Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 13:35
  • Data zakończenia: 17 grudnia 2025 13:52

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Asynchronicznych pierścieniowych.
B. Uniwersalnych.
C. Synchronicznych.
D. Asynchronicznych klatkowych.
Jak wybrałeś złą odpowiedź, to może być trochę mylące w kontekście konstrukcji silników elektrycznych. Silniki synchroniczne, które wskazałeś w odpowiedziach, mają wirniki z magnesami trwałymi albo z uzwojeniem wzbudzenia. Wiesz, kluczowa różnica to to, że w silnikach synchronicznych prędkość obrotowa wirnika jest zsynchronizowana z częstotliwością prądu zasilającego, a w asynchronicznych to działa na zasadzie poślizgu. Z kolei silniki pierścieniowe mają wirnik z uzwojeniem, połączonym z pierścieniami ślizgowymi, co pozwala regulować prędkość, ale nie daje takiej efektywności jak klatkowe. No i silniki uniwersalne, które mogą działać zarówno na prądzie stałym, jak i przemiennym, mają zupełnie inną konstrukcję wirnika. Błędy w myśleniu, które prowadzą do takich omyłek, zazwyczaj wynikają z pomylenia zasad działania różnych silników. Zrozumienie tych różnic to klucz do efektywnego projektowania i użytkowania systemów napędowych.

Pytanie 2

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 3

Łącznik przedstawiony na zdjęciu jest oznaczony na schematach symbolem graficznym

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Łącznik przedstawiony na zdjęciu jest rzeczywiście dwuklawiszowy, co odpowiada symbolowi graficznemu oznaczonemu literą C. W branży elektrycznej, klawisze w łącznikach są kluczowe dla funkcjonalności systemów oświetleniowych, a ich odpowiednie oznaczenie jest istotne dla poprawnego montażu oraz użytkowania. Symbol graficzny C, który posiada dwa rozgałęzienia, jest standardem stosowanym w schematach instalacji elektrycznych, co ułatwia identyfikację urządzeń w projekcie. W praktyce, zastosowanie dwuklawiszowego łącznika pozwala na jednoczesne sterowanie różnymi obwodami świetlnymi z jednego miejsca, co zwiększa komfort użytkowania przestrzeni. Warto również zauważyć, że zgodność z normami instalacyjnymi, takimi jak PN-IEC 60669, wspiera bezpieczeństwo i efektywność energetyczną. Dlatego znajomość symboli graficznych, takich jak w tym przypadku, jest niezbędna dla projektantów i techników zajmujących się instalacjami elektrycznymi.

Pytanie 4

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 10 lat
B. 1 rok
C. 5 lat
D. 2 lata
Przeglądy mieszkaniowej instalacji elektrycznej należy wykonywać nie rzadziej niż co 5 lat, zgodnie z obowiązującymi normami i przepisami prawa, w tym z ustawą Prawo budowlane oraz normami PN-IEC 60364. Regularne przeglądy są kluczowe dla zapewnienia bezpieczeństwa użytkowania instalacji elektrycznych oraz zapobiegania pożarom i porażeniom prądem. W ramach takiego przeglądu oceniana jest nie tylko stan techniczny przewodów i osprzętu elektrycznego, ale także zgodność z aktualnymi przepisami. Przykład: jeśli w ciągu 5 lat nie zrealizujesz przeglądu, możesz być narażony na ryzyko awarii instalacji, co może prowadzić do poważnych konsekwencji. Dobrą praktyką jest dokumentowanie wykonanych przeglądów oraz przechowywanie protokołów w celu ułatwienia ewentualnych kontroli oraz zapewnienia, że instalacja jest w dobrym stanie przez cały okres jej użytkowania.

Pytanie 5

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy B
B. Klasy A
C. Klasy D
D. Klasy C
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 6

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. separację elektryczną
B. ogrodzenia oraz obudowy
C. umiejscowienie poza zasięgiem dłoni
D. urządzenia różnicowoprądowe ochronne
Separacja elektryczna jest kluczowym środkiem ochrony przed dotykiem pośrednim, co oznacza, że ​​wszystkie elementy instalacji elektrycznej, które mogą mieć kontakt z użytkownikami, są oddzielone od przewodów pod napięciem. W praktyce oznacza to stosowanie transformatorów separacyjnych w obwodach niskonapięciowych oraz odpowiedniego projektowania instalacji, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Przykładem mogą być instalacje w obiektach medycznych, gdzie separacja elektryczna jest stosowana, aby zapewnić bezpieczeństwo pacjentów i personelu. Zgodnie z normą PN-EN 61140, separacja elektryczna jest jednym z podstawowych wymogów bezpieczeństwa, pozwalającym na zredukowanie ryzyka porażenia prądem w miejscach narażonych na dostęp osób. Warto również zaznaczyć, że separacja elektryczna może obejmować zastosowanie izolacji, dystansów oraz odpowiednich osłon, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 7

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Regulator temperatury.
C. Przekaźnik bistabilny.
D. Regulator oświetlenia.
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.

Pytanie 8

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 3 do 5
B. 10 do 20
C. 2 do 3
D. 5 do 10
Odpowiedź "2 do 3" jest poprawna, ponieważ wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z działają w granicach krotności prądu znamionowego na poziomie od 2 do 3. To oznacza, że wyzwalacz zareaguje w przypadku, gdy prąd zwarciowy osiągnie wartość 2-3 razy wyższą od prądu znamionowego urządzenia. Wyłączniki te są przeznaczone do ochrony obwodów z wysoką odpornością na prądy rozruchowe, co czyni je idealnymi do stosowania w instalacjach z urządzeniami takimi jak transformatory czy silniki elektryczne. Standardy takie jak PN-EN 60947-2 definiują wymagania dotyczące wyłączników, a ich zastosowanie w praktyce pomaga w minimalizacji ryzyka uszkodzenia instalacji oraz zapewnienia bezpieczeństwa użytkowników. Przykładem może być sytuacja, w której w obwodzie z silnikiem występuje krótki impuls prądowy, co może prowadzić do zadziałania wyłącznika, zanim dojdzie do poważniejszych uszkodzeń. Stosując wyłączniki typu Z, można skutecznie ograniczyć ryzyko zwarć w obwodach o niskiej tolerancji na prądy zwarciowe.

Pytanie 9

Co oznacza symbol literowy YKY?

A. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
B. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
C. kabel z żyłami miedzianymi w izolacji z PVC
D. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
Odpowiedź wskazująca na kabel o żyłach miedzianych w izolacji polwinitowej jest poprawna, ponieważ symbol literowy YKY odnosi się do kabli, które są powszechnie stosowane w instalacjach elektrycznych. Kable te charakteryzują się miedzianymi żyłami, co zapewnia dobrą przewodność elektryczną oraz odporność na korozję, a ich izolacja wykonana z polichlorku winylu (PVC) oferuje wysoką odporność na działanie niekorzystnych czynników atmosferycznych. Kable YKY są często wykorzystywane w systemach zasilania, w rozdzielniach elektrycznych czy w instalacjach przemysłowych, gdzie wymagana jest niezawodność i bezpieczeństwo. Dodatkowo, zgodnie z normą PN-EN 50525, kable YKY mogą być stosowane w warunkach, gdzie wymagana jest odporność na wysokie temperatury, co sprawia, że są one wszechstronne w zastosowaniach. Przykłady zastosowania obejmują zarówno instalacje w budynkach mieszkalnych, jak i przemysłowych, gdzie kable legitymują się dobrymi parametrami mechanicznymi oraz elektrycznymi niezbędnymi do efektywnego funkcjonowania systemów zasilających.

Pytanie 10

Którym zestawem przyrządów pomiarowych można w przypadku braku watomierza wyznaczyć moc czynną pobieraną przez silnik elektryczny zasilany z instalacji jednofazowej?

Amperomierz
Częstościomierz
Waromierz
Amperomierz
Częstościomierz
Woltomierz
Omomierz
Waromierz
Woltomierz
Amperomierz
Waromierz
Woltomierz
ABCD
A. D.
B. B.
C. A.
D. C.
Odpowiedź D jest prawidłowa, ponieważ zestaw przyrządów składający się z amperomierza i woltomierza jest wystarczający do pomiaru mocy czynnej silnika elektrycznego zasilanego z instalacji jednofazowej. W obwodach jednofazowych moc czynna obliczana jest na podstawie wzoru P = U * I * cos(φ), gdzie U to napięcie, I to natężenie prądu, a cos(φ) to współczynnik mocy. Amperomierz umożliwia pomiar natężenia prądu, natomiast woltomierz pozwala na pomiar napięcia. Znajomość wartości obu tych parametrów pozwala na obliczenie mocy czynnej silnika. Przykładowo, jeśli zmierzymy napięcie w obwodzie jako 230 V i natężenie prądu jako 10 A, a współczynnik mocy ustalimy na 0,8, moc czynna wyniesie P = 230 * 10 * 0,8 = 1840 W. Taka metoda jest zgodna z praktykami stosowanymi w elektrotechnice i jest szeroko akceptowana w branży.

Pytanie 11

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Rysunek C został poprawnie zidentyfikowany jako schemat montażowy, ponieważ spełnia kluczowe kryteria związane z przedstawianiem układów elektrycznych. Schemat montażowy jest niezbędnym narzędziem w projektowaniu i wykonawstwie instalacji elektrycznych, umożliwiającym zrozumienie, jak poszczególne elementy urządzeń są połączone i rozmieszczone. W kontekście praktycznym, schemat montażowy dostarcza informacji na temat lokalizacji i sposobu montażu urządzeń, co jest kluczowe dla prawidłowego działania i bezpieczeństwa instalacji. Zawiera on także szczegóły odnośnie do przewodów, co ułatwia identyfikację i unikanie potencjalnych błędów podczas instalacji. Przykładem zastosowania schematów montażowych może być instalacja rozdzielnicy elektrycznej w budynku mieszkalnym, gdzie poprawne odwzorowanie połączeń elektrycznych gwarantuje nie tylko efektywność, ale i bezpieczeństwo użytkowników. Ponadto, zgodność z normami takimi jak PN-IEC 60364, która definiuje wymagania dotyczące instalacji elektrycznych, podkreśla znaczenie dokładności i czytelności schematów montażowych w praktyce inżynieryjnej.

Pytanie 12

Aby prawidłowo wykonać otwór w twardym betonie pod gniazdo sieciowe, konieczne jest użycie wiertarki oraz

A. wyrzynarki do głębokich cięć
B. otwornicy z segmentami diamentowymi
C. młotka z przecinakiem
D. otwornicy z nasypem wolframowym
Używanie otwornicy z nasypem wolframowym do wiercenia w twardym betonie to nie najlepszy pomysł, bo takie narzędzia są bardziej do drewna czy plastiku. W betonie ten nasyp wolframowy szybko się zużywa, co sprawia, że wiercenie staje się mniej efektywne i mniej precyzyjne. Wyrzynarka? To też nie to – jest stworzona do cięcia wzdłuż, a nie do robienia otworów w betonie. Młotek z przecinakiem może wydawać się pomocny, ale nie daje precyzji, która jest ważna, np. przy montażu gniazd sieciowych. Często ludzie mają niewłaściwe wyobrażenie o użyciu narzędzi, co bierze się z braku wiedzy o materiałach budowlanych. Wybór odpowiedniego narzędzia to klucz, żeby wszystko poszło sprawnie i dobrze. Lepiej trzymać się sprawdzonych rozwiązań, które polecają fachowcy.

Pytanie 13

Na rysunku przedstawiono wnętrze jednej z rozdzielnic mieszkaniowych zasilonych z rozdzielnicy głównej trzypiętrowego budynku. Które urządzenie, stanowiące część rozdzielnicy mieszkaniowej, oznaczono strzałką?

Ilustracja do pytania
A. Stycznik.
B. Rozłącznik instalacyjny.
C. Wyłącznik nadmiarowoprądowy.
D. Ogranicznik przepięć.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ to urządzenie jest kluczowym elementem ochrony instalacji elektrycznej przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych lub nagłych zmian w sieci zasilającej. Ograniczniki przepięć mają za zadanie zredukować napięcie do poziomu, który nie zagraża sprzętowi elektrycznemu. W praktyce stosuje się je w mieszkaniach, biurach oraz w obiektach przemysłowych, aby zabezpieczyć wrażliwe urządzenia, takie jak komputery czy systemy automatyki. Zgodnie z normami, takimi jak PN-EN 61643-11, ograniczniki te powinny być instalowane w bliskim sąsiedztwie chronionych urządzeń, co zapewnia ich skuteczność. Warto również wspomnieć, że ograniczniki przepięć są dostępne w różnych klasach, co pozwala na ich dobór zgodnie z charakterystyką instalacji oraz potrzebami użytkownika, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 14

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na rysunku?

Ilustracja do pytania
A. BN, BK, GNYE
B. BU, GY, GNYE
C. BK, BU, GY
D. BN, BK, GY
Odpowiedź "BN, BK, GY" jest prawidłowa, ponieważ odpowiada kolorom izolacji przewodów przedstawionych na rysunku. Przewód brązowy (BN) jest powszechnie stosowany jako przewód fazowy w instalacjach elektrycznych, podczas gdy przewód czarny (BK) również może być używany w tej roli, szczególnie w konfiguracjach wielofazowych. Przewód szary (GY) jest zazwyczaj stosowany jako przewód neutralny, co jest zgodne z normą PN-IEC 60446, która określa zasady oznaczania kolorami przewodów elektrycznych. Zastosowanie odpowiednich kolorów jest istotne dla bezpieczeństwa i efektywności instalacji, umożliwiając identyfikację funkcji każdego przewodu w systemie. Dobrą praktyką w projektowaniu i wykonawstwie instalacji elektrycznych jest stosowanie ustalonych kolorów izolacji, co ułatwia późniejsze prace konserwacyjne oraz diagnostyczne, zmniejszając ryzyko błędów.

Pytanie 15

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Wielożyłowy uzbrojony.
B. Jednodrutowy nieuzbrojony.
C. Jednożyłowy uzbrojony.
D. Wielodrutowy nieuzbrojony.
Właściwa odpowiedź to "Wielodrutowy nieuzbrojony", co można łatwo zidentyfikować na podstawie charakterystyki przedstawionego przewodu. Przewody wielodrutowe są powszechnie stosowane w instalacjach elektrycznych, ze względu na ich elastyczność oraz zdolność do prowadzenia prądu. Składają się z wielu cienkich drutów, które są ze sobą splecione, co zwiększa ich wydajność energetyczną i elastyczność. Zastosowanie izolacji zewnętrznej jest kluczowe, aby zapobiec przepływowi prądu do elementów otaczających, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60228, która określa wymagania dotyczące przewodów elektrycznych. W praktyce takie przewody są wykorzystywane w domowych instalacjach elektrycznych, w systemach oświetleniowych oraz w instalacjach przemysłowych, gdzie wymagana jest duża mobilność i odporność na różne warunki atmosferyczne. Ich nieuzbrojona konstrukcja oznacza, że nie posiadają dodatkowych elementów ochronnych, takich jak metalowe osłony, co czyni je idealnymi do użytku w miejscach, gdzie nie ma ryzyka uszkodzeń mechanicznych.

Pytanie 16

Który rodzaj pomiaru pokazany jest na rysunku?

Ilustracja do pytania
A. Impedancji zwarciowej.
B. Rezystancji izolacji stanowiska.
C. Napięcia dotykowego.
D. Ciągłości przewodów.
Nieznajomość pomiarów elektrycznych może prowadzić do błędnych wniosków i zagrożeń. Widzisz, jeśli chodzi o napięcie dotykowe, ciągłość przewodów czy impedancję zwarciową, to nie są te same pojęcia co pomiar rezystancji izolacji. Napięcie dotykowe dotyczy zagrożenia, jakie występuje, gdy mamy do czynienia z elementami pod napięciem. Jego pomiar nie mówi nic o stanie izolacji, a bardziej o ryzyku. Z kolei pomiar ciągłości przewodów potwierdza, że wszystko działa jak powinno, więc to też oddzielna sprawa. A impedancja zwarciowa to zupełnie inny temat, bo bada, co się dzieje w przypadku zwarcia. Mylenie tych pojęć może prowadzić do nieodpowiednich działań, a w konsekwencji do poważnych awarii. Dlatego ważne jest, żeby zrozumieć, czym różnią się te pomiary oraz jak je stosować w kontekście bezpieczeństwa instalacji elektrycznych.

Pytanie 17

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. LgY
B. YADY
C. XzTKMXpw
D. DYt
Wybór innych typów przewodów, takich jak LgY, DYt czy XzTKMXpw, jest wynikiem niepełnego zrozumienia materiałów izolacyjnych i ich właściwości. Przewód LgY wyposażony jest zazwyczaj w powłokę z tworzywa sztucznego, ale nie jest to polwinit, co ogranicza jego zastosowanie w środowisku narażonym na działanie wysokich temperatur oraz agresywnych substancji chemicznych. Z kolei przewody DYt, które są stosowane w aplikacjach sygnalizacyjnych, również nie mają powłoki z polwinitu, co czyni je mniej odpowiednimi do zastosowań, gdzie wymagana jest duża odporność na czynniki zewnętrzne. Przewód XzTKMXpw jest natomiast typem, który może być używany w specyficznych warunkach, ale brak dokładnych informacji o jego zastosowaniach oraz materiałach izolacyjnych sprawia, że nie można go uznać za praktyczny wybór w kontekście powłoki z polwinitu. Wybór niewłaściwego typu przewodu wynika często z braku wiedzy na temat standardów branżowych oraz właściwych praktyk dotyczących instalacji elektrycznych, co może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i efektywności energetycznej. Właściwy dobór przewodów jest kluczowy dla zapewnienia nieprzerwanego działania systemów elektrycznych oraz ochrony przed potencjalnymi awariami.

Pytanie 18

W oprawie oświetleniowej należy wymienić uszkodzony kondensator o danych 9 µF/230 VAC/50 Hz. Dobierz dwa kondensatory spośród dostępnych i określ sposób ich połączenia w celu wymiany uszkodzonego.

Dostępne kondensatory:
10 μF/100 VAC/50 Hz
18 μF/100 VAC/50 Hz
2,0 μF/230 VAC/50 Hz
4,0 μF/230 VAC/50 Hz
4,5 μF/230 VAC/50 Hz
A. 4,5 µF i połączyć równolegle.
B. 18 µF i połączyć równolegle.
C. 18 µF i połączyć szeregowo.
D. 4,5 µF i połączyć szeregowo.
Twoja odpowiedź jest poprawna, ponieważ połączenie równoległe dwóch kondensatorów o pojemności 4,5 µF tworzy łączną pojemność równą 9 µF, co jest dokładnie wymagane do zastąpienia uszkodzonego kondensatora. W praktyce, w przypadku układów elektrycznych, zachowanie odpowiedniej pojemności jest kluczowe dla stabilności działania urządzenia. Połączenie równoległe jest również zgodne z dobrymi praktykami projektowania układów elektronicznych, gdyż pozwala na zwiększenie pojemności, podczas gdy napięcie pracy kondensatorów musi być zgodne z wymaganiami sieci, w tym przypadku 230 VAC. Wybierając kondensatory, zwróć uwagę na ich maksymalne napięcie pracy oraz pojemność. Takie podejście zapewnia nie tylko bezpieczeństwo, ale także długotrwałe i niezawodne działanie zasilanych układów. Upewnij się, że nowo zastosowane kondensatory są odpowiednio zabezpieczone przed przeciążeniem, co może znacząco wpłynąć na ich żywotność.

Pytanie 19

Symbol graficzny którego przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. Ochronnego.
B. Uziemiającego.
C. Neutralnego.
D. Fazowego.
Odpowiedź wskazująca na przewód neutralny jest prawidłowa, ponieważ symbol przedstawiony na ilustracji jest zgodny z normami IEC (Międzynarodowej Komisji Elektrotechnicznej), które określają oznaczenia przewodów w instalacjach elektrycznych. Przewód neutralny, oznaczony symbolem 'N', pełni kluczową rolę w systemach zasilania, umożliwiając powrót prądu do źródła zasilania. W praktyce przewód neutralny jest stosowany w instalacjach jednofazowych oraz trójfazowych, gdzie jego obecność zapewnia stabilność pracy urządzeń elektrycznych. Ważnym aspektem jest również odpowiednie podłączenie przewodu neutralnego do uziemienia w rozdzielnicy, co zwiększa bezpieczeństwo użytkowania instalacji oraz minimalizuje ryzyko porażenia prądem. Wszelkie prace związane z instalacjami elektrycznymi powinny być przeprowadzane zgodnie z normami PN-IEC, a także z zasadami BHP, co podkreśla znaczenie właściwego rozpoznawania i stosowania symboli przewodów.

Pytanie 20

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Docinania przewodu.
B. Ściągania izolacji z przewodu.
C. Zaciskania końcówek oczkowych.
D. Zaciskania końcówek tulejkowych.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.

Pytanie 21

Który aparat obwodu głównego będzie włączony zgodnie z przedstawionym schematem między wyłącznik różnicowoprądowy a stycznik?

Ilustracja do pytania
A. Rozłącznik bezpiecznikowy.
B. Przekaźnik przeciążeniowy.
C. Wyłącznik silnikowy.
D. Ochronnik przeciwprzepięciowy.
Wyłącznik silnikowy to naprawdę ważne urządzenie, które chroni silniki elektryczne przed różnymi problemami, jak przeciążenie czy zwarcie. Jak patrzysz na ten schemat, to zauważ, że symbol Q1 pokazuje, gdzie on jest, pomiędzy wyłącznikiem różnicowoprądowym a stycznikiem. Ten wyłącznik nie tylko włącza i wyłącza silnik, ale też pilnuje, ile prądu przez niego płynie. Jeśli prąd przekroczy ustaloną wartość, to automatycznie go odcina, co naprawdę chroni silnik oraz inne elementy. W elektryce mamy różne normy, jak na przykład IEC 60947-4-1, które mówią, jakie muszą być te wyłączniki. Wiadomo, że są one super przydatne w wielu branżach, od automatyki po systemy grzewcze, co pokazuje, jak ważne są dla bezpieczeństwa operacyjnego.

Pytanie 22

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±0,37 mA
B. ±2,35 mA
C. ±0,02 mA
D. ±0,35 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentową dokładność, jak i dodatkowe cyferki. W naszym przypadku multimetr wyświetlił rezultat 35,00 mA, a dokładność producenta została określona jako ±(1 % +2). Rozpoczynamy od obliczenia 1 % z 35,00 mA, co daje 0,35 mA. Następnie dodajemy stałą wartość 2 jednostek, co w przypadku mA odpowiada 2 mA. Sumując te wartości, uzyskujemy 0,35 mA + 2 mA = 2,35 mA, co wskazuje, że przy takiej dokładności błąd może być dość istotny. Jednak dla pomiarów w praktyce do obliczeń najczęściej stosuje się wartości w granicach typowych pomiarów. Wartość ±0,37 mA, która została uznana za poprawną, uwzględnia precyzyjne zaokrąglenie i daje bardziej realistyczny obraz błędu, gdyż błąd nie powinien przekraczać jednostek pomiarowych, co w praktyce oznacza, że nawet niewielkie różnice mogą wpływać na dalsze analizy. Tego rodzaju wiedza jest kluczowa w wielu dziedzinach, zwłaszcza w inżynierii i elektrotechnice, gdzie precyzyjne pomiary są niezbędne do prawidłowego funkcjonowania systemów elektrycznych i elektronicznych.

Pytanie 23

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
B. niepriorytetowym, zostaje wyłączony obwód priorytetowy
C. priorytetowym, zostaje wyłączony obwód niepriorytetowy
D. priorytetowym, zostaje wyłączony obwód priorytetowy
Odpowiedź dotycząca wyłączenia obwodu niepriorytetowego w przypadku przekroczenia ustawionej wartości natężenia prądu w obwodzie priorytetowym jest poprawna. Przekaźniki priorytetowe są kluczowymi elementami w systemach zarządzania energią, gdzie zapewniają odpowiednie gospodarowanie dostępnymi zasobami elektrycznymi. W praktyce oznacza to, że gdy prąd w obwodzie priorytetowym osiąga niebezpieczny poziom, przekaźnik automatycznie odłącza obwód niepriorytetowy, aby zminimalizować ryzyko przeciążenia oraz uszkodzenia urządzeń. Takie rozwiązanie jest szczególnie istotne w instalacjach przemysłowych, gdzie obciążenie elektryczne może być dynamiczne. Normy, takie jak PN-IEC 60947, określają zasady projektowania i użytkowania takich urządzeń, a ich przestrzeganie zapewnia większe bezpieczeństwo oraz efektywność energetyczną systemów elektrycznych. Dobrą praktyką jest również regularne monitorowanie stanu przekaźników i ich konfiguracji, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 24

Do wykonywania której czynności przeznaczone jest narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Mocowania przewodów wtynkowych do ściany.
B. Przecinania karbowanych rur winidurowych.
C. Zaciskania tulejek na końcówkach przewodów.
D. Odizolowywania żył przewodów.
Narzędzie przedstawione na zdjęciu to automatyczne szczypce do ściągania izolacji, które służą do odizolowywania żył przewodów elektrycznych. Dzięki zastosowaniu tego narzędzia, proces odizolowywania jest nie tylko szybszy, ale także bardziej precyzyjny, co minimalizuje ryzyko uszkodzenia samego przewodu. W praktyce narzędzie to jest niezwykle przydatne w pracach związanych z instalacjami elektrycznymi, gdzie dokładność i bezpieczeństwo są kluczowe. Używając szczypiec do ściągania izolacji, elektrycy mogą skutecznie przygotować przewody do podłączeń, co jest szczególnie ważne w kontekście standardów bezpieczeństwa takich jak normy IEC 60364, które określają wymagania dla instalacji elektrycznych niskiego napięcia. Dobre praktyki w branży zalecają również, aby zawsze używać odpowiednich narzędzi dla konkretnego zadania, co nie tylko zwiększa efektywność pracy, ale także zapewnia bezpieczeństwo operacji. Narzędzie to jest zaprojektowane tak, aby dostosowywać się do różnych średnic przewodów, co czyni je uniwersalnym rozwiązaniem dla elektryków.

Pytanie 25

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TN-C
B. TT
C. TN-S
D. IT
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 26

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SZR
B. SRN
C. SPZ
D. SCO
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 27

Co może być przyczyną wzrostu temperatury łącznika puszkowego po włączeniu oświetlenia?

A. Zbyt niska moc żarówki
B. Przerwa w obwodzie lampy
C. Luźny przewód w przełączniku
D. Zwarcie w obwodzie lampy
Zbyt mała moc żarówki w żaden sposób nie wpływa na nagrzewanie się łącznika puszkowego, ponieważ moc żarówki jest dostosowana do standardowych parametrów instalacji. W przypadku zbyt słabej żarówki, nie osiągnie ona odpowiedniego poziomu jasności, ale nie spowoduje to wzrostu temperatury w łączniku. Zwarcie w obwodzie oświetleniowym żarówki może prowadzić do poważnych problemów, takich jak przepalenie bezpieczników, ale nie jest bezpośrednio związane z nagrzewaniem się łącznika puszkowego. Zwarcie generuje ogromne natężenie prądu, co prowadzi do uszkodzeń elementów obwodu, ale w tym przypadku nagrzewanie łącznika miałoby inne przyczyny, często związane z uszkodzeniem izolacji. Przerwa w obwodzie oświetleniowym żarówki skutkuje brakiem przepływu prądu, co również nie może być przyczyną nagrzewania. Naturalnie, błąd logiczny polega na myleniu przyczyn z objawami oraz niedostatecznym zrozumieniu działania i specyfiki instalacji elektrycznych. W praktyce, kluczowe jest zrozumienie, że nagrzewanie łącznika nie jest efektem biernym, a wynika z aktywnego przepływu prądu przez elementy obwodu, co w żadnym z wymienionych przypadków nie ma miejsca.

Pytanie 28

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Wyzwalacza przeciążeniowego.
B. Komory łukowej.
C. Styku ruchomego.
D. Wyzwalacza zwarciowego.
Element wskazany na rysunku czerwoną strzałką to wyzwalacz zwarciowy, który odgrywa kluczową rolę w działaniu wyłącznika nadprądowego. Jego podstawowym zadaniem jest szybkie reagowanie na sytuacje zwarciowe, co jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznej. W momencie wystąpienia zwarcia, następuje gwałtowny wzrost prądu, który wyzwalacz wykrywa i natychmiast przerywa obwód elektryczny. To działanie zapobiega uszkodzeniom przewodów oraz innych elementów instalacji, a także minimalizuje ryzyko pożaru. W praktyce, zastosowanie wyzwalacza zwarciowego jest normą w instalacjach elektrycznych, a jego obecność jest zgodna z normami takimi jak PN-EN 60947-2, które regulują kwestie bezpieczeństwa urządzeń elektrycznych. Dzięki zastosowaniu wyzwalaczy zwarciowych, użytkownicy mogą mieć pewność, że ich instalacja będzie chroniona przed niebezpiecznymi skutkami awarii. Dodatkowo, w wielu systemach automatyki budynkowej wyzwalacze te mogą być integrowane z systemami monitoringu, co zwiększa poziom ochrony.

Pytanie 29

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Nożem monterskim
B. Neonowym wskaźnikiem napięcia
C. Wkrętakiem
D. Kluczem płaskim
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 30

Instalacja elektryczna, której odbiorniki oznaczone są symbolem graficznym pokazanym na rysunku

Ilustracja do pytania
A. jest zasilana bardzo niskim napięciem.
B. ma uziemione przewodzące obudowy odbiorników.
C. posiada podwójną lub wzmocnioną izolację.
D. nie posiada ochrony przed dotykiem pośrednim.
Odpowiedź "jest zasilana bardzo niskim napięciem" jest prawidłowa, ponieważ symbol graficzny na rysunku oznacza urządzenie elektryczne klasy III. Urządzenia tej klasy są projektowane do pracy w systemach zasilanych bardzo niskim napięciem (SELV - Safety Extra Low Voltage), co znacząco zwiększa bezpieczeństwo użytkowania. Dzięki zastosowaniu niskiego napięcia, ryzyko wystąpienia porażenia elektrycznego jest minimalne, co czyni te urządzenia idealnymi do użytku w warunkach, gdzie występuje zwiększone ryzyko kontaktu z wodą lub wilgocią. W praktyce, urządzenia klasy III są szeroko stosowane w instalacjach, takich jak oświetlenie w łazienkach, zasilanie urządzeń w ogrodach czy w obiektach publicznych. Standardy elektrotechniczne, takie jak IEC 61140, definiują zasady bezpieczeństwa dla tego typu urządzeń, co potwierdza ich zaufanie w zastosowaniach na całym świecie.

Pytanie 31

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. rozłącznika
B. wyłącznika nadprądowego
C. wyłącznika różnicowoprądowego
D. odłącznika
Wyłącznik różnicowoprądowy, czyli RCD, to naprawdę ważne urządzenie, które czuwa nad bezpieczeństwem w naszych instalacjach elektrycznych. Jego zadanie polega na tym, że sprawdza, czy prąd, który płynie do urządzenia, jest równy prądowi, który z niego wypływa. Kiedy te dwa prądy się różnią, to może znaczyć, że coś jest nie tak, na przykład prąd może uciekać do ziemi. W takiej sytuacji RCD odłącza zasilanie, co znacznie zmniejsza ryzyko porażenia prądem. Jeśli chodzi o obudowy urządzeń AGD, to napięcie na ich powierzchni może być oznaką problemów z izolacją. Gdy urządzenie ma uszkodzenie, może dojść do niebezpiecznego kontaktu między elementami pod napięciem a obudową. Dlatego tak ważne są wyłączniki różnicowoprądowe, które spełniają normy IEC 61008, bo pomagają one zminimalizować ryzyko. Regularne sprawdzanie ich działania powinno być rutyną w każdym gospodarstwie domowym, żeby wszystko było bezpieczne.

Pytanie 32

Z którym zaciskiem będzie połączony zacisk 23 stycznika K2, jeżeli układ elektryczny zostanie zmontowany zgodnie z przedstawionym schematem montażowym?

Ilustracja do pytania
A. Z zaciskiem X1 lampki kontrolnej H1
B. Z zaciskiem 1 listwy zaciskowej X1
C. Z zaciskiem 21 przycisku S1
D. Z zaciskiem 2 listwy zaciskowej X1
Wybór innych zacisków, takich jak zacisk 21 przycisku S1 lub zacisku 1 listwy zaciskowej X1, jest wynikiem nieporozumienia dotyczącego funkcji poszczególnych elementów w układzie. Zacisk 21 przycisku S1 jest z reguły odpowiedzialny za aktywację obwodu, a nie za bezpośrednie połączenie ze stycznikiem K2. Podobnie, zacisk 1 listwy zaciskowej X1 może pełnić inną rolę, na przykład zasilania, co sprawia, że jego wybór w tej sytuacji jest błędny. Warto zauważyć, że selekcja niewłaściwych połączeń często wynika z niepełnego zrozumienia schematu, co może prowadzić do konsekwencji w postaci niesprawności urządzenia. W przypadku lampki kontrolnej H1, która jest zazwyczaj używana do sygnalizacji stanu pracy układu, jej zacisk także nie ma bezpośredniego związku z zaciskiem 23 stycznika K2. Ignorowanie schematów montażowych i standardowych procesów może prowadzić do poważnych problemów nie tylko w funkcjonowaniu urządzeń, ale również w kontekście bezpieczeństwa elektrycznego. Dlatego kluczowe jest, aby każda osoba pracująca z instalacjami elektrycznymi miała solidne podstawy teoretyczne i praktyczne, co pozwoli uniknąć typowych błędów w analizie schematów i połączeń.

Pytanie 33

Na którym rysunku przedstawiono przewód instalacyjny wtynkowy typu YDYt?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Poprawna odpowiedź to B, ponieważ przewód instalacyjny wtynkowy typu YDYt jest miedzianym przewodem jednodrutowym, który ma charakterystyczną izolację z PVC. Takie przewody są projektowane do stosowania w instalacjach elektrycznych, w miejscach, gdzie można je przybijać do ścian bez ryzyka uszkodzenia izolacji. Na zdjęciu B widzimy przewód, w którym żyły są oddzielone, co rzeczywiście odpowiada normom dla przewodów tego typu. Przewody YDYt są często wykorzystywane w instalacjach wewnętrznych, gdzie ich układ nie wymaga dodatkowej ochrony mechanicznej. Dzięki swojej konstrukcji, przewody te pozwalają na łatwy montaż i estetyczne wykończenie, co jest szczególnie ważne w budynkach mieszkalnych i biurowych. W praktyce oznacza to, że instalatorzy mogą je stosować w różnych konfiguracjach, co wpływa na elastyczność projektowania instalacji elektrycznych. Zgodność z normami PN-EN 60228 oraz PN-EN 50525-2-21 potwierdza ich jakość oraz bezpieczeństwo użytkowania.

Pytanie 34

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 10 mm2
B. 2,5 mm2
C. 6 mm2
D. 4 mm2
Wybór przekroju żył przewodu czterożyłowego o przekroju 6 mm² dla obciążenia 36 A jest zgodny z zasadami doboru przewodów elektrycznych. W tabelach obciążalności długotrwałej, przewody ułożone na ścianie, na uchwytach, są klasyfikowane w kolumnach, które uwzględniają różne warunki ułożenia i obciążenia. W przypadku prądu znamionowego 36 A, najbliższą większą wartością w tabeli jest 43 A, co odpowiada przekrojowi 6 mm². Przekrój ten zapewnia odpowiednie zabezpieczenie przed przegrzaniem przewodów, co jest kluczowe dla bezpieczeństwa instalacji. Należy również pamiętać, że w praktyce, wybór odpowiedniego przekroju żył powinien uwzględniać nie tylko prąd znamionowy, ale także długość przewodu, rodzaj materiału (miedź czy aluminium) oraz warunki zewnętrzne, takie jak temperatura otoczenia. W przypadku zastosowań domowych, gdzie wymagane jest zasilanie urządzeń o dużym poborze mocy, takich jak piece trójfazowe, właściwy dobór przekroju przewodów ma istotne znaczenie dla zapewnienia ich niezawodności i bezpieczeństwa. Ogólnie rzecz biorąc, przestrzeganie norm i standardów, takich jak PN-EN 60204-1, jest niezbędne dla każdego elektryka.

Pytanie 35

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 4 i 8
B. 1 i 7
C. 7 i 8
D. 1 i 4
Odpowiedź 7 i 8 jest prawidłowa, ponieważ zgodnie z przedstawionymi schematami w instrukcji fabrycznej, te wyprowadzenia czujnika kontroli i zaniku faz są zaprojektowane do szeregowego połączenia z cewką stycznika. W praktyce oznacza to, że czujnik monitoruje obecność wszystkich faz w układzie. W przypadku zaniku jednej z faz, obwód jest otwierany, co skutkuje deaktywacją cewki stycznika i wyłączeniem silnika. Takie rozwiązanie jest zgodne z najlepszymi praktykami w zakresie automatyki przemysłowej, gdzie ochrona silników przed pracą w warunkach braku fazy jest kluczowa dla ich żywotności i bezpieczeństwa operacyjnego. Zastosowanie czujników zaniku faz w układach zasilania nie tylko zabezpiecza urządzenia przed uszkodzeniami, ale również zwiększa efektywność operacyjną całego systemu, zapewniając ciągłość pracy. Warto zaznaczyć, że zgodność z normami bezpieczeństwa, takimi jak IEC 60204-1, staje się niezbędna w projektowaniu takich układów, aby spełniały one wymogi dotyczące bezpieczeństwa i niezawodności.

Pytanie 36

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Pomiar rezystancji izolacji i próbne uruchomienie
B. Sprawdzenie układów sterowania i sygnalizacji
C. Impregnację uzwojeń i wyważenie wirnika
D. Sprawdzenie układów rozruchowych i regulacyjnych
Sprawdzanie układów sterowania i sygnalizacji, układów rozruchowych oraz regulacyjnych, a także impregnacja uzwojeń i wyważanie wirnika to ważne czynności związane z konserwacją silnika elektrycznego, jednak nie są one pierwszymi krokami, które powinny zostać podjęte po przeprowadzeniu konserwacji. Często błędnie uważa się, że wszystkie te czynności są równoważne, co może prowadzić do niedocenienia znaczenia pomiaru rezystancji izolacji. Układy sterowania i sygnalizacji powinny być sprawdzane regularnie, ale to pomiary izolacji są kluczowe dla zapewnienia bezpiecznej pracy silnika, zwłaszcza po konserwacji, gdy mogą wystąpić zmiany w stanie izolacji. Podobnie, chociaż sprawdzenie układów rozruchowych i regulacyjnych jest niezbędne, powinno się je przeprowadzać po wcześniejszym upewnieniu się, że izolacja jest w odpowiednim stanie. Impregnacja uzwojeń i wyważanie wirnika to zaawansowane czynności, które również są istotne, ale nie są konieczne po każdej konserwacji i powinny być wykonywane w odpowiednich odstępach czasu, zgodnie z zaleceniami producenta. Zbagatelizowanie pomiaru izolacji może prowadzić do niebezpiecznych sytuacji, takich jak zwarcie czy uszkodzenie silnika, co jest niezgodne z zasadami bezpieczeństwa pracy i eksploatacji urządzeń elektrycznych.

Pytanie 37

Zamieszczony na rysunku zrzut ekranu przyrządu pomiarowego przedstawia wyniki pomiaru

Ilustracja do pytania
A. impedancji pętli zwarcia w sieci jednofazowej.
B. impedancji pętli zwarcia w sieci trójfazowej.
C. rezystancji izolacji przewodu w sieci jednofazowej.
D. rezystancji izolacji przewodu w sieci trójfazowej.
Wybór niepoprawnej odpowiedzi może wynikać z mylnego zrozumienia różnicy między pomiarem rezystancji izolacji a pomiarem impedancji pętli zwarcia. Impedancja pętli zwarcia jest mierzona w kontekście analizy bezpieczeństwa systemu zasilania i odnosi się do oporu, który prąd zwarciowy napotyka w trakcie zwarcia. Wartości impedancji pętli zwarcia są zazwyczaj znacznie niższe, ponieważ obejmują wszystkie elementy obwodu, w tym przewody i urządzenia ochronne. Mierzenie impedancji pętli zwarcia w sieci trójfazowej miałoby zupełnie inny kontekst i byłoby wykonywane z użyciem odmiennych technik oraz z wykorzystaniem innych jednostek miary. Ponadto, rezystancja izolacji, która jest mierzona w megaomach, stanowi kluczowy wskaźnik stanu izolacji przewodów, co jest zupełnie innym procesem niż analiza impedancji pętli zwarcia. W praktyce, technicy często mylą te pojęcia, co prowadzi do niewłaściwego stosowania metod pomiarowych i interpretacji wyników. Zrozumienie podstawowych różnic między tymi pomiarami jest kluczowe dla zapewnienia bezpieczeństwa oraz sprawności instalacji elektrycznych.

Pytanie 38

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,4 s
B. 0,2 s
C. 0,1 s
D. 0,8 s
Maksymalny dopuszczalny czas wyłączenia w układach sieci typu TN przy napięciu zasilania 230 V wynosi 0,4 s, zgodnie z normą PN-IEC 60364-4-41:2000. Czas ten jest kluczowy w kontekście bezpieczeństwa użytkowników i ochrony instalacji elektrycznych. W układzie TN zastosowanie przewodów ochronnych oraz odpowiedniego zabezpieczenia (np. wyłączników nadprądowych i różnicowoprądowych) ma na celu zminimalizowanie ryzyka porażenia prądem. Przykładowo, w przypadku uszkodzenia izolacji, szybkie wyłączenie zasilania ogranicza czas, w którym występuje niebezpieczne napięcie na obudowach urządzeń elektrycznych. Z tego względu, normy te zalecają właśnie ten czas wyłączenia, który pozwala pełni zabezpieczyć użytkownika przed skutkami awarii. W praktyce, odpowiednie dobranie elementów zabezpieczających oraz ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, co czyni tę wiedzę niezbędną dla każdego specjalisty w tej dziedzinie.

Pytanie 39

Która z przedstawionych opraw oświetleniowych najlepiej nadaje się do oświetlenia ogólnego?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór innych opraw oświetleniowych, które nie są żyrandolami, może prowadzić do niewłaściwego oświetlenia pomieszczeń. Na przykład, jeżeli wybierzesz kinkiety, które są przeznaczone głównie do oświetlenia akcentującego, mogą one nie zapewnić wystarczającego rozproszenia światła w przestrzeni, co skutkuje niejednorodnym oświetleniem i tworzeniem cieni, które mogą być uciążliwe w codziennym użytkowaniu. Kinkiety są z reguły montowane na ścianach i skierowane na konkretne obszary, co sprawia, że są bardziej odpowiednie do podkreślania wybranych elementów dekoracyjnych lub do stworzenia przytulnej atmosfery, a nie do ogólnego oświetlenia. Ponadto, jeśli rozważasz zastosowanie lamp podłogowych, mogą one być niewystarczające, ponieważ często wymagają dodatkowego źródła światła, aby efektywnie oświetlić całe pomieszczenie. Typowe błędy myślowe związane z tymi wyborami polegają na nieuwzględnieniu faktu, że różne oprawy mają różne funkcje i zastosowania, co może prowadzić do nieefektywnego oświetlenia oraz niezadowolenia z komfortu użytkowania przestrzeni. Właściwe zrozumienie funkcji i zastosowania konkretnego rodzaju opraw oświetleniowych jest kluczowe dla osiągnięcia optymalnych warunków świetlnych w każdym pomieszczeniu.

Pytanie 40

Który przewód przedstawiono na rysunku?

Ilustracja do pytania
A. H03VV-F
B. H07V2-U
C. H07V-K
D. H03VVH2-F
Wybór niewłaściwych typów przewodów, takich jak H07V-K, H03VVH2-F czy H07V2-U, może prowadzić do poważnych błędów w projektowaniu instalacji elektrycznych. H07V-K jest przewodem sztywnym, przeznaczonym do instalacji stacjonarnych, co czyni go nieodpowiednim do zastosowań wymagających elastyczności. Z kolei H03VVH2-F jest przewodem elastycznym, jednak jego parametry techniczne i zastosowanie są inne niż w przypadku H03VV-F. H03VVH2-F posiada dodatkową izolację, co czyni go bardziej odpornym na uszkodzenia, ale nie jest typowym rozwiązaniem dla niskonapięciowych urządzeń przenośnych. H07V2-U to kolejny przewód sztywny, co ogranicza jego zastosowanie. Wybierając niewłaściwy typ przewodu, można narazić urządzenia na uszkodzenie, a także stwarzać zagrożenie pożarowe lub porażenia prądem. Zrozumienie różnic pomiędzy tymi typami przewodów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych, dlatego ważne jest, aby zwracać uwagę na konkretne parametry przewodów oraz ich zastosowanie zgodnie z aktualnymi normami branżowymi.