Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 11:13
  • Data zakończenia: 19 grudnia 2025 11:24

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
B. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
C. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
D. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
Wybór odpowiedzi "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest poprawny, ponieważ stanowi zgodne z najlepszymi praktykami podejście do wymiany uszkodzonego łącznika. Zawsze należy najpierw odłączyć zasilanie elektryczne, co minimalizuje ryzyko porażenia prądem oraz zapobiega dalszym uszkodzeniom instalacji. Po odłączeniu zasilania powinno się użyć odpowiednich narzędzi, takich jak miernik napięcia, aby upewnić się, że w obwodzie nie ma napięcia. To jest kluczowy krok, który zapewnia bezpieczeństwo technika. Dopiero po potwierdzeniu braku napięcia można przystąpić do wymontowania uszkodzonego łącznika. W praktyce, te czynności mogą być stosowane w różnorodnych warunkach, od domowych instalacji elektrycznych po złożone systemy przemysłowe. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie zapewnienia bezpieczeństwa podczas prac elektrycznych.

Pytanie 2

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. wyłożenie izolacją żłobkową
B. nałożenie lakieru elektroizolacyjnego
C. zabezpieczenie klinami ochronnymi
D. nałożenie oleju elektroizolacyjnego
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 3

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 30 A i 0,03 A
B. 0,003 A i 30 A
C. 3 A i 0,03 A
D. 0,03 A i 30 A
Poprawna odpowiedź to 0,03 A i 30 A, co jest zgodne z oznaczeniami przedstawionymi na wyłączniku różnicowoprądowym. Prąd różnicowy, oznaczany jako IΔn, wynoszący 0,03 A, jest kluczowy dla ochrony przed porażeniem elektrycznym, gdyż wykrywa niewielkie różnice w prądzie między przewodami fazowymi a neutralnym. Taki wyłącznik jest stosowany w obwodach z urządzeniami narażonymi na kontakt z wodą, co zwiększa ryzyko porażenia. Z kolei prąd znamionowy In, wynoszący 30 A, definiuje maksymalne obciążenie, jakie wyłącznik może bezpiecznie obsłużyć. Dobre praktyki branżowe zalecają stosowanie wyłączników różnicowoprądowych o prądzie różnicowym 0,03 A w obwodach z urządzeniami wrażliwymi, takimi jak łazienki czy kuchnie, aby zapewnić odpowiednią ochronę. Ważne jest, aby przed instalacją wyłącznika sprawdzić, czy jego parametry są zgodne z wymaganiami określonymi w normach, takich jak PN-EN 61008-1, co gwarantuje wysoką jakość i bezpieczeństwo instalacji.

Pytanie 4

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy na schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór niewłaściwego symbolu dla łącznika świecznikowego może wynikać z nieporozumienia dotyczącego funkcji i zastosowania tego typu urządzenia. Niezrozumienie, jak działają łączniki w obwodach oświetleniowych, może prowadzić do błędnych koncepcji, a tym samym do nieprawidłowego oznaczania elementów na schematach. Niektóre symbole, które mogły zostać wybrane, mogą dotyczyć innych typów przełączników, takich jak łączniki pojedyncze lub podwójne, które nie mają zdolności sterowania wieloma obwodami równocześnie. To z kolei może skutkować komplikacjami podczas projektowania instalacji elektrycznych. Ponadto, stosowanie błędnych symboli może prowadzić do nieporozumień w komunikacji między projektantami a wykonawcami, co jest niezgodne z zasadami efektywnej współpracy w branży. Ważne jest, aby projektanci instalacji elektrycznych dobrze rozumieli znaczenie każdego symbolu oraz jego właściwe zastosowanie zgodnie z normami, takimi jak PN-IEC 60617, co pomoże uniknąć nieefektywności i kosztownych błędów w realizacji projektów. Dlatego odpowiednia edukacja i zrozumienie podstawowych zasad symboliki w elektrotechnice są kluczowe dla każdego profesjonalisty w tej dziedzinie.

Pytanie 5

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Dławika.
B. Silnika jednofazowego.
C. Transformatora jednofazowego.
D. Prądnicy synchronicznej.
Tabliczka znamionowa, którą analizujesz, zawiera kluczowe informacje dotyczące silnika jednofazowego. W szczególności, moc znamionowa wynosząca 1.1 kW oraz prąd znamionowy 7.1 A są typowe dla tego typu silników, które są powszechnie stosowane w aplikacjach domowych oraz przemysłowych. Napięcie 230 V / 50 Hz wskazuje na standardowe parametry zasilania w Europie, co czyni ten silnik odpowiednim do zasilania z sieci elektrycznej. Dodatkowo, prędkość obrotowa 1400 min-1 sugeruje, że silnik jest przystosowany do zastosowań wymagających umiarkowanej prędkości, takich jak małe pompy czy wentylatory. Również obecność kondensatora rozruchowego, o wartości 160 µF/320V, jest charakterystyczna dla silników jednofazowych, które w przeciwieństwie do silników trójfazowych, często wymagają takiego elementu do uruchomienia. Takie silniki są szeroko stosowane w codziennych urządzeniach, takich jak pralki czy odkurzacze, co potwierdza ich znaczenie w nowoczesnym świecie. Zrozumienie tych parametrów jest kluczowe dla prawidłowego doboru silnika do konkretnej aplikacji, co jest zgodne z zasadami efektywnego projektowania systemów elektrycznych.

Pytanie 6

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 16 mm2
B. 10 mm2
C. 6 mm2
D. 4 mm2
Wybór nieodpowiedniego przekroju przewodów miedzianych w instalacjach elektrycznych może prowadzić do poważnych problemów technicznych i bezpieczeństwa. W przypadku, gdy ktoś wybiera przekrój 6 mm2, może nie spełniać wymagań dotyczących obciążeń prądowych w instalacjach zasilających, co naraża na ryzyko przegrzania przewodów. Przewody o mniejszym przekroju, takie jak 4 mm2, mogą być stosowane w niezbyt obciążonych obwodach, ale w kontekście wewnętrznych linii zasilających, ich zastosowanie może być nieadekwatne, szczególnie w przypadku obciążenia większego niż nominalne. Również przekrój 16 mm2, mimo że wyższy, nie jest wymagany w standardowych warunkach domowych, co prowadzi do nieuzasadnionych kosztów instalacyjnych. Takie podejście może wynikać z błędnego założenia, że większy przekrój zawsze owocuje większym bezpieczeństwem, podczas gdy kluczowe jest dobranie odpowiedniego przekroju do konkretnego zastosowania i wymagań technicznych. W praktyce, wdrożenie norm i standardów, takich jak PN-IEC 60364, jest kluczowe dla zapewnienia efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 7

Aby zmierzyć częstotliwość, należy użyć

A. częstościomierza
B. watomierza
C. waromierza
D. fazomierza
Częstościomierz jest urządzeniem służącym do pomiaru częstotliwości sygnałów elektrycznych, co czyni go najodpowiedniejszym narzędziem do tego celu. Jego działanie polega na zliczaniu liczby cykli sygnału w jednostce czasu, co pozwala na precyzyjne określenie częstotliwości, wyrażonej w hercach (Hz). Częstościomierze są powszechnie wykorzystywane w elektronice, telekomunikacji oraz w badaniach laboratoryjnych. Na przykład, przy pomiarze częstotliwości oscylatorów w układach radiowych, częstościomierz umożliwia dokładne dostrajanie urządzeń do pożądanej częstotliwości pracy. W kontekście standardów branżowych, częstościomierze powinny spełniać normy kalibracji, co zapewnia ich wiarygodność i dokładność w pomiarach. Warto również zauważyć, że nowoczesne częstościomierze oferują dodatkowe funkcje, takie jak analiza harmonik czy pomiar fazy, co zwiększa ich użyteczność w zaawansowanych aplikacjach.

Pytanie 8

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 300 mA
B. 30 mA
C. 100 mA
D. 10 mA
Wyłącznik różnicowoprądowy z prądem różnicowym 30 mA to coś, co naprawdę warto mieć w elektrycznych instalacjach w naszych domach. Jego główną rolą jest ochrona osób przed porażeniem prądem, szczególnie gdy zdarzy się jakieś uszkodzenie, które może prowadzić do groźnych sytuacji. Prąd różnicowy 30 mA jest uznawany za najlepszy w miejscach, gdzie może być ryzyko kontaktu z wodą, jak łazienki czy kuchnie. Dzięki temu wyłącznikowi system szybko reaguje i odcina prąd w czasie krótszym niż 30 ms, co w praktyce oznacza, że w przypadku porażenia prądem, osoba ma większe szanse na przeżycie. Po prostu wyłącznik zadziała tak szybko, że może uratować życie. W dodatku zgodnie z normą PN-IEC 61008, stosowanie tych wyłączników o prądzie 30 mA w budynkach mieszkalnych to naprawdę dobry standard bezpieczeństwa. Gdzieś, gdzie ryzyko jest jeszcze większe, jak basen czy sauna, warto otworzyć się na wyłączniki o prądzie 10 mA, bo zapewniają one jeszcze lepszą ochronę.

Pytanie 9

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Zwarcie międzyfazowe
B. Skok napięcia
C. Przeciążenie obwodu
D. Upływ prądu
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 10

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. przewodów przed przeciążeniami oraz zwarciami
B. urządzeń półprzewodnikowych przed zwarciami
C. urządzeń półprzewodnikowych przed przeciążeniami
D. silników przed przeciążeniami oraz zwarciami
Przy wyborze wkładki topikowej bezpiecznika ważne jest zrozumienie ich specyfikacji oraz przeznaczenia. Odpowiedzi sugerujące, że wkładka gL zabezpiecza silniki przed przeciążeniem i zwarciami, są mylące, ponieważ silniki wymagają specjalnych wkładek, które mogą radzić sobie z chwilowymi prądami rozruchowymi. Odpowiedzi dotyczące zabezpieczenia urządzeń półprzewodnikowych również są nietrafne. Urządzenia te wymagają wkładek o specyficznych charakterystykach, takich jak gG, które są lepiej dostosowane do ochrony przed impulsywnymi prądami zwarciowymi typowymi dla takich urządzeń. W przypadku przewodów wkładki gL oferują niezawodne zabezpieczenie, jednak proponowanie ich użycia w kontekście silników czy półprzewodników dowodzi braku zrozumienia różnorodności typów bezpieczników oraz ich specyficznych zastosowań. Niezrozumienie tych różnic może prowadzić do zastosowania niewłaściwych zabezpieczeń, co z kolei może skutkować poważnymi uszkodzeniami instalacji elektrycznej oraz zagrażać bezpieczeństwu użytkowników. W przemyśle i instalacjach elektrycznych ważne jest stosowanie odpowiednich elementów zabezpieczających zgodnie z zaleceniami producentów oraz normami, co w praktyce oznacza właściwy dobór bezpieczników do specyfiki chronionych obwodów.

Pytanie 11

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Wkrętakiem
B. Kluczem płaskim
C. Neonowym wskaźnikiem napięcia
D. Nożem monterskim
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 12

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do prądnic tachometrycznych
B. Do indukcyjnych sprzęgieł dwukierunkowych
C. Do transformatorów
D. Do wzmacniaczy maszynowych
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 13

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 1 000 V
B. 500 V
C. 250 V
D. 2 500 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 14

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. przeciążenia obwodu elektrycznego
B. zagrożenia porażeniem prądem elektrycznym
C. uszkodzenia podłączonego urządzenia elektrycznego
D. zwarcia w obwodzie elektrycznym
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 15

Co oznacza przeciążenie instalacji elektrycznej?

A. Nagłym wzroście napięcia elektrycznego w sieci, który przekracza wartość znamionową
B. Bezpośrednim połączeniu ze sobą dwóch faz w instalacji
C. Pojawieniu się w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym
D. Przekroczeniu wartości prądu znamionowego danej instalacji
Przeciążenie instalacji elektrycznej to nic innego jak przekroczenie prądu, który jest dla niej bezpieczny. Kiedy podłącza się za dużo urządzeń do jednego obwodu, przewody mogą się strasznie nagrzewać, co nie jest dobre. Standardy jak PN-HD 60364-5-52 mówią, że trzeba to wszystko dobrze zaplanować i wymierzyć, żeby zapewnić bezpieczeństwo użytkownikom i żeby instalacja długo działała. Jak się projektuje instalacje elektryczne, to warto pomyśleć o przewidywanych obciążeniach i zastosować odpowiednie zabezpieczenia, na przykład wyłączniki nadprądowe. Znajomość tych rzeczy jest istotna, nie tylko przy projektowaniu, ale też kiedy trzeba naprawiać coś, co już działa, bo może to pomóc w diagnozowaniu różnych problemów.

Pytanie 16

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Bardzo niskie napięcie ze źródła bezpiecznego
B. Dodatkowe miejscowe wyrównawcze połączenia ochronne
C. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
D. Samoczynne wyłączenie zasilania
Dodatkowe miejscowe wyrównawcze połączenia ochronne stanowią kluczowy element uzupełniającej ochrony przeciwporażeniowej, która ma na celu zminimalizowanie ryzyka porażenia prądem elektrycznym. Tego typu połączenia wykorzystuje się w instalacjach elektrycznych, aby zapewnić wyrównanie potencjałów między różnymi elementami systemu. Przykładem zastosowania jest podłączenie obudowy metalowej urządzeń elektrycznych do instalacji wyrównawczej, co zapobiega gromadzeniu się niebezpiecznych napięć na obudowie. Zgodnie z normami IEC 60364, które regulują zagadnienia związane z instalacjami elektrycznymi w budynkach, zastosowanie dodatkowych miejscowych połączeń ochronnych jest zalecane w obiektach narażonych na zwiększone ryzyko porażenia. W praktyce, takie połączenia mogą być stosowane w miejscach, gdzie występuje możliwość przypadkowego kontaktu z elementami przewodzącymi, jak np. w laboratoriach czy zakładach przemysłowych. Dodatkowe miejsca wyrównawcze są zatem niezbędnym zabezpieczeniem, które wspiera podstawowe metody ochrony, takie jak izolacja czy wyłączniki różnicowoprądowe.

Pytanie 17

Strzałką oznaczono na rysunku

Ilustracja do pytania
A. przycisk rozwierny.
B. styk pomocniczy zwiemy.
C. styk pomocniczy rozwierny.
D. przycisk zwiemy.
Przycisk rozwierny, nazywany również przyciskiem otwierającym, jest kluczowym elementem w wielu zastosowaniach elektrycznych oraz automatyce. W stanie spoczynku przycisk ten zapewnia przepływ prądu, co oznacza, że obwód jest zamknięty. Po jego aktywowaniu, czyli wciśnięciu, obwód zostaje otwarty, co przerywa przepływ prądu. Tego typu przyciski są powszechnie stosowane w różnych urządzeniach, takich jak dzwonki, alarmy czy systemy automatyki budynkowej. Ich działanie opiera się na zasadzie, że w momencie wciśnięcia przycisku, dochodzi do przełączenia stanu obwodu – z zamkniętego na otwarty. Zastosowanie przycisku rozwiernego jest zgodne z dobrymi praktykami w inżynierii elektrycznej, gdzie kluczowe jest zapewnienie bezpieczeństwa użytkowników. Przykładem może być system alarmowy, gdzie przycisk rozwierny umożliwia wyłączenie alarmu przez użytkownika, co jest istotne w sytuacjach awaryjnych. Ponadto, standardy IEC 60947-5-1 definiują wymagania dotyczące bezpiecznego użytkowania i montażu takich elementów, co czyni je niezawodnymi w codziennym użytkowaniu.

Pytanie 18

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 10 mA
B. IΔ = 20 mA
C. IΔ = 30 mA
D. IΔ = 40 mA
Odpowiedź IΔ = 10 mA jest poprawna, ponieważ sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA nie powinien zadziałać przy prądzie różnicowym mniejszym od jego nominalnej wartości. Wartości prądu różnicowego, które są poniżej tego poziomu, nie powinny aktywować mechanizmu wyłączającego. Na przykład, jeżeli w instalacji elektrycznej wystąpi niewielki prąd upływowy spowodowany np. wilgocią lub wadliwym urządzeniem, to przy prądzie 10 mA wyłącznik nie zareaguje, co oznacza, że urządzenie może dalej działać. Wyłączniki różnicowoprądowe są kluczowym elementem w systemach zabezpieczeń, a zgodnie z normami IEC 61008-1, powinny być stosowane w instalacjach, aby zapewnić bezpieczeństwo użytkowników przed porażeniem prądem elektrycznym. Odpowiednia konfiguracja takich wyłączników jest istotna w kontekście ochrony zdrowia i życia, a ich prawidłowe działanie powinno być regularnie kontrolowane.

Pytanie 19

Które z przedstawionych narzędzi przeznaczone jest do zdejmowania izolacji z żył przewodów elektrycznych?

Ilustracja do pytania
A. Narzędzie 4.
B. Narzędzie 1.
C. Narzędzie 3.
D. Narzędzie 2.
Narzedzie 1 to kluczowy instrument w pracy z przewodami elektrycznymi, zwłaszcza w kontekście przygotowania ich do połączeń. Szczypce do ściągania izolacji, których użycie zaleca się w branży elektrycznej, są zaprojektowane tak, aby umożliwić precyzyjne usunięcie izolacji z żył bez ryzyka uszkodzenia samego przewodu. Dobrej jakości szczypce posiadają mechanizm regulacji głębokości ściągania, co pozwala na dostosowanie siły do rodzaju przewodu. W praktyce, zastosowanie tych narzędzi sprawia, że prace instalacyjne są nie tylko szybsze, ale także bezpieczniejsze, co jest zgodne z normami bezpieczeństwa elektrycznego. Używając szczypiec, można łatwo przygotować przewody do podłączenia terminali, co jest niezbędne w każdym projekcie elektrycznym. Ponadto, w kontekście dobrych praktyk, zaleca się regularne sprawdzanie stanu narzędzi, aby zapewnić ich efektywność i bezpieczeństwo użytkowania.

Pytanie 20

Które urządzenie oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Odłącznik.
B. Bezpiecznik.
C. Wyłącznik.
D. Rozłącznik.
Wybór odpowiedzi innej niż 'Wyłącznik' wskazuje na pewne nieporozumienia dotyczące funkcji i symboliki poszczególnych urządzeń elektrycznych. Bezpiecznik, będący urządzeniem zabezpieczającym, działa na zasadzie przerywania obwodu w momencie przekroczenia określonego prądu, a jego symbol różni się znacząco od symbolu wyłącznika. Odłącznik z kolei, choć również używany do rozłączania obwodów, jest zazwyczaj stosowany w sytuacjach, gdzie brak konieczności automatycznego działania jest kluczowy; jego symbol na schemacie jest inny, co może prowadzić do błędnej interpretacji. Rozłącznik, natomiast, służy do przerywania obwodu w sposób bardziej złożony, często w kontekście instalacji przemysłowych i zasilania w obiektach wysokiego napięcia, co również odzwierciedla inny symbol. Typowe błędy myślowe związane z tym pytaniem mogą wynikać z nieznajomości różnic pomiędzy tymi urządzeniami. W praktyce, znajomość symboli oraz funkcji wyłączników jest niezbędna dla zapewnienia bezpieczeństwa w pracy z instalacjami elektrycznymi oraz ich prawidłowego funkcjonowania zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 21

Na którą z wymienionych przyczyn, występującą w obwodzie odbiorczym instalacji elektrycznej, musi reagować wyłącznik różnicowoprądowy poprzez samoczynne wyłączenie?

A. Upływ prądu
B. Zwarcie międzyfazowe
C. Przeciążenie
D. Przepięcie
Wyłącznik różnicowoprądowy (RCD) ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami upływu prądu. Upływ prądu to sytuacja, w której część prądu roboczego nie wraca do źródła zasilania, lecz przepływa przez inne drogi, co może prowadzić do niebezpiecznych sytuacji. RCD działa na zasadzie monitorowania różnicy prądów pomiędzy przewodem fazowym a przewodem neutralnym. Gdy ta różnica przekroczy ustalony poziom (zazwyczaj 30 mA w instalacjach domowych), RCD natychmiast odłącza zasilanie. Praktycznym zastosowaniem RCD jest instalacja w łazienkach i kuchniach, gdzie istnieje wysokie ryzyko kontaktu z wodą. Warto również podkreślić, że zgodnie z normami PN-IEC 61008, stosowanie RCD jest obowiązkowe w miejscach narażonych na porażenie prądem, co podkreśla znaczenie ich montażu w nowoczesnych instalacjach elektrycznych.

Pytanie 22

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-PE
B. Z L-L
C. Z L-N
D. Z L-PE(RCD)
W kontekście pomiarów impedancji pętli zwarcia, wybór odpowiedniej funkcji pomiarowej ma kluczowe znaczenie. Odpowiedzi takie jak "Z L-PE", "Z L-N" oraz "Z L-L" nie są prawidłowe, ponieważ nie uwzględniają obecności wyłącznika różnicowoprądowego (RCD) w układzie. Pomiar "Z L-PE" zazwyczaj odnosi się do uziemienia bez uwzględnienia specyfiki RCD, co może prowadzić do niepełnych lub nieprawidłowych danych. W przypadku "Z L-N" pomiar koncentruje się na napięciu między linią a neutralnym przewodem, co również nie odzwierciedla rzeczywistego stanu impedancji pętli zwarcia, szczególnie w kontekście ochrony przed porażeniem. Z kolei pomiar "Z L-L" dotyczy wyłącznie połączenia między przewodami fazowymi i nie dostarcza informacji o uziemieniu, co jest istotne w analizie bezpieczeństwa. Często błędem myślowym jest zakładanie, że bezpośrednie połączenia między przewodami wystarczą do oceny bezpieczeństwa instalacji. Należy pamiętać, że prawidłowa ocena wymaga uwzględnienia wszystkich komponentów, w tym urządzeń ochronnych, jakimi są RCD. Zaniedbanie tego aspektu może prowadzić do poważnych konsekwencji, dlatego tak istotne jest stosowanie odpowiednich metod pomiarowych, zgodnych z normami, aby zapewnić pełne bezpieczeństwo instalacji elektrycznych.

Pytanie 23

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±2,35 mA
B. ±0,37 mA
C. ±0,35 mA
D. ±0,02 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentową dokładność, jak i dodatkowe cyferki. W naszym przypadku multimetr wyświetlił rezultat 35,00 mA, a dokładność producenta została określona jako ±(1 % +2). Rozpoczynamy od obliczenia 1 % z 35,00 mA, co daje 0,35 mA. Następnie dodajemy stałą wartość 2 jednostek, co w przypadku mA odpowiada 2 mA. Sumując te wartości, uzyskujemy 0,35 mA + 2 mA = 2,35 mA, co wskazuje, że przy takiej dokładności błąd może być dość istotny. Jednak dla pomiarów w praktyce do obliczeń najczęściej stosuje się wartości w granicach typowych pomiarów. Wartość ±0,37 mA, która została uznana za poprawną, uwzględnia precyzyjne zaokrąglenie i daje bardziej realistyczny obraz błędu, gdyż błąd nie powinien przekraczać jednostek pomiarowych, co w praktyce oznacza, że nawet niewielkie różnice mogą wpływać na dalsze analizy. Tego rodzaju wiedza jest kluczowa w wielu dziedzinach, zwłaszcza w inżynierii i elektrotechnice, gdzie precyzyjne pomiary są niezbędne do prawidłowego funkcjonowania systemów elektrycznych i elektronicznych.

Pytanie 24

Podczas wymiany uszkodzonego mechanicznie gniazda wtykowego w podtynkowej instalacji elektrycznej działającej w systemie TN-S, jakie czynności należy podjąć?

A. nałożyć warstwę cyny na końcówki przewodów
B. wybrać gniazdo o wyższym prądzie znamionowym niż to uszkodzone
C. zasilić przewody o większym przekroju żył do najbliższej puszki łączeniowej
D. podłączyć poszczególne przewody do odpowiednich zacisków gniazda
Odpowiedź dotycząca przyłączenia poszczególnych przewodów do właściwych zacisków gniazda jest poprawna, ponieważ jest to kluczowy krok w procesie instalacji elektrycznej. W instalacjach elektrycznych podtynkowych, szczególnie w sieci TN-S, ważne jest, aby przewody były podłączone do odpowiednich zacisków, co zapewnia zarówno bezpieczeństwo, jak i prawidłowe funkcjonowanie obwodu. Przyłączenie przewodów do właściwych zacisków gwarantuje, że neutralny przewód nie będzie pomylony z przewodem fazowym, co mogłoby prowadzić do zwarć lub uszkodzeń sprzętu. Dobór gniazda musi być zgodny z normami, takimi jak PN-EN 60309, które określają wymagania dotyczące gniazd wtykowych. Ponadto, podczas instalacji warto zwrócić uwagę na kolorystykę przewodów zgodnie z normami, co ułatwia identyfikację ich funkcji. W praktyce, prawidłowe podłączenie przewodów zwiększa bezpieczeństwo użytkowania instalacji i minimalizuje ryzyko awarii.

Pytanie 25

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. dwie mufy kablowe i odcinek kabla
B. odcinek kabla zakończony głowicami
C. odcinek kabla oraz zgrzewarka
D. mufa rozgałęźna oraz odcinek kabla
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 26

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 4.
C. Narzędzie 2.
D. Narzędzie 1.
Narzędzie 2, czyli ściągacz, jest kluczowym narzędziem wykorzystywanym w procesie demontażu przewietrznika z wału silnika elektrycznego. Jego konstrukcja umożliwia równomierne rozłożenie siły, co jest niezwykle istotne, aby uniknąć uszkodzenia elementów. W praktyce, ściągacz stosuje się w sytuacjach, gdy przewietrznik mocno przylega do wału, co może zdarzyć się w wyniku długotrwałego użytkowania silnika. Właściwe użycie ściągacza polega na umieszczeniu go tak, aby mocno, ale delikatnie, chwytał za brzegi demontowanego elementu. Zgodnie z najlepszymi praktykami branżowymi, przed przystąpieniem do demontażu należy zawsze upewnić się, że silnik jest odłączony od źródła zasilania. Użycie ściągacza w ten sposób minimalizuje ryzyko uszkodzenia zarówno przewietrznika, jak i wału silnika. Pozostałe narzędzia, takie jak narzędzie 1, 3 i 4, nie są dostosowane do tej specyficznej pracy, co może prowadzić do nieefektywnego demontażu i potencjalnych uszkodzeń.

Pytanie 27

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
B. Polakierować uszkodzoną izolację przewodu
C. Wymienić wszystkie przewody na nowe o większym przekroju
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 28

Na którym rysunku przedstawiono przewód spawalniczy OnS-1?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Odpowiedź B jest poprawna, ponieważ przewód spawalniczy OnS-1 charakteryzuje się specyficzną konstrukcją, która jest dostosowana do spawania łukowego. Składa się z wielu cienkich drutów miedzianych, które są skręcone w pęczki, co zapewnia doskonałe przewodnictwo elektryczne oraz elastyczność. Tego typu przewody są szeroko stosowane w przemyśle spawalniczym, gdzie kluczowe jest utrzymanie wysokiej jakości połączeń oraz efektywności procesów spawania. W praktyce, wybór odpowiedniego przewodu spawalniczego ma bezpośredni wpływ na jakość realizowanych zadań oraz trwałość spoin. Ponadto, przewody takie jak OnS-1 spełniają normy IEC 60228 oraz EN 50525, które określają wymagania dotyczące przewodów elektrycznych, co czyni je niezawodnym wyborem dla profesjonalnych spawaczy. Zrozumienie konstrukcji i zastosowania przewodów spawalniczych jest kluczowe, aby uniknąć problemów związanych z wydajnością i bezpieczeństwem podczas pracy.

Pytanie 29

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Za pomocą kombinerek w braku napięcia
B. Przy użyciu kombinerek, pod napięciem
C. Uchwytem izolacyjnym pod obciążeniem
D. Uchwytem izolacyjnym bez obciążenia
Wymiana nożowych wkładek topikowych bezpieczników przemysłowych powinna być przeprowadzana w sposób bezpieczny, najlepiej przy użyciu uchwytu izolacyjnego i tylko wtedy, gdy nie ma obciążenia na obwodzie. Taki sposób działania minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. Uchwyt izolacyjny, wykonany z materiałów odpornych na działanie wysokich napięć, zapewnia, że osoba dokonująca wymiany nie ma kontaktu z przewodami pod napięciem. Przykładem zastosowania tej metody są procedury serwisowe w zakładach przemysłowych, gdzie kluczowe jest przestrzeganie zasad BHP oraz normy IEC 60947-3 dotyczącej bezpieczników. Dodatkowo, przed przystąpieniem do wymiany, ważne jest upewnienie się, że wyłączono zasilanie, co można zweryfikować przy pomocy wskaźników napięcia, a także zastosowanie blokad, aby zapobiec przypadkowemu włączeniu obwodu. Przestrzeganie tych zasad nie tylko chroni technika, ale również zapewnia, że prace serwisowe są wykonane w sposób efektywny i zgodny z normami branżowymi.

Pytanie 30

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Oceny stanu przewodów ochronnych oraz ich podłączenia
B. Kontroli stanu osłon elementów wirujących
C. Sprawdzenia szczotek i szczotkotrzymaczy
D. Sprawdzenia działania systemów chłodzenia
Odpowiedź dotycząca sprawdzenia szczotek i szczotkotrzymaczy jako czynności, której nie wykonuje się podczas oględzin urządzenia napędowego z silnikiem elektrycznym w czasie ruchu, jest poprawna. Podczas pracy silnika elektrycznego, szczegóły takie jak szczotki i szczotkotrzymacze nie mogą być skutecznie oceniane, ponieważ wymagają one zatrzymania silnika, aby móc przeprowadzić dokładne wizualne i techniczne badania. Szczotki są kluczowymi elementami, które przekazują prąd do wirnika i ich stan ma istotny wpływ na wydajność silnika. W praktyce, regularne kontrole tych komponentów powinny być przeprowadzane w warunkach postoju, aby uniknąć uszkodzeń i zapewnić długotrwałe, bezproblemowe funkcjonowanie napędu. Zaleca się stosowanie standardów takich jak PN-EN 60034, które określają wymagania dotyczące silników elektrycznych, oraz dokumentacji producentów, aby przestrzegać najlepszych praktyk obsługi i konserwacji urządzeń. Wnioskując, ocena stanu szczotek i szczotkotrzymaczy w czasie ruchu nie jest możliwa, co czyni tę odpowiedź prawidłową.

Pytanie 31

Zdjęcie przedstawia

Ilustracja do pytania
A. rozłącznik.
B. wyłącznik.
C. odłącznik.
D. przełącznik.
Rozważając inne urządzenia, które zostały wymienione jako możliwości odpowiedzi, można zauważyć, że rozłącznik, wyłącznik i przełącznik mają różne funkcje i zastosowania, które nie odpowiadają charakterystykom odłącznika. Rozłącznik jest urządzeniem, które również służy do odłączania obwodu, ale jego działanie jest często bardziej złożone i może być stosowane w sytuacjach awaryjnych. Wyłącznik, z kolei, jest przystosowany do pracy pod obciążeniem, co oznacza, że może być używany do regularnego włączania i wyłączania obwodów elektrycznych, co nie jest celem odłącznika. Przełącznik natomiast, jego podstawowa funkcja polega na zmianie kierunku przepływu prądu lub włączaniu i wyłączaniu obwodów bez funkcji zapewnienia widocznego odłączenia. Często mylące jest myślenie, że te urządzenia mogą być używane zamiennie, co prowadzi do nieprawidłowych wniosków. Kluczowym błędem jest nieodróżnianie urządzeń przeznaczonych do pracy pod obciążeniem od tych, które mają na celu jedynie bezpieczne odłączenie obwodu. W praktyce, stosowanie niewłaściwego urządzenia w danej aplikacji może prowadzić do zagrożeń dla bezpieczeństwa, dlatego ważne jest, aby znać specyfikę każdego z tych urządzeń oraz ich prawidłowe zastosowanie zgodnie z obowiązującymi normami branżowymi.

Pytanie 32

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
B. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
C. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
D. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 33

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duża moc urządzenia
B. Luźne połączenie w listwie neutralnej
C. Zbyt duży przekrój uszkodzonego przewodu
D. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 34

Do których zacisków przekaźnika zmierzchowego należy podłączyć czujkę światła?

Ilustracja do pytania
A. L i 10
B. 7 i 9
C. N i 12
D. 10 i 12
Odpowiedź 7 i 9 jest poprawna, ponieważ na schemacie przekaźnika zmierzchowego zaciski te są wyraźnie oznaczone jako miejsca podłączenia czujki światła. Czujka światła wykrywa poziom oświetlenia zewnętrznego, co jest kluczowe dla automatyzacji oświetlenia, zwłaszcza w zastosowaniach komercyjnych i mieszkalnych. Użycie odpowiednich zacisków zapewnia prawidłowe działanie systemu, co jest zgodne z najlepszymi praktykami w instalacjach elektrycznych. W momencie, gdy czujka wykryje spadek poziomu oświetlenia (np. o zmierzchu), przekaźnik aktywuje oświetlenie, a kontraproduktywne podłączenie do innych zacisków mogłoby prowadzić do nieprawidłowego działania systemu. Dobrze skonfigurowany przekaźnik zmierzchowy zwiększa komfort użytkowania oraz oszczędność energii, co jest istotne w kontekście zrównoważonego rozwoju.

Pytanie 35

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 1000 V
B. 750V
C. 250V
D. 500V
Wymagane napięcie probiercze przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V wynosi 500 V. Taki poziom napięcia jest zgodny z normami określonymi w dokumentach takich jak PN-EN 61557-2, które regulują przeprowadzanie badań izolacji. Stosowanie napięcia 500 V jest efektywne w testowaniu izolacji, gdyż pozwala na uzyskanie rzetelnych wyników, przy jednoczesnym minimalizowaniu ryzyka uszkodzenia izolacji. Praktyczne zastosowanie tego napięcia jest szczególnie widoczne w instalacjach o napięciu roboczym 230/400 V, gdzie niskie napięcie mogłoby nie ujawnić potencjalnych problemów, a zbyt wysokie mogłoby prowadzić do uszkodzeń lub fałszywych odczytów. Regularne testy rezystancji izolacji przy użyciu odpowiednich napięć są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, co wynika z praktyk branżowych oraz przepisów BHP.

Pytanie 36

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Obcowzbudny prądu stałego
B. Asynchroniczny klatkowy
C. Synchroniczny
D. Szeregowy prądu stałego
Silnik szeregowy prądu stałego, silnik asynchroniczny klatkowy oraz silnik obcowzbudny prądu stałego mają charakterystyki mechaniczne, które są mniej sztywne w porównaniu do silnika synchronicznego. W przypadku silnika szeregowego prądu stałego, prędkość obrotowa jest silnie uzależniona od momentu obrotowego: im większy moment, tym niższa prędkość, co sprawia, że silnik ten jest bardziej elastyczny, ale także ma ograniczoną stabilność w pracy przy zmieniającym się obciążeniu. Silnik asynchroniczny klatkowy, z drugiej strony, ma charakterystykę, która pozwala na pewne zmiany prędkości w zależności od obciążenia, co może prowadzić do problemów z precyzyjną kontrolą prędkości, zwłaszcza w aplikacjach wymagających dużych momentów obrotowych. Silnik obcowzbudny prądu stałego, choć charakteryzuje się większą sztywnością niż szeregowy, nadal nie osiąga poziomu stabilności prędkości, jaki zapewnia silnik synchroniczny. Powszechnym błędem myślowym jest założenie, że silniki o większej mocy są automatycznie bardziej stabilne, podczas gdy to w rzeczywistości ich konstrukcja i typ zasilania decydują o charakterystyce pracy. W obliczu rosnących wymagań w zakresie efektywności energetycznej oraz precyzyjnego sterowania, zrozumienie różnic między tymi typami silników jest kluczowe dla inżynierów i projektantów systemów napędowych.

Pytanie 37

Na którym rysunku przedstawiono żarówkę halogenową?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Żarówka halogenowa, przedstawiona na rysunku B, jest jedną z najczęściej stosowanych źródeł światła w zastosowaniach, gdzie istotna jest jakość oświetlenia oraz jego efektywność. Charakteryzuje się specyficznym kształtem, gdzie szklana bańka jest często kulista, a w jej wnętrzu znajduje się mały żarnik. Dzięki zastosowaniu halogenów, żarówki te są w stanie osiągnąć wyższą temperaturę, co z kolei przekłada się na lepszą jakość emitowanego światła oraz dłuższą żywotność. Przykładem zastosowania żarówek halogenowych są reflektory w domach oraz w oświetleniu samochodowym, gdzie ważne jest uzyskanie intensywnego, a zarazem przyjemnego dla oka światła. Warto również zauważyć, że żarówki te spełniają wiele standardów wydajności energetycznej, co czyni je dobrym wyborem w kontekście zrównoważonego rozwoju i oszczędności energii.

Pytanie 38

Zdjęcie przedstawia

Ilustracja do pytania
A. płytkę zaciskową.
B. szynę łączeniową.
C. drabinkę kablową.
D. listwę montażową.
Szyna łączeniowa to kluczowy element w instalacjach elektrycznych, służący do łączenia przewodów neutralnych w rozdzielnicach. Odpowiedź jest poprawna, ponieważ zdjęcie przedstawia właśnie ten element. Szyny łączeniowe są wykorzystywane w celu zapewnienia efektywności i bezpieczeństwa instalacji, umożliwiając łatwe połączenie wielu przewodów w jednym punkcie. Dzięki nim, instalacje są bardziej uporządkowane, co pozwala na łatwiejszą konserwację i zarządzanie okablowaniem. W praktyce, szyny łączeniowe są projektowane zgodnie z normami IEC oraz PN-EN, co zapewnia ich wysoką jakość i bezpieczeństwo. Zastosowanie szyn łączeniowych jest szczególnie istotne w rozdzielnicach, gdzie konieczne jest zminimalizowanie ryzyka zwarcia i zapewnienie niezawodności działania systemu. Warto również zaznaczyć, że różne typy szyn mogą być dostosowane do specyficznych potrzeb instalacji, co czyni je niezwykle wszechstronnym rozwiązaniem.

Pytanie 39

Które z przedstawionych narzędzi, oprócz lutownicy, jest niezbędne przy naprawie przeciętego przewodu LY przez połączenie lutowane?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór odpowiedzi B jest słuszny, ponieważ narzędzie to, czyli szczypce do ściągania izolacji, jest kluczowe w procesie naprawy przewodów elektrycznych. Przy lutowaniu przeciętego przewodu LY, fundamentalnym krokiem jest przygotowanie jego końców poprzez usunięcie izolacji, co umożliwia bezpośredni dostęp do miedzianych rdzeni. Użycie odpowiednich narzędzi do ściągania izolacji zapewnia, że miedź nie zostanie uszkodzona, co jest istotne dla uzyskania solidnego połączenia lutowanego. W praktyce, szczypce do ściągania izolacji są zaprojektowane tak, aby zminimalizować ryzyko zgniecenia lub zerwania włókien miedzianych, co mogłoby prowadzić do problemów z przewodnictwem elektrycznym. Zgodnie z normami branżowymi, każdy elektryk powinien mieć w swoim zestawie narzędzi to urządzenie, aby zapewnić rzetelność i bezpieczeństwo wykonywanych połączeń. Dobrą praktyką jest także sprawdzenie, czy końce przewodów są czyste i nieuszkodzone przed przystąpieniem do lutowania, co zapewnia lepszą jakość połączenia.

Pytanie 40

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. wymienić gniazdo na nowe
B. zdemontować gniazdo i zaślepić puszkę
C. zakleić gniazdo taśmą izolacyjną
D. uszczelnić pęknięcia za pomocą kleju do tworzywa
Wymiana gniazda wtyczkowego jest kluczowym krokiem w przypadku uszkodzenia obudowy, ponieważ gwarantuje bezpieczeństwo użytkowników i zapewnia prawidłowe funkcjonowanie instalacji elektrycznej. Uszkodzona obudowa może prowadzić do odsłonięcia przewodów elektrycznych, co zwiększa ryzyko porażenia prądem oraz zwarcia. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60364, każda uszkodzona komponenta powinna być wymieniana, aby zapobiec potencjalnym zagrożeniom. Przykładowo, w przypadku gniazd wtyczkowych umieszczonych w łazienkach, gdzie panuje wysoka wilgotność, niezbędne jest korzystanie z gniazd o podwyższonej odporności na wodę i pył, co podkreśla znaczenie stosowania komponentów spełniających odpowiednie normy. Regularne kontrole oraz wymiana uszkodzonych elementów to najlepsza praktyka, która zwiększa bezpieczeństwo i niezawodność domowej instalacji elektrycznej. Przykładem może być sytuacja, w której gniazdo w łazience zostało uszkodzone – jego wymiana powinna być dokonywana przez wykwalifikowanego elektryka, aby zminimalizować ryzyko błędów w montażu.