Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 maja 2025 22:37
  • Data zakończenia: 13 maja 2025 23:01

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. tranzystorów na wyjściach 2 i 4
B. tranzystorów na wyjściach 1 i 3
C. wyłącznie tranzystora na wyjściu 4
D. wyłącznie tranzystora na wyjściu 3
Widzisz, tu pojawiają się błędy przy analizie problemu, które mogą prowadzić do mylnych diagnoz dotyczących tranzystorów. Z tych pomiarów wynika, że UBE1 ma tylko 1 V, co oznacza, że tranzystor na wyjściu 1 raczej nie działa prawidłowo, ale to nie znaczy, że jest zepsuty. Zmniejszone napięcie UBE na 1 V raczej sugeruje, że tranzystor nie jest na pełnym włączeniu. A jeśli chodzi o wyjście 3, to 0,7 V to całkiem w porządku wartość i nie możemy mówić o uszkodzeniu. Dodatkowo, wskazywanie na problem z wyjściem 2 przy napięciu 3 V, zapominając o tym, że to może być efekt złego podłączenia lub niepoprawnej konfiguracji obwodu, to też nie jest dobre podejście. W takich sytuacjach lepiej spojrzeć na cały układ, nie tylko na jedno wyjście. Przy diagnozowaniu tranzystorów ważne jest, żeby rozumieć, jak różne napięcia wpływają na ich działanie oraz potrafić dobrze interpretować wyniki pomiarów w kontekście całości systemu. W praktyce warto korzystać z dokumentacji technicznej i standardów, żeby trafnie znaleźć źródło problemu i wiedzieć, jak go naprawić.

Pytanie 2

Jakie urządzenie jest wykorzystywane do pomiaru kąta?

A. tachometr
B. termoelement
C. resolver
D. sensor ultradźwiękowy
Termoelementy, tachometry oraz sensory ultradźwiękowe to technologie projektowane z myślą o innych zastosowaniach, co może wprowadzać w błąd. Termoelementy są wykorzystywane głównie do pomiaru temperatury, bazując na zjawisku termoelektrycznym, które nie ma zastosowania w pomiarze kątów. Wybór termoelementu do pomiaru kąta obrotu opiera się na niewłaściwym zrozumieniu funkcji tego urządzenia. Tachometry są urządzeniami służącymi do pomiaru prędkości obrotowej, a więc ich zastosowanie do pomiaru położenia kątowego jest również nietrafione, gdyż nie dostarczają informacji o konkretnym kącie, a jedynie o szybkości zmian. Sensory ultradźwiękowe, z kolei, są używane głównie do pomiarów odległości i detekcji obiektów w przestrzeni, co nie ma związku z precyzyjnym pomiarem kątów. Wybierając niewłaściwą technologię do danego zadania, można napotkać wiele problemów związanych z dokładnością i niezawodnością pomiarów, co jest niezgodne z zasadami dobrych praktyk inżynieryjnych, które zalecają stosowanie odpowiednich urządzeń w zgodzie z ich przeznaczeniem.

Pytanie 3

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 300 lx
B. 100 lx
C. 600 lx
D. 800 lx
Wybór natężenia oświetlenia mniejszego niż 800 lx w kontekście precyzyjnych prac wiąże się z wieloma niebezpiecznymi konsekwencjami. Natężenie 600 lx, 300 lx czy 100 lx może wydawać się wystarczające w mniej wymagających warunkach, jednak w przypadku zadań wymagających dużej dokładności, takich jak montaż komponentów elektronicznych lub prace laboratoryjne, zbyt niskie oświetlenie może prowadzić do poważnych błędów. Przykładowo, oświetlenie na poziomie 600 lx może nie dostarczyć wystarczającej widoczności, co zwiększa ryzyko popełnienia błędów, które mogą skutkować uszkodzeniem delikatnych części lub złożeniem wadliwych produktów. Natężenie 300 lx to wartość, która w praktyce jest stosowana w biurach, ale nie jest to poziom odpowiedni dla precyzyjnych prac, gdzie każdy detal ma znaczenie. Natomiast 100 lx to wartość, która mogłaby być tolerowana w pomieszczeniach magazynowych, ale nie w sytuacjach wymagających szczególnej uwagi. Z tego względu, przy podejmowaniu decyzji o poziomie oświetlenia, ważne jest, aby kierować się standardami i zaleceniami branżowymi, które jasno określają wymagania w tej dziedzinie. Nieprawidłowe oszacowanie natężenia oświetlenia może prowadzić do nieefektywności pracy oraz zwiększenia ryzyka wypadków. Z tego względu, dla zapewnienia bezpieczeństwa i jakości, zawsze należy dążyć do osiągnięcia optymalnych warunków oświetleniowych.

Pytanie 4

Do kategorii chemicznych źródeł energii elektrycznej można zaliczyć ogniwa galwaniczne oraz

A. elementy termoelektryczne
B. prądnice synchroniczne
C. akumulatory kwasowe
D. ogniwa fotowoltaiczne
Akumulatory kwasowe to jeden z typów ogniw chemicznych, które przekształcają energię chemiczną w energię elektryczną. Działają na zasadzie reakcji chemicznych zachodzących pomiędzy elektrodami i elektrolitem, w tym przypadku kwasem siarkowym. Te ogniwa są powszechnie stosowane w różnych zastosowaniach, takich jak zasilanie pojazdów (akumulatory samochodowe), systemy zasilania awaryjnego oraz w energii odnawialnej, gdzie magazynują energię z paneli słonecznych lub turbin wiatrowych. W kontekście standardów branżowych, akumulatory kwasowe muszą spełniać określone normy dotyczące bezpieczeństwa i wydajności, takie jak normy ISO oraz IEC. Przykładowo, w zastosowaniach motoryzacyjnych akumulatory muszą być zdolne do dostarczenia dużych prądów rozruchowych, co jest krytyczne dla działania silnika. W związku z tym, akumulatory kwasowe są nie tylko kluczowym elementem nowoczesnych systemów energetycznych, ale także wymagają regularnej konserwacji i monitorowania, aby zapewnić ich długoterminową niezawodność.

Pytanie 5

Czujnik zbliżeniowy powinien być podłączony do cyfrowego wejścia sterownika PLC przy użyciu

A. lutownicy
B. szczypiec
C. klucza
D. wkrętaka
Odpowiedź "wkrętaka" jest poprawna, ponieważ narzędzie to jest niezbędne do dokręcania lub luzowania śrub, które często są używane do mocowania złączy i elementów w instalacjach elektrycznych, w tym w podłączaniu czujników do systemów PLC. W przypadku czujników zbliżeniowych, które mogą być montowane w różnych konfiguracjach, ważne jest, aby zapewnić solidne połączenie elektryczne. Użycie wkrętaka pozwala na precyzyjne i bezpieczne przymocowanie przewodów do zacisków sterownika PLC, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i niezawodności połączeń elektrycznych. Niewłaściwe lub luźne połączenia mogą prowadzić do błędnych odczytów czujnika oraz innych problemów w systemie automatyki. W praktyce, często stosuje się wkrętaki o wymiennej końcówce, co umożliwia łatwe dostosowanie narzędzia do różnych typów śrub i zacisków, co zwiększa efektywność pracy na placu budowy czy w zakładzie produkcyjnym. Właściwa metoda podłączenia gwarantuje także dłuższą żywotność komponentów oraz ich prawidłowe działanie w różnych warunkach środowiskowych.

Pytanie 6

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. przewlekanego
B. powierzchniowego
C. zaciskowego
D. skręcanego
Odpowiedzi, które wskazują na skręcanie, zaciskanie lub montaż powierzchniowy, są nieprawidłowe, ponieważ każda z tych metod różni się zasadniczo od technologii przewlekanego montażu. Skręcanie komponentów to technika, która znajduje zastosowanie w montażu mechanicznym, gdzie elementy są łączone za pomocą śrub lub nakrętek. W kontekście elektroniki, skręcanie może nie zapewniać wymaganej stabilności połączeń elektrycznych, a także jest mniej odpowiednie dla małych komponentów, które często wymagają niższej wagi oraz oszczędności miejsca. Zaciskowy montaż również nie odnosi się do THT; jest to technika używana w połączeniach takich jak złącza przewodowe, gdzie nie stosuje się lutowania. Montaż powierzchniowy (SMT) to nowocześniejsza technologia, w której komponenty są osadzane na powierzchni płytki, co powoduje zmniejszenie rozmiarów i zwiększenie gęstości montażu. Ta metoda ma swoje zastosowanie w wielu nowoczesnych urządzeniach, ale nie jest tożsama z przewlekanym montażem. Istotnym błędem myślowym jest mylenie tych technologii, co może prowadzić do nieprawidłowych założeń dotyczących trwałości, jakości i odpowiedniości technologii dla konkretnych zastosowań. Zrozumienie różnic pomiędzy tymi metodami jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i produkcją układów elektronicznych, aby zapewnić optymalizację procesu produkcji oraz jakości finalnych produktów.

Pytanie 7

Funkcją czujnika hallotronowego w urządzeniach do monitorowania i pomiarów jest detekcja

A. zmian wartości parametrów pola magnetycznego
B. zmian wartości momentów skręcających
C. wewnętrznych naprężeń
D. oporu przepływu płynów
Czujniki hallotronowe są specyficznymi urządzeniami wykrywającymi pola magnetyczne, a nie zmiany oporów cieczy, naprężeń wewnętrznych czy sił skręcających. W przypadku oporów przepływu cieczy, używane są zazwyczaj czujniki oparte na pomiarach hydraulicznych lub elektrycznych, które analizują zmiany w oporze elektrycznym w zależności od przepływu cieczy. To podejście jest całkowicie odmienne od zasad działania czujników hallotronowych, które nie mogą bezpośrednio mierzyć takich parametrów. Z kolei naprężenia wewnętrzne w materiałach są zazwyczaj badane przy użyciu tensometrów, które działają na zasadzie pomiaru deformacji materiału pod wpływem obciążenia. Zastosowanie czujników hallotronowych do tego celu jest nieadekwatne, ponieważ ich konstrukcja nie umożliwia pomiaru mechanicznych właściwości materiałów. Zmiany wartości sił skręcających również nie są wykrywane przez czujniki hallotronowe. W tym przypadku konieczne jest zastosowanie specjalistycznych urządzeń, takich jak czujniki momentu obrotowego, które są zaprojektowane do pomiaru skręcania. Zrozumienie różnic pomiędzy tymi technologiami jest kluczowe dla efektywnego projektowania systemów pomiarowych oraz doboru odpowiednich czujników do konkretnej aplikacji, aby uniknąć błędów w interpretacji danych oraz zapewnić wiarygodne wyniki pomiarów.

Pytanie 8

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. czujnika poziomu światła
B. przełącznika instalacyjnego systemu
C. wskaźnika działania systemu
D. ochrony prądowej systemu
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 9

Korzystając z danych zamieszczonych w tabeli, określ klasę jakości oleju, który można zastosować do urządzeń pracujących przy wysokim ciśnieniu i w stałej temperaturze otoczenia?

Klasa jakości
ISO 6743/4
Charakterystyka olejuZastosowanie olejuZawartość dodatków
%
HHoleje bez dodatków uszlachetniającychdo słabo obciążonych systemów0
HLoleje z inhibitorami utlenienia i korozjido umiarkowanie obciążonych systemówOk. 0,6
HRoleje z inhibitorami utlenienia i korozji oraz modyfikatorami lepkoścido umiarkowanie obciążonych systemów pracujących w zmiennych temperaturach otoczeniaOk. 8,0
HMoleje z inhibitorami utlenienia dodatkami przeciwzużyciowymido systemów pracujących przy wysokim ciśnieniuOk. 1,2
HVoleje z inhibitorami utlenienia i korozji, dodatkami przeciwzużyciowymi oraz modyfikatorami lepkoścido systemów pracujących przy wysokim ciśnieniu w zmiennych temperaturach otoczeniaOk. 8,0

A. HR
B. HM
C. HH
D. HL
Odpowiedź HM jest poprawna, ponieważ oleje klasy HM są specjalnie zaprojektowane do pracy w systemach hydraulicznych, które operują pod wysokim ciśnieniem. Oleje te zawierają inhibitory utleniania, co zwiększa ich trwałość i stabilność w trudnych warunkach eksploatacyjnych. Dodatki przeciwzużyciowe pomagają redukować zużycie komponentów, co jest istotne w aplikacjach, gdzie wymagana jest niezawodność i długoterminowa efektywność. Zgodnie z normami branżowymi, takie jak ISO 6743-4, oleje hydrauliczne HM są uznawane za standard w wielu zastosowaniach przemysłowych, w tym w systemach hydraulicznych w maszynach budowlanych i produkcyjnych, gdzie występują wysokie obciążenia oraz stałe warunki pracy. Użycie oleju klasy HM w takich systemach pozwala na optymalizację wydajności, zmniejszenie ryzyka awarii oraz prolongowanie żywotności urządzeń, co jest kluczowe dla efektywności produkcji i obniżenia kosztów utrzymania.

Pytanie 10

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
B. po poinformowaniu osoby przełożonej
C. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno
D. po wezwaniu pomocy medycznej
Odpowiedź, że osoba udzielająca pomocy powinna niezwłocznie podjąć akcję ratunkową i prowadzić ją do przybycia ratownika medycznego, jest poprawna z kilku powodów. W sytuacji, gdy pracownik jest porażony prądem i stracił przytomność, czas jest kluczowy. Niezwłoczna interwencja może uratować życie, a każdy opóźnienie zwiększa ryzyko poważnych konsekwencji zdrowotnych. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji (ERC), pierwsza pomoc powinna być udzielana jak najszybciej, aby zapewnić dostęp do oddechu i krążenia. Należy ocenić sytuację, zabezpieczyć miejsce zdarzenia oraz sprawdzić, czy osoba jest przytomna. Jeśli nie oddycha, konieczne jest rozpoczęcie resuscytacji krążeniowo-oddechowej (RKO), a jednocześnie należy wezwać pomoc medyczną. Przykładowo, w przypadku porażenia prądem elektrycznym, istotne jest również upewnienie się, że źródło prądu zostało odłączone, aby uniknąć dalszego zagrożenia. Działania te są zgodne z najlepszymi praktykami w zakresie pierwszej pomocy i podkreślają znaczenie szybkiej reakcji w sytuacjach zagrożenia życia.

Pytanie 11

Rysunek przedstawia symbol graficzny bramki

Ilustracja do pytania
A. Ex-NOR
B. NOR
C. Ex-OR
D. NAND
Wybór niewłaściwej bramki logicznej może wynikać z nieporozumienia dotyczącego podstaw działania różnych typów bramek. Na przykład, bramka NOR w rzeczywistości generuje stan wysoki tylko wtedy, gdy wszystkie jej wejścia są niskie, co jest całkowicie przeciwne do działania bramki Ex-OR. Takie błędne rozumienie przyczyny i skutku stanu na wyjściu może prowadzić do pomyłek w projektowaniu układów cyfrowych. Z kolei bramka NAND działa odwrotnie do AND, generując stan wysoki, dopóki nie wszystkie jej wejścia są wysokie. Mylenie NAND z bramką Ex-OR może wynikać z nieprecyzyjnego pojmowania, jak różne bramki łączą wejścia, aby uzyskać różne wyniki. Przykładowo, bramka Ex-OR, dzięki swojej unikalnej charakterystyce, jest niezwykle użyteczna w operacjach arytmetycznych, takich jak dodawanie w systemach binarnych, gdzie istotne jest, aby zrozumieć, że generuje ona wynik tylko wtedy, gdy stany wejściowe są różne. Ostatecznie, kluczowym błędem jest nie zrozumienie roli dodatkowej linii na wejściu bramki Ex-OR, co stanowi podstawową cechę odróżniającą ją od innych bramek. Rozważając te różnice, można lepiej zrozumieć, jak projektować układy cyfrowe oparte na logicznych interakcjach między różnymi bramkami.

Pytanie 12

Aby zmierzyć temperaturę, należy podłączyć do wejścia sterownika PLC

A. prądnicę tachometryczną
B. przekaźnik elektromagnetyczny
C. czujnik rezystancyjny
D. czujnik indukcyjny
Podłączenie innych komponentów, takich jak prądnica tachometryczna, czujnik indukcyjny czy przekaźnik elektromagnetyczny, do pomiaru temperatury nie jest odpowiednie. Prądnica tachometryczna jest wykorzystywana do pomiaru prędkości obrotowej w silnikach i nie ma zastosowania w kontekście temperatury. Czujnik indukcyjny, z kolei, wykrywa obecność obiektów metalowych i również nie nadaje się do pomiaru temperatury. Przekaźnik elektromagnetyczny jest elementem wykonawczym, który służy do załączania lub wyłączania obwodów elektrycznych, a więc nie jest narzędziem pomiarowym. Typowym błędem myślowym jest mylenie funkcji różnych elementów w systemie automatyki. Często przy wyborze czujnika do pomiaru temperatury nie uwzględnia się specyfiki ich działania oraz przeznaczenia. W przypadku pomiaru temperatury, kluczowe jest, aby zastosować czujniki, które są przystosowane do tej funkcji, co znacznie zwiększa dokładność i niezawodność całego systemu. Wybór odpowiednich komponentów w systemie automatyki powinien być oparty na zrozumieniu ich przeznaczenia oraz właściwości, co jest zgodne z dobrymi praktykami projektowania systemów automatyki.

Pytanie 13

Który z poniższych czujników mierzących powinien być użyty do określenia wartości ciśnienia w zbiorniku sprężonego powietrza oraz do przesłania danych do sterownika PLC z analogowymi wejściami?

A. Czujnik manometryczny
B. Czujnik ultradźwiękowy
C. Czujnik piezorezystancyjny
D. Czujnik termoelektryczny
Czujnik piezorezystancyjny jest idealnym rozwiązaniem do pomiaru ciśnienia w zbiorniku sprężonego powietrza z kilku powodów. Po pierwsze, jego zasada działania opiera się na zmianie oporu elektrycznego materiału piezorezystancyjnego w odpowiedzi na zmieniające się ciśnienie. Dzięki temu, czujniki te charakteryzują się wysoką dokładnością oraz szybkim czasem reakcji, co jest kluczowe w aplikacjach przemysłowych. Piezorezystancyjne czujniki ciśnienia można zintegrować z systemem PLC za pomocą analogowych sygnałów, co umożliwia ciągły monitoring i kontrolę procesów. Przykładowo, w systemach automatyki przemysłowej często wykorzystuje się je do kontrolowania ciśnienia w układach pneumatycznych, co pozwala na precyzyjne zarządzanie pracą urządzeń. Dodatkowo, czujniki te są zgodne z międzynarodowymi normami, co zapewnia ich niezawodność i bezpieczeństwo działania w trudnych warunkach. W kontekście stosowania czujników piezorezystancyjnych, warto również wspomnieć o ich zdolności do pracy w szerokim zakresie ciśnień oraz temperatur, co czyni je uniwersalnym narzędziem w wielu aplikacjach przemysłowych.

Pytanie 14

Który z elementów tyrystora ma funkcję sterowania?

A. Bramka
B. Źródło
C. Katoda
D. Anoda
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 15

Jakie jest właściwe podłączenie dla przyłącza oznaczonego literą 'T' w zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P i T?

A. Do siłownika jednostronnego działania
B. Do siłownika dwustronnego działania
C. Do zbiornika sprężonego powietrza
D. Do zbiornika oleju hydraulicznego
Odpowiedź "Do zbiornika oleju hydraulicznego" jest jak najbardziej trafna. Przyłącze oznaczone literą "T" w układzie hydrauliki siłowej faktycznie działa jako odpływ. W standardowych zaworach hydraulicznych 4/2 to właśnie tam kierowany jest olej, którego nie wykorzystujemy w danym momencie do pracy siłownika. Moim zdaniem, świetnym przykładem jest hydraulika w maszynach budowlanych - po prostu musimy odprowadzać nadmiar oleju, żeby nie było problemów z przegrzewaniem się układu. Dobrze jest też regularnie sprawdzać poziom oleju w zbiorniku, bo jak będzie zbyt niski, to może się zdarzyć, że pompa zacznie zassysać powietrze, a to już poważnie obniża efektywność całego systemu.

Pytanie 16

Jaki instrument pomiarowy powinno się użyć do określenia amplitudy, częstotliwości oraz kształtu sygnałów w instalowanych urządzeniach mechatronicznych?

A. Oscyloskop
B. Multimetr
C. Mostek RLC
D. Częstościomierz
Mostek RLC, multimetr i częstościomierz to urządzenia pomiarowe, jednak nie odpowiadają one w pełni na potrzeby analizy sygnałów w kontekście pomiaru amplitudy, częstotliwości i kształtu sygnałów. Mostek RLC jest narzędziem stosowanym przede wszystkim do pomiaru impedancji elementów pasywnych w obwodach elektronicznych. Choć może dostarczać informacji o częstotliwości rezonansowej, nie umożliwia wizualizacji sygnału, co jest kluczowe w analizie sygnałów. Multimetr to wszechstronne urządzenie pomiarowe, które pozwala na pomiar napięcia, prądu i oporu, ale jego możliwości analizy sygnałów czasowych są ograniczone. Multimetry, szczególnie te analogowe, nie oferują wizualizacji kształtu sygnału, co ogranicza ich użyteczność w bardziej skomplikowanych układach. Częstościomierz z kolei jest narzędziem skupionym wyłącznie na pomiarze częstotliwości sygnału, a nie na jego kształcie czy amplitudzie. Pomiar częstotliwości jest ważny, ale nie wystarczy do pełnej analizy sygnałów w montowanych urządzeniach mechatronicznych. Użytkownicy mogą więc błędnie zakładać, że te urządzenia są wystarczające do analizy sygnałów, co prowadzi do niedoszacowania potrzeby oscyloskopu w kontekście diagnozowania problemów i testowania systemów. Znajomość różnic między tymi narzędziami jest kluczowa dla prawidłowego wyboru sprzętu pomiarowego w praktyce inżynieryjnej.

Pytanie 17

Używane wielokrotnie w ciągu jednej godziny przyrządy oraz narzędzia powinny być zgodnie z zasadami ergonomii w

A. pomieszczeniu, gdzie znajduje się stanowisko pracy.
B. zapleczu zakładu pracy.
C. zasięgu ręki.
D. widoczności.
Odpowiedź "zasięg ręki" jest jak najbardziej trafna. Z mojego doświadczenia wynika, że ergonomiczne zasady są kluczowe w każdej pracy. Ważne jest, żeby narzędzia były pod ręką, bo to naprawdę ułatwia życie. Jak narzędzia są w zasięgu ręki, to unikamy dziwnych ruchów, które mogą prowadzić do kontuzji czy po prostu zmęczenia. Na przykład, w produkcji, gdzie często trzeba sięgać po różne rzeczy, dobrze umiejscowione narzędzia mogą zwiększyć wydajność i bezpieczeństwo. Normy jak ISO 9241 mówią, że trzeba dostosować stanowisko pracy do potrzeb ludzi, co oznacza, że wszystko musi być łatwo dostępne. Dbając o ergonomię, nie tylko pomagamy pracownikom, ale też poprawiamy wyniki firmy.

Pytanie 18

Napięcie składa się z dwóch elementów: zmiennej sinusoidalnej oraz stałej. Aby zmierzyć stałą część tego napięcia, można użyć oscyloskopu w trybie

A. GND
B. DC
C. AC
D. ADD
Odpowiedź DC jest poprawna, ponieważ oscyloskop w trybie DC umożliwia pomiar i obserwację składowej stałej napięcia oraz sygnałów zmiennych. W przypadku napięcia, które składa się ze składowej stałej i składowej zmiennej, tryb DC pozwala na "zdjęcie" wartości średniej napięcia, która reprezentuje składową stałą. W praktyce, gdy analizujemy układy elektroniczne, często spotykamy się z takimi napięciami, gdzie napięcie stałe jest nałożone na sygnał zmienny, co jest typowe w zasilaczach czy układach analogowych. W zastosowaniach przemysłowych, taka analiza jest istotna, by ocenić poprawność działania systemów, na przykład w monitorowaniu zasilania silników elektrycznych, gdzie składowa stała może odpowiadać za poziom napięcia zasilającego. Ponadto, w kontekście pomiarów i przetwarzania sygnałów, standardy takie jak IEC 61000 wymagają odpowiednich metodologii pomiarowych, w tym umiejętności rozdzielania składowych sygnałów. Zrozumienie, jak działa tryb DC na oscyloskopie, jest kluczowe dla analizy i diagnostyki systemów elektronicznych oraz zapewnienia ich niezawodności.

Pytanie 19

Pamięć EPROM (ang. Erasable Programmable Read-Only Memory) to typ pamięci cyfrowej realizowanej w formie układu scalonego, którą można

A. programować i usuwać elektrycznie
B. tylko odczytywać
C. bezpowrotnie stracić po odłączeniu zasilania
D. kasować za pomocą promieniowania ultrafioletowego
Odpowiedzi, które mówią o programowaniu i kasowaniu elektrycznym oraz utracie danych po wyłączeniu zasilania, są w kontekście pamięci EPROM nietrafione. Pamięć EPROM nie traci danych po odłączeniu prądu; jest to pamięć nieulotna. To znaczy, że dane się w niej trzymają, nawet jak wyłączymy zasilanie, co jest mega ważne w wielu aplikacjach. Poza tym, EPROM programuje się tylko przy użyciu promieniowania UV, a nie elektrycznie, jak w przypadku pamięci EEPROM, która z kolei pozwala na kasowanie i programowanie elektryczne. A odpowiedź, która mówi, że EPROM to tylko odczyt, jest też myląca, bo EPROM można zaprogramować przed użyciem, więc ma znacznie większe możliwości. Wydaje mi się, że te błędne myśli mogą wynikać z braku znajomości różnic między różnymi typami pamięci i z problemów ze zrozumieniem, jak dokładnie działają te mechanizmy. Znajomość tych różnic jest naprawdę ważna, jeśli chcemy dobrze stosować technologię pamięci w projektowaniu systemów elektronicznych.

Pytanie 20

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. izolatory długiej osi
B. dławiki blokujące
C. wyłączniki montażowe
D. wyłączniki różnicowoprądowe
Wybór innych urządzeń ochronnych, takich jak wyłączniki natynkowe, dławiki zaporowe czy izolatory długopniowe, nie jest odpowiedni w kontekście ochrony przed porażeniem prądem w układach niskiego napięcia. Wyłączniki natynkowe to elementy, które głównie służą do włączania i wyłączania obwodów, ale nie oferują ochrony przed upływem prądu, co czyni je nieodpowiednimi do ochrony ludzi. Dławiki zaporowe z kolei są stosowane w celu ograniczania zakłóceń elektromagnetycznych, a ich funkcja nie ma nic wspólnego z bezpieczeństwem użytkowników w przypadku awarii instalacji elektrycznej. Izolatory długopniowe są istotnymi elementami w systemach przesyłowych, jednak ich rola polega na zapewnieniu izolacji elektrycznej w sieciach wysokiego napięcia, a nie na ochronie przed prądem różnicowym w instalacjach niskonapięciowych. W praktyce, wybór niewłaściwych urządzeń ochronnych może prowadzić do poważnych zagrożeń dla zdrowia i życia użytkowników. Zastosowanie wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa, a ignorowanie tej zasady może skutkować nie tylko zagrożeniem dla osób korzystających z energii elektrycznej, ale również naruszeniem obowiązujących norm i przepisów. Właściwe podejście do ochrony przed porażeniem prądem w instalacjach elektrycznych powinno opierać się na znajomości zasad działania i zastosowań odpowiednich urządzeń ochronnych, zgodnych z aktualnymi standardami branżowymi.

Pytanie 21

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. formą
B. kolejnością montażu
C. poziomem skomplikowania
D. rozmiarem
Części podzespołów przeznaczone do montażu powinny być uporządkowane na stanowisku pracy według kolejności montowania, ponieważ takie podejście znacząco zwiększa efektywność oraz bezpieczeństwo pracy. Przede wszystkim, właściwe zorganizowanie stanowiska roboczego według sekwencji montażu pozwala na płynne przechodzenie z jednego etapu do drugiego, co minimalizuje ryzyko pomyłek i opóźnień. Przykładowo, w przemyśle elektronicznym przy montażu komponentów na płytach PCB, kolejność ich umieszczania ma kluczowe znaczenie dla funkcjonowania całego układu. Umożliwia to także lepszą kontrolę jakości, ponieważ każdy etap montażu można łatwo nadzorować. Dobre praktyki w zakresie organizacji stanowisk pracy, takie jak zasady 5S, promują utrzymanie porządku i efektywną organizację miejsca pracy, co wspiera optymalizację procesów produkcyjnych i zapewnia zachowanie wysokich standardów bezpieczeństwa.

Pytanie 22

Tensomer foliowy powinien być zamocowany do podłoża

A. klejem
B. nitem
C. śrubą
D. zszywką
Tensomer foliowy to naprawdę ważny materiał w budownictwie i przemyśle, więc jego mocowanie do podłoża za pomocą kleju ma sens z kilku powodów. Klej tworzy trwałe i elastyczne połączenie, co jest mega istotne, bo folia może się kurczyć lub rozciągać w zależności od temperatury czy wilgotności. Ważne, żeby używać odpowiednich klejów – najlepiej takich, które są dopasowane do folii i podłoża. Na przykład, kleje poliuretanowe czy akrylowe dobrze się sprawdzają, bo mają dobrą przyczepność i są odporne na warunki atmosferyczne. Przy klejeniu trzeba też dobrze przygotować powierzchnię – czyli usunąć kurz i tłuszcz, żeby to wszystko trzymało się jak należy. Generalnie, mocowanie folii klejem to norma w branży, bo to zapewnia długotrwałą stabilność, co się później opłaca, jeżeli chodzi o koszty.

Pytanie 23

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. czujnikiem zegarowym
B. miliwoltomierzem
C. mikrometrem
D. stoperem
Mikrometr, miliwoltomierz i czujnik zegarowy to narzędzia pomiarowe, które służą do różnych celów i nie są odpowiednie do bezpośredniego mierzenia czasu wykonania skoku siłownika elektrycznego. Mikrometr jest narzędziem do precyzyjnego pomiaru wymiarów liniowych, a jego zastosowanie w kontekście pomiaru czasu jest błędne, ponieważ nie ma on zdolności do rejestrowania upływu czasu ani do analizy dynamiki ruchu. Miliwoltomierz służy do pomiaru napięcia elektrycznego, co również nie ma związku z pomiarem czasu. Użycie miliwoltomierza do określenia wydajności siłownika mogłoby prowadzić do niepoprawnych wniosków, ponieważ nie dostarcza informacji o czasach reakcji. Czujnik zegarowy, chociaż może mierzyć czas, w kontekście skoków siłowników elektrycznych nie jest optymalnym rozwiązaniem ze względu na jego specyfikę stosowania. Czujniki te często wymagają manualnej obsługi i mogą nie być wystarczająco szybkie oraz dokładne w przypadku dynamicznych ruchów. W praktyce, aby uzyskać precyzyjne pomiary czasu reakcji siłowników elektrycznych, zaleca się użycie stopera, który oferuje automatyzację i większą dokładność, co jest istotne w kontekście wydajności i niezawodności systemów automatyzacji przemysłowej. Typowe błędy myślowe, które mogą prowadzić do wyboru niewłaściwego narzędzia, obejmują mylenie pomiarów fizycznych z czasem reakcji oraz brak zrozumienia specyfiki narzędzi pomiarowych.

Pytanie 24

Jaki środek smarny powinien być regularnie uzupełniany w smarownicy sprężonego powietrza?

A. Olej
B. Towot
C. Silikon
D. Pastę
Wybór odpowiedzi, która nie jest olejem, wynika chyba z niezrozumienia, jak działają smarownice sprężonego powietrza. Towot to gęsty smar, który w układach pneumatycznych w ogóle się nie sprawdza, bo się nie rozprowadza jak trzeba. Może to nawet zatykać przewody i zmniejszać efektywność urządzeń. Z kolei pasta, mimo że w niektórych sytuacjach się sprawdza, nie jest dobra do sprężonego powietrza, bo nie spełnia warunków smarowania w ruchu. Silikon, chociaż często używany jako uszczelniacz, też nie nadaje się, bo nie ma właściwości smarnych, a może dodatkowo uszkodzić gumowe uszczelki przy ciśnieniu. Często myślimy, że każdy smar pasuje do wszystkiego, a to nieprawda. Właściwe smarowanie sprężonego powietrza jest naprawdę ważne dla maszyn i narzędzi, więc lepiej używać olejów, które są do tego przystosowane, bo to zgodne z najlepszymi standardami przemysłowymi.

Pytanie 25

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. proszkową oznaczoną ABC/E
B. śniegową oznaczoną BC
C. proszkową oznaczoną ABC
D. pianową oznaczoną AF
Odpowiedź z gaśnicą proszkową ABC/E jest jak najbardziej trafna. Ta klasa gaśnicza jest stworzona do gaszenia pożarów, które mogą się zdarzyć w urządzeniach elektrycznych, gdy napięcie przekracza 1000 V. Gaśnice proszkowe ABC/E zawierają specjalny proszek, który świetnie radzi sobie z pożarami różnych typów – od ciał stałych, przez płyny, aż po gazy. To oznaczenie 'E' mówi nam, że można ich używać przy urządzeniach elektrycznych. Gdy wybuchnie pożar w elektryce, to ważne, żeby nie używać wody ani gaśnic pianowych, bo to może prowadzić do porażenia prądem. Przykładem może być sytuacja, kiedy w biurze zaczyna się palić komputer – wtedy użycie gaśnicy ABC/E pozwala na szybkie i bezpieczne ugaszenie pożaru, bez ryzyka dla ludzi. Przepisy przeciwpożarowe oraz normy, jak PN-EN 2, pokazują, jak ważny jest dobór odpowiedniego sprzętu gaśniczego w miejscach z elektroniką.

Pytanie 26

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Kluczy płaskich
B. Szczypiec płaskich
C. Kluczy oczkowych
D. Szczypiec uniwersalnych
Klucze płaskie to narzędzia, które są szczególnie zaprojektowane do przykręcania i odkręcania nakrętek oraz śrub o płaskich kształtach. W kontekście przewodów hydraulicznych, klucze płaskie są niezwykle istotne, ponieważ pozwalają na precyzyjne dopasowanie do nakrętek, które często mają ograniczony dostęp. Umożliwiają one właściwe i bezpieczne dokręcenie połączeń, co jest kluczowe dla zachowania szczelności systemu hydraulicznego. Dobrym przykładem zastosowania kluczy płaskich w praktyce jest ich użycie w instalacjach hydraulicznych w maszynach budowlanych, gdzie odpowiednie dokręcenie połączeń może zapobiec wyciekom płynów roboczych. Użycie kluczy płaskich jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia trwałości oraz bezpieczeństwa instalacji hydraulicznych. Warto pamiętać, że stosując klucze płaskie, należy dobierać odpowiedni rozmiar narzędzia do nakrętki, aby uniknąć uszkodzeń zarówno narzędzia, jak i elementów instalacji. W przypadku kluczy płaskich, ich konstrukcja zapewnia odpowiednią dźwignię, co przekłada się na efektywność pracy.

Pytanie 27

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. termostat
B. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem
C. czujnik termiczny
D. termoelement
Regulator temperatury z wyświetlaczem cyfrowym to urządzenie, które monituruje i kontroluje temperaturę, ale nie mierzy jej bezpośrednio. Głównie utrzymuje zadaną temperaturę, kontrolując inne urządzenia, jak grzałki czy wentylatory. Temperatura zazwyczaj pochodzi z czujników, a one same nie są do pomiaru. Termostat też jest urządzeniem sterującym, ale raczej zajmuje się kontrolowaniem ciepła niż pomiarem. Przekaźnik termiczny włącza lub wyłącza obwody elektryczne w zależności od temperatury, ale również nie mierzy temperatury. Często ludzie mylą te funkcje, co prowadzi do błędnych wniosków. W praktyce to, że te urządzenia mogą zarządzać temperaturą, nie znaczy, że potrafią ją zmierzyć. Żeby prawidłowo mierzyć temperaturę, potrzeba dedykowanych urządzeń, jak termoelementy, które są dokładne i niezawodne.

Pytanie 28

W wyniku działania strumienia wysoko ciśnieniowego dwutlenku węgla na rękę pracownika doszło do odmrożenia drugiego stopnia (zaczerwienienie skóry i pojawienie się pęcherzy). Jakie działania należy podjąć, udzielając pierwszej pomocy?

A. należy podać leki przeciwbólowe i przetransportować poszkodowanego do szpitala
B. należy posmarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
C. należy polać dłoń wodą utlenioną oraz wykonać opatrunek
D. należy zdjąć biżuterię z palców poszkodowanego, rozgrzać dłoń i nałożyć jałowy opatrunek
Wszystkie inne odpowiedzi zawierają koncepcje, które mogą być niebezpieczne lub niewłaściwe w kontekście udzielania pierwszej pomocy w przypadku odmrożeń. Na przykład, stosowanie wody utlenionej do polewania odmrożonego miejsca nie jest zalecane, ponieważ może to prowadzić do podrażnienia tkanek i zwiększenia bólu. Woda utleniona jest skuteczna w oczyszczaniu ran, ale nie nadaje się do stosowania na uszkodzoną skórę, szczególnie w przypadkach oparzeń czy odmrożeń, gdzie skóra jest już osłabiona. Kolejnym błędem jest pomysł smarowania dłoni tłustym kremem. Tłuste substancje mogą zatkać pory skóry i spowodować dodatkowe podrażnienia, a także nie pozwalają na naturalne procesy regeneracyjne. Transportowanie poszkodowanego do domu to również niewłaściwe podejście. W sytuacjach medycznych zawsze należy dążyć do zapewnienia profesjonalnej pomocy w szpitalu, gdzie dostępne są odpowiednie środki i eksperci. Kluczowe jest, aby osoby udzielające pierwszej pomocy nie opierały się na intuicji, ale stosowały się do uznawanych standardów. W sytuacjach zagrożenia zdrowia i życia, jak odmrożenia, każda minuta może być decydująca.

Pytanie 29

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Deasembler
B. Debugger
C. Emulator
D. Kompilator
Kompilator jest narzędziem, które tłumaczy kod źródłowy napisany w określonym języku programowania na kod maszynowy, który jest zrozumiały dla mikrokontrolera. Proces ten obejmuje kilka kroków, w tym analizę składniową, analizę semantyczną oraz generację kodu. Kompilatory są kluczowe w programowaniu systemów embedded, gdzie efektywność i optymalizacja kodu są niezwykle istotne. Przykładem popularnego kompilatora dla języka C jest GCC (GNU Compiler Collection), który jest szeroko stosowany w projektach związanych z mikrokontrolerami, takimi jak platforma Arduino. Kompilacja pozwala także na wykorzystanie różnych poziomów optymalizacji, co sprawia, że końcowy kod maszynowy działa szybciej i zużywa mniej zasobów. W dobrze zaprojektowanym procesie kompilacji, programiści mogą również zastosować dyrektywy preprocesora, co umożliwia dostosowanie kodu do różnych platform sprzętowych. Z tego powodu, znajomość działania kompilatorów jest niezbędna dla każdego, kto pragnie efektywnie programować mikrokontrolery.

Pytanie 30

Poziom przezroczystej, nieprzewodzącej cieczy w zbiorniku można zmierzyć za pomocą czujnika

A. ultradźwiękowego
B. piezoelektrycznego
C. refleksyjnego
D. indukcyjnego
Pomiar poziomu cieczy przezroczystej i nieprzewodzącej przy użyciu czujników refleksyjnych to nie najlepszy pomysł. Dlaczego? Bo te urządzenia działają na zasadzie odbicia światła, a kiedy mamy do czynienia z przezroczystymi cieczami, takimi jak woda, światło po prostu przechodzi przez medium. To prowadzi do tego, że mamy bardzo małe odbicie, więc pomiary są mało dokładne. Czujniki indukcyjne z kolei są stworzone do wykrywania materiałów przewodzących prąd, a więc do nieprzewodzących cieczy się zupełnie nie nadają. Ich użycie ogranicza się głównie do pomiarów poziomu metalowych obiektów, co zupełnie nie działa w przypadku cieczy. A czujniki piezoelektryczne, chociaż są w różnych aplikacjach, to nie sprawdzają się do pomiaru poziomu cieczy - działają na zasadzie mierzenia ciśnienia, a ich zastosowanie w przypadku przezroczystych cieczy może prowadzić do błędów, bo mają inne właściwości fizyczne. Czasem użytkownicy mogą myśleć, że te czujniki są do wszystkiego, a to nieprawda. Kluczowe jest zrozumienie, co mierzymy i dostosowanie technologii pomiarowej do właściwości cieczy, bo to naprawdę ważne w inżynierii pomiarowej.

Pytanie 31

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Konwersja kodu binarnego na format dziesiętny
B. Przesłanie programu do kontrolera
C. Przetłumaczenie programu na kod binarny
D. Pobranie programu z kontrolera
Wywołanie polecenia COMPILE w kontekście programowania urządzeń mechatronicznych może być mylone z innymi czynnościami związanymi z zarządzaniem programem. Nie należy utożsamiać kompilacji z przesyłaniem programu do sterownika, gdyż te operacje są od siebie odrębne. Przesłanie programu do sterownika odbywa się po etapie kompilacji, a jego celem jest zainstalowanie odpowiednio przetłumaczonego kodu binarnego w pamięci urządzenia. Zrozumienie tego procesu jest kluczowe, aby uniknąć błędów w programowaniu. Kolejnym typowym nieporozumieniem jest mylenie kompilacji z tłumaczeniem kodu binarnego na format zrozumiały dla człowieka, jak kod decymalny. Tego rodzaju operacje, nazywane dekompilacją, są rzadko praktykowane w kontekście programowania urządzeń mechatronicznych, ponieważ zazwyczaj pracujemy w odwrotnym kierunku, przetwarzając kod źródłowy na binarny. Ostatnią pomyłką jest pomylenie kompilacji z pobieraniem programu ze sterownika, co jest kolejnym krokiem w cyklu życia oprogramowania, ale nie jest bezpośrednio związane z procesem kompilacji. Kluczowym elementem skutecznego programowania jest zrozumienie tych różnic oraz umiejętność ich zastosowania w praktyce.

Pytanie 32

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. bicie osiowe
B. smarowanie
C. naprężenie
D. temperaturę
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.

Pytanie 33

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. ST (Structured Text) - tekst strukturalny
B. FBD (Function Block Diagram) - schemat bloków funkcyjnych
C. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
D. IL (Instruction List) - lista instrukcji - lista instrukcji
SFC, FBD i ST to też języki programowania, które wykorzystuje się w PLC, ale tu jest mały szkopuł – nie są one tekstowe. SFC, czyli Sequential Function Chart, to bardziej graficzny sposób przedstawienia działania systemu. Pokazuje, jak przebiegają operacje w formie diagramu, co jest fajne dla wizualizacji, ale nie przypomina zwykłego kodu. FBD, czyli Function Block Diagram, działa na podobnej zasadzie – tworzy się tam bloki funkcyjne i łączy je jako rysunki. To ułatwia modelowanie systemów, ale znowu, to nie tekst. ST, czyli Structured Text, jest bardziej skomplikowanym językiem tekstowym, bliskim tym wysokiego poziomu jak Pascal czy C. Chociaż ST jest tekstowy, to w tym przypadku odpowiedzią nie jest, bo IL to najprostszy z tekstowych języków do PLC. Wiele osób myli języki graficzne z tekstowymi, co często prowadzi do takich błędów. Takie zrozumienie poziomów abstrakcji jest kluczowe, zwłaszcza przy nauce programowania w automatyce.

Pytanie 34

Przedstawiony program sterowniczy to program napisany w języku

LI 0.00
OQ 0.00
AI 0.01
=Q 0.00
EP

A. IL
B. LAD
C. ST
D. FBD
Poprawna odpowiedź to IL, czyli Instruction List. Język ten jest jednym z pięciu standardowych języków programowania PLC określonych w normie IEC 61131-3. IL jest językiem tekstowym, który charakteryzuje się dużą wydajnością i zwięzłością, co czyni go idealnym do programowania zadań wymagających efektywnego wykorzystania zasobów. W programowaniu w języku IL, instrukcje są zapisywane w formie linii kodu, co przypomina składnię asemblera. Przykłady instrukcji, takie jak „L” (Load) czy „O” (Or), wskazują na operacje wykonywane na danych, co pozwala na precyzyjne manipulowanie sygnałami wejściowymi i wyjściowymi. W praktyce, język IL jest często wykorzystywany w aplikacjach wymagających szybkich reakcji, takich jak systemy automatyki przemysłowej, gdzie czas reakcji jest kluczowy. Zrozumienie zasad programowania w IL jest istotne dla inżynierów automatyki, którzy pracują nad optymalizacją procesów produkcyjnych, co potwierdzają liczne wdrożenia w przemyśle. W kontekście dobrych praktyk, znajomość IL umożliwia również łatwiejsze przechodzenie do innych języków programowania PLC, co jest korzystne w złożonych projektach automatyzacyjnych.

Pytanie 35

Kolejność montażu silnika elektrycznego w wiertarce stołowej powinna być następująca:

A. zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy, podłączyć źródło zasilania
B. zamocować silnik w obudowie wiertarki przy użyciu śrub, podłączyć źródło zasilania, założyć pasek klinowy
C. podłączyć źródło zasilania, zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy
D. podłączyć źródło zasilania, założyć pasek klinowy, zamocować silnik w obudowie wiertarki przy użyciu śrub
Montaż silnika elektrycznego w wiertarce stołowej powinien być przeprowadzany w określonej kolejności, aby zapewnić prawidłowe działanie urządzenia oraz bezpieczeństwo użytkownika. Pierwszym krokiem jest zamocowanie silnika w obudowie wiertarki przy pomocy śrub. Taka procedura zapewnia stabilność silnika, co jest kluczowe dla jego prawidłowego funkcjonowania oraz minimalizuje ryzyko uszkodzenia mechanicznego. Następnie zakłada się pasek klinowy, który łączy silnik z wrzecionem wiertarki. Pasek klinowy przenosi moc z silnika na narzędzie wiertarskie, dlatego jego prawidłowe umiejscowienie i napięcie są istotne dla efektywności pracy. Ostatnim krokiem jest podłączenie źródła zasilania. Przy takim podejściu unikamy sytuacji, w której silnik mógłby pracować bez odpowiedniego połączenia mechanicznego, co mogłoby prowadzić do uszkodzeń. Zgodność z tymi krokami uznaje się za najlepsze praktyki w branży montażu urządzeń elektrycznych, co zapewnia nie tylko ich wydajność, ale również bezpieczeństwo użytkowników.

Pytanie 36

Blok przedstawiony na rysunku realizuje funkcję logiczną

Ilustracja do pytania
A. AND
B. NAND
C. OR
D. NOR
Blok przedstawiony na rysunku realizuje funkcję logiczną AND, co można łatwo zauważyć po symbolu "&" umieszczonym wewnątrz bloku. Funkcja AND jest jedną z podstawowych funkcji logicznych stosowanych w elektronice cyfrowej oraz programowaniu. Działa na zasadzie, że jej wyjście będzie miało wartość prawda (1) tylko wtedy, gdy wszystkie podłączone wejścia mają wartość prawda (1). W praktyce funkcja ta jest często wykorzystywana w układach cyfrowych, takich jak bramki logiczne, gdzie umożliwia realizację złożonych operacji działania systemu. Na przykład, w systemach alarmowych, sygnał alarmowy może być aktywowany tylko wtedy, gdy wszystkie czujniki wykryją intruza. Warto zaznaczyć, że zgodnie z normami IEEE i innymi standardami branżowymi, użycie funkcji AND jest kluczowe w budowie niezawodnych układów logicznych, co czyni tę wiedzę niezwykle ważną w kontekście inżynierii elektronicznej.

Pytanie 37

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik hydrostatyczny
B. Czujnik pływakowy
C. Czujnik pojemnościowy
D. Czujnik ultradźwiękowy
Czujniki ultradźwiękowe są szeroko stosowane do bezkontaktowego pomiaru poziomu cieczy i innych substancji w zbiornikach. Działają na zasadzie emisji fal ultradźwiękowych, które odbijają się od powierzchni cieczy i wracają do czujnika. Przykładem zastosowania czujników ultradźwiękowych może być monitorowanie poziomu wody w zbiornikach wodnych, systemach nawadniających czy w procesach przemysłowych, gdzie kontakt z medium mógłby prowadzić do zanieczyszczenia lub uszkodzenia sprzętu. W odróżnieniu od czujników pływakowych, które wymagają fizycznego kontaktu z cieczą, czujniki ultradźwiękowe eliminują ryzyko zanieczyszczenia i są mniej podatne na awarie mechaniczne. Standardy takie jak ISO 9001 podkreślają znaczenie stosowania technologii zapewniających bezpieczeństwo i efektywność procesów, co czyni czujniki ultradźwiękowe idealnym rozwiązaniem w wielu aplikacjach.

Pytanie 38

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Gaussotron.
B. Termistor.
C. Warystor.
D. Tensometr.
Tensometr, będący czujnikiem, który przekształca odkształcenie mechaniczne w zmianę rezystancji, działa na zupełnie innych zasadach. Jego głównym zastosowaniem jest mierzenie sił i momentów, co czyni go niezwykle użytecznym w inżynierii do monitorowania naprężeń w konstrukcjach. Obserwując zmiany rezystancji w odpowiedzi na odkształcenia, tensometr nie reaguje na napięcia w sposób, w jaki robi to warystor. Termistor, z kolei, to element, którego rezystancja zmienia się w odpowiedzi na zmiany temperatury, a nie napięcia. Używając go w obwodach, możemy monitorować temperaturę oraz regulować różne procesy, ale nie ma związku z gwałtownym spadkiem rezystancji wskutek wzrostu napięcia. Gaussotron to z kolei rodzaj detektora, który działa na zasadzie zjawisk magnetycznych, a nie elektrycznych, co czyni go nieodpowiednim w kontekście analizowanego pytania. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz systemów pomiarowych. Typowe błędy myślowe, które mogą prowadzić do pomyłek w takich pytaniach, obejmują mylenie funkcji zależnych od napięcia i temperatury, co pokazuje, jak ważna jest znajomość specyfiki działania każdego z tych komponentów w praktyce inżynieryjnej.

Pytanie 39

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
B. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
C. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
D. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
Poprawna odpowiedź odnosi się do kluczowych zasad demontażu skomplikowanych urządzeń, które są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego procesu. Wykonanie planu demontażu jest istotne, ponieważ pozwala na zrozumienie struktury urządzenia, co z kolei umożliwia bezpieczne i uporządkowane rozmontowywanie poszczególnych zespołów. Przy takiej procedurze, każdy zespół jest najpierw demontowany w całości, co minimalizuje ryzyko uszkodzenia podzespołów i ułatwia ich późniejszy montaż lub konserwację. Przykładem zastosowania tej zasady może być demontaż skomplikowanych systemów elektronicznych, takich jak komputery czy maszyny przemysłowe, gdzie precyzyjne rozpoznanie kolejności demontażu, na podstawie schematów, może zapobiec zniszczeniu delikatnych komponentów. Zgodnie z najlepszymi praktykami, taki plan demontażu powinien być udokumentowany oraz regularnie aktualizowany, aby uwzględniał zmiany w konstrukcji urządzeń oraz nowe technologie.

Pytanie 40

Jakie znaczenie mają parametry zaworu pneumatycznego rozdzielającego: Gl/8; 550 Nl/min; 12 V AC; 3 VA w podanej kolejności?

A. przyłącze walcowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc czynna cewki
B. przyłącze stożkowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc czynna cewki
C. przyłącze walcowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc pozorna cewki
D. przyłącze stożkowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc pozorna cewki
Analizując błędne odpowiedzi, warto zwrócić uwagę na kilka kluczowych nieporozumień. Przyłącze stożkowe, które sugeruje część niepoprawnych odpowiedzi, nie jest typowe dla zaworów pneumatycznych o parametrach podanych w pytaniu. W praktyce, przyłącza walcowe są szeroko stosowane ze względu na ich łatwość montażu oraz kompatybilność z większością systemów. Z kolei pojęcie 'ciśnienia nominalnego powietrza' jest mylące w kontekście podanych parametrów, ponieważ bardziej odpowiednim określeniem w tym przypadku jest 'przepływ nominalny', który bezpośrednio odnosi się do wydajności zaworu. Napięcie 'stałe', zaproponowane w jednej z odpowiedzi, również jest błędne; parametry wskazują, że zawór działa na napięciu zmiennym, co jest istotne w kontekście zastosowań, w których wykorzystuje się zasilanie AC. Dodatkowo, moc pozorna cewki powinna być zrozumiana jako wartość, która wskazuje, ile energii jest potrzebne do pracy zaworu, a nie jako moc czynna, jak sugeruje jedna z odpowiedzi. Te nieporozumienia mogą prowadzić do niewłaściwego doboru komponentów, co z kolei może mieć negatywne konsekwencje dla efektywności i bezpieczeństwa całego systemu pneumatycznego. Właściwe zrozumienie specyfikacji technicznych zaworów i ich parametrów jest kluczowe dla projektowania oraz eksploatacji systemów automatyki przemysłowej.