Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 27 grudnia 2025 10:05
  • Data zakończenia: 27 grudnia 2025 10:16

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jak w systemie Windows zmienić port drukarki, która została zainstalowana?

A. Ostatnia znana dobra konfiguracja
B. Menedżer zadań
C. Ustawienia drukowania
D. Właściwości drukarki
Aby zmienić port zainstalowanej drukarki w systemie Windows, należy skorzystać z opcji "Właściwości drukarki". W tej sekcji użytkownik ma możliwość dostosowania różnych ustawień drukarki, w tym konfiguracji portów. W praktyce, zmiana portu jest istotna, gdy drukarka jest podłączona do innego portu fizycznego, na przykład w przypadku zmiany kabla USB do innego gniazda lub przełączenia się na drukowanie w sieci. Właściwości drukarki umożliwiają także dostęp do informacji o sterownikach, preferencjach jakości druku oraz innych zaawansowanych ustawieniach. Standardem w branży jest upewnienie się, że wszystkie zmiany w konfiguracji sprzętowej są także odzwierciedlane w oprogramowaniu, aby uniknąć problemów z komunikacją i wydajnością. Dlatego znajomość tej funkcji jest kluczowa dla efektywnego zarządzania drukarkami w środowisku biurowym.

Pytanie 2

Jeżeli użytkownik zaznaczy opcję wskazaną za pomocą strzałki, będzie miał możliwość instalacji aktualizacji

Ilustracja do pytania
A. eliminujące krytyczną usterkę, niezwiązaną z bezpieczeństwem
B. dotyczące krytycznych luk w zabezpieczeniach
C. związane ze sterownikami lub nowym oprogramowaniem od Microsoftu
D. prowadzące do uaktualnienia Windows 8.1 do wersji Windows 10
Podczas aktualizacji systemu Windows istotne jest zrozumienie rodzaju aktualizacji, które użytkownik może zainstalować. Aktualizacja uaktualniająca Windows 8.1 do Windows 10 jest procesem migracji do nowszej wersji systemu operacyjnego, nie jest dostępna jako opcjonalna aktualizacja. Tego typu aktualizacje wymagają zazwyczaj osobnej procedury instalacyjnej, ponieważ wiążą się z poważnymi zmianami w strukturze systemu. Usunięcie usterki krytycznej niezwiązanej z zabezpieczeniami może odnosić się do napraw błędów, które nie stanowią zagrożenia bezpieczeństwa, ale mogą wpływać na wydajność lub stabilność. Jednakże, tego typu poprawki są zazwyczaj traktowane jako ważne aktualizacje, nie opcjonalne. Aktualizacje dotyczące luk w zabezpieczeniach o priorytecie krytycznym są kluczowe dla ochrony danych i systemu przed atakami, dlatego są klasyfikowane jako aktualizacje krytyczne, a nie opcjonalne. Często wymagają szybkiej instalacji, aby zminimalizować ryzyko zagrożeń. Użytkownicy mogą mylnie zrozumieć te typy aktualizacji, jeśli nie są świadomi ich znaczenia. Opieranie się na opcjonalnych aktualizacjach jedynie dla funkcji, które nie wpływają bezpośrednio na bezpieczeństwo, pozwala na racjonalne zarządzanie aktualizacjami i uniknięcie przeciążenia systemu poważnymi, nieprzewidzianymi zmianami podczas mniej krytycznych aktualizacji, co jest kluczowe dla ciągłości działania systemów w firmach.

Pytanie 3

Jaki rodzaj fizycznej topologii w sieciach komputerowych jest pokazany na ilustracji?

Ilustracja do pytania
A. Gwiazdy
B. Siatki
C. Magistrali
D. Podwójnego pierścienia
Wybór innej topologii niż siatka wynika często z niewłaściwego zrozumienia cech i zastosowań różnych konfiguracji sieciowych. Topologia magistrali polega na użyciu pojedynczego przewodu do którego dołączane są wszystkie urządzenia sieciowe co jest tanie i proste ale zwiększa ryzyko awarii całej sieci gdyż uszkodzenie magistrali przerywa komunikację. Jest to podejście stosowane głównie w przeszłości w prostych sieciach lokalnych nieodpowiednie dla nowoczesnych systemów wymagających niezawodności. Topologia podwójnego pierścienia z kolei oferuje alternatywne ścieżki transmisji danych ale jest mniej elastyczna niż siatka i bardziej złożona w utrzymaniu gdyż wymaga specjalistycznego sprzętu do zarządzania i regeneracji trasy. Gwiazda natomiast koncentruje wszystkie połączenia w jednym punkcie centralnym co ułatwia zarządzanie i diagnozowanie problemów ale staje się wąskim gardłem sieci i pojedynczym punktem awarii. W przypadku awarii centralnego węzła cała sieć przestaje działać co nie jest akceptowalne w środowiskach o krytycznym znaczeniu. Zrozumienie tych ograniczeń pomaga unikać błędów w projektowaniu i wdrażaniu sieci oraz wybieraniu odpowiednich topologii do specyficznych potrzeb operacyjnych i skalowalności sieci. Właściwa analiza wymagań może zapobiec potencjalnym problemom i zwiększyć efektywność sieci.

Pytanie 4

Najkrótszy czas dostępu charakteryzuje się

A. pamięć cache procesora
B. dysk twardy
C. pamięć RAM
D. pamięć USB
Dysk twardy, pamięć USB oraz pamięć RAM to typy pamięci, które różnią się znacząco pod względem czasu dostępu. Dysk twardy to urządzenie mechaniczne, które polega na ruchomych częściach do odczytu i zapisu danych, co generuje znaczne opóźnienia w porównaniu do pamięci cache. Średni czas dostępu do dysku twardego wynosi kilka milisekund, podczas gdy pamięć cache operuje w nanosekundach. Pamięć USB, mimo że jest bardzo użyteczna do przechowywania danych na zewnątrz, również nie dorównuje szybkością pamięci cache. Jej czasy dostępu są porównywalne z czasami pamięci RAM, która jest szybsza niż dyski mechaniczne, ale nadal wolniejsza niż pamięć cache. Pamięć RAM jest dynamiczną pamięcią, która jest używana przez system operacyjny do przechowywania danych w czasie rzeczywistym. Oferuje ona szybki dostęp do danych, ale nie może konkurować z pamięcią cache, której celem jest maksymalizacja wydajności procesora. Typowy błąd myślowy polega na mylnym założeniu, że bardziej pojemne typy pamięci muszą być szybsze. W rzeczywistości szybkość dostępu do pamięci zależy od jej architektury oraz lokalizacji w hierarchii pamięci systemu komputerowego. Dlatego odpowiedzi wskazujące na dysk twardy, pamięć USB czy nawet pamięć RAM jako najszybsze źródła dostępu do danych są błędne i nie uwzględniają różnic w technologii oraz zastosowaniach poszczególnych typów pamięci.

Pytanie 5

Wtyk przedstawiony na ilustracji powinien być użyty do zakończenia kabli kategorii

Ilustracja do pytania
A. 5a
B. 3
C. 5
D. 6
Jak wybierzesz zły wtyk do kabla, to potem mogą być poważne problemy z siecią. Weźmy kable kategorii 3, które były używane w starszych telefonach i niektórych sieciach lokalnych – to zaledwie 10 Mbps! Użycie ich w nowoczesnych sieciach to niezły błąd, bo nie spełniają wymagań dla normalnego działania. Kategoria 5 wprowadza poprawę do 100 Mbps, co jest trochę lepsze, ale nawet to już dziś to za mało. Kategoria 5e, to już ulepszony Cat 5, osiąga do 1 Gbps, ale nie ma takiego poziomu zabezpieczeń przed zakłóceniami jak Cat 6. Często ludzie myślą, że to wszystko jest takie samo, a w rzeczywistości każda kategoria ma swoje miejsce i ograniczenia. Wiele osób zapomina, że dobieranie kabli i wtyków to klucz do dobrego działania sieci, bo to wpływa na takie rzeczy jak przesłuchy czy zakłócenia. Jeśli się to olewa, to nie ma co się dziwić, że sieć działa wolno, co jest problemem w miejscach, gdzie potrzebna jest większa przepustowość, jak nowoczesne biura czy domy z multimedia. Dlatego trzeba trzymać się międzynarodowych standardów, które mówią, jakie komponenty pasują do danego zastosowania.

Pytanie 6

Programem antywirusowym oferowanym bezpłatnie przez Microsoft dla posiadaczy legalnych wersji systemu Windows jest

A. Microsoft Security Essentials
B. Windows Antywirus
C. Windows Defender
D. Microsoft Free Antywirus
Odpowiedzi takie jak Microsoft Free Antywirus oraz Windows Antywirus są nieprawidłowe, ponieważ nie istnieją takie aplikacje. Termin 'Microsoft Free Antywirus' może sugerować, że firma Microsoft oferuje inną, darmową wersję oprogramowania zabezpieczającego, co jest mylne. W rzeczywistości, Microsoft nie wprowadził żadnej aplikacji o tej nazwie, a stosowanie nieoficjalnych nazw może prowadzić do dezorientacji użytkowników. Podobnie, 'Windows Antywirus' jest nieprecyzyjnym określeniem, które również nie odnosi się do żadnego konkretnego produktu. Tego rodzaju nieścisłości mogą prowadzić do błędnych wyborów, co z kolei może wpływać na bezpieczeństwo systemu komputerowego. Właściwe podejście do ochrony przed złośliwym oprogramowaniem powinno opierać się na korzystaniu z zweryfikowanych i uznawanych programów zabezpieczających, takich jak Microsoft Security Essentials czy Windows Defender, który jest jego następcą. Użytkownicy powinni być świadomi, że wybierając oprogramowanie do ochrony, należy kierować się nie tylko nazwą, ale również jego funkcjonalnością i reputacją w branży zabezpieczeń. Użycie odpowiednich terminów jest kluczowe dla zrozumienia i zwiększenia efektywności rozwiązań zabezpieczających.

Pytanie 7

Po skompresowaniu adresu 2001:0012:0000:0000:0AAA:0000:0000:000B w protokole IPv6 otrzymujemy formę

A. 2001::AAA:0000:000B
B. 2001:12::0E98::B
C. 2001:0012::000B
D. 2001:12::AAA:0:0:B
Patrząc na inne odpowiedzi, można zauważyć, że są tam spore błędy w interpretacji zasad kompresji IPv6. Na przykład, w odpowiedzi 2001:0012::000B, adres został skompresowany w niewłaściwy sposób, bo w skompresowanej wersji można usuwać wiodące zera tylko w segmentach, a nie w całym adresie. Jeszcze ten podwójny dwukropek jest niepoprawny, bo niby wskazuje na kompresję dwóch grup zer, a to łamie zasady adresacji IPv6. W innym przypadku, 2001:12::0E98::B, mamy nawet dwa podwójne dwukropki, co jest totalnie niezgodne z regułami, bo IPv6 powinno mieć tylko jedną taką sekwencję. W adresie 2001:12::AAA:0:0:B jest błąd z użyciem segmentu '0' – można by go pominąć, a to prowadzi do nieefektywności. Zrozumienie tych zasad jest ważne, bo błędy mogą powodować problemy z routingiem i komunikacją w sieciach.

Pytanie 8

Które z wymienionych oznaczeń wskazuje, że jest to kabel typu skrętka z podwójnym ekranowaniem?

A. FTP
B. S-STP
C. SFTP
D. UTP
Odpowiedź S-STP (Shielded Shielded Twisted Pair) jest poprawna, ponieważ oznaczenie to odnosi się do kabla typu skrętka, który charakteryzuje się podwójnym ekranowaniem. Kabel S-STP ma zarówno ekran na poziomie pary, jak i na poziomie całego kabla, co znacząco poprawia ochronę przed zakłóceniami elektromagnetycznymi i crosstalkiem. Tego typu kable są często wykorzystywane w środowiskach, gdzie występuje wysoka interferencja, takich jak biura z dużą ilością urządzeń elektronicznych czy instalacje przemysłowe. Zastosowanie S-STP jest zgodne z normami TIA/EIA-568, które określają wymagania dotyczące kabli strukturalnych dla systemów telekomunikacyjnych. W praktyce, korzystanie z kabli S-STP pozwala na uzyskanie lepszej jakości sygnału, co jest kluczowe w przypadku aplikacji wymagających dużej przepustowości, takich jak transmisja danych w sieciach lokalnych czy VoIP.

Pytanie 9

Sprzęt, który pozwala na komunikację pomiędzy hostami w tej samej sieci a hostami w różnych sieciach, to

A. switch
B. router
C. firewall
D. hub
Router to urządzenie, które pełni kluczową rolę w komunikacji pomiędzy różnymi sieciami komputerowymi. Jego zadaniem jest przekazywanie pakietów danych między hostami należącymi do różnych sieci, co umożliwia efektywną wymianę informacji. W praktyce, routery są wykorzystywane w domach, biurach oraz w dużych środowiskach korporacyjnych do łączenia lokalnych sieci z Internetem. Przykładem może być typowy router domowy, który łączy urządzenia takie jak komputery, smartfony czy drukarki z dostawcą usług internetowych. Routery operują na warstwie trzeciej modelu OSI, co oznacza, że analizują adresy IP i podejmują decyzje o trasowaniu danych. W kontekście standardów branżowych, routery są zgodne z protokołami takimi jak IP, a także z technologiami NAT (Network Address Translation) i DHCP (Dynamic Host Configuration Protocol), co pozwala na dynamiczne przydzielanie adresów IP oraz tworzenie bardziej złożonych sieci. Warto również zauważyć, że nowoczesne routery często oferują dodatkowe funkcje zabezpieczeń, takie jak zapory sieciowe, co wpływa na bezpieczeństwo przesyłanych danych.

Pytanie 10

Aby przeprowadzić rezerwację adresów IP w systemie Windows Server na podstawie fizycznych adresów MAC urządzeń, konieczne jest skonfigurowanie usługi

A. DNS
B. DHCP
C. RRAS
D. NAT
Odpowiedź DHCP jest prawidłowa, ponieważ Dynamic Host Configuration Protocol (DHCP) jest protokołem sieciowym, który automatycznie przypisuje adresy IP oraz inne istotne informacje konfiguracyjne, takie jak maski podsieci i bramy domyślne, urządzeniom w sieci. Możliwość rezerwacji adresów IP na podstawie adresów MAC jest jedną z kluczowych funkcji DHCP, która pozwala administratorom przypisać określony adres IP do konkretnego urządzenia, zapewniając tym samym stabilność oraz przewidywalność w zarządzaniu adresacją IP w sieci lokalnej. Przykładowo, w sieci biurowej możemy zarezerwować adres IP dla drukarki, co umożliwi jej łatwe znalezienie przez inne urządzenia w sieci, zachowując stały adres, niezależnie od cykli DHCP. Ponadto, dobrym standardem w zarządzaniu sieciami jest wdrażanie DHCP w połączeniu z dokumentacją adresacji, co ułatwia przyszłe rozbudowy oraz zarządzanie zasobami sieciowymi.

Pytanie 11

Na ilustracji przedstawiono diagram blokowy karty

Ilustracja do pytania
A. graficznej
B. telewizyjnej
C. dźwiękowej
D. sieciowej
Karta telewizyjna to urządzenie pozwalające na odbiór sygnału telewizyjnego i jego przetwarzanie na komputerze. Na przedstawionym schemacie widać elementy charakterystyczne dla karty telewizyjnej takie jak tuner, który odbiera sygnał RF (Radio Frequency) z anteny. Zastosowanie tunera jest kluczowe w kontekście odbioru sygnału telewizyjnego, ponieważ pozwala na dekodowanie i dostrajanie odbieranych fal radiowych do konkretnych kanałów telewizyjnych. Przetwornik analogowo-cyfrowy (A/C) jest używany do konwersji analogowego sygnału wideo na cyfrowy, co jest niezbędne do dalszego przetwarzania przez komputer. Ważnym elementem jest także dekoder wideo oraz sprzętowa kompresja MPEG-2, które umożliwiają kompresję strumienia wideo, co jest standardem w transmisji telewizji cyfrowej. EEPROM i DRAM służą do przechowywania niezbędnych danych oraz do buforowania strumienia danych. Tego typu karty są szeroko stosowane w systemach komputerowych, gdzie istnieje potrzeba integracji funkcji telewizyjnej, np. w centrach medialnych. Stosowanie kart telewizyjnych jest zgodne ze standardami transmisji wideo i audio, co zapewnia ich kompatybilność z różnymi formatami sygnału. Przykładem praktycznego zastosowania są systemy do nagrywania programów telewizyjnych i ich późniejszego odtwarzania na komputerze.

Pytanie 12

Wykonanie komendy dxdiag w systemie Windows pozwala na

A. konfigurację klawiatury, aby była zgodna z wymaganiami języka polskiego
B. uruchomienie maszyny wirtualnej z systemem Windows 10 zainstalowanym
C. kompresję wskazanych danych na dysku twardym
D. uruchomienie narzędzia diagnostycznego DirectX
Wykonanie polecenia dxdiag w systemie Windows nie ma nic wspólnego z konfiguracją klawiatury ani dostosowywaniem jej do wymagań języka polskiego. Takie podejście może wynikać z mylnego przekonania, że dxdiag ma funkcje związane z ustawieniem lokalizacji czy języka, jednak w rzeczywistości zajmuje się tylko zbieraniem informacji o systemie i jego komponentach. Ponadto, uruchomienie maszyny wirtualnej z systemem Windows 10 również nie jest związane z tym poleceniem; maszyny wirtualne są zarządzane przez specjalistyczne oprogramowanie, takie jak VMware czy VirtualBox, a dxdiag ma na celu diagnostykę, a nie uruchamianie wirtualnych środowisk. Kompresja danych na dysku twardym jest zupełnie inną funkcjonalnością, która dotyczy zarządzania przestrzenią dyskową i nie ma żadnego związku z diagnozowaniem sprzętu czy oprogramowania. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często związane są z pomyleniem funkcji narzędzi systemowych z ich rzeczywistym przeznaczeniem. Wiedza o tym, co każde narzędzie robi, oraz zrozumienie jego funkcjonalności jest kluczowe w diagnostyce systemów komputerowych. Właściwe użycie dxdiag nie tylko przyspiesza proces identyfikacji problemu, ale również wspiera praktyki związane z efektywną konserwacją systemu.

Pytanie 13

Wykonanie polecenia fsck w systemie Linux będzie skutkować

A. zmianą uprawnień do pliku
B. prezentacją parametrów plików
C. weryfikacją integralności systemu plików
D. znalezieniem pliku
Polecenie fsck (file system check) jest narzędziem w systemie Linux, które służy do sprawdzania integralności systemu plików. Jego głównym zadaniem jest wykrywanie i naprawianie błędów w strukturze systemu plików, co jest kluczowe dla utrzymania stabilności i wydajności systemu. Regularne używanie fsck jest zalecane, zwłaszcza po nieprawidłowym zamknięciu systemu, np. w wyniku awarii zasilania. Dzięki fsck administratorzy mogą zidentyfikować uszkodzone sektory, które mogą prowadzić do utraty danych, a także naprawić niezgodności w metadanych systemu plików. Użycie fsck może również obejmować dodatkowe opcje, takie jak automatyczna naprawa wykrytych błędów, co czyni to narzędzie nieocenionym w zarządzaniu serwerami i systemami plików. W praktyce, aby uruchomić fsck, często używa się polecenia w formie: 'fsck /dev/sda1', gdzie '/dev/sda1' to partycja, która ma być sprawdzona. Należy jednak pamiętać, aby unikać jego używania na zamontowanych systemach plików, ponieważ może to prowadzić do dalszych uszkodzeń.

Pytanie 14

Jaką liczbę punktów abonenckich (2 x RJ45) zgodnie z wytycznymi normy PN-EN 50167 powinno się zainstalować w biurze o powierzchni 49 m2?

A. 9
B. 1
C. 4
D. 5
Zgodnie z normą PN-EN 50167, która reguluje układanie instalacji teleinformatycznych, na każdych 10 m² powierzchni biurowej należy przewidzieć jeden punkt abonencki z dwoma gniazdami RJ45. W przypadku pomieszczenia biurowego o powierzchni 49 m², odpowiednia liczba punktów abonenckich wynosi 5. Ta liczba jest wynikiem zaokrąglenia w górę, co jest zgodne z podejściem do zapewnienia wystarczającej ilości przyłączy dla użytkowników, aby umożliwić im efektywne korzystanie z sieci. Praktyczne aspekty tego rozwiązania obejmują możliwość podłączenia różnych urządzeń, takich jak komputery, drukarki czy telefony VoIP, co staje się niezbędne w coraz bardziej zintegrowanym środowisku biurowym. Warto również zauważyć, że odpowiednia liczba punktów abonenckich zwiększa elastyczność aranżacji przestrzeni biurowej oraz wspiera rozwój technologii, takich jak IoT (Internet rzeczy), co czyni biura bardziej przyszłościowymi.

Pytanie 15

Który z poniższych programów nie jest wykorzystywany do zdalnego administrowania komputerami w sieci?

A. Virtualbox
B. Rdesktop
C. UltraVNC
D. Team Viewer
Rdesktop, UltraVNC i TeamViewer to programy, które w istotny sposób różnią się od VirtualBox, ponieważ są one przeznaczone do zdalnego zarządzania komputerami. Rdesktop to klient RDP (Remote Desktop Protocol) dla systemu Linux, który umożliwia zdalny dostęp do systemów Windows. Pozwala na interakcję z komputerem zdalnie, co jest szczególnie przydatne w środowiskach korporacyjnych, gdzie pracownicy mogą potrzebować dostępu do swoich stacji roboczych z różnych lokalizacji. UltraVNC to rozwiązanie do zdalnego zarządzania, które wykorzystuje protokół VNC (Virtual Network Computing) do umożliwienia zdalnego dostępu i zarządzania komputerami przez interfejs graficzny. Użytkownicy mogą kontrolować komputer zdalny tak, jakby siedzieli przed nim, co sprawia, że jest to narzędzie idealne do wsparcia technicznego. TeamViewer z kolei to popularna aplikacja do zdalnego dostępu, która oferuje wiele funkcji, takich jak przesyłanie plików, współpraca w czasie rzeczywistym czy zdalne wsparcie techniczne. Typowym błędem jest mylenie zdalnego dostępu z wirtualizacją – podczas gdy pierwsze dotyczy kontroli nad zdalnym systemem, drugie odnosi się do uruchamiania wielowarstwowych systemów operacyjnych na jednym komputerze. Zrozumienie tej różnicy jest kluczowe dla skutecznego wykorzystania narzędzi IT w praktyce.

Pytanie 16

Podstawowy protokół stosowany do ustalania ścieżki oraz przesyłania pakietów danych w sieci komputerowej to

A. SSL
B. PPP
C. RIP
D. POP3
Protokół RIP (Routing Information Protocol) jest jednym z najstarszych protokołów routingu i działa na zasadzie protokołu wektora odległości. Umożliwia on routerom wymianę informacji o dostępnych trasach w sieci, co pozwala na optymalne kierowanie pakietów danych. RIP używa metryki, która opiera się na liczbie przeskoków (hop count) do określenia najlepszej trasy, a maksymalna liczba przeskoków wynosi 15, co zapobiega powstawaniu pętli w sieci. Protokół jest używany głównie w mniejszych sieciach, gdzie jego prostota i łatwość konfiguracji stanowią istotne zalety. Przykładem zastosowania RIP mogą być małe biura lub oddziały, które potrzebują efektywnego i łatwego w implementacji rozwiązania do routingu. W praktyce, administratorzy sieci często korzystają z RIP w połączeniu z innymi protokołami, takimi jak OSPF, aby zapewnić większą elastyczność i efektywność w zarządzaniu trasami.

Pytanie 17

W sieciach komputerowych, gniazdo, które jednoznacznie wskazuje na dany proces na urządzeniu, stanowi połączenie

A. adresu fizycznego i adresu IP
B. adresu IP i numeru sekwencyjnego danych
C. adresu IP i numeru portu
D. adresu fizycznego i numeru portu
Gniazdo w sieciach komputerowych, które jednoznacznie identyfikuje dany proces na urządzeniu, jest definiowane jako kombinacja adresu IP oraz numeru portu. Adres IP wskazuje na konkretne urządzenie w sieci, podczas gdy numer portu identyfikuje specyficzną aplikację lub usługę działającą na tym urządzeniu. Dzięki tej kombinacji, różne procesy mogą współistnieć na tym samym urządzeniu bez konfliktów. Na przykład, serwer webowy działający na porcie 80 może jednocześnie obsługiwać aplikację do przesyłania plików na porcie 21, obie korzystając z tego samego adresu IP. W praktyce, to rozwiązanie pozwala na efektywne wykorzystanie zasobów i ułatwia zarządzanie połączeniami w sieci, co jest zgodne z zasadami architektury TCP/IP, która jest fundamentem działania internetu. W systemach operacyjnych i aplikacjach sieciowych stosowanie tej zasady jest powszechną praktyką, co potwierdzają dokumenty RFC (Request for Comments), które regulują aspekty komunikacji sieciowej.

Pytanie 18

W klasycznym adresowaniu, adres IP 74.100.7.8 przynależy do

A. klasy C
B. klasy A
C. klasy B
D. klasy D
Wybór adresu klasy B lub C może wynikać z nieporozumienia dotyczącego zakresów adresowania oraz ich zastosowań. Klasa B obejmuje adresy od 128 do 191 w pierwszym oktecie i jest przeznaczona dla średniej wielkości sieci z maksymalnie 65 tysięcy hostów. Jeśli ktoś mylnie przypisuje adres IP 74.100.7.8 do tej klasy, może to sugerować, że nie zrozumiał podstawowych zasad podziału adresów IP na klasy. Z kolei klasa C, której zakres wynosi od 192 do 223, jest przeznaczona dla małych sieci, gdzie liczba hostów nie przekracza 254. Użytkownicy często biorą pod uwagę tylko ostatnie oktety adresu, co prowadzi do błędnych wniosków. Klasa D, z kolei, jest zarezerwowana dla multicastu, co kompletnie wyklucza zastosowanie tego adresu w typowym środowisku IP. Zrozumienie, jak działają poszczególne klasy adresów oraz ich przeznaczenie, jest niezbędne do poprawnego projektowania architektury sieciowej oraz do efektywnego zarządzania zasobami IP. Błędy w klasyfikacji adresów mogą prowadzić do poważnych problemów z komunikacją w sieci, co podkreśla znaczenie edukacji w tym zakresie.

Pytanie 19

Urządzenie sieciowe działające w trzeciej warstwie modelu ISO/OSI, obsługujące adresy IP, to

A. bridge
B. router
C. repeater
D. hub
Router to urządzenie sieciowe działające na trzeciej warstwie modelu ISO/OSI, znanej jako warstwa sieci. Jego głównym zadaniem jest kierowanie ruchem danych pomiędzy różnymi sieciami, operując na adresach IP. Routery są kluczowe w realizacji komunikacji w Internecie, ponieważ umożliwiają wymianę informacji pomiędzy urządzeniami znajdującymi się w różnych podsieciach. W praktyce, routery potrafią analizować adresy IP pakietów danych, co pozwala na podejmowanie decyzji o ich dalszej trasie. Dzięki zastosowaniu protokołów, takich jak RIP, OSPF czy BGP, routery mogą dynamicznie aktualizować swoje tablice rutingu, co zwiększa efektywność komunikacji. W kontekście bezpieczeństwa, routery często pełnią funkcję zapory sieciowej, filtrując nieautoryzowany ruch. Przykładem zastosowania routerów są domowe sieci Wi-Fi, gdzie router łączy lokalne urządzenia z Internetem, kierując ruch danych w sposób efektywny i bezpieczny. Dobre praktyki obejmują regularne aktualizowanie oprogramowania routerów oraz konfigurowanie zabezpieczeń, takich jak WPA3, aby chronić przesyłane dane.

Pytanie 20

Wskaż zdanie, które jest nieprawdziwe:

A. Awaria węzła w topologii gwiazdy spowoduje zablokowanie sieci
B. Zaletą topologii pierścienia jest niewielkie zużycie kabla
C. IEEE 802.11 to określenie standardu Wireless LAN
D. Stroną aktywną w architekturze klient-serwer jest strona klienta
Architektura klient-serwer opiera się na podziale zadań pomiędzy klientami, którzy wysyłają żądania, a serwerami, które te żądania obsługują. W rzeczywistości to serwer jest stroną aktywną, ponieważ to on zarządza zasobami, które są udostępniane klientom. Klient, działając jako strona pasywna, jest odpowiedzialny za inicjowanie komunikacji, a jego funkcjonalność jest ograniczona do przetwarzania danych przesyłanych z serwera. W kontekście topologii sieci, topologia pierścienia rzeczywiście charakteryzuje się mniejszym zużyciem kabla w porównaniu do topologii magistrali, jednak to nie oznacza, że jest to jej jedyna zaleta. Topologia pierścienia wymaga, aby każdy węzeł był w stanie komunikować się z sąsiednimi urządzeniami, co czyni ją bardziej podatną na awarie niż topologia gwiazdy, gdzie uszkodzenie jednego węzła nie wpływa na działanie całej sieci. W odniesieniu do standardów, IEEE 802.11 w rzeczy samej dotyczy bezprzewodowych sieci lokalnych (Wireless LAN), co jest poprawne, ale nie jest ono związane z pytaniem o węzeł w topologii gwiazdy. Zrozumienie tych różnic jest kluczowe dla projektowania i administracji sieci, ponieważ błędne założenia mogą prowadzić do nieefektywnego wykorzystania zasobów oraz zwiększenia kosztów operacyjnych.

Pytanie 21

Jaki rodzaj kabla powinien być użyty do podłączenia komputera w miejscu, gdzie występują zakłócenia elektromagnetyczne?

A. UTP Cat 5e
B. UTP Cat 5
C. FTP Cat 5e
D. UTP Cat 6
Odpowiedź FTP Cat 5e jest prawidłowa, ponieważ ten typ kabla jest wyposażony w ekranowanie, które skutecznie redukuje zakłócenia elektromagnetyczne. Ekranowanie w kablu FTP (Foiled Twisted Pair) polega na zastosowaniu foliowego ekranu, który otacza pary skręconych przewodów, co zabezpiecza sygnały przed wpływem zewnętrznych źródeł zakłóceń, takich jak urządzenia elektroniczne czy inne kable. W środowiskach, gdzie mogą występować takie zakłócenia, jak w biurach, fabrykach czy pomieszczeniach ze sprzętem generującym silne pole elektromagnetyczne, użycie kabla FTP znacząco poprawia stabilność połączeń i jakość przesyłanych danych. Standardy takie jak ISO/IEC 11801 oraz ANSI/TIA-568-C rekomendują stosowanie ekranowanych kabli w warunkach, gdzie zakłócenia są powszechne. W praktyce, zastosowanie FTP Cat 5e zapewnia nie tylko większą odporność na zakłócenia, ale także lepszą wydajność transmisji na dłuższych dystansach, co jest kluczowe w nowoczesnych infrastrukturach sieciowych.

Pytanie 22

Która topologia fizyczna umożliwia nadmiarowe połączenia pomiędzy urządzeniami w sieci?

A. Magistrali
B. Pierścienia
C. Siatki
D. Gwiazdy
Topologie gwiazdy, magistrali i pierścienia mają swoje unikalne cechy, które nie zapewniają takiej nadmiarowości jak topologia siatki. W topologii gwiazdy wszystkie urządzenia są podłączone do centralnego punktu, co czyni tę strukturę podatną na awarie tego centralnego elementu. Jeśli centralny switch lub hub ulegnie uszkodzeniu, cała sieć może przestać działać, co jest dużym ryzykiem w środowiskach o wysokich wymaganiach dostępności. Z kolei topologia magistrali polega na podłączeniu urządzeń do jednego wspólnego kabla, co również stwarza ryzyko awarii, ponieważ uszkodzenie kabla prowadzi do przerwania komunikacji wszystkich urządzeń. W topologii pierścienia, w której urządzenia są połączone w zamknięty krąg, pojawienie się awarii jednego z urządzeń może znacząco zakłócić komunikację, chyba że wprowadzono dodatkowe mechanizmy, takie jak redundantne połączenia. Zrozumienie tych nieprawidłowości wymaga analizy zasad projektowania sieci, które promują architekturę odporną na błędy. Dlatego ważne jest, aby przy wyborze topologii brać pod uwagę nie tylko koszty, ale także wymagania dotyczące ciągłości działania i awaryjności systemu.

Pytanie 23

Który symbol reprezentuje przełącznik?

Ilustracja do pytania
A. B
B. C
C. A
D. D
Symbol oznaczający przełącznik, widoczny na ilustracji jako D, jest kluczowym elementem w sieciach komputerowych i elektronicznych. Przełącznik, w kontekście sieci komputerowych, to urządzenie służące do kierowania sygnałów danych pomiędzy różnymi urządzeniami w sieci lokalnej (LAN). Jego główną rolą jest umożliwienie komunikacji pomiędzy komputerami, drukarkami i innymi urządzeniami sieciowymi poprzez przekazywanie danych w formie pakietów. Przełączniki operują głównie na poziomie drugiej warstwy modelu OSI, co oznacza, że używają adresów MAC do identyfikacji urządzeń. W efektywnym zarządzaniu ruchem sieciowym przełączniki odgrywają krytyczną rolę, ponieważ minimalizują kolizje danych i zwiększają wydajność sieci. W kontekście branżowych dobrych praktyk, rekomenduje się stosowanie przełączników zarządzalnych w większych sieciach, ponieważ pozwalają one na kontrolę ruchu sieciowego, tworzenie wirtualnych sieci lokalnych (VLAN) oraz monitorowanie stanu sieci. Przełączniki są niezbędnym elementem infrastruktury każdego nowoczesnego biura, umożliwiającym bezproblemową współpracę i przepływ informacji.

Pytanie 24

Jakie materiały eksploatacyjne wykorzystuje się w rzutniku multimedialnym?

A. lampa projekcyjna
B. filament
C. bęben światłoczuły
D. fuser
Lampa projekcyjna jest kluczowym elementem rzutników multimedialnych, odpowiedzialnym za generowanie obrazu, który następnie jest wyświetlany na ekranie. To właśnie lampa, najczęściej typu DLP lub LCD, emituje światło, które przechodzi przez soczewki i filtry, tworząc wyraźny obraz. W praktyce, lampa projekcyjna umożliwia wyświetlanie prezentacji, filmów i innych treści wizualnych w różnych warunkach oświetleniowych. Standardy branżowe wymagają, aby lampy miały określoną jasność (mierzoną w lumenach) oraz długi czas życia, co sprawia, że ich wybór ma ogromne znaczenie dla jakości projekcji. Przykładowo, w salach konferencyjnych i edukacyjnych stosuje się rzutniki z lampami o wysokiej wydajności, co pozwala na użycie ich w jasnych pomieszczeniach, minimalizując wpływ otoczenia na widoczność wyświetlanego obrazu. Warto również zaznaczyć, że odpowiednia konserwacja i wymiana lampy, zgodnie z zaleceniami producenta, zapewnia optymalną jakość obrazu oraz wydłuża żywotność urządzenia.

Pytanie 25

Wydanie w systemie Windows komendy ```ATTRIB -S +H TEST.TXT``` spowoduje

A. usunięcie atrybutu pliku systemowego oraz atrybutu pliku ukrytego
B. ustawienie atrybutu pliku systemowego z zablokowaniem edycji
C. usunięcie atrybutu pliku systemowego oraz aktywowanie atrybutu pliku ukrytego
D. ustawienie atrybutu pliku jako tylko do odczytu oraz jego ukrycie
Wszystkie proponowane odpowiedzi nietrafnie interpretują działanie polecenia ATTRIB. Ustawienie atrybutu pliku tylko do odczytu oraz jego ukrycie nie może być zrealizowane jednocześnie za pomocą podanych parametrów. Atrybut tylko do odczytu (R) nie pojawia się w poleceniu, co oznacza, że użytkownik nie do końca rozumie, jak działa system atrybutów w Windows. Podobnie, stwierdzenie, że polecenie usuwa atrybut pliku systemowego oraz ustawia atrybut pliku ukrytego, jest częściowo prawdziwe, ale nie uwzględnia istotnego faktu, iż atrybut systemowy jest usuwany, co zmienia klasyfikację pliku. Odpowiedzi dotyczące usunięcia atrybutu systemowego oraz ustawienia tylko atrybutu ukrytego również są niepoprawne, ponieważ nie uwzględniają, że plik staje się bardziej dostępny po usunięciu atrybutu systemowego. Ostatnia odpowiedź dotycząca ustawienia atrybutu systemowego z blokadą edycji jest całkowicie myląca, gdyż polecenie w ogóle nie ustawia atrybutu systemowego, a wręcz przeciwnie, go usuwa. Kluczowym błędem w logicznym rozumowaniu uczestników jest założenie, że polecenia w systemie operacyjnym działają w sposób niezmienny, nie uwzględniając kontekstu, w jakim są stosowane. Zrozumienie, jak atrybuty plików wpływają na ich zachowanie, jest niezbędne do skutecznego zarządzania systemem plików w Windows.

Pytanie 26

Które systemy operacyjne są atakowane przez wirusa MS Blaster?

A. MS Windows 2000/NT/XP
B. MS Windows 9x
C. Linux
D. DOS
Wirus MS Blaster, znany również jako Lovsan i MSBlast, był szczególnie niebezpiecznym złośliwym oprogramowaniem, które celowało w systemy operacyjne Microsoftu, a w szczególności w wersje takie jak Windows 2000, NT oraz XP. Jego głównym celem były luki w zabezpieczeniach systemów operacyjnych, które pozwalały na zdalne zainfekowanie komputera. Użytkownicy Windows 2000, NT i XP mogli być narażeni na atak w wyniku aktywacji usługi DCOM, która była odpowiedzialna za komunikację między aplikacjami. W momencie, gdy wirus zainfekował system, mógł wywołać nie tylko zakłócenia w pracy komputera, ale także aktywować masowy atak DDoS na serwer Windows Update. Aby zabezpieczyć się przed podobnymi zagrożeniami, zaleca się regularne aktualizowanie systemu operacyjnego oraz stosowanie zapór ogniowych i oprogramowania antywirusowego, co zgodne jest z najlepszymi praktykami w zakresie zabezpieczeń IT.

Pytanie 27

Jaką długość ma maska sieci dla adresów z klasy B?

A. 24 bity
B. 12 bitów
C. 16 bitów
D. 8 bitów
Odpowiedź 16 bitów jest prawidłowa, ponieważ w klasie B adresy IP mają zdefiniowaną długość maski sieci wynoszącą 255.255.0.0, co odpowiada 16 bitom przeznaczonym na identyfikację sieci. Klasa B jest używana w dużych sieciach, gdzie liczba hostów w sieci jest znaczna. Zastosowanie tej długości maski pozwala na podział dużych przestrzeni adresowych, co jest istotne w kontekście efektywnego zarządzania adresami IP. W praktyce, adresy IP klasy B są często wykorzystywane w organizacjach oraz instytucjach posiadających wiele urządzeń w sieci. Przykładem zastosowania jest zbudowanie infrastruktury dla korporacji, gdzie adresy przypisane do różnych działów mogą być zarządzane w ramach tej samej sieci. Warto również zauważyć, że w standardach TCP/IP, klasy adresowe są klasyfikowane w sposób, który wspiera różnorodne scenariusze sieciowe, a znajomość długości maski jest kluczowa dla administratorów sieci.

Pytanie 28

Aby przygotować do pracy skaner, którego opis zawarto w tabeli, należy w pierwszej kolejności

Skaner przenośny IRIScanBook 3
Bezprzewodowy, zasilany baterią i bardzo lekki. Można go przenosić w dowolne miejsce!
Idealny do skanowania książek, czasopism i gazet
Rozdzielczość skanowania 300/600/900 dpi
Prędkość skanowania: 2 sek. dla tekstów biało-czarnych / 3 sek. dla tekstów kolorowych
Bezpośrednie skanowanie do formatu PDF i JPEG
Zapis skanu na kartę microSD ™ (w zestawie)
Kolorowy ekran (do podglądu zeskanowanych obrazów)
3 baterie alkaliczne AAA (w zestawie)
A. podłączyć skaner do komputera za pomocą kabla Ethernet.
B. włożyć baterię i kartę pamięci do odpowiedniego gniazda skanera.
C. włączyć urządzenie i rozpocząć bezpośrednie skanowanie do formatu PDF.
D. podłączyć ładowarkę i całkowicie naładować akumulator.
W przygotowaniu skanera przenośnego pojawiają się pewne pułapki, które wynikają najczęściej z automatycznego przenoszenia nawyków z innych typów urządzeń. Jednym z typowych błędów jest założenie, że urządzenie trzeba najpierw podłączyć do ładowarki i naładować akumulator – rzeczywiście, sporo sprzętu wymaga ładowania przed pierwszym użyciem, ale IRIScanBook 3 jest zasilany klasycznymi bateriami AAA, które umieszczamy w urządzeniu. Tu nie ma akumulatora, więc nie musimy nic ładować, co jest dość wygodne, zwłaszcza w terenie. Często też pojawia się przekonanie, że skanery, jak drukarki czy niektóre skanery biurkowe, muszą być połączone z komputerem kablem (na przykład przez Ethernet czy USB). W tym przypadku urządzenie jest w pełni bezprzewodowe i nie wymaga żadnego połączenia z komputerem do działania – wszystko zapisywane jest na kartę microSD, więc niepotrzebne są żadne przewody podczas pracy. Jeszcze innym błędem jest założenie, że wystarczy tylko włączyć urządzenie i zacznie ono działać. Jednak bez zainstalowanych baterii oraz karty pamięci, skaner albo w ogóle nie zareaguje, albo nie będzie miał gdzie zapisywać zeskanowanych plików. W mojej opinii to wynika z tego, że użytkownicy przyzwyczajeni są do sprzętu stacjonarnego lub smartfonów, gdzie pamięć jest wbudowana. W przypadku urządzeń mobilnych standardem jest, by użytkownik sam zadbał o źródło zasilania i nośnik danych – to podstawa, bez której nie ruszymy dalej z żadną operacją, nawet najprostszą. Warto więc pamiętać, by zawsze przed włączeniem takiego sprzętu sprawdzić, czy bateria i karta microSD są na miejscu – to nie tylko oszczędność czasu, ale i uniknięcie zbędnych problemów w przyszłości.

Pytanie 29

Urządzenia wykorzystujące port USB 2.0 są zasilane napięciem, którego wartość znajduje się w przedziale

A. 4,75 V - 5,35 V
B. 4,15 V - 4,75 V
C. 3,55 V - 4,15 V
D. 5,35 V - 5,95 V
Rozważając wartości napięcia zasilania urządzeń USB 2.0, warto zwrócić uwagę na to, że odpowiedzi niezgodne z poprawnym zakresem 4,75 V - 5,35 V mogą wynikać z kilku powszechnych nieporozumień. Napięcie zasilania dla standardu USB 2.0 zostało precyzyjnie zdefiniowane w normach USB, aby zapewnić stabilność i bezpieczeństwo urządzeń. Podawanie wartości niższych, jak 4,15 V - 4,75 V, może prowadzić do twierdzeń, że urządzenia będą funkcjonować w obszarze, który nie spełnia wymogów technicznych, co z kolei może skutkować niestabilnością pracy urządzeń. Przy zasilaniu napięciem poniżej 4,75 V, wiele urządzeń może napotkać na trudności w operacjach wymagających większej mocy, co może prowadzić do ich nieprawidłowego działania. Z kolei wartości powyżej 5,35 V, jak 5,35 V - 5,95 V, mogą prowadzić do ryzyka uszkodzenia podłączonych komponentów z powodu przekroczenia dopuszczalnego napięcia. Należy również pamiętać, że urządzenia USB muszą być projektowane z myślą o pracy w określonym zakresie napięcia, aby zapewnić zgodność z normami. Niewłaściwe napięcia mogą nie tylko wpłynąć na wydajność, ale mogą również prowadzić do uszkodzenia komponentów, co jest istotnym czynnikiem w projektowaniu elektroniki. Dlatego zrozumienie zakresu 4,75 V - 5,35 V jest kluczowe dla zarówno inżynierów projektujących nowe urządzenia, jak i użytkowników, którzy muszą być świadomi potencjalnych zagrożeń związanych z nieodpowiednim zasilaniem.

Pytanie 30

Podstawowym zadaniem mechanizmu Plug and Play jest

A. automatyczne uruchamianie ostatnio zagranej gry
B. rozpoznanie nowo podłączonego urządzenia oraz automatyczne przydzielenie mu zasobów
C. automatyczne tworzenie kopii zapasowych danych na świeżo podłączonym nośniku pamięci
D. automatyczne usuwanie sterowników, które nie były używane przez dłuższy czas
Odpowiedź numer 3 jest poprawna, ponieważ mechanizm Plug and Play (PnP) ma na celu automatyczne wykrywanie nowo podłączonego sprzętu i przypisywanie mu odpowiednich zasobów systemowych, takich jak numery przerwań (IRQ), adresy pamięci oraz dostęp do portów. Dzięki temu użytkownik nie musi ręcznie konfigurować urządzeń, co znacznie upraszcza proces instalacji i konfiguracji sprzętu. Przykłady zastosowania PnP obejmują podłączanie myszek, klawiatur, drukarek czy dysków zewnętrznych. Standardy Plug and Play są powszechnie stosowane w nowoczesnych systemach operacyjnych, takich jak Windows czy Linux, co zapewnia ich szeroką kompatybilność z różnorodnym sprzętem. Warto również zauważyć, że mechanizm ten jest zgodny z architekturą USB, która również wspiera automatyczne wykrywanie i konfigurację urządzeń. PnP znacząco podnosi użyteczność komputerów osobistych oraz innych urządzeń elektronicznych, pozwalając na łatwe dodawanie i usuwanie sprzętu bez potrzeby restartowania systemu czy ingerencji w ustawienia BIOS-u.

Pytanie 31

Protokół, który zajmuje się identyfikowaniem i usuwaniem kolizji w sieciach Ethernet, to

A. WINS
B. NetBEUI
C. CSMA/CD
D. IPX/SPX
Wybór odpowiedzi innych niż CSMA/CD wskazuje na nieporozumienie w zakresie podstawowych protokołów komunikacyjnych w sieciach komputerowych. WINS (Windows Internet Name Service) jest usługą stosowaną do tłumaczenia nazw komputerów w sieci na adresy IP. Nie ma on jednak związku z zarządzaniem dostępem do medium transmisyjnego ani z wykrywaniem kolizji, co czyni go nieodpowiednim w kontekście omawianego pytania. Podobnie IPX/SPX, protokół stworzony przez firmę Novell dla sieci NetWare, również nie zajmuje się problematyką kolizji, lecz dotyczy komunikacji między urządzeniami w sieciach lokalnych, lecz w zupełnie inny sposób. Natomiast NetBEUI (NetBIOS Extended User Interface) jest protokołem transportowym, który nie jest routowalny i służy głównie w małych sieciach lokalnych. Jego architektura również nie obejmuje mechanizmu detekcji kolizji, co czyni go nieodpowiednim w tym kontekście. Wybór tych odpowiedzi może wynikać z błędnego zrozumienia roli protokołów w sieciach komputerowych oraz braku znajomości zasad ich działania. Kluczowe jest, aby rozróżniać funkcjonalności różnych protokołów oraz ich zastosowanie w praktycznych scenariuszach, co pozwoli na bardziej świadome podejmowanie decyzji w kontekście projektowania i zarządzania sieciami.

Pytanie 32

Jakie polecenie w systemie Linux jest używane do sprawdzania wielkości katalogu?

A. rm
B. ps
C. cp
D. du
Polecenia 'cp', 'ps' i 'rm' mają zgoła inne cele i funkcje, które nie są związane z analizą rozmiaru katalogów. 'cp' to polecenie do kopiowania plików i katalogów, co oznacza, że jego podstawowym przeznaczeniem jest tworzenie ich kopii w innym miejscu, a nie ocena rozmiaru. Użycie 'cp' w tym kontekście mogłoby prowadzić do mylnego wrażenia, że można w ten sposób monitorować przestrzeń dyskową, co jest nieprawidłowe. 'ps' to narzędzie służące do wyświetlania informacji o działających procesach na systemie, co absolutnie nie ma związku z analizą danych o rozmiarze plików czy katalogów. Użytkownik, który mylnie uznaje 'ps' za narzędzie do sprawdzania rozmiaru katalogu, może nie dostrzegać istotności monitorowania zasobów systemowych w kontekście wydajności. Z kolei 'rm' to polecenie usuwania plików i katalogów, które wprowadza ryzyko nieodwracalnej utraty danych, jeśli jest używane nieostrożnie. Zrozumienie funkcji tych poleceń i ich zastosowania w systemie Linux jest kluczowe dla efektywnego zarządzania systemem oraz unikania krytycznych błędów. Użytkownicy powinni być świadomi, że każde z tych poleceń pełni określoną rolę, a mylne ich zastosowanie może prowadzić do poważnych problemów z zarządzaniem danymi.

Pytanie 33

Na ilustracji przedstawiono ustawienie karty sieciowej, której adres MAC wynosi

Ilustracja do pytania
A. 192.168.56.1
B. FE80::E890:BE2B:4C6C:5AA9
C. FEC0:0:0:FFFF::2
D. 0A-00-27-00-00-07
Adres IPv4, taki jak 192.168.56.1, jest używany do identyfikacji urządzeń w sieci opartej na protokole IP, ale nie jest adresem MAC. Adresy IPv4 składają się z czterech oktetów dziesiętnych oddzielonych kropkami, co różni się od formatu adresu MAC. Błędem jest mylenie tych dwóch formatów, ponieważ każdy z nich pełni różne funkcje w technologii sieciowej. Z kolei adresy IPv6, jak FE80::E890:BE2B:4C6C:5AA9 i FEC0:0:0:FFFF::2, reprezentują nowszy standard adresowania IP, przystosowany do obsługi większej liczby urządzeń. Adresy te mają złożoną strukturę heksadecymalną i są używane do komunikacji w sieciach IPv6. Błędne jest utożsamianie ich z adresami MAC, które są przypisane sprzętowo i nie zależą od protokołu IP. Typowy błąd polega na nieświadomym używaniu różnych typów adresów zamiennie, co może prowadzić do problemów w konfiguracji i diagnozowaniu sieci. Zrozumienie różnic między tymi adresami jest kluczowe dla efektywnego zarządzania sieciami komputerowymi i zapewnienia ich bezpieczeństwa. Znajomość tych różnic pozwala na prawidłową konfigurację urządzeń i rozwiązywanie problemów sieciowych, co jest niezbędne w pracy każdego specjalisty IT.

Pytanie 34

W trakcie normalnego funkcjonowania systemu operacyjnego w laptopie zjawia się informacja o potrzebie sformatowania wewnętrznego dysku twardego. Co to oznacza?

A. nośnik, który nie został zainicjowany lub przygotowany do użycia
B. przegrzewanie się procesora
C. usterki systemu operacyjnego wywołane złośliwym oprogramowaniem
D. uszkodzona pamięć RAM
Błędne odpowiedzi dotyczą różnych problemów z systemem operacyjnym, które mogą prowadzić do nieporozumień. W przypadku błędów systemu operacyjnego spowodowanych szkodliwym oprogramowaniem, użytkownicy mogą zauważyć niestabilność systemu, jednak komunikat o konieczności formatowania dysku jest zupełnie innym objawem. Szkodliwe oprogramowanie może wpłynąć na wydajność i bezpieczeństwo systemu, ale nie powoduje automatycznie, że dysk twardy wymaga formatowania. Uszkodzona pamięć RAM może powodować błędy podczas uruchamiania aplikacji lub systemu, jednak nie jest bezpośrednio związana z koniecznością formatowania dysku. Wiele osób myli objawy związane z pamięcią z problemami dyskowymi, co może prowadzić do mylnych wniosków. Przegrzewanie się procesora z kolei objawia się spadkiem wydajności lub awariami systemu, ale nie wywołuje komunikatu o formatowaniu dysku. Kluczowe jest zrozumienie, że każdy z tych problemów ma swoje unikalne objawy i wymagają różnorodnych podejść w diagnostyce oraz naprawie. Aby uniknąć błędnych wniosków, warto zainwestować czas w naukę podstawowych zasad działania komponentów komputerowych oraz ich interakcji w systemie operacyjnym, co pozwoli na lepsze rozpoznawanie i rozwiązywanie problemów.

Pytanie 35

Jakie urządzenie NIE powinno być serwisowane podczas korzystania z urządzeń antystatycznych?

A. Dysk twardy
B. Pamięć
C. Zasilacz
D. Modem
Zasilacz jest urządzeniem, które powinno być naprawiane tylko wtedy, gdy jest całkowicie odłączone od zasilania. W trakcie pracy z urządzeniami antystatycznymi istotne jest, aby unikać wszelkich potencjalnych źródeł uszkodzeń. Zasilacze są źródłem wysokiego napięcia oraz mogą w sobie przechowywać ładunki elektryczne, które mogą być niebezpieczne podczas jakiejkolwiek interakcji. W przypadku naprawy zasilacza w czasie jego działania, istnieje ryzyko zwarcia oraz uszkodzenia podzespołów. W branży serwisowej standardy BHP oraz procedury dotyczące pracy z urządzeniami elektrycznymi wymagają, by każdy zasilacz był odpowiednio odłączony i uziemiony przed przystąpieniem do jakiejkolwiek naprawy. Przykładem dobrej praktyki jest zastosowanie narzędzi antystatycznych, takich jak maty czy paski, które pomagają w eliminacji ładunków statycznych, ale nie zabezpieczają przed ryzykiem związanym z napięciem zasilania.

Pytanie 36

Aby zapewnić maksymalną ochronę danych przy użyciu dokładnie 3 dysków, powinny one być przechowywane w macierzy RAID

A. RAID 10
B. RAID 6
C. RAID 50
D. RAID 5
RAID 5 to popularny poziom macierzy dyskowej, który wykorzystuje zarówno striping, jak i parzystość, co pozwala na zapewnienie bezpieczeństwa danych przy użyciu co najmniej trzech dysków. W przypadku utraty jednego dysku, dane mogą być odtworzone z pozostałych, dzięki zapisanej parzystości. RAID 5 jest często wykorzystywany w zastosowaniach, gdzie ważna jest zarówno wydajność, jak i bezpieczeństwo, na przykład w serwerach plików czy systemach baz danych. Warto zauważyć, że RAID 5 zapewnia efektywne wykorzystanie przestrzeni dyskowej, ponieważ tylko jeden dysk jest zarezerwowany na parzystość. Dodatkowo, przy zastosowaniu RAID 5 możliwe jest zwiększenie wydajności odczytu, co czyni go dobrym wyborem dla średnich i dużych organizacji. Zgodnie z najlepszymi praktykami, RAID 5 należy stosować w środowiskach, które mogą tolerować awarię jednego dysku, ale nie więcej. Ważne jest również regularne tworzenie kopii zapasowych danych, aby zabezpieczyć się przed innymi zagrożeniami, takimi jak usunięcie danych przez błąd ludzki czy złośliwe oprogramowanie.

Pytanie 37

Jakie zastosowanie ma oprogramowanie Microsoft Hyper-V?

A. wirtualizacji rzeczywistych komputerów
B. łączenia się z innym hostem zdalnie
C. rozpoznawania komputera w sieci
D. znajdowania zasobów w sieci
Twoja odpowiedź na temat funkcji Hyper-V pokazuje pewne nieporozumienie. Wybierając opcje związane z identyfikacją komputera w sieci czy lokalizacją zasobów, pomyliłeś rzeczy. Hyper-V nie działa jako narzędzie do zarządzania adresami IP ani nazwami komputerów. To nie jest jego zadanie. Takie rzeczy robią protokoły jak DHCP czy DNS, a one nie mają nic wspólnego z wirtualizacją. Jeśli chodzi o lokalizację zasobów, to wykorzystuje się do tego inne mechanizmy, jak SMB czy NFS. Co do zdalnego połączenia z innym hostem, to choć maszyny wirtualne z Hyper-V mogą się łączyć, to sam Hyper-V tym się nie zajmuje. Zdalne połączenia realizowane są przez protokoły jak RDP czy SSH. Te niejasności mogą wynikać z mylenia roli wirtualizacji z innymi aspektami sieci. Chodzi o to, że Hyper-V służy do tworzenia i zarządzania maszynami wirtualnymi, a nie do zarządzania siecią. Dlatego ważne jest, żeby dobrze zrozumieć, jak to wszystko działa, żeby wykorzystać jego pełny potencjał w firmach.

Pytanie 38

Przy pomocy testów statycznych okablowania można zidentyfikować

A. straty odbiciowe
B. zjawisko tłumienia
C. przerwy w obwodzie
D. różnicę opóźnień
Przerwy w obwodzie są jednym z najważniejszych problemów, które można zdiagnozować za pomocą testów statycznych okablowania. Jednak inne wymienione odpowiedzi, takie jak straty odbiciowe, zjawisko tłumienia i różnica opóźnień, odnoszą się do innych aspektów jakości sygnału, które nie są bezpośrednio związane z diagnostyką przerw. Straty odbiciowe odnoszą się do sytuacji, w której część sygnału jest odbijana z powodu różnicy impedancji na złączach lub w samej strukturze kabla. Zjawisko tłumienia, z kolei, to proces, w którym sygnał traci swoją moc na skutek przesyłu przez kabel, co jest naturalnym zjawiskiem, ale niekoniecznie oznacza przerwę. Różnica opóźnień to problem, który występuje w przypadku, gdy sygnały przesyłane przez różne ścieżki nie docierają do celu w tym samym czasie, co może być wynikiem niejednolitego tłumienia, ale nie jest związane z przerwą w obwodzie. Te koncepcje są istotne dla zrozumienia działania sieci, ale ich diagnostyka wymaga innych metod, takich jak analiza parametrów sygnału w czasie rzeczywistym czy testy dynamiczne, które są bardziej odpowiednie do oceny jakości sygnałów w transmisji.

Pytanie 39

System S.M.A.R.T jest stworzony do kontrolowania działania i identyfikacji usterek

A. płyty głównej
B. kart rozszerzeń
C. napędów płyt CD/DVD
D. dysków twardych
Jak dla mnie, to ważne jest, żeby wiedzieć, jak działa system S.M.A.R.T, bo jeśli wybierasz płytę główną do monitorowania, to jest to nie do końca dobry wybór. S.M.A.R.T nie ocenia płyty głównej, bo to nie jest jego rola. Płyty główne są istotne, ale nie mają systemu monitorującego stanu jak dyski twarde. Podobnie jest z kartami rozszerzeń, one też nie są śledzone przez S.M.A.R.T. Kiedy myślimy o napędach CD/DVD, to też S.M.A.R.T nie ma tu zastosowania. Co by nie mówić, S.M.A.R.T jest naprawdę kluczowy dla dysków twardych i ich diagnozowania. Warto mieć na uwadze, że są inne sposoby monitorowania różnych komponentów, które działają zupełnie inaczej niż S.M.A.R.T, przez co często dochodzi do nieporozumień.

Pytanie 40

Wskaż rysunek ilustrujący symbol używany do oznaczania portu równoległego LPT?

Ilustracja do pytania
A. rys. B
B. rys. C
C. rys. A
D. rys. D
Wskaźnik A przedstawia symbol USB który jest nowoczesnym interfejsem komunikacyjnym stosowanym w większości współczesnych urządzeń do transmisji danych i zasilania. W przeciwieństwie do portu LPT USB oferuje znacznie wyższą przepustowość, wsparcie dla hot-swappingu oraz uniwersalność. Symbol B z kolei ilustruje złącze audio powszechnie używane w urządzeniach dźwiękowych takich jak słuchawki czy głośniki. Złącza te nie są powiązane z komunikacją równoległą ani przesyłem danych typowym dla portów LPT. Natomiast C symbolizuje złącze FireWire, które jest interfejsem komunikacyjnym opracowanym przez Apple do szybkiego przesyłu danych głównie w urządzeniach multimedialnych. FireWire choć szybkie i wydajne zastąpiło porty równoległe w kontekście przesyłu dużych plików multimedialnych ale nie było używane w kontekście tradycyjnej komunikacji z drukarkami tak jak porty LPT. Błędne wybory mogą wynikać z mylenia nowoczesnych technologii z tradycyjnymi standardami. Rozpoznawanie odpowiednich symboli portów i ich kontekstu zastosowania jest kluczowe w zrozumieniu historycznego i technicznego rozwoju interfejsów komputerowych co pomaga w efektywnym rozwiązywaniu problemów sprzętowych.