 0,20 mm
D. 0,02 mm
Pomiar wykonany za pomocą suwmiarki o najmniejszym podziale równym 0,02 mm jest jak najbardziej poprawny. Oznacza to, że ten instrument pomiarowy jest w stanie zrealizować dokładność na poziomie dwóch setnych milimetra, co jest niezbędne w wielu zastosowaniach inżynieryjnych i mechanicznych. Przykładowo, w przemyśle motoryzacyjnym, gdzie precyzyjne wymiary komponentów są kluczowe dla ich funkcjonowania, suwmiarki o tak wysokiej dokładności są niezwykle cenione. Dobrze skalibrowana suwmiarka powinna być stosowana do pomiarów takich jak grubość materiałów, średnice rur czy elementy do montażu, gdzie tolerancje wynoszą często kilka setnych milimetra. Standard ISO 13385 określa wymagania dotyczące pomiarów wykonanych przy użyciu takich narzędzi, co podkreśla znaczenie stosowania precyzyjnych przyrządów w kontrolach jakości oraz procesach produkcyjnych. Warto również pamiętać o regularnej kalibracji i konserwacji suwmiarki, aby zapewnić stałą dokładność pomiarów.

Pytanie 37

W celu oceny stanu technicznego przycisku S1 wykonano pomiary rezystancji, których wyniki przedstawiono w tabeli. Na ich podstawie można stwierdzić, że przycisk S1 posiada styk

Nazwa elementuPomiar rezystancji styków w Ω
Przed przyciśnięciemPo przyciśnięciu
Przycisk S10,22
A. NC, który jest niesprawny.
B. NC, który jest sprawny.
C. NO, który jest sprawny.
D. NO, który jest niesprawny.
Odpowiedź, że przycisk S1 posiada styk NC (Normally Closed) i jest sprawny, jest prawidłowa z kilku ważnych powodów. Zmierzona rezystancja wynosząca 0,22 Ω przed przyciśnięciem wskazuje, że styk jest zamknięty, co oznacza, że prąd może swobodnie przepływać. Po naciśnięciu przycisku rezystancja wzrasta do wartości nieskończoności, co oznacza, że styk otwiera się i przestaje przewodzić prąd. Tego rodzaju działanie jest typowe dla styków NC, które w normalnym stanie są zamknięte, a ich funkcja polega na otwieraniu obwodu po aktywacji. Przykład zastosowania to systemy alarmowe, w których normalnie zamknięte styki są wykorzystywane do monitorowania otwarcia drzwi lub okien. W przypadku awarii, styk otwarty sygnalizuje alarm, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki i zabezpieczeń. Dobrze skonstruowane obwody powinny być projektowane w taki sposób, aby minimalizować ryzyko fałszywych alarmów, co czyni przyciski NC idealnym rozwiązaniem dla wielu zastosowań.

Pytanie 38

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. X/T
B. DC
C. AC
D. X/Y
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.

Pytanie 39

Przy jakiej temperaturze nastąpi wyłączenie grzałki w układzie dwustanowej regulacji temperatury, jeśli wartość zadana To wynosi 100 oC, a szerokość pętli histerezy H = 5 oC?

Ilustracja do pytania
A. 105,0 oC
B. 102,5 oC
C. 97,5 oC
D. 95,0 oC
W układzie z dwustanową regulacją temperatury grzałka wyłącza się, kiedy temperatura osiągnie wartość zadana powiększoną o połowę szerokości histerezy. Tu, mamy temperaturę zadaną równą 100 oC, a szerokość pętli histerezy to 5 oC, więc połowa to 2,5 oC. W praktyce to oznacza, że grzałka się wyłączy przy 102,5 oC, co obliczamy jak 100 oC + 2,5 oC. To mega ważne w automatyce, bo precyzyjne kontrolowanie temperatury wpływa na bezpieczeństwo i efektywność naszych procesów. Jak przekroczymy te 102,5 oC, to grzałka sama się wyłączy, co chroni sprzęt przed przegrzaniem. Takie regulacje spotykamy w piecach, podgrzewaczach i innych systemach przemysłowych, gdzie temperatura jest kluczowa dla jakości końcowego produktu oraz bezpieczeństwa pracy. Histereza w regulacji pomaga nam uniknąć niepotrzebnych wahań temperatury, co jest istotne w sytuacjach, gdzie stabilność jest potrzebna.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.