Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 28 stycznia 2026 18:01
  • Data zakończenia: 28 stycznia 2026 18:09

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wyłącznik różnicowoprądowy reagujący na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA i na prądy wyprostowane, oznaczony jest symbolem graficznym

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wyłącznik różnicowoprądowy, który reaguje na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA oraz na prądy wyprostowane, jest kluczowym elementem w systemach elektroenergetycznych, zapewniającym ochronę przed porażeniem prądem elektrycznym. Oznaczenie, które widzisz w odpowiedzi A, jest zgodne z normami obowiązującymi w branży elektrycznej, w tym z normą IEC 61008-1, która określa wymagania dotyczące wyłączników różnicowoprądowych. Użycie symbolu graficznego z sinusoidą oraz prostą linią z poziomymi kreskami poniżej, wskazuje na jego zdolność do detekcji prądów różnicowych, co jest istotne w kontekście ochrony instalacji elektrycznych. Praktyczne zastosowanie takich wyłączników obejmuje zarówno budynki mieszkalne, gdzie zabezpieczają użytkowników przed zagrożeniem, jak i obiekty przemysłowe, gdzie minimalizują ryzyko uszkodzenia sprzętu. Ich dobór i prawidłowe oznaczenie w dokumentacji technicznej są fundamentalne dla zapewnienia bezpieczeństwa i zgodności z regulacjami prawnymi.

Pytanie 2

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/500 V
B. 450/750 V
C. 100/100 V
D. 300/300 V
Izolacja przewodów w instalacjach elektrycznych jest kluczowym elementem zapewniającym bezpieczeństwo i trwałość systemu. Odpowiedzi sugerujące użycie przewodów z izolacją 450/750 V, 300/300 V czy 100/100 V nie uwzględniają specyfiki i wymagań dla sieci niskonapięciowych. Przewody 450/750 V są przystosowane do wyższych napięć i zastosowań, które nie są typowe dla instalacji 230/400 V, a użycie ich w tym kontekście może być nieefektywne oraz kosztowne. Z kolei przewody 300/300 V i 100/100 V mają zbyt niskie parametry izolacji, co czyni je niewłaściwymi do pracy w warunkach, gdzie mogą pojawić się napięcia robocze na poziomie 400 V. Użycie takich przewodów w sieci trójfazowej niskiego napięcia wiąże się z ryzykiem wystąpienia przebicia izolacji, co w rezultacie może prowadzić do awarii systemu, a w najgorszym przypadku - do zagrożenia życia ludzi oraz uszkodzenia mienia. Dlatego ważne jest, aby stosować przewody o odpowiedniej klasie izolacji, które są zgodne z normami oraz standardami branżowymi, co pozwoli na zminimalizowanie ryzyka oraz zapewnienie bezpiecznej eksploatacji instalacji elektrycznych.

Pytanie 3

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór innych opcji jako odpowiedzi wskazuje na błędne zrozumienie zasad klasyfikacji łączników elektrycznych. Wiele osób myli różne typy łączników, co może prowadzić do nieodpowiednich wyborów w kontekście ich zastosowania. Opcja A sugeruje, że mamy do czynienia z łącznikiem wielobiegunowym, co jest nieprawidłowe, gdyż łącznik przedstawiony w pytaniu jest jednobiegunowy. Łączniki wielobiegunowe są stosowane w bardziej skomplikowanych instalacjach, gdzie wymagane jest włączanie i wyłączanie więcej niż jednego obwodu jednocześnie. W przypadku opcji C, błędna klasyfikacja jako łącznik krzyżowy, prowadzi do mylnego założenia, że można nim kontrolować kilka źródeł światła z różnych miejsc. Łączniki krzyżowe są używane w połączeniu z łącznikami schodowymi, co jest znacznie bardziej skomplikowanym rozwiązaniem. Z kolei opcja D, dotycząca łącznika podwójnego, również jest niewłaściwa, ponieważ taki łącznik byłby zdolny do włączania i wyłączania dwóch niezależnych obwodów, co nie ma miejsca w omawianym przypadku. Prawidłowe zrozumienie typów łączników oraz ich odpowiadających symboli graficznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych. Pomyłki w identyfikacji mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy uszkodzenia sprzętu. Zrozumienie tych podstawowych zasad jest niezbędne dla każdego, kto pracuje w branży elektrycznej.

Pytanie 4

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 4.
B. Przyrząd 2.
C. Przyrząd 3.
D. Przyrząd 1.
Przyrząd 3, czyli termowizor, jest kluczowym narzędziem w diagnostyce systemów elektrycznych, zwłaszcza w kontekście torów wielkoprądowych. Jego zdolność do wykrywania wadliwych połączeń elektrycznych opiera się na analizie rozkładu temperatury, co jest istotne w sytuacjach, gdzie obciążenie jest wysokie. W praktyce, gdy dochodzi do uszkodzenia połączenia, może pojawić się nadmierne nagrzewanie, które termowizor jest w stanie zidentyfikować z bezpiecznej odległości. Zastosowanie termowizji w monitorowaniu infrastruktury elektrycznej stało się standardem w wielu branżach, w tym w energetyce i przemyśle. Dzięki temu można szybko i efektywnie lokalizować problemy, co z kolei przyczynia się do zmniejszenia ryzyka awarii oraz obniżenia kosztów eksploatacji. Ponadto, regularne inspekcje za pomocą termowizora wspierają utrzymanie zgodności z normami bezpieczeństwa i jakości, co jest kluczowe w utrzymaniu infrastruktury elektrycznej w dobrym stanie.

Pytanie 5

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
B. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
C. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
D. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
Analizując niepoprawne odpowiedzi, można zauważyć szereg istotnych nieporozumień związanych z klasyfikacją kabli i ich zastosowaniami. W pierwszej z nich sugerowany kabel sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV nie pasuje do charakterystyki przedstawionego kabla. Kable sygnalizacyjne na ogół operują na niższych napięciach, a ich budowa z żyłami jednodrutowymi nie jest typowa dla aplikacji wymagających elastyczności i odporności na zakłócenia. Podobnie, drugi typ kabla, czyli kontrolny z żyłami wielodrutowymi na napięcie 300/500 V, z ekranowaniem, nie odpowiada wizualnym cechom przedstawionego kabla. Ekranowanie jest kluczowe w redukcji zakłóceń, jednak brak takiej ochrony w analizowanym przypadku wskazuje na inne przeznaczenie. Odpowiedź dotycząca kabla elektroenergetycznego również jest błędna, gdyż odnosi się do wyższych napięć, co nie zgadza się z widocznymi cechami izolacyjnymi i konstrukcją kabla. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują nadmierne generalizowanie właściwości kabli oraz ignorowanie specyfikacji technicznych. Niezrozumienie różnic między typami kabli oraz ich zastosowaniem w praktyce może prowadzić do niewłaściwych wyborów w projektowaniu instalacji elektrycznych i sygnalizacyjnych, co w konsekwencji może wpływać na niezawodność i bezpieczeństwo systemów.

Pytanie 6

Kondensator stosowany w jednofazowych silnikach indukcyjnych przeznaczony jest do

A. regulacji prędkości obrotowej.
B. zmiany wartości napięcia w układzie.
C. zatrzymywania silnika.
D. wytworzenia momentu rozruchowego.
Poprawnie – kondensator w jednofazowych silnikach indukcyjnych służy właśnie do wytworzenia momentu rozruchowego. Jednofazowe uzwojenie stojana samo z siebie tworzy tylko pole pulsujące, a nie wirujące, więc silnik bez dodatkowych zabiegów w ogóle by nie wystartował, tylko buczał. Kondensator wraz z uzwojeniem pomocniczym powoduje przesunięcie fazowe prądu względem uzwojenia głównego. W efekcie w stojanie powstają dwa pola magnetyczne przesunięte w fazie, które „składają się” na pole wirujące, dające właśnie moment rozruchowy. W praktyce wyróżnia się silniki z kondensatorem rozruchowym oraz z kondensatorem pracy. Ten pierwszy jest zwykle o większej pojemności, włączany tylko na czas rozruchu przez wyłącznik odśrodkowy lub przekaźnik prądowy, żeby zapewnić duży moment startowy, np. w sprężarkach, pompach, małych wentylatorach o większym oporze rozruchowym. Kondensator pracy ma mniejszą pojemność, jest włączony na stałe i oprócz poprawy rozruchu wpływa też na lepszą pracę silnika, trochę poprawia cos φ i kulturę pracy. Moim zdaniem warto kojarzyć, że kondensator nie jest tu żadnym elementem regulacyjnym czy zabezpieczeniem, tylko częścią układu wytwarzającego sztuczne „drugie uzwojenie fazowe”. W dokumentacji producentów silników jednofazowych zawsze podawana jest zalecana pojemność kondensatora na 1 kW mocy oraz jego napięcie pracy, zwykle 400–450 V AC, i tego w praktyce trzeba się trzymać, bo zła wartość pojemności od razu psuje właściwości rozruchowe.

Pytanie 7

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Naciskając przycisk "TEST"
B. Sprawdzając napięcie oraz prąd wyłącznika
C. Zmieniając ustawienie dźwigni "ON-OFF"
D. Tworząc zwarcie w obwodzie zabezpieczonym
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 8

Jaki rodzaj łącznika zastosowany jest w obwodzie przedstawionym na schemacie?

Ilustracja do pytania
A. Schodowy.
B. Żaluzjowy.
C. Świecznikowy.
D. Dwubiegunowy.
Odpowiedź 'Żaluzjowy' jest poprawna, ponieważ na schemacie widoczny jest łącznik, który kontroluje ruch silnika, co jest charakterystyczne dla systemów sterowania żaluzjami. W przypadku łączników żaluzjowych, zazwyczaj mamy do czynienia z dwoma przyciskami: jeden służy do podnoszenia żaluzji, a drugi do ich opuszczania. Tego rodzaju łączniki są powszechnie stosowane w domach, biurach oraz budynkach użyteczności publicznej, gdzie automatyzacja zasłon i żaluzji może znacząco poprawić komfort użytkowania oraz efektywność energetyczną. Dobrą praktyką w instalacjach elektrycznych jest stosowanie łączników dostosowanych do konkretnego zastosowania, w tym przypadku łączników żaluzjowych, aby zapewnić bezpieczeństwo oraz wygodę. Znajomość tych systemów pozwala również na prawidłowe projektowanie i wdrażanie rozwiązań automatyki budynkowej, co jest coraz bardziej popularne w nowoczesnym budownictwie.

Pytanie 9

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjnego klatkowego.
B. Jednofazowego z kondensatorem pracy.
C. Komutatorowego prądu stałego.
D. Indukcyjnego pierścieniowego.
Odpowiedź wskazująca na silnik indukcyjny klatkowy jest poprawna, ponieważ na przedstawionym rysunku można zauważyć charakterystyczne cechy tego typu silnika. Wirnik klatkowy, który jest kluczowym elementem konstrukcyjnym, składa się z aluminiowych lub miedzianych prętów, które są połączone na obu końcach pierścieniami. Silniki indukcyjne klatkowe są powszechnie stosowane w przemyśle ze względu na swoją prostotę, trwałość oraz efektywność. Na przykład, znajdują zastosowanie w napędach mechanicznych, takich jak pompy, wentylatory czy taśmociągi. Ich zalety to niskie koszty eksploatacji i minimalna potrzeba konserwacji, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej, gdzie preferuje się rozwiązania wymagające jak najmniej interwencji serwisowych. Warto również zaznaczyć, że silniki te działają na zasadzie indukcji elektromagnetycznej, co czyni je bezpiecznymi oraz zdolnymi do pracy w różnych warunkach środowiskowych.

Pytanie 10

Który element stycznika elektromagnetycznego przedstawiono na ilustracji?

Ilustracja do pytania
A. Sprężynę zwrotną.
B. Zworę.
C. Komorę gaszeniową.
D. Cewkę.
Cewka jest kluczowym elementem stycznika elektromagnetycznego, który odgrywa fundamentalną rolę w jego działaniu. Gdy do cewki doprowadzony jest prąd, wytwarza ona pole magnetyczne, które przyciąga ruchomy rdzeń stycznika, powodując zamknięcie styków. Dzięki temu możliwy jest przepływ prądu przez obciążenie, co jest istotne w różnych aplikacjach elektrycznych, od automatyki przemysłowej po systemy oświetleniowe. Cewki stosowane w stycznikach są zazwyczaj projektowane zgodnie z normami IEC oraz DIN, co zapewnia ich niezawodność i efektywność. Przykładem zastosowania stycznika z cewką może być automatyczne włączenie pompy wody w systemach zarządzania budynkami, gdzie cewka aktywuje styki, kiedy poziom wody osiąga określoną wartość. Zrozumienie działania cewki oraz jej roli w stycznikach jest kluczowe dla profesjonalistów w dziedzinie elektrotechniki, co pozwala na poprawne zaprojektowanie oraz efektywne użytkowanie systemów elektrycznych.

Pytanie 11

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Dwubiegunowy
B. Świecznikowy
C. Schodowy
D. Krzyżowy
Odpowiedź 'Świecznikowy' jest poprawna, ponieważ łącznik świecznikowy jest dedykowany do sterowania różnymi sekcjami źródeł światła w żyrandolach. Dzięki niemu można niezależnie włączać i wyłączać poszczególne źródła światła, co pozwala na regulację natężenia oświetlenia w pomieszczeniu oraz na tworzenie różnorodnych efektów świetlnych. Przykładem zastosowania łącznika świecznikowego może być sytuacja, gdy w jednym pomieszczeniu zainstalowany jest żyrandol z dwoma sekcjami, na przykład w salonie, gdzie można włączyć tylko jedną część żyrandola na wieczorny relaks, a drugą podczas spotkań rodzinnych. Stosowanie łączników świecznikowych jest zgodne z normami instalacji elektrycznych, co zapewnia bezpieczeństwo i komfort użytkowania. Dobre praktyki sugerują ich wykorzystanie w pomieszczeniach, gdzie różne źródła światła pełnią istotną rolę w aranżacji przestrzeni oraz atmosferze wnętrza.

Pytanie 12

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 1,50 Ω
B. 2,50 Ω
C. 2,75 Ω
D. 1,25 Ω
Aby obliczyć wartość impedancji pętli zwarcia, należy uwzględnić spadek napięcia, który pojawia się przy zamkniętym wyłączniku W, oraz wartość prądu zmierzonego amperomierzem. W tym przypadku różnica napięcia wynosi 10 V (228 V - 218 V). Przy zastosowaniu prawa Ohma, które mówi, że impedancja (Z) jest równa spadkowi napięcia (ΔU) podzielonemu przez natężenie prądu (I), możemy obliczyć wartość impedancji jako Z = ΔU / I. Dla danych w pytaniu mamy Z = 10 V / 4 A = 2,50 Ω. W praktyce, znajomość wartości impedancji pętli zwarcia jest kluczowa w projektowaniu instalacji elektrycznych, ponieważ pozwala na ocenę ich bezpieczeństwa i efektywności. Wartości impedancji pętli zwarcia powinny być zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące zabezpieczeń i ochrony przed porażeniem prądem elektrycznym. W sytuacjach awaryjnych, takich jak zwarcia, niska wartość impedancji pętli zwarcia zapewnia szybkie zadziałanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i sprzętu. Poznanie metody obliczania impedancji pętli zwarcia pozwala na skuteczniejsze zapobieganie awariom i poprawę warunków pracy w instalacjach elektrycznych.

Pytanie 13

Jakie akcesoria, oprócz szczypiec, trzeba pobrać z magazynu, aby zasilić zamontowany plafon sufitowy, kiedy instalacja została wykonana przewodami YDYp?

A. Lutownicę, wiertarkę, ściągacz izolacji
B. Nóż monterski, wiertarkę, ściągacz izolacji
C. Ściągacz izolacji, nóż monterski, wkrętak
D. Wiertarkę, lutownicę, wkrętak
Odpowiedź, która wskazuje na konieczność użycia ściągacza izolacji, noża monterskiego i wkrętaka, jest prawidłowa, ponieważ te narzędzia są kluczowe w procesie podłączania plafonu sufitowego do instalacji elektrycznej. Ściągacz izolacji pozwala na dokładne usunięcie izolacji z końców przewodów YDYp, co jest niezbędne do ich prawidłowego połączenia. Nóż monterski jest przydatny do precyzyjnego cięcia przewodów oraz do ogólnych prac związanych z instalacją. Wkrętak natomiast jest podstawowym narzędziem do mocowania plafonu do sufitu, co wymaga użycia odpowiednich śrub. W kontekście praktyki instalacyjnej, ważne jest, aby przestrzegać standardów BHP oraz zasad dotyczących instalacji elektrycznych, co zwiększa bezpieczeństwo i funkcjonalność wykonanej pracy. Dobre praktyki obejmują również upewnienie się, że zasilanie jest wyłączone przed przystąpieniem do jakichkolwiek prac elektrycznych, co minimalizuje ryzyko porażenia prądem.

Pytanie 14

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Zawilgocenie izolacji jednej z faz.
B. Zwarcie międzyfazowe.
C. Przeciążenie jednej z faz.
D. Jednofazowe zwarcie doziemne.
Zawilgocenie izolacji jednej z faz jest kluczowym problemem, który może prowadzić do poważnych awarii w instalacji elektrycznej. Wartości rezystancji izolacji w podanej tabeli wskazują, że rezystancja między L3 a przewodem ochronno-neutralnym (PEN) wynosi 0,99 MΩ, co jest zaledwie poniżej wymaganej wartości 1 MΩ. Taki wynik sugeruje, że izolacja L3 może być narażona na działanie wilgoci, co zmniejsza jej zdolność do skutecznego izolowania przewodów elektrycznych. W praktyce, jeżeli wilgoć dostaje się do izolacji, może to prowadzić do korozji, uszkodzeń mechanicznych oraz zwiększonego ryzyka porażenia prądem. Dlatego niezwykle istotne jest regularne monitorowanie stanu izolacji przy użyciu odpowiednich narzędzi pomiarowych, takich jak megger, oraz przestrzeganie standardów, takich jak normy IEC 60364 i PN-EN 60204-1, które zalecają minimalne rezystancje dla bezpieczeństwa instalacji. W przypadku wykrycia zawilgocenia, należy przeprowadzić dokładną inspekcję i, jeżeli to konieczne, wymienić uszkodzone fragmenty układu. Zrozumienie tych zjawisk jest kluczowe dla zachowania bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 15

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 22 stycznika K1
B. Z zaciskiem 4 listwy zaciskowej X1
C. Z zaciskiem A2 stycznika K1
D. Z zaciskiem 3 listwy zaciskowej X1
Wybór zacisku 3 listwy zaciskowej X1 jako poprawnej odpowiedzi jest uzasadniony analizą schematu montażowego, który jasno pokazuje połączenie pomiędzy tym zaciskiem a zaciskiem 41 stycznika K2. W praktyce, prawidłowe połączenie zacisków jest kluczowe dla zapewnienia właściwego działania systemów elektrycznych. W przypadku styczników, ich poprawne podłączenie wpływa na stabilność i bezpieczeństwo całego obwodu. W standardach branżowych, takich jak normy IEC 60947, zwraca się uwagę na znaczenie właściwego oznaczenia i połączeń w systemach automatyki, co pozwala na uniknięcie błędów w instalacji oraz ułatwia diagnostykę i konserwację. Zastosowanie logicznego podejścia do analizy schematu oraz znajomość standardów elektrycznych pomagają w skutecznym projektowaniu i wdrażaniu systemów, co jest niezbędne w każdej pracy zawodowej związanej z elektryką.

Pytanie 16

Które z wymienionych urządzeń elektrycznych jest pokazane na ilustracji?

Ilustracja do pytania
A. Transformator.
B. Dławik magnetyczny.
C. Wzbudnik indukcyjny.
D. Elektromagnes.
Transformator jest kluczowym urządzeniem elektrycznym, które służy do zmiany poziomu napięcia w systemach energetycznych. Na ilustracji widać, że transformator składa się z dwóch cewek – pierwotnej i wtórnej – nawiniętych na wspólnym rdzeniu magnetycznym, co jest typowym rozwiązaniem w tych urządzeniach. Dzięki zasadzie indukcji elektromagnetycznej transformator może efektywnie przenosić energię elektryczną między obwodami, co jest kluczowe w systemach przesyłowych energii. Na przykład, transformatory są niezbędne do podwyższania napięcia w stacjach transformacyjnych, co ogranicza straty energii w trakcie przesyłania jej na dużą odległość. Dobrą praktyką jest regularne przeprowadzanie konserwacji transformatorów oraz monitorowanie ich stanu, aby zapewnić niezawodność i efektywność ich działania. W branży energetycznej obowiązują normy takie jak IEC 60076, które regulują wszystkie aspekty projektowania, budowy i eksploatacji transformatorów.

Pytanie 17

Którą wstawkę kalibrową należy zastosować w bezpieczniku o wkładce topikowej pokazanej na rysunku?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Odpowiedź C jest prawidłowa, ponieważ wstawka kalibrowa posiada oznaczenie zgodne z parametrami wkładki topikowej bezpiecznika, która wynosi 25A przy napięciu 500V. W przypadku bezpieczników, kluczowe jest, aby zastosowana wstawka kalibrowa odpowiadała nominalnym wartościom prądu i napięcia. W przeciwnym razie, może to prowadzić do niewłaściwego działania obwodu elektrycznego, co w konsekwencji może spowodować uszkodzenie urządzeń lub stanowić zagrożenie dla bezpieczeństwa. Stosując odpowiednią wkładkę, zapewniamy, że obwód będzie chroniony przed przeciążeniami oraz zwarciami, co jest zgodne z normami bezpieczeństwa elektrycznego. Wiedza na temat doboru odpowiednich wkładek kalibrowych jest niezbędna w każdej instalacji elektrycznej; pozwala to na zminimalizowanie ryzyka awarii oraz zapewnienie długotrwałej i stabilnej pracy urządzeń elektrycznych.

Pytanie 18

Na podstawie rysunku montażowego określ, na jakiej wysokości od podłogi należy zamontować dolną krawędź rozdzielnicy.

Ilustracja do pytania
A. 1,5 m
B. 0,80 m
C. 0,90 m
D. 1,4 m
Zgodnie z rysunkiem montażowym, dolna krawędź rozdzielnicy powinna być zamontowana na wysokości 1500 mm (1,5 m) od podłogi. Taki wymiar jest zgodny z normami branżowymi, które określają ergonomiczne i bezpieczne wysokości montażu rozdzielnic elektrycznych. Wysokość ta zapewnia wygodny dostęp do urządzeń oraz pozwala na swobodne prowadzenie prac serwisowych. Dodatkowo, montaż na tej wysokości minimalizuje ryzyko przypadkowego kontaktu z wodą oraz zanieczyszczeniami, co jest istotne w kontekście bezpieczeństwa elektrycznego. W praktyce, takie umiejscowienie rozdzielnicy ułatwia również korzystanie z niej w warunkach przemysłowych lub w budynkach użyteczności publicznej, gdzie użytkownicy mogą być różnego wzrostu. Warto pamiętać, że zgodność z obowiązującymi standardami oraz zasadami BHP jest kluczowym aspektem każdego projektu instalacji elektrycznych.

Pytanie 19

Który schemat montażowy instalacji oświetleniowej przedstawionej na zamieszczonym planie jest prawidłowy?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Schemat C. przedstawia prawidłowe podłączenie instalacji oświetleniowej, co jest kluczowe dla bezpieczeństwa i funkcjonalności systemu. W tym schemacie przewody fazowe (L) są właściwie podłączone do przełącznika bistabilnego, co umożliwia sterowanie oświetleniem z jednego miejsca. Przewody neutralne (N) są bezpośrednio podłączone do lamp, co jest zgodne z normami bezpieczeństwa. Taki układ zapewnia, że w momencie wyłączenia przełącznika, nie ma napięcia na lampach, co minimalizuje ryzyko porażenia prądem. Ponadto, stosowanie przełączników bistabilnych jest zgodne z dobrymi praktykami w projektowaniu instalacji oświetleniowych, co podnosi komfort użytkowania. Warto również zaznaczyć, że zgodnie z normami PN-IEC 60364, odpowiednie podłączenie przewodów jest fundamentalne dla prawidłowego funkcjonowania instalacji oraz jej bezpieczeństwa.

Pytanie 20

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.
B. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
C. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
D. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
Wybrana odpowiedź jest prawidłowa, ponieważ zgodnie z przedstawionym schematem w rozdzielnicy instalacji mieszkaniowej zainstalowane są cztery wyłączniki różnicowoprądowe. Ich rola polega na zabezpieczaniu obwodów przed prądem upływowym, co jest kluczowe dla ochrony ludzi przed porażeniem prądem elektrycznym. Dodatkowo każda z linii zasilających musi być zabezpieczona jednofazowym wyłącznikiem nadprądowym, co w tym przypadku odpowiada pięciu wyłącznikom o wartościach znamionowych B10 lub B16. Takie podejście jest zgodne z normami PN-EN 61439 oraz PN-IEC 60364, które wskazują na konieczność odpowiedniego zabezpieczenia instalacji elektrycznych, aby zapewnić bezpieczeństwo użytkowania. W praktyce, przestrzeganie tych zasad minimalizuje ryzyko awarii oraz zwiększa niezawodność całej instalacji, co jest niezwykle istotne w kontekście użytkowania w warunkach domowych.

Pytanie 21

Na podstawie wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja w Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.2
N.1 – N.20
PE.1 – PE.20
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.10
N.1 – L2.1
N.1 – L3.1
Ilustracja do pytania
A. L1 i L2 są zwarte.
B. N i PE są zwarte oraz L3 jest przerwana.
C. N i L3 są zwarte oraz PE jest przerwana.
D. L1 i L2 są przerwane.
Analizując inne odpowiedzi, można zauważyć, że stwierdzenie, iż żyły N i L3 są zwarte, bazuje na błędnym rozumieniu pomiarów rezystancji. W przypadku, gdy L3 byłaby rzeczywiście zwarte, rezystancja między N a L3 musiałaby wynosić 0 Ω. Kolejne podejście, które sugeruje, że L1 i L2 są przerwane, pomija kluczową informację, że ich rezystancja również wynosi 0 Ω, co oznacza, że są sprawne. Warto zwrócić uwagę na to, że mylenie pojęć związanych z pomiarami rezystancji prowadzi do fałszywych wniosków. Rezystancja nieskończona, jak w przypadku L3, nie może być interpretowana jako stan zwarty. Ostatecznie, błędne odpowiedzi pokazują, że zrozumienie, jak powinny działać różne żyły w instalacji elektrycznej, jest niezbędne dla prawidłowego diagnozowania problemów. Kluczowym aspektem jest znajomość funkcji żył neutralnych, ochronnych oraz fazowych w instalacji, co jest fundamentem dla zapewnienia bezpieczeństwa oraz efektywności systemów elektrycznych.

Pytanie 22

Symbol graficzny urządzenia AGD - suszarki, przedstawiono na rysunku

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Symbol graficzny D, przedstawiający suszarkę do ubrań, jest zgodny z ustalonymi standardami oznaczeń stosowanymi w branży AGD. Suszarka, jako urządzenie do obróbki tkanin, ma charakterystyczny symbol, który pozwala na jednoznaczne zidentyfikowanie jej funkcji. W kontekście praktycznym, znajomość takich oznaczeń jest kluczowa dla użytkowników, którzy chcą rozpoznać urządzenia w sklepie lub w instrukcji obsługi. Również, w sytuacjach awaryjnych, szybka identyfikacja urządzeń może przyczynić się do efektywnego działania. Warto również zaznaczyć, że zgodność z normami, takimi jak IEC 60417, pozwala na standaryzację i ułatwienie użytkownikom rozpoznawania różnych urządzeń, co jest szczególnie ważne w kontekście międzynarodowym, gdzie różne kraje mogą mieć swoje lokalne symbole. Wiedza o tym, jak wygląda symbol graficzny suszarki, jest niezbędna dla każdego, kto korzysta z urządzeń AGD, a znajomość klasyfikacji tych symboli zdecydowanie ułatwia ich używanie i zarządzanie domowymi obowiązkami.

Pytanie 23

Który element oznaczony jest na przedstawionym schemacie symbolem literowym dT?

Ilustracja do pytania
A. Wyłącznik silnikowy.
B. Rozłącznik.
C. Przekaźnik termobimetalowy.
D. Bezpiecznik.
Odpowiedź "Przekaźnik termobimetalowy" jest prawidłowa, ponieważ symbol dT na schemacie odnosi się do urządzenia, które ma kluczowe znaczenie w ochronie silników elektrycznych. Przekaźnik termobimetalowy działa na zasadzie reakcji na temperaturę, co czyni go idealnym rozwiązaniem do monitorowania i ochrony przed przeciążeniem prądowym. Kiedy prąd przekracza dopuszczalny poziom, generowane ciepło powoduje odkształcenie bimetalu, co prowadzi do otwarcia obwodu i wyłączenia silnika. Tego typu urządzenia są często stosowane w aplikacjach przemysłowych oraz w systemach automatyki, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem spowodowanym przeciążeniem. Zgodnie z normami IEC 60204-1, przekaźniki termobimetalowe są zalecane do ochrony silników, co podkreśla ich wysoką jakość i skuteczność w praktycznych zastosowaniach. Warto również zaznaczyć, że ich instalacja jest zgodna z dobrymi praktykami w zakresie bezpieczeństwa, co przyczynia się do długowieczności oraz efektywności pracy silników.

Pytanie 24

Którym symbolem na schemacie montażowym instalacji elektrycznej należy zaznaczyć urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybór odpowiedzi A, B lub D wskazuje na nieporozumienie dotyczące symboliki stosowanej w dokumentacji instalacji elektrycznych. Odpowiedzi te nie reprezentują wyłącznika różnicowoprądowego, a ich analiza ujawnia częste błędy myślenia związane z interpretacją schematów. Na przykład, odpowiedź A może być mylnie zinterpretowana jako symbol innego urządzenia zabezpieczającego, takiego jak bezpiecznik, podczas gdy jego funkcje są zupełnie inne. Bezpieczniki działają na zasadzie przerywania obwodu w przypadku nadmiernego prądu, co jest innym mechanizmem ochrony niż działanie RCD. Wybór odpowiedzi B może sugerować pomyłkę w rozpoznaniu symboli stosowanych na schematach, co może prowadzić do poważnych konsekwencji w praktyce. Różnice w oznaczeniach mogą na przykład skutkować niewłaściwą instalacją urządzeń, co zagraża bezpieczeństwu użytkowników. Warto zwrócić uwagę, że poprawne rozumienie schematów elektrycznych opiera się na znajomości standardów branżowych, takich jak PN-EN 50010, które regulują sposób oznaczania i stosowania wyłączników RCD. Dlatego ważne jest, aby przed podjęciem decyzji w zakresie oznaczeń instalacyjnych dokładnie przestudiować właściwe dokumenty oraz szkolenia, które pozwolą na właściwe interpretowanie symboliki i unikanie niebezpiecznych błędów w instalacjach elektrycznych.

Pytanie 25

Które z wymienionych prac, związanych z konserwacją urządzeń elektrycznych do 1 kV, powinno się wykonywać w co najmniej dwuosobowym zespole?

A. Monterskie wykonywane na wysokości powyżej 2 m w przypadkach, w których wymagane jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości.
B. Kontrolno-pomiarowe wykonywane stale przy urządzeniach elektroenergetycznych znajdujących się pod napięciem przez osoby upoważnione w ustalonych miejscach pracy na podstawie instrukcji eksploatacji.
C. Wykonywane przy urządzeniach wyłączonych spod napięcia i uziemionych w widoczny sposób.
D. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji linii kablowych.
W tego typu pytaniu bardzo łatwo skupić się tylko na napięciu i pominąć inne czynniki ryzyka, zwłaszcza wysokość i organizację stanowiska pracy. Wiele osób zakłada, że skoro chodzi o urządzenia do 1 kV i konserwację, to najważniejsze jest, czy urządzenie jest pod napięciem czy nie. To jest oczywiście kluczowe z punktu widzenia ochrony przeciwporażeniowej, ale nie wyczerpuje tematu bezpieczeństwa pracy. Prace wykonywane przy urządzeniach wyłączonych spod napięcia i uziemionych w widoczny sposób są z zasady jednymi z bezpieczniejszych, o ile zachowane są procedury: wyłączenie, zabezpieczenie przed załączeniem, sprawdzenie braku napięcia, uziemienie i oznakowanie. W takiej sytuacji przepisy nie wymagają standardowo, żeby każdą taką czynność wykonywać w dwuosobowym zespole, choć w praktyce przy bardziej skomplikowanych zadaniach i tak często pracuje więcej niż jedna osoba. Typowym błędem myślowym jest tu przekonanie, że każde dotknięcie instalacji elektrycznej od razu wymaga zespołu dwuosobowego – przepisy są jednak bardziej zniuansowane. Prace prowadzone w wykopach o głębokości do 2 m przy liniach kablowych też są obciążone ryzykiem, ale głównie związanym z osuwaniem gruntu, potknięciem, czy uszkodzeniem mechanicznie kabla. Dla takich warunków obowiązują osobne regulacje BHP dotyczące robót ziemnych. Zasadnicze wymagania dla pracy w zespole dwuosobowym częściej pojawiają się przy głębszych wykopach lub szczególnie trudnych warunkach gruntowych. Sam fakt wykonywania robót przy kablu do 1 kV w wykopie do 2 m nie oznacza automatycznie obowiązku pracy w parze, o ile są spełnione inne wymagania bezpieczeństwa, jak umocnienie ścian wykopu, zabezpieczenie przed dostępem osób postronnych, itp. Z kolei prace kontrolno-pomiarowe przy urządzeniach elektroenergetycznych znajdujących się pod napięciem są bardzo poważnym zagadnieniem, ale w pytaniu jest ważny szczegół: są to prace wykonywane stale, w ustalonych miejscach pracy, przez osoby upoważnione, na podstawie instrukcji eksploatacji. Jeżeli stanowisko jest zaprojektowane, osłonięte i opisane tak, że dopuszcza rutynowe pomiary, to nie każda taka czynność musi być od razu kwalifikowana jako praca wymagająca zespołu dwuosobowego. Jest to kwestia oceny ryzyka, zapisów w instrukcjach eksploatacji i wewnętrznych procedur zakładu. Najistotniejszy błąd w rozumowaniu polega zwykle na tym, że ignoruje się ryzyko upadku z wysokości jako równorzędne z ryzykiem porażenia. Przy pracach monterskich powyżej 2 m, z użyciem środków ochrony indywidualnej przed upadkiem, połączenie tych dwóch zagrożeń powoduje, że minimalny skład dwuosobowy staje się standardem wynikającym z dobrych praktyk i wymogów BHP. W innych wymienionych sytuacjach ryzyko jest istotne, ale inaczej klasyfikowane i zabezpieczane, dlatego tam sam wymóg pracy w parze nie jest tak jednoznacznie przypisany przepisami jak w przypadku robót na wysokości.

Pytanie 26

Rysunek przedstawia pomiar impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. bezpośredniego pomiaru.
B. kompensacyjną.
C. spadku napięcia.
D. zastosowania dodatkowego źródła.
Pomiar impedancji pętli zwarciowej można przeprowadzać różnymi metodami, jednak nie każda z nich zapewnia taką samą dokładność i wiarygodność. Pierwsza z nieprawidłowych odpowiedzi, dotycząca zastosowania dodatkowego źródła, sugeruje, że użycie źródła napięcia jest wystarczające do przeprowadzenia tego pomiaru bez wskazania na konieczność jego kompensacji. Odpowiedź ta myli koncepcję pomiaru z prostym zastosowaniem źródła, co nie odzwierciedla rzeczywistych warunków w obwodzie. Kolejna odpowiedź, dotycząca pomiaru spadku napięcia, również jest problematyczna, ponieważ metoda ta nie uwzględnia wpływu rezystancji przewodów, co może prowadzić do znacznych błędów w odczytach. Bezpośrednie pomiary opierają się na idealnych warunkach, które rzadko występują w rzeczywistości, i nie są w stanie dostarczyć pełnego obrazu sytuacji w instalacji elektrycznej. Metoda kompensacyjna zaś, która uwzględnia te zmienne, pozwala na uzyskanie bardziej precyzyjnych wyników. Z kolei odpowiedź dotycząca pomiaru kompensacyjnego, mimo że prawidłowa, nie oddaje pełni zalet tej metody, a także zniekształca zrozumienie jej zastosowania, co może prowadzić do niewłaściwych wniosków w praktyce. Kluczowe jest zrozumienie, że w każdym pomiarze należy brać pod uwagę wszystkie zmienne, aby uzyskać rzetelne wyniki, a metody uproszczone mogą nie być wystarczające dla skutecznej analizy.

Pytanie 27

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Ściągacz izolacji
B. Poziomnica
C. Piła do metalu
D. Młotek
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 28

Korzystając z tabeli obciążalności prądowej przewodów, dobierz przewód o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B20.

Tabela obciążalności prądowej przewodów
Przekrój przewodu mm2Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
A. YADY 5x6 mm2
B. YDY 5x2,5 mm2
C. YADY 5x4 mm2
D. YDY 5x1,5 mm2
Wybór przewodów jak YADY 5x6 mm2, YDY 5x1,5 mm2 czy YADY 5x4 mm2 nie jest najlepszym pomysłem dla B20. Przewód YADY 5x6 mm2, choć ma dużą średnicę, jest za gruby na to zabezpieczenie, co prowadzi do nieefektywnego użycia materiałów i wyższych kosztów. YDY 5x1,5 mm2, z obciążalnością tylko 16A, to niewystarczająco, co zwiększa ryzyko przeciążenia i uszkodzeń. A YADY 5x4 mm2, nawet jeśli ma podobną obciążalność, to może nie dać wystarczającego marginesu bezpieczeństwa, zwłaszcza przy większym obciążeniu. Często ludzie popełniają błąd, nie myśląc o realnych obciążeniach, które przewody będą musiały wytrzymać, albo nie znają wymogów i norm. Z mojego doświadczenia, każda instalacja powinna być dostosowana do konkretnych warunków, nie tylko obciążeń, ale i innych czynników jak temperatura czy ułożenie. Wdrażanie norm, takich jak PN-IEC 60364, jest mega istotne, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 29

Symbol graficzny którego przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. Uziemiającego.
B. Neutralnego.
C. Fazowego.
D. Ochronnego.
Wybór przewodu ochronnego, fazowego lub uziemiającego wskazuje na nieporozumienie dotyczące oznaczeń oraz funkcji przewodów w instalacjach elektrycznych. Przewód ochronny, nazywany również przewodem PE (Protective Earth), ma za zadanie zapewnienie ochrony przed porażeniem prądem elektrycznym. Jego symbol różni się od symbolu przewodu neutralnego, co skutkuje błędnym rozpoznaniem na ilustracji. W przypadku przewodu fazowego, który jest oznaczany symbolem L, jego zadaniem jest dostarczanie prądu do odbiorników, a nie pełnienie roli neutralnej, co jest kluczowe dla poprawnego funkcjonowania instalacji. Przewód uziemiający również pełni funkcję ochronną, jednak jego zastosowanie jest ściśle związane z ochroną przed przepięciami oraz odprowadzeniem nadmiaru energii do ziemi. Oznaczenie przewodu neutralnego jest niezbędne do zrozumienia, że pełni on rolę powrotu prądu, a nie dostarczania go, co jest istotne w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Typowe błędy to mylenie funkcji poszczególnych przewodów oraz brak znajomości ich oznaczeń w normach branżowych, co może prowadzić do niewłaściwego podłączenia i potencjalnych zagrożeń w użytkowaniu instalacji.

Pytanie 30

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. II
B. III
C. IV
D. I
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.

Pytanie 31

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
B. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
C. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
D. Wyłączyć wszystkie wyłączniki nadprądowe.
Wyłączenie wszystkich wyłączników różnicowoprądowych lub nadprądowych przed wymianą uszkodzonego wyłącznika nadprądowego B16 może prowadzić do niezamierzonych konsekwencji. Wybierając tę opcję, wprowadza się ryzyko, że zasilanie w całym obwodzie zostanie przerwane, co może być nieodpowiednie w sytuacji, gdy inne urządzenia, takie jak płyta grzewcza czy piekarnik, również są zasilane z tej samej instalacji. Wyłączając wszystkie wyłączniki, nie tylko ryzykuje się utratę zasilania w lokalach, ale także narusza się zasady efektywności energetycznej i dobrych praktyk przy pracy z instalacjami elektrycznymi. Ponadto, wyłączanie wszystkich wyłączników jest nieefektywne i czasochłonne, co w praktyce staje się uciążliwe, zwłaszcza w obiektach komercyjnych, gdzie ciągłość zasilania jest kluczowa. W kontekście ochrony przeciwporażeniowej, wyłącznik różnicowoprądowy powinien być regularnie testowany, a jego wyłączenie powinno być uzasadnione potrzebą konserwacji lub naprawy tylko w określonych obwodach. Z tego powodu, nieprzemyślane wyłączenie wszystkich zabezpieczeń narusza zasady bezpieczeństwa i efektywności w zarządzaniu instalacjami elektrycznymi.

Pytanie 32

Które z przedstawionych na rysunkach narzędzi przeznaczone jest do zaciskania końcówek tulejkowych izolowanych?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Narzedzie przedstawione na rysunku C. to szczypce do zaciskania końcówek tulejkowych izolowanych, co czyni tę odpowiedź prawidłową. Te szczypce są specjalnie zaprojektowane do precyzyjnego zaciskania końcówek, co zapewnia solidne połączenie elektryczne. W praktyce, zastosowanie takich narzędzi jest kluczowe w instalacjach elektrycznych, gdzie jakość połączeń wpływa na bezpieczeństwo i niezawodność systemów. Szczypce te charakteryzują się odpowiednio wyprofilowanymi końcówkami, które umożliwiają równomierne rozłożenie siły podczas zaciskania, co zapobiega uszkodzeniu izolacji oraz samej końcówki. W standardach branżowych, takich jak IEC 60947, podkreśla się wagę stosowania właściwych narzędzi do obróbki końcówek w celu zapewnienia wysokiej jakości połączeń. Prawidłowo używane szczypce do zaciskania przyczyniają się do długotrwałej eksploatacji instalacji oraz minimalizują ryzyko awarii związanych z słabymi połączeniami elektrycznymi.

Pytanie 33

Którą klasę ochronności posiadają urządzenia posiadające izolację podstawową oraz izolację dodatkową o konstrukcji uniemożliwiającej powstanie uszkodzenia grożącego porażeniem w warunkach normalnego użytkowania podczas założonego czasu trwałości wyrobu?

A. Klasę 0
B. Klasę II
C. Klasę I
D. Klasę III
To pytanie dotyczy klasyfikacji ochronności urządzeń elektrycznych, czyli sposobu, w jaki konstrukcja urządzenia chroni użytkownika przed porażeniem prądem. Bardzo częsty błąd polega na mieszaniu pojęć: jedni patrzą tylko na napięcie pracy, inni tylko na obecność przewodu ochronnego, a jeszcze inni w ogóle nie zwracają uwagi na izolację i jej rodzaje. Tymczasem w treści pytania jest wyraźnie mowa o izolacji podstawowej oraz izolacji dodatkowej, i to w takiej konstrukcji, która uniemożliwia powstanie niebezpiecznego uszkodzenia w normalnych warunkach eksploatacji. Urządzenia klasy 0 praktycznie nie są już dopuszczane w normalnych instalacjach. Mają one tylko izolację podstawową, bez przewodu ochronnego i bez dodatkowych środków ochrony. W razie pojedynczego uszkodzenia izolacji obudowa może się znaleźć pod napięciem i nie ma żadnego zapasowego zabezpieczenia. To jest sprzeczne z opisem w pytaniu, gdzie mowa właśnie o konstrukcji odpornej na pojedyncze uszkodzenie. Klasa I kojarzy się wielu osobom z „bezpieczniejszą”, bo jest przewód ochronny PE i zacisk ochronny. Ale w klasie I podstawową ochronę daje izolacja podstawowa plus połączenie dostępnych metalowych części z przewodem ochronnym. Jeżeli dojdzie do przebicia na obudowę, prąd zwarciowy ma spowodować szybkie zadziałanie zabezpieczenia nadprądowego lub różnicowoprądowego. Nie ma tu jednak mowy o izolacji dodatkowej tak zaprojektowanej, żeby sama konstrukcja uniemożliwiała groźne uszkodzenie. Dlatego to nie pasuje do opisu w pytaniu. Klasa III natomiast opiera się na zasilaniu bardzo niskim napięciem bezpiecznym SELV/PELV, zazwyczaj poniżej 50 V AC lub 120 V DC w suchych warunkach, i jeszcze niższym w środowisku o zwiększonym zagrożeniu. Kluczowe jest tu właśnie obniżenie napięcia, a nie podwójna czy wzmocniona izolacja obudowy. Urządzenia klasy III często wymagają specjalnego zasilacza, który sam może być klasy II, ale samo urządzenie nie musi mieć podwójnej izolacji w rozumieniu definicji z norm ochrony przeciwporażeniowej. Typowy błąd myślowy polega na tym, że ktoś widzi brak przewodu ochronnego i od razu zakłada klasę 0, albo odwrotnie – widzi obudowę z tworzywa i myśli o klasie III, bo „to pewnie niskie napięcie”. Prawidłowe rozróżnienie wymaga spojrzenia na rodzaj zastosowanej izolacji, obecność lub brak przewodu PE i symboli na tabliczce znamionowej. W pytaniu podkreślono właśnie: izolacja podstawowa plus dodatkowa, konstrukcja uniemożliwiająca groźne uszkodzenie – to jest definicja klasy II, a inne odpowiedzi po prostu nie spełniają tych warunków z punktu widzenia norm PN-EN dotyczących ochrony przeciwporażeniowej.

Pytanie 34

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 5-10 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 20-30 krotności prądu znamionowego
D. 1-20 krotności prądu znamionowego
Pytanie dotyczące zakresu działania wyzwalaczy elektromagnetycznych wyłączników instalacyjnych nadprądowych dla charakterystyki C jest istotne dla zrozumienia właściwości tych urządzeń. Odpowiedzi, które sugerują zakresy takie jak "20-30 krotności prądu znamionowego", "3-5 krotności prądu znamionowego" oraz "1-20 krotności prądu znamionowego", nie są zgodne z rzeczywistymi charakterystykami tych wyłączników. Wyłączniki nadprądowe charakteryzujące się charakterystyką C są stworzone do ochrony przed krótkimi spięciami oraz przeciążeniami, które mogą wystąpić w typowych aplikacjach, takich jak silniki elektryczne. Zakres 20-30 krotności jest zbyt wysoki i nieodpowiedni dla standardowych aplikacji, co może prowadzić do niepożądanych skutków, takich jak opóźniona reakcja na rzeczywiste zagrożenia. Odpowiedzi 3-5 krotności oraz 1-20 krotności również nie są właściwe, gdyż wyłączniki C są zaprojektowane do działania w bardziej specyficznym zakresie, który gwarantuje zarówno odpowiednią ochronę, jak i możliwość pracy w warunkach normalnych. W praktyce, wybór niewłaściwego zakresu może skutkować nieefektywną ochroną instalacji, co w skrajnych przypadkach prowadzi do uszkodzenia urządzeń lub nawet pożaru. Dlatego kluczowe jest, aby przy wyborze wyłączników nadprądowych kierować się dokładnymi danymi technicznymi oraz standardami branżowymi, takimi jak PN-EN 60898, które określają wymagania i klasyfikacje dla sprzętu ochronnego w instalacjach elektrycznych.

Pytanie 35

Który układ połączeń watomierza jest zgodny z przedstawionym schematem pomiarowym?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Odpowiedź C jest dobra, bo pokazuje, jak dobrze podpiąć watomierz w obwodzie elektrycznym. W tym układzie przewód L (fazowy) jest podłączony do prądowego zacisku watomierza, co pozwala na zmierzenie prądu, a przewód N (neutralny) do zacisku napięciowego, co z kolei umożliwia pomiar napięcia. Dzięki temu nasz watomierz może obliczyć moc czynną, co jest mega ważne, gdy chcemy śledzić zużycie energii. Według normy PN-EN 62053-21, odpowiednie połączenie urządzeń pomiarowych to podstawa, żeby pomiary były dokładne. W praktyce, kiedy robimy coś jak analiza efektywności energetycznej czy audyt instalacji, prawidłowe podłączenie watomierza jest kluczowe, żeby uzyskać rzetelne dane. Jeśli coś jest źle podłączone, to może prowadzić do błędnych odczytów, co wpłynie na decyzje o zarządzaniu energią i efektywności działań.

Pytanie 36

Którym z kluczy należy dokręcić nakrętkę kotwy przedstawionej na ilustracji?

Ilustracja do pytania
A. Oczkowym.
B. Płaskim.
C. Nasadowym.
D. Imbusowym.
Wybór innych typów kluczy niż klucz płaski do dokręcania nakrętki kotwy jest niewłaściwy z kilku względów. Klucz nasadowy, mimo że jest uniwersalnym narzędziem, dedykowanym często do elementów z łbem sześciokątnym, nie pasuje do nakrętki o specyficznym kształcie, jaką ma kotwa przedstawiona na ilustracji. Użycie klucza nasadowego może skutkować niemożnością pełnego uchwycenia nakrętki, co prowadzi do poślizgu i potencjalnych uszkodzeń. Z kolei klucz imbusowy, zaprojektowany do elementów z gniazdem sześciokątnym wewnętrznym, nie ma zastosowania w tym kontekście, gdyż nakrętka kotwy nie posiada takiego gniazda. W przypadku klucza oczkowego, jego konstrukcja również nie będzie odpowiednia, ponieważ nie pozwala na objęcie nakrętki w sposób, który zapewni stabilność i siłę dokręcania. W praktyce, niewłaściwy dobór klucza prowadzi nie tylko do problemów z dokręcaniem, ale także może skutkować uszkodzeniami narzędzi oraz elementów, co narazi użytkownika na dodatkowe koszty naprawy. Kluczowe jest zrozumienie, że w każdej sytuacji technicznej, wybór odpowiedniego narzędzia powinien być oparty na jego specyfikacji oraz na charakterystyce łączonych elementów. Zastosowanie niewłaściwego klucza to klasyczny błąd myślowy, który wynika z braku analizy sytuacji i nieznajomości podstawowych zasad doboru narzędzi.

Pytanie 37

W którym układzie sieciowym, w przypadku przerwania przewodu ochronno-neutralnego, na obudowach metalowych odbiorników może pojawiać się pełne napięcie fazowe?

A. TN-S
B. TT
C. TN-C
D. IT
Sedno tego pytania dotyczy zrozumienia, jak zachowuje się instalacja w momencie przerwania przewodu ochronno‑neutralnego i w którym układzie sieciowym skutki są najbardziej niebezpieczne. Wiele osób intuicyjnie próbuje kojarzyć to z dowolnym układem z uziemieniem, ale to pewne uproszczenie, które prowadzi właśnie do błędnych odpowiedzi. Kluczowe jest, czy przewód ochronny i neutralny są rozdzielone, czy połączone w jeden wspólny przewód. W układzie IT punkt neutralny transformatora jest izolowany od ziemi lub uziemiony przez dużą impedancję. Odbiorniki mają swoje lokalne uziemienia ochronne, ale nie ma tu przewodu PEN łączącego funkcję N i PE. Przy pojedynczym uszkodzeniu doziemnym prąd jest niewielki, a napięcia na obudowach nie zachowują się tak, jak w TN-C. Przerwanie jakiegoś przewodu ochronnego w IT oczywiście pogarsza ochronę, ale nie powoduje typowego „wejścia” pełnego napięcia fazowego na obudowy wielu odbiorników jednocześnie w taki sposób, jak dzieje się to przy uszkodzeniu PEN. W układzie TT sytuacja jest inna: punkt neutralny transformatora jest uziemiony, a instalacja odbiorcza ma własne, niezależne uziemienie ochronne. Przewód neutralny N i przewód ochronny PE są rozdzielone i nie występuje tu przewód PEN. Uszkodzenie przewodu N nie powoduje automatycznie pojawienia się napięcia fazowego na obudowach, bo obudowy są połączone z uziomem ochronnym, a nie z przewodem neutralnym. Oczywiście przy złym uziemieniu i braku RCD ochrona może być niewystarczająca, ale mechanizm jest inny niż w pytaniu. W układzie TN-S przewody PE i N są rozdzielone na całej długości instalacji. To właśnie jest jedna z podstawowych dobrych praktyk, promowanych przez współczesne normy – osobny tor ochronny i osobny neutralny. Przerwanie przewodu N powoduje problemy z zasilaniem odbiorników (napięcia niesymetryczne, miganie oświetlenia, brak pracy części urządzeń), ale obudowy pozostają połączone z przewodem PE, który jest związany z ziemią i punktem neutralnym transformatora. Nie pojawia się na nich pełne napięcie fazowe tylko dlatego, że przerwał się N. Najbardziej krytyczny jest układ TN-C, gdzie występuje przewód PEN pełniący jednocześnie funkcję ochronną i roboczą. Przerwanie PEN powoduje, że wszystkie obudowy urządzeń podłączone do tego przewodu „unoszą się” do potencjału fazy przez odbiorniki, co może dać praktycznie pełne napięcie 230 V względem ziemi. Typowy błąd myślowy polega na tym, że ktoś myśli: „skoro w TN-S lub TT też jest uziemienie, to tam też pojawi się pełne napięcie przy przerwaniu przewodu”, a pomija fakt, że w tych układach obwód ochronny jest fizycznie oddzielony od przewodu neutralnego. Dlatego właśnie normy i dobre praktyki konsekwentnie odchodzą od TN-C w instalacjach wewnętrznych i promują TN-S lub TN-C-S jako znacznie bezpieczniejsze rozwiązania ochrony przeciwporażeniowej.

Pytanie 38

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. omomierza oraz woltomierza
B. woltomierza i amperomierza
C. omomierza i amperomierza
D. watomierza oraz woltomierza
Podczas analizy błędnych odpowiedzi warto zauważyć, że pomiar rezystancji nie może być prawidłowo przeprowadzony wyłącznie za pomocą omomierza i woltomierza, ani tym bardziej wykorzystując watomierz. Omomierz jest narzędziem specjalistycznym przeznaczonym do bezpośredniego pomiaru rezystancji, jednak nie jest on wystarczający, aby uzyskać dokładne wyniki w przypadku bardziej skomplikowanych układów elektrycznych, gdzie istotne są zarówno napięcie, jak i prąd. Z kolei amperomierz sam w sobie nie mierzy rezystancji, lecz natężenie prądu, co w praktyce nie pozwala na bezpośrednie określenie wartości rezystancji bez znajomości napięcia. Wykorzystanie watomierza, który mierzy moc, również nie ma zastosowania w kontekście pomiarów rezystancji, ponieważ nie umożliwia obliczenia wartości R. Typowym błędem myślowym jest przeświadczenie, że jakiekolwiek urządzenie pomiarowe związane z elektrycznością może być użyteczne do pomiaru rezystancji, co jest mylnym rozumieniem zasady działania tych narzędzi. Aby uzyskać prawidłowe wyniki, niezbędne jest zrozumienie podstawowych zasad dotyczących relacji między napięciem, prądem i rezystancją oraz znajomość odpowiednich narzędzi do ich pomiaru.

Pytanie 39

Na którym rysunku przedstawiono przewód elektroenergetyczny stosowany do wykonywania napowietrznych przyłączy budynków mieszkalnych?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór innej odpowiedzi niż C może wynikać z nieporozumienia dotyczącego klasyfikacji przewodów elektroenergetycznych stosowanych w przyłączach budynków. Przewody napowietrzne, szczególnie te używane do budynków mieszkalnych, muszą spełniać konkretne wymagania techniczne, które obejmują ilość rdzeni oraz ich funkcje. W przypadku przewodów, które nie są czterordzeniowe, mogą występować braki w zapewnieniu odpowiedniego zasilania. Przykładowo, przewody dwu- lub trzyrdzeniowe mogą nie wystarczyć do prawidłowego działania instalacji, ponieważ nie zapewniają odpowiedniej ilości faz, co jest kluczowe w przypadku obiektów wymagających większej mocy. Często spotykane błędy myślowe to mylenie zastosowania przewodów w różnych kontekstach – na przykład przewody stosowane w instalacjach wewnętrznych mogą różnić się od tych zaprojektowanych do pracy na wolnym powietrzu. Niezrozumienie tych różnic prowadzi do wybierania niewłaściwych rozwiązań, co z kolei może skutkować awariami lub ograniczoną efektywnością energetyczną. Znajomość standardów, takich jak PN-EN 60502-1, oraz praktyczne zrozumienie zastosowań przewodów, są kluczowe dla prawidłowego funkcjonowania systemów elektroenergetycznych.

Pytanie 40

Którego narzędzia nie należy stosować przy wykonywaniu montażu lub demontażu elementów instalacji elektrycznych?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór jednej z innych odpowiedzi na to pytanie może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa pracy z instalacjami elektrycznymi. Nóż, szczypce izolowane i kombinerki są narzędziami, które mogą być używane w odpowiednich sytuacjach, ale ich zastosowanie wymaga szczególnej ostrożności i zrozumienia ich funkcji. Użycie noża podczas pracy z przewodami elektrycznymi wiąże się z ryzykiem uszkodzenia izolacji, co może prowadzić do zwarcia lub porażenia prądem. Narzędzia, które nie są izolowane, mogą stwarzać dodatkowe zagrożenie, zwłaszcza jeżeli są używane w wilgotnym środowisku. Ponadto, błędne założenie, że każde narzędzie, które może przecinać lub manipulować przewodami, nadaje się do pracy z instalacjami elektrycznymi, jest typowym błędem myślowym. W rzeczywistości, narzędzia izolowane są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem, a ich użycie jest zgodne z zasadami bezpieczeństwa i normami branżowymi. Ważne jest, aby zawsze stosować odpowiednie narzędzia do danego zadania oraz dokładnie przestrzegać najlepszych praktyk, co nie tylko zwiększa efektywność pracy, ale również chroni zdrowie i życie osób wykonujących te zadania.