Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 19 grudnia 2025 01:17
  • Data zakończenia: 19 grudnia 2025 01:38

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Urządzenie warstwy dystrybucji, które odpowiada za połączenie odrębnych sieci oraz zarządzanie przepływem danych między nimi, nazywane jest

A. przełącznikiem
B. koncentratorem
C. serwerem
D. routerem
Router jest urządzeniem, które pełni kluczową rolę w łączeniu różnych sieci komputerowych oraz zarządzaniu przepływem danych między nimi. W przeciwieństwie do innych urządzeń sieciowych, jak przełączniki czy koncentratory, routery są zdolne do podejmowania decyzji o trasowaniu pakietów danych na podstawie ich adresów IP. Używają do tego protokołów routingu, takich jak RIP, OSPF czy BGP, co pozwala im na dynamiczne dostosowywanie tras w zależności od warunków w sieci. Przykładem zastosowania routera może być łączenie lokalnej sieci domowej z Internetem, gdzie router zarządza zarówno ruchem lokalnym, jak i komunikacją z siecią globalną. Dobre praktyki w zakresie konfiguracji routerów obejmują zabezpieczanie dostępu do panelu administracyjnego, aktualizowanie oprogramowania oraz stosowanie zapór sieciowych, aby chronić sieć przed nieautoryzowanym dostępem. Zrozumienie funkcji routerów jest kluczowe dla projektowania efektywnych i bezpiecznych architektur sieciowych.

Pytanie 2

Kabel skrętkowy, w którym każda para przewodów ma oddzielne ekranowanie folią, a wszystkie przewody są umieszczone w ekranie z folii, jest oznaczany symbolem

A. F/FTP
B. F/UTP
C. S/UTP
D. S/FTP
Wybór F/UTP, S/UTP lub S/FTP wiąże się z błędnym zrozumieniem różnic w konstrukcji i zastosowaniu kabli ekranowanych. F/UTP oznacza kabel, w którym tylko cała skrętka jest ekranowana, natomiast poszczególne pary przewodów są nieosłonięte. Działa to dobrze w mniej zakłóconych środowiskach, ale w przypadku silnych źródeł zakłóceń, jak urządzenia elektroniczne, wydajność może być znacznie obniżona. Z kolei S/UTP wskazuje na kabel z ekranowanymi przewodami, ale bez dodatkowego zewnętrznego ekranu, co skutkuje mniejszą ochroną przed zakłóceniami. W środowiskach z dużym natężeniem zakłóceń elektromagnetycznych, takie podejście może prowadzić do utraty jakości sygnału. S/FTP z kolei oznacza, że każda para jest ekranowana, ale cały kabel również ma zewnętrzny ekran, co sprawia, że jest to jedna z lepszych opcji w kontekście ochrony przed zakłóceniami. Niemniej jednak, użycie S/FTP w sytuacjach, gdzie F/FTP jest wystarczający, może prowadzić do niepotrzebnych kosztów i komplikacji w instalacji. Zrozumienie różnic jest kluczowe dla prawidłowego doboru kabli w zależności od warunków eksploatacyjnych oraz wymagań dotyczących przesyłu danych.

Pytanie 3

Które urządzenie sieciowe jest widoczne na zdjęciu?

Ilustracja do pytania
A. Most.
B. Przełącznik.
C. Karta sieciowa.
D. Modem.
Przełącznik, widoczny na zdjęciu, to kluczowe urządzenie w sieciach komputerowych, które umożliwia efektywne zarządzanie ruchem danych pomiędzy różnymi urządzeniami w sieci lokalnej (LAN). Działa na warstwie drugiej modelu OSI, co oznacza, że operuje na adresach MAC i potrafi inteligentnie kierować dane tylko do tych portów, które są rzeczywiście potrzebne, co znacznie zwiększa wydajność sieci. Przełączniki pozwalają na podłączenie wielu urządzeń, takich jak komputery, drukarki czy serwery, tworząc lokalne sieci, które mogą być następnie połączone z innymi sieciami za pomocą routerów. W praktyce, przełączniki są niezbędne w biurach i instytucjach, gdzie wiele urządzeń wymaga współdzielenia zasobów. W oparciu o standardy IEEE 802.3, nowoczesne przełączniki mogą obsługiwać różne prędkości transmisji danych, co czyni je elastycznym rozwiązaniem. Zrozumienie roli przełącznika jest kluczowe dla każdego, kto zajmuje się projektowaniem lub zarządzaniem infrastrukturą sieciową.

Pytanie 4

Przynależność komputera do danej sieci wirtualnej nie może być ustalana na podstawie

A. znacznika ramki Ethernet 802.1Q
B. adresu MAC karty sieciowej komputera
C. nazwa komputera w sieci lokalnej
D. numeru portu przełącznika
Nazwa komputera w sieci lokalnej, znana również jako hostname, jest używana głównie do identyfikacji urządzenia w bardziej przyjazny sposób dla użytkowników. Jednakże, nie ma wpływu na przypisanie komputera do konkretnej sieci wirtualnej, ponieważ przynależność ta opiera się na technicznych aspektach działania sieci, takich jak adresacja i mechanizmy VLAN. Wirtualne sieci lokalne (VLAN) są definiowane na poziomie przełączników sieciowych, które wykorzystują znaczniki ramki Ethernet 802.1Q do identyfikacji i segregacji ruchu. Dlatego, aby przypisać komputer do konkretnej VLAN, kluczowe jest wykorzystanie adresów MAC i numerów portów przełącznika, które są bezpośrednio związane z fizycznym połączeniem urządzenia w sieci. Zastosowanie VLAN-ów pozwala na efektywne zarządzanie ruchem sieciowym oraz zwiększenie bezpieczeństwa i organizacji w dużych środowiskach sieciowych. Zrozumienie tej kwestii jest niezbędne dla skutecznego projektowania i zarządzania infrastrukturą sieciową.

Pytanie 5

Jak można zidentyfikować przeciążenie w sieci lokalnej LAN?

A. analizatora protokołów sieciowych
B. reflektometru optycznego OTDR
C. diodowego testera okablowania
D. miernika uniwersalnego
Analizator protokołów sieciowych to kluczowe narzędzie w monitorowaniu i diagnostyce sieci lokalnych (LAN). Dzięki możliwości rejestrowania i analizy ruchu sieciowego, może on wykryć przeciążenie poprzez identyfikację spadków wydajności oraz zatorów w przesyłaniu danych. Na przykład, jeśli analizator wskazuje, że określony port jest mocno obciążony, administrator sieci może podjąć działania, takie jak optymalizacja trasowania pakietów czy zarządzanie przepustowością. W kontekście dobrych praktyk, wykorzystanie takich narzędzi pozwala na proaktywne zarządzanie siecią, zgodnie z zasadami ITIL (Information Technology Infrastructure Library), co zwiększa niezawodność i stabilność usług sieciowych. Warto również podkreślić, że analizatory protokołów, takie jak Wireshark, są standardem w branży, umożliwiając dogłębną analizę zarówno warstwy aplikacji, jak i transportowej, co jest niezbędne do zrozumienia i rozwiązania problemów z przeciążeniem.

Pytanie 6

Dokument PN-EN 50173 wskazuje na konieczność zainstalowania minimum

A. 1 punktu rozdzielczego na każde piętro.
B. 1 punktu rozdzielczego na cały wielopiętrowy budynek.
C. 1 punktu rozdzielczego na każde 100 m2 powierzchni.
D. 1 punktu rozdzielczego na każde 250 m2 powierzchni.
Odpowiedź dotycząca instalacji jednego punktu rozdzielczego na każde piętro budynku jest zgodna z normą PN-EN 50173, która reguluje zagadnienia związane z infrastrukturą telekomunikacyjną w budynkach. W kontekście projektowania systemu telekomunikacyjnego, kluczowe jest zapewnienie odpowiedniej liczby punktów rozdzielczych, aby umożliwić efektywne zarządzanie siecią oraz zapewnić dostęp do usług komunikacyjnych w każdym z pomieszczeń. Zgodnie z normą, umieszczanie punktów rozdzielczych na każdym piętrze zwiększa elastyczność w rozmieszczaniu urządzeń i zmniejsza długość kabli, co przekłada się na łatwiejszą instalację oraz konserwację systemu. Przykładowo, w budynkach o większej liczbie pięter, odpowiednia gęstość punktów rozdzielczych pozwala na lepsze dostosowanie infrastruktury do zmieniających się potrzeb użytkowników, takich jak dodawanie nowych urządzeń czy zmiany w organizacji przestrzeni biurowej. Dodatkowo, takie podejście jest zgodne z najlepszymi praktykami branżowymi oraz trendami w kierunku elastycznych rozwiązań telekomunikacyjnych.

Pytanie 7

Jakie urządzenie pozwala na stworzenie grupy komputerów, które są do niego podłączone i operują w sieci z identycznym adresem IPv4, w taki sposób, aby komunikacja między komputerami miała miejsce jedynie w obrębie tej grupy?

A. Punkt dostępu
B. Przełącznik zarządzalny
C. Konwerter mediów
D. Ruter z WiFi
Punkt dostępu to urządzenie, które umożliwia bezprzewodowy dostęp do sieci LAN, ale nie posiada funkcji segmentacji ruchu w taki sposób, aby ograniczać komunikację pomiędzy urządzeniami do konkretnej grupy. Punkt dostępu działa jako most, łącząc urządzenia bezprzewodowe z siecią przewodową, ale nie jest w stanie kontrolować ruchu danych w obrębie różnych użytkowników. W sytuacji, gdy wiele urządzeń jest podłączonych do jednego punktu dostępu, mogą one swobodnie komunikować się ze sobą oraz z innymi urządzeniami w sieci, co nie spełnia wymagań izolacji ruchu. Ruter z WiFi, z kolei, jest bardziej zaawansowanym urządzeniem, które umożliwia nie tylko dostęp do sieci, ale także routing pomiędzy różnymi sieciami. Jego główną funkcją jest kierowanie ruchu oraz zarządzanie adresacją IP, ale nie jest to tożsame z wydzieleniem grupy komputerów w ramach tej samej sieci. Konwerter mediów jest urządzeniem, które zmienia format sygnału (np. z miedzianego na światłowodowy), ale nie ma funkcji zarządzania ruchem w sieci ani wydzielania grup komputerów. Typowe błędy myślowe w przypadku tych odpowiedzi wynikają z nieporozumienia dotyczącego funkcji i zastosowań tych urządzeń; użytkownicy mogą mylić ich podstawowe role, co prowadzi do fałszywych wniosków na temat ich możliwości w kontekście zarządzania siecią.

Pytanie 8

Do których komputerów dotrze ramka rozgłoszeniowa wysyłana ze stacji roboczej PC1?

Ilustracja do pytania
A. PC2 i PC4
B. PC2 i PC6
C. PC3 i PC6
D. PC4 i PC5
Ramka rozgłoszeniowa wysyłana z PC1 dotrze do PC3 i PC6, ponieważ wszystkie te urządzenia znajdują się w tym samym VLANie, czyli VLAN10. W kontekście sieci komputerowych, ramki rozgłoszeniowe są mechanizmem pozwalającym na wysyłanie danych do wszystkich urządzeń w danym VLANie. To oznacza, że wszystkie urządzenia, które są logicznie połączone w tej samej grupie, mogą odbierać taką ramkę. Chociaż ramki rozgłoszeniowe są ograniczone do jednego VLANu, ich zastosowanie jest kluczowe w przypadku komunikacji w lokalnych sieciach. Przykładem mogą być protokoły ARP (Address Resolution Protocol), które wykorzystują ramki rozgłoszeniowe do mapowania adresów IP na adresy MAC. Z tego względu dobrze zrozumieć, jak działają VLANy oraz zasady ich izolacji, aby efektywnie zarządzać ruchem w sieci oraz poprawić jej bezpieczeństwo, co jest zgodne z najlepszymi praktykami w zarządzaniu sieciami.

Pytanie 9

Kabel skręcany o czterech parach, w którym każdy z przewodów jest otoczony ekranem foliowym, a ponadto wszystkie pary są dodatkowo zabezpieczone siatką, to kabel

A. SF/UTP
B. F/UTP
C. U/UTP
D. S/FTP
Każda z pozostałych odpowiedzi ma swoje specyficzne cechy, które nie odpowiadają dokładnie opisanej specyfikacji kabla. Odpowiedź SF/UTP oznacza kabel, w którym zewnętrzny ekran jest wspólny dla wszystkich par, ale nie ma osobnych ekranów dla każdej z par. To sprawia, że jego odporność na zakłócenia jest niższa w porównaniu do S/FTP. F/UTP, z kolei, oznacza kabel z ekranem folii dla całego układu par, a brak ekranowania dla poszczególnych par może prowadzić do większego ryzyka zakłóceń, zwłaszcza w gęsto zabudowanych środowiskach. U/UTP to najprostsza konstrukcja bez ekranowania w ogóle, co czyni go najmniej odpornym na zakłócenia elektromagnetyczne. Stosowanie kabli U/UTP w środowiskach o wysokim poziomie zakłóceń może prowadzić do degradacji jakości sygnału i zwiększonej liczby błędów przy transmisji danych. Typowe błędy myślowe, które mogą prowadzić do wyboru nieodpowiednich kabli, obejmują niedocenienie wpływu zakłóceń elektromagnetycznych oraz nieznajomość wymagań dotyczących konkretnego zastosowania. Warto zatem zapoznać się z wymaganiami sieci, aby dobrać odpowiedni kabel, który zapewni stabilne połączenie i wysoką wydajność transmisji danych.

Pytanie 10

Punkty abonenckie są rozmieszczone w równych odstępach, do nawiązania połączenia z najbliższym punktem wymagane jest 4 m kabla, a z najdalszym - 22 m. Koszt zakupu 1 m kabla wynosi 1 zł. Jaką kwotę trzeba przeznaczyć na zakup kabla UTP do połączenia 10 podwójnych gniazd abonenckich z punktem dystrybucyjnym?

A. 260 zł
B. 440 zł
C. 130 zł
D. 80 zł
Odpowiedzi takie jak 130 zł czy 440 zł wynikają raczej z niezrozumienia, jak to wszystko policzyć. Gdy mówisz, że 130 zł to pomijasz, że odległości do gniazd są różne. Myślenie, że wszystkie gniazda są w tej samej odległości, to błąd. Na przykład, średnia długość kabla to nie wszystko, bo każda odległość może być zupełnie inna i to może całkowicie zmienić koszty. Z kolei odpowiedź 440 zł, to chyba wynika z myślenia, że każde gniazdo musi mieć maksymalną długość kabla, co też jest mało prawdopodobne. W rzeczywistości, część gniazd jest bliżej i potrzebuje mniej kabla, więc koszty są niższe. W projektach instalacyjnych często jest tak, że ludzie przesadzają z zabezpieczeniem, przez co kupują więcej materiałów niż potrzebują. Zamiast tego, warto dokładnie pomierzyć i przeanalizować, co jest gdzie, żeby zmniejszyć wydatki. Opracowanie schematu instalacji to naprawdę dobra praktyka, bo ułatwia później wszystko zaplanować.

Pytanie 11

Fragment specyfikacji którego urządzenia sieciowego przedstawiono na ilustracji?

L2 Features• MAC Address Table: 8K
• Flow Control
   • 802.3x Flow Control
   • HOL Blocking Prevention
• Jumbo Frame up to 10,000 Bytes
• IGMP Snooping
   • IGMP v1/v2 Snooping
   • IGMP Snooping v3 Awareness
   • Supports 256 IGMP groups
   • Supports at least 64 static multicast addresses
   • IGMP per VLAN
   • Supports IGMP Snooping Querier
• MLD Snooping
   • Supports MLD v1/v2 awareness
   • Supports 256 groups
   • Fast Leave
• Spanning Tree Protocol
   • 802.1D STP
   • 802.1w RSTP
• Loopback Detection
• 802.3ad Link Aggregation
   • Max. 4 groups per device/8 ports per group (DGS-1210-08P)
   • Max. 8 groups per device/8 ports per group (DGS-1210-
     16/24/24P)
   • Max. 16 groups per device/8 ports per group (DGS-1210-48P)
• Port Mirroring
   • One-to-One, Many-to-One
   • Supports Mirroring for Tx/Rx/Both
• Multicast Filtering
   • Forwards all unregistered groups
   • Filters all unregistered groups
• LLDP, LLDP-MED
A. Koncentrator.
B. Zapora sieciowa.
C. Ruter.
D. Przełącznik.
Przełącznik, jako urządzenie sieciowe funkcjonujące na warstwie drugiej modelu OSI, jest kluczowym elementem w zarządzaniu ruchem danych w sieciach lokalnych. Na ilustracji widoczne są istotne funkcje, takie jak MAC Address Table, która pozwala na efektywne kierowanie pakietów danych do odpowiednich odbiorców na podstawie adresów MAC urządzeń. Flow Control zapewnia kontrolę nad przepływem danych, co zapobiega utracie pakietów w przypadku przeciążenia sieci. Jumbo Frame umożliwia przesyłanie większych ram, co zwiększa wydajność w przypadku transferów dużych plików. IGMP Snooping jest używany do zarządzania ruchem multicastowym, co jest istotne w aplikacjach takich jak strumieniowanie wideo. Przełączniki obsługują również protokoły VLAN i STP, co pozwala na tworzenie odseparowanych sieci w ramach jednej infrastruktury oraz zapobieganie pętli w sieci. W praktyce przełączniki są powszechnie wykorzystywane w biurach i centrach danych do łączenia serwerów, komputerów oraz innych urządzeń końcowych, co czyni je fundamentalnym elementem współczesnych sieci komputerowych.

Pytanie 12

Jaką prędkość transmisji określa standard Ethernet IEEE 802.3z?

A. 1 Gb
B. 100 Mb
C. 10 Mb
D. 100 GB
Wybór błędnych odpowiedzi, takich jak 10 Mb, 100 Mb lub 100 GB, wynika z mylnych przekonań na temat standardów Ethernet. Przepływność 10 Mb/s odnosi się do starszej wersji Ethernet, znanej jako 10BASE-T, która była popularna w latach 80. XX wieku. W dzisiejszych czasach jest to zbyt wolne i nieodpowiednie dla nowoczesnych aplikacji, które wymagają znacznie wyższych prędkości transmisji. Przepływność 100 Mb/s, związana z technologią Fast Ethernet, jest również niewystarczająca w kontekście rosnących potrzeb sieciowych, zwłaszcza w środowiskach, gdzie wiele urządzeń jest podłączonych jednocześnie. Wreszcie, 100 GB/s to parametr, który odnosi się do znacznie bardziej zaawansowanej technologii, takiej jak 100 Gigabit Ethernet (100GbE), która została wprowadzona dużo później i jest używana głównie w centrach danych oraz w infrastrukturze szkieletowej. Niezrozumienie różnic między tymi standardami oraz ich zastosowaniem w praktyce prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że rozwój technologii Ethernet następuje w miarę rosnącego zapotrzebowania na szybsze i bardziej efektywne sieci, a każdy standard ma swoje specyficzne zastosowania i ograniczenia.

Pytanie 13

Oblicz całkowity koszt kabla UTP Cat 6, który posłuży do połączenia 5 punktów abonenckich z punktem dystrybucyjnym, wiedząc, że średnia odległość między punktem abonenckim a punktem dystrybucyjnym wynosi 8 m, a cena brutto 1 m kabla to 1 zł. W obliczeniach należy uwzględnić dodatkowe 2 m kabla na każdy punkt abonencki.

A. 32 zł
B. 50 zł
C. 40 zł
D. 45 zł
Koszt brutto kabla UTP Cat 6 dla pięciu punktów abonenckich można obliczyć, stosując się do określonych kroków. Najpierw obliczamy długość kabla potrzebną do połączenia punktów abonenckich z punktem dystrybucyjnym. Dla każdego z pięciu punktów abonenckich mamy średnią odległość 8 m. W związku z tym, całkowita długość kabla wynosi 5 punktów x 8 m = 40 m. Następnie dodajemy zapas 2 m dla każdego punktu abonenckiego, co daje dodatkowe 5 punktów x 2 m = 10 m. Sumując te wartości, otrzymujemy całkowitą długość kabla wynoszącą 40 m + 10 m = 50 m. Cena za 1 m kabla wynosi 1 zł, więc koszt brutto 50 m kabla to 50 zł. Takie podejście uwzględnia nieprzewidziane okoliczności, co jest zgodne z dobrymi praktykami w zakresie instalacji kablowych, gdzie zawsze warto mieć zapas materiałów, aby zminimalizować ryzyko błędów podczas montażu.

Pytanie 14

Jakie urządzenie sieciowe pozwoli na przekształcenie sygnału przesyłanego przez analogową linię telefoniczną na sygnał cyfrowy w komputerowej sieci lokalnej?

A. Modem.
B. Switch.
C. Access point.
D. Media converter.
Przełącznik, punkt dostępu i konwerter mediów, mimo że są istotnymi elementami infrastruktury sieciowej, nie pełnią funkcji zamiany sygnału analogowego na cyfrowy. Przełącznik sieciowy działa na poziomie warstwy drugiej modelu OSI i odpowiada za przekazywanie pakietów danych między urządzeniami w sieci lokalnej (LAN), ale nie ma zdolności do przetwarzania sygnałów analogowych. Jego głównym zadaniem jest zarządzanie ruchem danych w sieci lokalnej, co czyni go kluczowym w kontekście tworzenia wydajnych i rozbudowanych struktur sieciowych. Punkt dostępu natomiast jest urządzeniem, które umożliwia urządzeniom bezprzewodowym łączenie się z siecią przewodową, ale również nie przetwarza sygnałów analogowych. Umożliwia on komunikację przez Wi-Fi i jest istotny w kontekście zapewnienia mobilności w sieciach, ale nie wprowadza ani nie przekształca sygnałów. Konwerter mediów, z drugiej strony, jest używany do konwersji różnych typów mediów transmisyjnych, takich jak światłowód na miedź, ale również nie zajmuje się konwersją sygnałów z analogowych na cyfrowe. Tego rodzaju nieporozumienia wynikają z braku zrozumienia roli każdego z tych urządzeń w infrastrukturze sieciowej oraz ich specyficznych funkcji. Dlatego istotne jest dokładne zrozumienie, jak każde z tych urządzeń przyczynia się do budowy sieci oraz jakie są ich kluczowe funkcje w procesach komunikacyjnych.

Pytanie 15

Kable światłowodowe nie są często używane w lokalnych sieciach komputerowych z powodu

A. znaczących strat sygnału podczas transmisji.
B. niskiej wydajności.
C. wysokich kosztów elementów pośredniczących w transmisji.
D. niski poziom odporności na zakłócenia elektromagnetyczne.
Kable światłowodowe są efektywnym medium transmisyjnym, wykorzystującym zjawisko całkowitego wewnętrznego odbicia światła do przesyłania danych. Choć charakteryzują się dużą przepustowością i niskimi stratami sygnału na długich dystansach, ich powszechne zastosowanie w lokalnych sieciach komputerowych jest ograniczone przez wysokie koszty związane z elementami pośredniczącymi w transmisji, takimi jak przełączniki i konwertery. Elementy te są niezbędne do integrowania technologii światłowodowej z istniejącymi infrastrukturami sieciowymi, które często opierają się na kablach miedzianych. W praktyce oznacza to, że organizacje, które pragną zainwestować w sieci światłowodowe, muszą być przygotowane na znaczne wydatki na sprzęt oraz jego instalację. Z drugiej strony, standardy takie jak IEEE 802.3 zdefiniowały wymagania techniczne dla transmisji w sieciach Ethernet, co przyczyniło się do rozwoju technologii światłowodowej, ale nadal pozostaje to kosztowną inwestycją dla wielu lokalnych sieci komputerowych.

Pytanie 16

Jakie są właściwe przewody w wtyku RJ-45 według standardu TIA/EIA-568 dla konfiguracji typu T568B?

A. Biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy
B. Biało-brązowy, brązowy, biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony
C. Biało-niebieski, niebieski, biało-brązowy, brązowy, biało-zielony, zielony, biało-pomarańczowy, pomarańczowy
D. Biało-zielony, zielony, biało-pomarańczowy, pomarańczowy, niebieski, biało-niebieski, biało-brązowy, brązowy
Odpowiedź wskazująca na prawidłową kolejność przewodów we wtyku RJ-45 zgodnie z normą TIA/EIA-568 dla zakończenia typu T568B jest kluczowa w kontekście budowy i konfiguracji sieci lokalnych. Zgodnie z tym standardem, przewody powinny być ułożone w następującej kolejności: biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy oraz brązowy. Ta specyfikacja zapewnia prawidłowe połączenia i minimalizuje interferencje elektromagnetyczne, co jest istotne dla stabilności i wydajności transmisji danych. Przykład zastosowania tej normy można zobaczyć w instalacjach sieciowych w biurach, gdzie formowanie kabli zgodnie z T568B jest standardem, umożliwiającym łatwe podłączanie urządzeń. Dodatkowo, w przypadku stosowania technologii PoE (Power over Ethernet), prawidłowa kolejność przewodów jest kluczowa dla efektywnego zasilania urządzeń sieciowych, takich jak kamery IP czy punkty dostępu. Znajomość tych standardów jest niezbędna dla każdego technika zajmującego się sieciami, aby zapewnić maksymalną wydajność oraz bezpieczeństwo w infrastrukturze sieciowej.

Pytanie 17

Na którym rysunku przedstawiono topologię gwiazdy?

Ilustracja do pytania
A. 4.
B. 2.
C. 1.
D. 3.
Topologia gwiazdy to jeden z najpopularniejszych układów sieci komputerowych, w którym wszystkie urządzenia końcowe są połączone z jednym centralnym punktem, najczęściej switchem lub hubem. Na rysunku 4 widoczna jest wyraźna struktura, w której każdy komputer jest połączony bezpośrednio z centralnym urządzeniem, co umożliwia łatwe zarządzanie siecią oraz minimalizuje ryzyko awarii. W przypadku uszkodzenia jednego z kabli, tylko jedno połączenie jest zagrożone, co czyni topologię gwiazdy bardziej odporną na problemy w porównaniu do topologii magistrali, gdzie awaria jednego elementu może wpłynąć na całą sieć. Z praktycznego punktu widzenia, ta topologia jest często stosowana w biurach i organizacjach, gdzie wymagana jest elastyczność w dodawaniu nowych urządzeń oraz prostota diagnostyki problemów. Warto również wspomnieć, że implementacja topologii gwiazdy wspiera standardy takie jak IEEE 802.3 i 802.11, co pozwala na łatwą integrację z innymi technologiami sieciowymi.

Pytanie 18

Zastosowanie połączenia typu trunk między dwoma przełącznikami umożliwia

A. zwiększenie przepustowości dzięki wykorzystaniu dodatkowego portu
B. zablokowanie wszystkich nadmiarowych połączeń na danym porcie
C. przesyłanie ramek z różnych wirtualnych sieci lokalnych w jednym łączu
D. konfigurację agregacji portów, co zwiększa przepustowość między przełącznikami
Analizując różne odpowiedzi, można zauważyć, że niektóre z nich bazują na mylnych założeniach dotyczących funkcji trunków. Zwiększenie przepustowości połączenia przez wykorzystanie kolejnego portu, choć wydaje się logiczne, odnosi się do agregacji portów, a nie do trunkowania. Połączenia trunkowe nie zwiększają fizycznej przepustowości, lecz umożliwiają przesyłanie różnych VLAN-ów przez to samo łącze. Z kolei sugestia dotycząca zablokowania wszystkich nadmiarowych połączeń na konkretnym porcie wskazuje na mylne rozumienie funkcji trunków; te nie służą do blokowania, lecz do przesyłania danych. Trunkowanie nie ma na celu eliminacji połączeń, ale efektywne przesyłanie danych z różnych źródeł. Ostatnia odpowiedź, dotycząca skonfigurowania agregacji portów, również wprowadza w błąd, ponieważ agregacja portów to osobna technika, która pozwala na połączenie wielu fizycznych interfejsów w jeden logiczny w celu zwiększenia przepustowości oraz redundancji, a nie jest to funkcjonalność trunków. W każdej z tych odpowiedzi widać typowe błędy myślowe, polegające na myleniu różnych terminów i funkcji w kontekście sieci komputerowych, co często prowadzi do nieporozumień w zakresie zarządzania siecią i jej konfiguracji.

Pytanie 19

Która z poniższych właściwości kabla koncentrycznego RG-58 sprawia, że nie jest on obecnie stosowany w budowie lokalnych sieci komputerowych?

A. Brak opcji nabycia dodatkowych urządzeń sieciowych
B. Maksymalna odległość między stacjami wynosząca 185 m
C. Koszt narzędzi potrzebnych do montażu i łączenia kabli
D. Maksymalna prędkość przesyłania danych wynosząca 10 Mb/s
Kabel koncentryczny RG-58 charakteryzuje się maksymalną prędkością transmisji danych wynoszącą 10 Mb/s, co w kontekście współczesnych wymagań sieciowych jest zdecydowanie zbyt niską wartością. W dzisiejszych lokalnych sieciach komputerowych (LAN) standardy, takie jak Ethernet, wymagają znacznie wyższych prędkości – obecnie powszechnie stosowane są technologie pozwalające na przesył danych z prędkościami 100 Mb/s (Fast Ethernet) oraz 1 Gb/s (Gigabit Ethernet), a nawet 10 Gb/s w nowoczesnych rozwiązaniach. Z tego powodu, na etapie projektowania infrastruktury sieciowej, wybór kabla o niskiej prędkości transmisji jak RG-58 jest nieefektywny i przestarzały. Przykładowo, w przypadku dużych sieci korporacyjnych, gdzie przesyłanie dużych plików lub obsługa wielu jednoczesnych użytkowników jest normą, kabel RG-58 nie spełnia wymogów wydajnościowych oraz jakościowych. Dlatego też jego zastosowanie w lokalnych sieciach komputerowych jest obecnie niezalecane, co czyni go nieodpowiednim wyborem.

Pytanie 20

Jakie urządzenie pozwala na podłączenie drukarki bez karty sieciowej do sieci lokalnej komputerów?

A. Serwer wydruku
B. Koncentrator
C. Regenerator
D. Punkt dostępu
Serwer wydruku to specjalistyczne urządzenie, które umożliwia podłączenie drukarek nieposiadających wbudowanej karty sieciowej do lokalnej sieci komputerowej. Działa on jako pomost pomiędzy drukarką a siecią, zatem umożliwia użytkownikom zdalne drukowanie z różnych urządzeń w tej samej sieci. Użytkownik podłącza drukarkę do serwera wydruku za pomocą interfejsu USB lub równoległego, a następnie serwer łączy się z siecią lokalną. Zastosowanie serwera wydruku jest szczególnie przydatne w biurach oraz środowiskach, gdzie wiele osób korzysta z jednej drukarki. W praktyce, standardowe serwery wydruku, takie jak te oparte na protokole TCP/IP, umożliwiają również zarządzanie zadaniami drukowania oraz monitorowanie stanu drukarki, co jest zgodne z dobrymi praktykami w obszarze zarządzania zasobami drukującymi.

Pytanie 21

Który z poniższych dokumentów nie wchodzi w skład dokumentacji powykonawczej lokalnej sieci komputerowej?

A. Plan rozmieszczenia sieci LAN
B. Dokumentacja techniczna kluczowych elementów systemu
C. Lista użytych nazw użytkowników oraz haseł
D. Dokumentacja materiałowa
Wykaz zastosowanych nazw użytkowników i haseł nie należy do dokumentacji powykonawczej lokalnej sieci komputerowej, ponieważ nie jest to dokument techniczny ani planistyczny, a raczej informacja dotycząca bezpieczeństwa. Dokumentacja powykonawcza ma na celu przedstawienie szczegółowych informacji o zrealizowanej infrastrukturze sieciowej, obejmując takie dokumenty jak specyfikacja techniczna głównych elementów systemu, która zawiera opis zastosowanych urządzeń, ich parametrów oraz sposobu integracji w sieci. Specyfikacja materiałowa dostarcza informacji o użytych komponentach, co jest istotne dla przyszłych napraw czy modernizacji. Schemat sieci LAN ilustruje fizyczną lub logiczną strukturę sieci, co ułatwia zrozumienie jej działania oraz ewentualne rozwiązywanie problemów. Wykaz użytkowników i haseł może być traktowany jako poufna informacja, której ujawnienie w dokumentacji powykonawczej mogłoby narazić sieć na nieautoryzowany dostęp. Dlatego takie dane powinny być przechowywane w bezpiecznych miejscach, zgodnie z zasadami ochrony informacji i standardami bezpieczeństwa sieciowego, takimi jak ISO/IEC 27001.

Pytanie 22

Jakie urządzenie powinno być użyte do połączenia komputerów, aby mogły działać w różnych domenach rozgłoszeniowych?

A. Regeneratora
B. Koncentratora
C. Mostu
D. Rutera
Ruter jest urządzeniem, które odgrywa kluczową rolę w łączeniu różnych domen rozgłoszeniowych, co pozwala na efektywną komunikację między różnymi sieciami. W przeciwieństwie do mostu czy koncentratora, które operują na warstwie drugiej modelu OSI (warstwie łącza danych), ruter funkcjonuje na warstwie trzeciej (warstwa sieci). Jego zadaniem jest zarządzanie ruchem danych pomiędzy różnymi sieciami, co oznacza, że pakiety danych mogą być kierowane do odpowiednich adresów IP, co jest istotne w przypadku, gdy komputery są w różnych podsieciach. Dzięki temu, ruter potrafi zrozumieć, kiedy dane powinny zostać wysłane do innej sieci, a kiedy pozostają w obrębie tej samej. Przykładowo, w dużych organizacjach, które mają różne lokalizacje geograficzne, rutery umożliwiają komunikację między nimi poprzez sieci WAN. Praktyczne zastosowanie ruterów obejmuje nie tylko łączenie lokalnych sieci, ale także umożliwiają one stosowanie zaawansowanych funkcji, takich jak QoS (Quality of Service), które pomagają w zarządzaniu ruchem sieciowym, co jest kluczowe w przypadku aplikacji wymagających niskich opóźnień, jak np. wideokonferencje. W kontekście standardów, rutery muszą być zgodne z protokołami, takimi jak IP (Internet Protocol) oraz muszą wspierać różnorodne protokoły routingu, co czyni je nieodzownym elementem nowoczesnych infrastruktur sieciowych.

Pytanie 23

Które z zestawień: urządzenie – realizowana funkcja jest niepoprawne?

A. Ruter – łączenie komputerów w tej samej sieci
B. Access Point – bezprzewodowe łączenie komputerów z siecią lokalną
C. Modem – łączenie sieci lokalnej z Internetem
D. Przełącznik – segmentacja sieci na VLAN-y
Odpowiedź 'Ruter – połączenie komputerów w tej samej sieci' jest błędna, ponieważ ruter nie służy do bezpośredniego łączenia komputerów w tej samej sieci lokalnej, lecz do kierowania ruchem pomiędzy różnymi sieciami. Ruter działa na warstwie trzeciej modelu OSI (warstwa sieci), a jego główną funkcją jest przekazywanie pakietów danych pomiędzy sieciami, np. z lokalnej sieci komputerowej do Internetu. Przykładowo, w typowej sieci domowej ruter łączy urządzenia lokalne (jak komputery, smartfony) z dostawcą usług internetowych (ISP). Działanie rutera można zobrazować na przykładzie, kiedy użytkownik chce przeglądać strony internetowe – ruter przekazuje żądania z lokalnej sieci do Internetu i odwrotnie, zarządzając jednocześnie trasami danych, co zapewnia optymalizację ich przepływu. Dobrą praktyką jest również skonfigurowanie rutera w taki sposób, aby zapewniał on odpowiednie zabezpieczenia, takie jak zapora ogniowa (firewall) czy system detekcji intruzów (IDS).

Pytanie 24

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od gniazda abonenckiego do lokalnego punktu dystrybucyjnego wynosi 10 m. Jaki będzie szacunkowy koszt nabycia kabla UTP kategorii 5e, przeznaczonego do budowy sieci lokalnej, jeśli cena brutto 1 m kabla UTP kategorii 5e to 1,60 zł?

A. 800,00 zł
B. 320,00 zł
C. 80,00 zł
D. 160,00 zł
Obliczenia dotyczące kosztów zakupu kabla UTP kategorii 5e dla 5 podwójnych gniazd abonenckich mogą być mylące, gdyż wiele osób błędnie interpretuje dane liczbowe. Przykładowo, bywa, że przyjmuje się zbyt niską lub zbyt wysoką długość kabla, co prowadzi do niewłaściwego określenia całkowitych kosztów. Osoby często mylą ogół długości potrzebnego kabla, co skutkuje rachunkami, które nie odzwierciedlają rzeczywistych kosztów. Niektórzy mogą pomyśleć, że wystarczy pomnożyć liczbę gniazd przez cenę metra kabla bez uwzględnienia konieczności połączenia kabli z urządzeniem końcowym oraz dodatkowymi elementami instalacyjnymi. Innym typowym błędem jest nieprzemyślane oszacowanie długości kabli, które powinny uwzględniać ewentualne zakręty, przejścia przez ściany lub inne przeszkody, co również wpływa na ostateczną długość kabli. Należy także pamiętać o standardach instalacji, które zalecają dodanie zapasu na ewentualne błędy podczas montażu. W wyniku tych nieporozumień, niepoprawne odpowiedzi takie jak 80,00 zł, 320,00 zł czy 800,00 zł nie tylko wskazują na błędne obliczenia, ale również na zagadnienia związane z organizacją i planowaniem instalacji sieci, co jest kluczowe dla funkcjonowania każdej organizacji.

Pytanie 25

Zgodnie z normą PN-EN 50174 dopuszczalna łączna długość kabla połączeniowego pomiędzy punktem abonenckim a komputerem i kabla krosowniczego (A+C) wynosi

Ilustracja do pytania
A. 5 m
B. 3 m
C. 10 m
D. 6 m
Wybór długości kabla mniejszej niż 10 metrów, jak 3, 5 lub 6 metrów, wynika z powszechnego błędnego przekonania, że krótsze kable zawsze skutkują lepszą jakością sygnału. W rzeczywistości, norma PN-EN 50174 jasno określa, że maksymalna długość kabla połączeniowego wynosi 10 metrów, co jest optymalnym rozwiązaniem zarówno dla jakości sygnału, jak i elastyczności instalacji. Zbyt krótkie kable mogą ograniczać możliwości rozbudowy sieci w przyszłości, co jest istotne w kontekście dynamicznego rozwoju technologii i zmieniających się potrzeb użytkowników. Często przyczyną błędnego wyboru długości kabla jest także niewłaściwe zrozumienie zasad działania sygnałów elektrycznych i optycznych w kablach. W przypadku kabli sieciowych, takich jak kable Ethernet, wartość maksymalnej długości oznacza, że nawet przy pełnym obciążeniu sieci, sygnał będzie utrzymywany na odpowiednim poziomie bez strat jakości. Ponadto, długość kabla powinna być zawsze dostosowana do konkretnej konfiguracji środowiska oraz zastosowania, co nie jest możliwe przy użyciu standardowych skrótów myślowych. Dlatego kluczowe jest zapoznanie się z obowiązującymi normami oraz wytycznymi, aby zapewnić nie tylko optymalne działanie sieci, ale także przyszłą możliwość rozwoju infrastruktury.

Pytanie 26

W przestawionej na rysunku ramce Ethernet adresem nadawcy i adresem odbiorcy jest

Bajty
866246 - 15004
PreambułaAdres odbiorcyAdres nadawcyTyp ramkiDaneFrame Check Sequence
A. 32 bitowy adres IPv4.
B. 6 bajtowy adres IPv4.
C. 48 bitowy adres fizyczny.
D. 8 bajtowy adres fizyczny.
Wybór innej odpowiedzi sugeruje pewne nieporozumienia związane z podstawowymi pojęciami w zakresie adresowania w sieciach komputerowych. Adres IPv4, na przykład, jest 32-bitowym adresem logicznym, używanym w warstwie sieciowej modelu OSI, a nie w warstwie łącza danych, w której operują adresy fizyczne. Odpowiedzi wskazujące na długości adresów w bajtach mogą wprowadzać w błąd, ponieważ 8 bajtów oznaczałoby 64 bity, co jest niezgodne z rzeczywistymi wymaganiami dla adresów MAC. Typowe błędy myślowe związane z tymi niepoprawnymi odpowiedziami obejmują mylenie warstw modelu OSI i niepoprawną interpretację specyfikacji adresowania w sieciach. Dla przypomnienia, adresy MAC są używane do identyfikacji sprzętu w sieciach lokalnych, podczas gdy adresy IPv4 służą do routingu w ramach większych sieci, takich jak Internet. Zrozumienie różnicy między tymi adresami jest kluczowe dla skutecznego zarządzania sieciami komputerowymi oraz dla świadomości o tym, jak działają protokoły komunikacyjne. Ważne jest, aby nie utożsamiać adresu MAC z adresami IP, ponieważ pełnią one różne funkcje i operują w różnych kontekstach technologicznych.

Pytanie 27

Które z urządzeń służy do testowania okablowania UTP?

Ilustracja do pytania
A. 4.
B. 2.
C. 1.
D. 3.
Urządzenie oznaczone numerem 2 to tester okablowania UTP, który jest kluczowym narzędziem w branży IT oraz telekomunikacyjnej. Tester ten sprawdza integralność połączeń w kablu UTP, umożliwiając identyfikację problemów technicznych, takich jak przerwy w przewodach, zwarcia czy niewłaściwe połączenia. Zastosowanie testera okablowania jest niezwykle ważne w kontekście budowy i konserwacji sieci komputerowych, gdzie odpowiednia jakość połączeń wpływa na stabilność i wydajność całego systemu. Dobre praktyki wskazują, że przed uruchomieniem sieci należy przeprowadzić dokładne testy, aby upewnić się, że wszystkie połączenia są poprawne. Testery UTP mogą również wykrywać długość kabla oraz jego typ, co jest niezbędne przy projektowaniu i wdrażaniu nowych instalacji. W kontekście standardów branżowych, zgodność z normami takimi jak TIA/EIA-568 jest kluczowa dla osiągnięcia wysokiej jakości usług transmisji danych.

Pytanie 28

Narzędzie przedstawione na zdjęciu to

Ilustracja do pytania
A. nóż monterski.
B. zaciskarka.
C. ściągacz izolacji.
D. narzędzie uderzeniowe.
Wybór odpowiedzi, która wskazuje na nóż monterski, zaciskarkę czy narzędzie uderzeniowe, jest błędny z kilku powodów. Nóż monterski, choć jest narzędziem przydatnym w wielu zastosowaniach budowlanych, nie jest przeznaczony do usuwania izolacji z przewodów elektrycznych. Jego główną funkcją jest cięcie materiałów, a nie precyzyjne usuwanie izolacji, co może prowadzić do uszkodzenia przewodów. Zaciskarka, z kolei, jest narzędziem służącym do trwałego łączenia przewodów poprzez zaciskanie, co również nie odpowiada funkcji ściągacza izolacji. Narzędzie uderzeniowe to sprzęt wykorzystywany głównie w pracach budowlanych, takich jak wbijanie gwoździ czy kotwic, co również nie ma związku z usuwaniem izolacji. Typowym błędem myślowym w takich przypadkach jest mylenie zastosowań różnych narzędzi, co może prowadzić do wyboru niewłaściwego narzędzia dla danej aplikacji. Zrozumienie funkcji narzędzi oraz ich klasyfikacji jest kluczowe dla prawidłowego ich stosowania, co jest fundamentem efektywnej i bezpiecznej pracy w branży elektrycznej.

Pytanie 29

Na podstawie jakiego adresu przełącznik podejmuje decyzję o przesyłaniu ramki?

A. Adresu źródłowego IP
B. Adresu docelowego MAC
C. Adresu docelowego IP
D. Adresu źródłowego MAC
Adres docelowy MAC jest kluczowym elementem w procesie przesyłania ramek przez przełączniki w sieci lokalnej (LAN). Przełączniki operują na warstwie drugiej modelu OSI, co oznacza, że ich głównym zadaniem jest przekazywanie ramek na podstawie adresów MAC. Kiedy przełącznik otrzymuje ramkę, analizuje jej nagłówek w celu zidentyfikowania adresu docelowego MAC. Na tej podstawie podejmuje decyzję o tym, na który port powinien przesłać ramkę, aby dotarła do odpowiedniego urządzenia. Przykładem zastosowania tego mechanizmu jest sytuacja, gdy w sieci znajduje się komputer, który wysyła dane do drukarki. Przełącznik, znając adres MAC drukarki, przekierowuje ramki tylko do portu, do którego jest podłączona drukarka. Dzięki temu zwiększa się efektywność przesyłania danych w sieci, minimalizując zbędny ruch. Standardy takie jak IEEE 802.1D regulują działanie przełączników i techniki, takie jak tablice MAC, które przechowują powiązania między adresami MAC a portami, co jeszcze bardziej zwiększa wydajność sieci.

Pytanie 30

Przy projektowaniu sieci LAN o wysokiej wydajności w warunkach silnych zakłóceń elektromagnetycznych, które medium transmisyjne powinno zostać wybrane?

A. współosiowy
B. typ U/UTP
C. światłowodowy
D. typ U/FTP
Zastosowanie kabli U/FTP, U/UTP lub współosiowych w środowiskach z dużymi zakłóceniami elektromagnetycznymi może prowadzić do znacznych problemów z jakością sygnału. Kable U/UTP (nieekranowane skrętki) są najbardziej podatne na zakłócenia, ponieważ brak ekranowania nie chroni sygnału przed zakłóceniami zewnętrznymi. Takie kable są odpowiednie w warunkach, gdzie zakłócenia są minimalne, jednak w zatłoczonych środowiskach ich użycie może skutkować degradacją sygnału oraz błędami w transmisji danych. Kable U/FTP, które mają ekranowane pary, oferują lepszą ochronę, jednak nadal nie są w stanie całkowicie wyeliminować wpływu zakłóceń, co czyni je niewystarczającym rozwiązaniem w sytuacjach o dużym natężeniu zakłóceń. Współosiowe kable, mimo że oferują lepszą ochronę przed zakłóceniami niż kable nieekranowane, mają swoje ograniczenia, takie jak większe straty sygnału na dłuższych odległościach oraz ograniczenia w przepustowości w porównaniu do technologii światłowodowej. W kontekście nowoczesnych standardów i praktyk branżowych, które dążą do maksymalizacji wydajności sieci, wybór kabla światłowodowego staje się nie tylko preferowany, ale wręcz konieczny w środowiskach, gdzie zakłócenia elektromagnetyczne mogą wpływać na integralność danych.

Pytanie 31

Aby oddzielić komputery w sieci, które posiadają ten sam adres IPv4 i są połączone z przełącznikiem zarządzalnym, należy przypisać

A. niewykorzystane interfejsy do różnych VLAN-ów
B. statyczne adresy MAC komputerów do aktywnych interfejsów
C. aktywnych interfejsów do różnych VLAN-ów
D. statyczne adresy MAC komputerów do niewykorzystanych interfejsów
Próba odseparowania komputerów pracujących w sieci o tym samym adresie IPv4 poprzez przypisanie statycznych adresów MAC do używanych interfejsów jest błędnym podejściem, które nie rozwiązuje problemu kolizji adresów IP w sieci. Adresy MAC są unikalnymi identyfikatorami przypisanymi do interfejsów sieciowych, ale nie mają wpływu na logikę routowania czy komunikacji w sieci IP. Przypisanie statycznych adresów MAC nie pozwala na odseparowanie ruchu między komputerami, które mają ten sam adres IP, a co za tym idzie, nadal będzie dochodziło do konfliktów, co może prowadzić do utraty pakietów czy problemów z dostępem do sieci. Z kolei przypisanie nieużywanych interfejsów do różnych VLAN-ów również nie jest właściwe, ponieważ nie można skonfigurować VLAN-ów na interfejsach, które nie są aktywne. W praktyce błędne jest również przypisywanie używanych interfejsów do nieużywanych VLAN-ów, ponieważ uniemożliwia to dostęp do zasobów sieciowych dla komputerów w tych VLAN-ach. Dobrą praktyką jest korzystanie z logicznej separacji za pomocą VLAN-ów, co nie tylko zwiększa bezpieczeństwo, ale również umożliwia lepsze zarządzanie ruchem sieciowym oraz organizację zasobów, zamiast polegać na statycznych konfiguracjach, które mogą prowadzić do błędów i problemów z wydajnością.

Pytanie 32

Na podstawie tabeli ustal, ile kabli ekranowanych typu skrętka należy poprowadzić w listwie PCV typu LN 25x16.

Typ listwyPrzewody
Przekrój czynny [mm²]Ø 5,5 mm, np. FTPØ 7,2 mm, np. WDX pek 75-1,0/4,8Ø 10,6 mm, np. YDY 3 x 2,5
LN 20X1014021
LN 16X16185311
LN 25X16305532
LN 35X10.123043
LN 35X10.2115 + 11541/1
LN 40X16.1505963
LN 40X16.2245 + 24583/31/1
A. 5 kabli.
B. 2 kable.
C. 3 kable.
D. 4 kable.
Wybór mniejszej liczby kabli, takiej jak 3, 2 czy nawet 4, wynika z często spotykanych błędów interpretacyjnych dotyczących pojemności listwy PCV. Wiele osób myli pojemność z zaleceniami dotyczącymi instalacji kabli, co prowadzi do nadmiernego ograniczenia ilości kabli. W rzeczywistości, nieprawidłowe oszacowanie liczby kabli skutkuje nie tylko obniżeniem jakości sygnału, ale także zwiększa ryzyko uszkodzeń sprzętu oraz konieczność częstszej wymiany komponentów. Ponadto, pomijając standardy dotyczące odstępów między kablami, można wprowadzić zakłócenia, które znacznie obniżą efektywność przesyłania danych. Należy również zrozumieć, że zbyt mała liczba kabli może nie spełniać przyszłych wymagań rozwojowych systemu, co jest szczególnie istotne w kontekście szybko zmieniających się technologii komunikacyjnych. Właściwe planowanie instalacji kablowej powinno uwzględniać nie tylko bieżące potrzeby, ale także prognozowane rozszerzenia, co uczyni konfigurację bardziej elastyczną i odporną na przyszłe zmiany. Dlatego kluczowe jest, aby zawsze odnosić się do dokumentacji technicznej oraz standardów branżowych, aby uniknąć powyższych pułapek.

Pytanie 33

Komputery K1 i K2 nie mogą się komunikować. Adresacja urządzeń jest podana w tabeli. Co należy zmienić, aby przywrócić komunikację w sieci?

UrządzenieAdresMaskaBrama
K110.0.0.2255.255.255.12810.0.0.1
K210.0.0.102255.255.255.19210.0.0.1
R1 (F1)10.0.0.1255.255.255.128
R1 (F2)10.0.0.101255.255.255.192
Ilustracja do pytania
A. Maskę w adresie dla K2.
B. Maskę w adresie dla K1.
C. Adres bramy dla K1.
D. Adres bramy dla K2.
Wybór niewłaściwego adresu bramy dla K2 może wydawać się logiczny, lecz jest to zrozumienie, które nie uwzględnia zasadności adresowania w sieciach. Na przykład, zmiana adresu bramy dla K1 nie rozwiąże problemu, ponieważ K1 jest właściwie skonfigurowany w swojej podsieci i ma poprawny adres bramy. W rzeczywistości, cała komunikacja w sieci IP opiera się na koncepcji podsieci i adresów bramowych, które muszą współdziałać, aby umożliwić przesyłanie pakietów danych. Dla K2, który należy do innej podsieci z powodu przypisania mu maski 255.255.255.192, kluczowe jest, aby jego adres bramy znajdował się w tej samej podsieci. Zmiana maski dla K1 lub K2 na inne wartości nie naprawi sytuacji, ponieważ nie zmieni to faktu, że adresy IP są zdefiniowane w różnych podsieciach. Typowym błędem w analizie adresów IP jest zakładanie, że zmiana parametrów na jednym urządzeniu automatycznie wpłynie na inne. W praktyce, aby zapewnić poprawną komunikację, należy zadbać o to, aby wszystkie urządzenia, które mają się komunikować, znajdowały się w tej samej podsieci lub miały właściwie skonfigurowane adresy bram, co jest fundamentalną zasadą w inżynierii sieciowej. Bez tego, komunikacja między urządzeniami będzie niemożliwa, co jest krytycznym aspektem projektowania i zarządzania sieciami komputerowymi.

Pytanie 34

Kontrola pasma (ang. bandwidth control) w przełączniku to funkcjonalność

A. pozwalająca na równoczesne przesyłanie danych z wybranego portu do innego portu
B. umożliwiająca jednoczesne łączenie przełączników przy użyciu wielu łącz
C. pozwalająca ograniczyć przepustowość na wyznaczonym porcie
D. umożliwiająca zdalne połączenie z urządzeniem
Zarządzanie pasmem (bandwidth control) w przełączniku jest kluczowym elementem w kontekście efektywnego zarządzania siecią. Odpowiedź, która wskazuje na możliwość ograniczenia przepustowości na wybranym porcie, jest poprawna, ponieważ ta funkcjonalność pozwala administratorom sieci na precyzyjne dostosowanie dostępnych zasobów do konkretnych wymagań. Przykładowo, w sytuacji, gdy na jednym porcie podłączone są urządzenia o różnym zapotrzebowaniu na pasmo, zarządzanie pasmem pozwala na priorytetyzację ruchu i ograniczenie prędkości transferu dla mniej krytycznych aplikacji. W praktyce, techniki takie jak Quality of Service (QoS) są często wykorzystywane, aby zapewnić, że aplikacje o wysokim priorytecie, takie jak VoIP czy transmisje wideo, mają zapewnioną odpowiednią przepustowość, podczas gdy inne, mniej istotne usługi mogą być throttlowane. Standardy branżowe, takie jak IEEE 802.1Q, wskazują na znaczenie zarządzania pasmem w kontekście rozwoju sieci VLAN, co dodatkowo podkreśla jego istotność w nowoczesnych architekturach sieciowych.

Pytanie 35

Urządzenie sieciowe typu most (ang. Bridge) działa w:

A. nie ocenia ramki pod względem adresu MAC
B. pierwszej warstwie modelu OSI
C. osiemnej warstwie modelu OSI
D. jest urządzeniem klasy store and forward
Praca w zerowej warstwie modelu OSI odnosi się do warstwy fizycznej, która zajmuje się przesyłaniem bitów przez medium transmisyjne. Mosty, jako urządzenia warstwy łącza danych, operują na ramkach, które zawierają adresy MAC, co oznacza, że nie mogą funkcjonować na poziomie zerowym. Przypisywanie mostów do ósmej warstwy modelu OSI jest błędne, ponieważ model OSI definiuje jedynie siedem warstw, a wszelkie odniesienia do ósmej warstwy byłyby niepoprawne z punktu widzenia standardów sieciowych. Warto również zauważyć, że mosty w rzeczywistości analizują ramki pod kątem adresów MAC, co jest kluczowym elementem ich funkcjonalności. To umożliwia im podejmowanie decyzji o przesyłaniu danych do odpowiednich segmentów sieci, w zależności od ich adresacji. Ignorowanie analizy adresów MAC w kontekście pracy mostów prowadzi do nieporozumień co do ich roli w architekturze sieci. Typowym błędem jest mylenie mostów z urządzeniami, które nie analizują danych na poziomie warstwy łącza, co może prowadzić do nieefektywnego zarządzania ruchem i spadku wydajności sieci. Zrozumienie prawidłowych funkcji mostów jest kluczowe dla skutecznego projektowania i zarządzania nowoczesnymi sieciami.

Pytanie 36

Aby umożliwić jedynie urządzeniom z określonym adresem fizycznym połączenie z siecią WiFi, trzeba ustawić w punkcie dostępowym

A. firewall
B. filtrację adresów MAC
C. strefę o ograniczonym dostępie
D. bardziej zaawansowane szyfrowanie
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi jedynie do urządzeń posiadających określone adresy MAC (Media Access Control). Każde urządzenie sieciowe ma unikalny adres MAC, który identyfikuje je w sieci lokalnej. Konfigurując filtrację adresów MAC w punkcie dostępowym, administrator może wprowadzić listę dozwolonych adresów, co zwiększa bezpieczeństwo sieci. Przykład zastosowania tej technologii może obejmować małe biuro lub dom, gdzie właściciel chce zapewnić, że tylko jego smartfony, laptopy i inne urządzenia osobiste mogą łączyć się z siecią, uniemożliwiając dostęp nieznanym gościom. Choć filtracja adresów MAC nie jest niezawodna (ponieważ adresy MAC mogą być spoofowane), jest jednym z elementów strategii bezpieczeństwa, współpracując z innymi metodami, takimi jak WPA2 lub WPA3, co zapewnia wielowarstwową ochronę przed nieautoryzowanym dostępem do sieci.

Pytanie 37

Aby zapewnić, że jedynie wybrane urządzenia mają dostęp do sieci WiFi, konieczne jest w punkcie dostępowym

A. zmienić kanał radiowy
B. skonfigurować filtrowanie adresów MAC
C. zmienić sposób szyfrowania z WEP na WPA
D. zmienić hasło
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi tylko dla wybranych urządzeń. Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego każdego urządzenia. Konfigurując filtrowanie adresów MAC na punkcie dostępowym, administrator może stworzyć listę zatwierdzonych adresów, co oznacza, że tylko te urządzenia będą mogły nawiązać połączenie z siecią. To podejście jest powszechnie stosowane w małych sieciach domowych oraz biurowych, jako dodatkowa warstwa zabezpieczeń w połączeniu z silnym hasłem i szyfrowaniem. Należy jednak pamiętać, że filtrowanie adresów MAC nie jest nieomylnym rozwiązaniem, gdyż adresy MAC można podsłuchiwać i fałszować. Mimo to, w praktyce jest to skuteczny sposób na ograniczenie nieautoryzowanego dostępu, zwłaszcza w środowiskach, gdzie liczba urządzeń jest ograniczona i łatwa do zarządzania. Dobrą praktyką jest łączenie tego rozwiązania z innymi metodami zabezpieczeń, takimi jak WPA3, co znacząco podnosi poziom ochrony.

Pytanie 38

Przed przystąpieniem do podłączania urządzeń do sieci komputerowej należy wykonać pomiar długości przewodów. Dlaczego jest to istotne?

A. Aby ustalić parametry zasilania zasilacza awaryjnego (UPS) dla stanowisk sieciowych.
B. Aby określić, ile urządzeń można podłączyć do jednego portu switcha.
C. Aby nie przekroczyć maksymalnej długości przewodu zalecanej dla danego medium transmisyjnego, co zapewnia prawidłowe działanie sieci i minimalizuje ryzyko zakłóceń.
D. Aby zapobiec przegrzewaniu się okablowania w trakcie pracy sieci.
Pomiar długości przewodów sieciowych to naprawdę kluczowy etap przy planowaniu i montażu sieci. Chodzi przede wszystkim o to, żeby nie przekraczać zalecanej długości dla wybranego medium transmisyjnego, np. skrętki czy światłowodu. Standardy, takie jak TIA/EIA-568, jasno określają, że dla skrętki UTP Cat.5e/Cat.6 maksymalna długość jednego odcinka to 100 metrów – wliczając w to patchcordy. Gdy przewód jest dłuższy, sygnał potrafi się mocno osłabić, pojawiają się opóźnienia, błędy transmisji, a nawet całkowite zerwanie połączenia. W praktyce, jeśli ktoś o tym zapomni, sieć potrafi działać bardzo niestabilnie – szczególnie przy wyższych przepływnościach lub w środowiskach o dużych zakłóceniach elektromagnetycznych. Z mojego doświadczenia wynika, że nieprzemyślane prowadzenie kabli to jeden z najczęstszych powodów reklamacji u klientów. Prawidłowy pomiar i stosowanie się do limitów to po prostu podstawa profesjonalnego podejścia i gwarancja, że sieć będzie działać zgodnie z założeniami projektowymi. Branżowe dobre praktyki zawsze zakładają uwzględnienie tych długości już na etapie projektowania, żeby uniknąć problemów w przyszłości.

Pytanie 39

Jakie oznaczenie według normy ISO/IEC 11801:2002 definiuje skrętkę foliowaną, przy czym wszystkie pary żył są ekranowane folią?

A. F/UTP
B. F/FTP
C. S/FTP
D. U/UTP
Wybór innych oznaczeń związanych z typami skrętek nie oddaje prawidłowo charakterystyki F/UTP. Zaczynając od S/FTP, jest to skrętka, gdzie każda para żył jest ekranowana osobno, a dodatkowo cały kabel jest otoczony ekranem, co zapewnia wysoki poziom ochrony, ale zdecydowanie różni się od tego, co oferuje F/UTP – oznaczającego ekranowanie tylko par żył. U/UTP wskazuje na kabel nieekranowany, co jest użyteczne w mniej zakłóconych środowiskach, lecz nie dostarcza ochrony, jaką oferują typy ekranowane, przez co jest mniej zalecany w miejscach o wysokim natężeniu zakłóceń elektromagnetycznych. F/FTP natomiast wskazuje, że cały kabel jest ekranowany folią, co mogłoby wydawać się korzystniejsze, jednakże nie odpowiada specyfikacji pytania dotyczącego skrętki foliowanej, gdzie ekranowanie dotyczy jedynie par. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi polegają na myleniu stopnia ekranowania oraz nieprawidłowym interpretowaniu oznaczeń, co może skutkować wyborem niewłaściwego typu kabla do danej aplikacji. W praktyce, dobór odpowiedniego typu skrętki jest kluczowy dla zapewnienia optymalnej wydajności sieci oraz bezpieczeństwa przesyłanych danych.

Pytanie 40

Która norma określa standardy dla instalacji systemów okablowania strukturalnego?

A. PN-EN 55022
B. PN-EN 50310
C. PN-EN 50174
D. PN-EN50173
Wybór innych norm, takich jak PN-EN 50310, PN-EN 50173 lub PN-EN 55022, może wynikać z niepełnego zrozumienia zakresu ich zastosowania. Norma PN-EN 50310 dotyczy wymagań dotyczących systemów okablowania w kontekście instalacji elektrycznych i sieciowych, jednak nie odnosi się bezpośrednio do standardów instalacji okablowania strukturalnego. Natomiast PN-EN 50173 określa wymagania dotyczące systemów okablowania strukturalnego, ale skupia się głównie na jego projektowaniu i nie obejmuje kompleksowych wytycznych dotyczących instalacji, co jest kluczowe w kontekście efektywnego układania kabli. Z kolei norma PN-EN 55022 koncentruje się na wymaganiach dotyczących emisji elektromagnetycznej urządzeń elektronicznych, co jest całkowicie inną dziedziną i nie ma zastosowania w kontekście instalacji okablowania. Wybierając niewłaściwe normy, można wprowadzić nieefektywne praktyki instalacyjne, które mogą prowadzić do problemów z wydajnością systemu, takich jak straty sygnału, zakłócenia elektromagnetyczne oraz problemy z serwisowaniem. Zrozumienie różnic między tymi normami oraz ich rzeczywistymi zastosowaniami jest kluczowe dla prawidłowego projektowania i instalacji systemów okablowania, co w dłuższej perspektywie wpływa na niezawodność i efektywność instalacji telekomunikacyjnych.