Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 08:10
  • Data zakończenia: 17 grudnia 2025 08:59

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którą z wymienionych przyczyn, występującą w obwodzie odbiorczym instalacji elektrycznej, musi reagować wyłącznik różnicowoprądowy poprzez samoczynne wyłączenie?

A. Przeciążenie
B. Upływ prądu
C. Przepięcie
D. Zwarcie międzyfazowe
Wyłącznik różnicowoprądowy (RCD) ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami upływu prądu. Upływ prądu to sytuacja, w której część prądu roboczego nie wraca do źródła zasilania, lecz przepływa przez inne drogi, co może prowadzić do niebezpiecznych sytuacji. RCD działa na zasadzie monitorowania różnicy prądów pomiędzy przewodem fazowym a przewodem neutralnym. Gdy ta różnica przekroczy ustalony poziom (zazwyczaj 30 mA w instalacjach domowych), RCD natychmiast odłącza zasilanie. Praktycznym zastosowaniem RCD jest instalacja w łazienkach i kuchniach, gdzie istnieje wysokie ryzyko kontaktu z wodą. Warto również podkreślić, że zgodnie z normami PN-IEC 61008, stosowanie RCD jest obowiązkowe w miejscach narażonych na porażenie prądem, co podkreśla znaczenie ich montażu w nowoczesnych instalacjach elektrycznych.

Pytanie 2

O czym świadczy słabsze świecenie diody L2 w stosunku do świecących się diod L1 i L3 na wskazanym strzałką urządzeniu w rozdzielni elektrycznej przedstawionej na rysunku?

Ilustracja do pytania
A. Instalacja działa poprawnie.
B. W jednej z faz wystąpił zanik napięcia.
C. Wystąpiła asymetria napięciowa między fazami.
D. W układzie zasilania wystąpiła nieprawidłowa kolejność faz.
Słabsze świecenie diody L2 w porównaniu do diod L1 i L3 wyraźnie wskazuje na asymetrię napięciową między fazami. Asymetria ta może być spowodowana różnymi obciążeniami poszczególnych faz, co prowadzi do nierównomiernego rozkładu napięcia. W praktyce, taki stan może wystąpić na przykład w instalacjach, gdzie urządzenia elektryczne są podłączone do różnych faz. W przypadku zróżnicowanego obciążenia, jedna faza może być bardziej obciążona niż inne, co skutkuje obniżeniem napięcia. Zgodnie z normami branżowymi, takim jak IEC 61000, utrzymanie symetrii napięciowej jest kluczowe dla optymalnej pracy urządzeń elektrycznych oraz zapobiegania ich uszkodzeniom. W praktyce, monitorowanie parametrów zasilania oraz stosowanie rozwiązań stabilizacyjnych, takich jak transformatory trójfazowe, może pomóc w minimalizacji tego typu problemów. Dlatego, w przypadku zauważenia słabszego świecenia diody, należy przeprowadzić analizę obciążenia fazowego oraz zainwestować w odpowiednie technologie zabezpieczające.

Pytanie 3

Jakim przyrządem dokonuje się pomiaru rezystancji izolacyjnej przewodu?

A. Miernik pętli zwarcia
B. Omomierz
C. Induktorowy miernik uziemień
D. Megaomomierz
Omomierz jest urządzeniem używanym do pomiaru niskich wartości rezystancji, co czyni go niewłaściwym wyborem do pomiarów izolacji przewodów. Mierzy on rezystancję w zakresie małych wartości, a jego zastosowanie w pomiarach izolacji może prowadzić do nieprawidłowych wyników. W przypadku izolacji, która powinna mieć bardzo wysoką rezystancję, omomierz może nie dostarczyć wystarczających informacji o stanie izolacji, ponieważ jego pomiar odbywa się przy znacznie niższym napięciu. Miernik pętli zwarcia jest przeznaczony do testowania impedancji pętli zwarcia w instalacjach elektrycznych, co jest całkowicie inną funkcjonalnością. Urządzenie to służy do pomiaru bezpieczeństwa, ale nie jest używane do oceny izolacji przewodów. Induktorowy miernik uziemień natomiast koncentruje się na pomiarze rezystancji uziemienia, a nie na izolacji przewodów. Błędne jest więc przypuszczenie, że jakiekolwiek z tych urządzeń mogłoby zastąpić megaomomierz w kontekście testów izolacyjnych. Użycie niewłaściwego miernika może prowadzić do błędnych diagnoz i poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 4

Na rysunku przedstawiono przewód

Ilustracja do pytania
A. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, okrągły.
B. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski.
C. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, płaski.
D. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, okrągły.
Poprawna odpowiedź to przewód o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski. W analizowanym rysunku widać, że przewód składa się z żył, które mają jednolitą strukturę, co jednoznacznie wskazuje na zastosowanie żył jednodrutowych. Żyły te charakteryzują się większą odpornością na uszkodzenia mechaniczne oraz lepszym przewodnictwem elektrycznym w porównaniu do żył wielodrutowych, które są bardziej elastyczne, ale mniej trwałe. Płaska konstrukcja przewodu sprawia, że jest on odpowiedni do zastosowań, w których wymagana jest oszczędność miejsca, na przykład w instalacjach elektrycznych w budynkach. Warto również wspomnieć, że przewody te często stosowane są w instalacjach, gdzie ważna jest estetyka oraz minimizacja przestrzeni, jak w przypadku zasilania sprzętu audio czy wideo. Zgodnie z normami PN-IEC 60227, które regulują wymagania dla kabli i przewodów, stosowanie przewodów płaskich o żyłach jednodrutowych w instalacjach domowych jest powszechnie uznawane za praktykę zgodną z najwyższymi standardami bezpieczeństwa i efektywności energetycznej.

Pytanie 5

Strzałką oznaczono na rysunku

Ilustracja do pytania
A. styk pomocniczy rozwierny.
B. przycisk rozwierny.
C. styk pomocniczy zwiemy.
D. przycisk zwiemy.
Przycisk rozwierny, nazywany również przyciskiem otwierającym, jest kluczowym elementem w wielu zastosowaniach elektrycznych oraz automatyce. W stanie spoczynku przycisk ten zapewnia przepływ prądu, co oznacza, że obwód jest zamknięty. Po jego aktywowaniu, czyli wciśnięciu, obwód zostaje otwarty, co przerywa przepływ prądu. Tego typu przyciski są powszechnie stosowane w różnych urządzeniach, takich jak dzwonki, alarmy czy systemy automatyki budynkowej. Ich działanie opiera się na zasadzie, że w momencie wciśnięcia przycisku, dochodzi do przełączenia stanu obwodu – z zamkniętego na otwarty. Zastosowanie przycisku rozwiernego jest zgodne z dobrymi praktykami w inżynierii elektrycznej, gdzie kluczowe jest zapewnienie bezpieczeństwa użytkowników. Przykładem może być system alarmowy, gdzie przycisk rozwierny umożliwia wyłączenie alarmu przez użytkownika, co jest istotne w sytuacjach awaryjnych. Ponadto, standardy IEC 60947-5-1 definiują wymagania dotyczące bezpiecznego użytkowania i montażu takich elementów, co czyni je niezawodnymi w codziennym użytkowaniu.

Pytanie 6

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
B. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
C. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
D. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
Przekaźnik bistabilny to element automatyki, który po zadziałaniu przechodzi w stan, w którym pozostaje do momentu ponownego zadziałania. Parametry techniczne, takie jak napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania oraz sygnalizacja załączenia, są kluczowe dla jego prawidłowego funkcjonowania. Napięcie zasilania określa, jakie napięcie musi być dostarczone do przekaźnika, aby mógł on prawidłowo działać. Prąd obciążenia to maksymalny prąd, który może przechodzić przez styk przekaźnika, co jest istotne przy doborze urządzenia do konkretnych aplikacji. Wartość prądu impulsu sterującego wskazuje, jaki prąd jest potrzebny do zmiany stanu przekaźnika i jest kluczowa dla jego efektywności. Opóźnienie zadziałania pozwala na określenie czasu reakcji, co jest istotne w aplikacjach wymagających precyzyjnego sterowania. Sygnalizacja załączenia informuje użytkownika o stanie przekaźnika, co ma znaczenie w kontekście bezpieczeństwa i diagnostyki. Przykładowo, w systemach automatyki budynkowej, przekaźniki bistabilne mogą być używane do kontroli oświetlenia oraz zarządzania innymi urządzeniami, co czyni je niezbędnymi w inteligentnych instalacjach. Zrozumienie tych parametrów jest kluczowe dla projektowania i wdrażania systemów automatyki zgodnych z obowiązującymi standardami branżowymi.

Pytanie 7

Co oznacza przeciążenie instalacji elektrycznej?

A. Pojawieniu się w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym
B. Przekroczeniu wartości prądu znamionowego danej instalacji
C. Bezpośrednim połączeniu ze sobą dwóch faz w instalacji
D. Nagłym wzroście napięcia elektrycznego w sieci, który przekracza wartość znamionową
Przeciążenie instalacji elektrycznej to nic innego jak przekroczenie prądu, który jest dla niej bezpieczny. Kiedy podłącza się za dużo urządzeń do jednego obwodu, przewody mogą się strasznie nagrzewać, co nie jest dobre. Standardy jak PN-HD 60364-5-52 mówią, że trzeba to wszystko dobrze zaplanować i wymierzyć, żeby zapewnić bezpieczeństwo użytkownikom i żeby instalacja długo działała. Jak się projektuje instalacje elektryczne, to warto pomyśleć o przewidywanych obciążeniach i zastosować odpowiednie zabezpieczenia, na przykład wyłączniki nadprądowe. Znajomość tych rzeczy jest istotna, nie tylko przy projektowaniu, ale też kiedy trzeba naprawiać coś, co już działa, bo może to pomóc w diagnozowaniu różnych problemów.

Pytanie 8

Który sposób podłączenia instalacji oświetleniowej jest poprawny?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź C jest poprawna, ponieważ przedstawia prawidłowy sposób podłączenia instalacji oświetleniowej, który jest zgodny z obowiązującymi normami bezpieczeństwa. W tym schemacie przewód fazowy L1 jest podłączony do włącznika, co umożliwia kontrolowanie zasilania żarówki. Gdy włącznik jest w pozycji wyłączonej, żarówka nie otrzymuje zasilania, co minimalizuje ryzyko porażenia prądem. Z kolei przewód neutralny N jest podłączony bezpośrednio do żarówki, co jest standardową praktyką w instalacjach elektrycznych. Ważnym elementem jest również podłączenie przewodu ochronnego PE do odpowiedniego punktu w oprawie oświetleniowej. Przewód ten ma kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników, ponieważ w przypadku uszkodzenia izolacji, prąd popłynie do ziemi, minimalizując ryzyko porażenia. Taki sposób podłączenia gwarantuje, że w momencie, gdy włącznik jest wyłączony, nie ma napięcia na żarówce, co jest fundamentalną zasadą bezpieczeństwa w elektrotechnice.

Pytanie 9

Który układ sterowania przedstawiono na schemacie?

Ilustracja do pytania
A. Do pracy zależnej dwóch styczników.
B. Do rozruchu silnika pierścieniowego.
C. Do pracy równoległej dwóch styczników.
D. Do załączenia silnika z opóźnieniem.
Pytania dotyczące układów sterowania często prowadzą do nieporozumień związanych z interpretacją schematów. Odpowiedzi sugerujące rozruch silnika pierścieniowego lub załączenie silnika z opóźnieniem nie uwzględniają specyfiki przedstawionego układu. Pierwsza z tych koncepcji odnosi się do złożonego procesu uruchamiania silników o dużych momentach rozruchowych, który wymaga zastosowania specjalnych układów sterujących, takich jak styczniki z pierścieniami. Takie układy są złożone i nie mają związku z przedstawionym schematem, który dotyczy pracy zależnej dwóch styczników. Druga koncepcja, dotycząca załączenia z opóźnieniem, również jest błędna, ponieważ w przypadku układu pracy zależnej nie ma mowy o opóźnieniu, a jedynie o synchronizacji działania dwóch styczników. Dodatkowo, opcje dotyczące pracy równoległej dwóch styczników nie uwzględniają zasady, że jeden stycznik wpływa na drugi, co jest kluczowym elementem omawianego schematu. Tego typu błędy myślowe mogą wynikać z braku zrozumienia zasad działania układów sterujących oraz z mylenia różnych typów połączeń w automatyce. Aby poprawnie interpretować schematy, ważne jest, aby dobrze znać zasady działania układów oraz ich zastosowanie w praktyce. Warto zapoznać się z literaturą branżową oraz standardami, które precyzują zasady projektowania i stosowania układów sterujących.

Pytanie 10

Z którym zaciskiem będzie połączony zacisk 23 stycznika K2, jeżeli układ elektryczny zostanie zmontowany zgodnie z przedstawionym schematem montażowym?

Ilustracja do pytania
A. Z zaciskiem 1 listwy zaciskowej X1
B. Z zaciskiem X1 lampki kontrolnej H1
C. Z zaciskiem 21 przycisku S1
D. Z zaciskiem 2 listwy zaciskowej X1
Poprawna odpowiedź to połączenie zacisku 23 stycznika K2 z zaciskiem 2 listwy zaciskowej X1. Analizując schemat montażowy, możemy dostrzec, że linia łącząca te dwa elementy jest wyraźnie zaznaczona, co jednoznacznie wskazuje na to połączenie. W kontekście praktycznym, takie połączenie jest kluczowe dla prawidłowego działania układów sterujących. Zachowanie zgodności z schematem montażowym jest istotne, aby zapewnić bezpieczeństwo i niezawodność instalacji. W branży elektrycznej przestrzeganie schematów oraz standardów, takich jak normy IEC czy PN-EN, jest fundamentem dobrych praktyk. Na przykład, błędne połączenie mogłoby prowadzić do uszkodzenia urządzeń lub stanowić zagrożenie dla użytkowników. Dlatego ważne jest, aby zawsze dokonywać dokładnych analiz i weryfikacji schematów przed przystąpieniem do montażu, co nie tylko zwiększa efektywność, ale także minimalizuje ryzyko awarii.

Pytanie 11

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. pośredniego - klasy V.
B. przeważnie pośredniego - klasy IV.
C. przeważnie bezpośredniego - klasy II.
D. bezpośredniego - klasy I.
Wybrane odpowiedzi, które nie wskazują na pośrednie emitowanie światła, mogą prowadzić do mylnych wniosków dotyczących realnych właściwości opraw oświetleniowych. Na przykład, odpowiedź sugerująca, że oprawa emituje światło przeważnie bezpośrednio, zakłada, że źródło światła jest skierowane bezpośrednio na oświetlaną powierzchnię, co jest sprzeczne z przedstawionym rysunkiem. Oprawy oświetleniowe klasy I najczęściej wiążą się z bezpośrednim oświetleniem, które może powodować intensywne cienie oraz oślepienie, co negatywnie wpływa na komfort użytkowników. Podobnie, klasy IV i V, które z reguły dotyczą więcej pośredniego lub rozproszonego światła, nie są odpowiednie dla opraw, które mają emitować światło w sposób przeważnie bezpośredni. Kluczowym błędem w analizie tego pytania jest niezrozumienie różnicy między tymi dwoma typami oświetlenia oraz ich wpływem na środowisko pracy. Na rysunku powinno być zauważone, że emisja światła poprzez mleczne szkło wskazuje na zamierzenie projektanta, aby zminimalizować oślepienie, co nie jest zgodne z oprawami klasy I. Zrozumienie zasad projektowania systemów oświetleniowych oraz ich klasyfikacji jest niezbędne dla prawidłowego doboru rozwiązań w dziedzinie architektury i ergonomii oświetleniowej.

Pytanie 12

Jakiego zestawu narzędzi należy używać podczas przygotowania przewodów LY do instalacji elektrycznej?

A. Zaciskarka końcówek tulejkowych, obcinaczki czołowe, wkrętak
B. Przyrząd do ściągania izolacji, obcinaczki czołowe, nóż monterski
C. Obcinaczki boczne, przyrząd do ściągania izolacji, zaciskarka końcówek tulejkowych
D. Nóż monterski, wkrętak, obcinaczki boczne
Obcinaczki boczne, przyrząd do ściągania izolacji oraz zaciskarka końcówek tulejkowych są niezbędnymi narzędziami przy przygotowaniu przewodów LY do montażu elektrycznego. Obcinaczki boczne służą do precyzyjnego przycinania przewodów, co jest istotne, aby uzyskać równe i czyste końce, co z kolei minimalizuje ryzyko uszkodzenia izolacji oraz zapewnia solidne połączenia. Przyrząd do ściągania izolacji umożliwia bezpieczne usunięcie izolacji z końcówek przewodów bez ryzyka ich uszkodzenia. Dzięki temu można łatwo przygotować przewody do dalszego montażu, gwarantując, że przewody będą miały odpowiednią długość i będą gotowe do połączenia. Zaciskarka końcówek tulejkowych jest kluczowa w procesie montażu, gdyż pozwala na pewne i trwałe połączenie przewodu z końcówką. Przestrzeganie standardów branżowych, takich jak PN-EN 60204-1 dotyczący bezpieczeństwa maszyn, podkreśla znaczenie stosowania odpowiednich narzędzi, co wpływa na jakość wykonania instalacji elektrycznych. W praktyce, wykorzystanie tych narzędzi wpływa na efektywność pracy oraz bezpieczeństwo użytkownika.

Pytanie 13

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NC stycznika Q2
B. NC stycznika Q1
C. NO stycznika Q1
D. NO stycznika Q2
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów w analizowanym układzie. W przypadku odpowiedzi wskazujących na NC stycznika Q2, czy NO stycznika Q2, można zauważyć typowy błąd myślowy związany z nieprawidłowym przypisaniem roli poszczególnych styków. Styk NC stycznika Q2 nie ma bezpośredniego wpływu na możliwość załączenia tego stycznika, gdyż jego działanie uzależnione jest od aktywacji innych elementów sterujących. Z kolei styk NO stycznika Q1, mimo że może wydawać się istotny, nie może aktywować Q2, jeśli sam Q1 nie jest w stanie przełączyć się do pozycji NO. To wskazuje na uwagę do relacji pomiędzy różnymi elementami w obwodzie. Niezrozumienie zasady działania styku NO i NC oraz ich wpływu na całkowity obwód często prowadzi do błędnych wniosków i wyborów. W praktyce, dobrym nawykiem jest analizowanie całej ścieżki sygnałowej oraz zależności pomiędzy poszczególnymi elementami w systemach automatyki, co pozwala na szybszą identyfikację potencjalnych problemów oraz ich źródeł. Prawidłowa analiza obwodu wymaga zrozumienia, że uszkodzenie jednego elementu może wpływać na działanie całego systemu, co jest kluczowe w kontekście bezpieczeństwa i niezawodności operacji w automatyce przemysłowej.

Pytanie 14

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
B. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
C. Sprawdzenie stanu izolacji oraz powłok przewodów
D. Zamiana wszystkich źródeł oświetlenia w oprawach
Sprawdzenie stanu izolacji i powłok przewodów jest kluczowym elementem konserwacji instalacji elektrycznych w mieszkaniach. Izolacja przewodów jest niezbędna do zapewnienia bezpieczeństwa użytkowania, ponieważ uszkodzona lub niewłaściwa izolacja może prowadzić do zwarć, pożarów, a także porażenia prądem. Regularne inspekcje stanu izolacji powinny być przeprowadzane zgodnie z obowiązującymi standardami, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych w obiektach budowlanych. Przykładowe metody oceny stanu izolacji obejmują pomiar rezystancji przy użyciu megomierza. Zastosowanie odpowiednich technik, takich jak testy izolacji, pozwala na wczesne wykrycie problemów i ich naprawę, co przekłada się na dłuższą żywotność instalacji oraz zwiększa bezpieczeństwo mieszkańców. Dbanie o stan izolacji to nie tylko spełnienie wymogów prawnych, ale także odpowiedzialność za bezpieczeństwo domowników i ich majątek.

Pytanie 15

Przedstawiony na rysunku zrzut ekranu miernika zawiera między innymi wyświetlaną w trakcie pomiaru wartość

Ilustracja do pytania
A. spodziewanego prądu zwarcia.
B. prądu zadziałania zabezpieczenia.
C. znamionowego prądu instalacji.
D. maksymalnego prądu obciążenia.
Wybranie odpowiedzi o prądzie zadziałania zabezpieczenia czy znamionowym prądzie instalacji pokazuje, że mogłeś nie do końca zrozumieć niektóre zasady pomiarów elektrycznych. Prąd zadziałania zabezpieczenia to wartość, przy której powinno zadziałać dane zabezpieczenie, takie jak wyłącznik nadprądowy, żeby chronić instalację przed uszkodzeniem. Ale to nie to samo, co prąd zwarcia, który mierzysz podczas pomiaru impedancji pętli zwarcia. Z kolei znamionowy prąd instalacji to maksimum, na jakie była projektowana instalacja, nie rzeczywisty prąd zwarcia, który mógłby się pojawić w przypadku awarii. Takie odpowiedzi mogą prowadzić do błędnych wniosków, bo nie uwzględniają, jak ważna jest znajomość prądu zwarcia dla bezpieczeństwa. Choć prąd zadziałania i znamionowy prąd są ważne, to nie odnoszą się do konkretnych pomiarów, które robimy. Błędna interpretacja tych pojęć może prowadzić do złego doboru zabezpieczeń, a to może narazić instalację na uszkodzenia i zwiększyć ryzyko dla użytkowników. Dlatego warto dobrze zrozumieć znaczenie każdego pomiaru, w tym prądu zwarcia, w kontekście bezpieczeństwa instalacji.

Pytanie 16

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych Un = 500 V, In = 25 A?

Ilustracja do pytania
A. Wstawkę 1.
B. Wstawkę 2.
C. Wstawkę 3.
D. Wstawkę 4.
Dobranie wstawki kalibrowej to ważna sprawa, bo ma bezpośredni wpływ na bezpieczeństwo obwodów elektrycznych. Gdy mamy do czynienia z bezpiecznikiem typu D gL, musimy zwrócić uwagę na napięcie i prąd znamionowy. Na przykład, używając wstawki 25A 500V, mamy pewność, że jest to zgodne z wymaganiami dla prądu 25 A i napięcia 500 V. Dzięki temu bezpiecznik działa jak należy i chroni całą instalację przed przeciążeniami oraz zwarciami. Z mojego doświadczenia, to poprawne dobranie elementów zabezpieczających sprawia, że systemy elektryczne stają się bardziej niezawodne. A to w wielu branżach, jak budownictwo czy przemysł, jest naprawdę na wagę złota. Nie zapominaj też o normach IEC 60269, bo one pomagają mieć pewność, że wszystko działa zgodnie z najlepszymi praktykami.

Pytanie 17

Który pomiar można wykonać w instalacji elektrycznej przedstawionym na rysunku przyrządem pomiarowym typu MRU-20?

Ilustracja do pytania
A. Prądu różnicowego wyłącznika różnicowoprądowego.
B. Impedancji pętli zwarcia.
C. Rezystancji uziomu ochronnego.
D. Rezystancji izolacji przewodów fazowych.
Odpowiedź "rezystancji uziomu ochronnego" jest prawidłowa, ponieważ przyrząd pomiarowy MRU-20 jest specjalnie zaprojektowany do pomiaru rezystancji uziomu. Uziomy ochronne mają kluczowe znaczenie dla bezpieczeństwa instalacji elektrycznych, ponieważ zapewniają odprowadzenie prądów zwarciowych do ziemi, minimalizując ryzyko porażenia prądem elektrycznym oraz uszkodzenia urządzeń. Pomiar rezystancji uziomu ochronnego powinien odbywać się zgodnie z obowiązującymi normami, takimi jak PN-EN 61557-5, która określa metody pomiaru i dopuszczalne wartości rezystancji dla uziemienia. Zgodnie z tą normą, dla efektywnego zabezpieczenia zaleca się, aby rezystancja uziomu nie przekraczała 10 Ω, jednak w niektórych sytuacjach wartość ta może być niższa. W praktyce, przy pomocy MRU-20 można wykonać pomiary w różnych warunkach, zarówno w instalacjach nowo budowanych, jak i istniejących, co pozwala na bieżące kontrolowanie stanu ochrony przeciwporażeniowej.

Pytanie 18

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
B. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
C. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
D. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
Odpowiedź wskazująca, że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, jest poprawna, ponieważ nie jest to zasada bezwzględnie obowiązująca w przypadku instalacji elektrycznych o napięciu znamionowym do 1 kV. Prace konserwacyjne i naprawcze mogą być wykonywane samodzielnie, pod warunkiem, że zastosowane zostaną odpowiednie środki zabezpieczające, takie jak stosowanie narzędzi izolowanych, odzieży ochronnej i przestrzeganie procedur bezpieczeństwa. Rola osoby asekurującej staje się kluczowa w bardziej niebezpiecznych warunkach, na przykład podczas pracy na wysokości, ale dla prostych prac w obrębie instalacji, nie jest to wymóg. W praktyce, przy zachowaniu ostrożności i zastosowaniu właściwych środków, technicy mogą wykonywać podstawowe naprawy, takie jak wymiana bezpieczników czy żarówek, bez nadzoru innej osoby, co przyspiesza procesy naprawcze i zwiększa efektywność pracy. Ważne jest, aby przed przystąpieniem do jakichkolwiek prac upewnić się, że zna się zasady BHP oraz normy PN-IEC 60364 dotyczące instalacji elektrycznych. Właściwe podejście do bezpieczeństwa i eksploatacji instalacji elektrycznych ma kluczowe znaczenie dla minimalizacji ryzyka wypadków.

Pytanie 19

W układzie jak na rysunku po załączeniu wskazówka watomierza W1 wychyliła się w lewą stronę. Po zamianie zacisków napięciowych watomierz wskazał moc 350 W. Jaka jest całkowita moc pobierana przez odbiornik, jeśli watomierz W2 wskazuje 800 W?

Ilustracja do pytania
A. 800W
B. 450W
C. 350W
D. 1150W
Wybór odpowiedzi 350W, 800W lub 1150W może wynikać z błędnych założeń dotyczących interpretacji wskazań watomierzy. Pierwsza z tych wartości, 350W, odpowiada jedynie odczytowi watomierza W1 po zamianie zacisków, co nie odzwierciedla rzeczywistego całkowitego poboru energii przez odbiornik. Ignorowanie wskazań W2, które są kluczowe dla pełnej analizy mocy, prowadzi do niekompletnego obrazu sytuacji. Kolejna wartość – 800W, będąca wskazaniem watomierza W2, również jest myląca, ponieważ wskazuje na moc dostarczoną przez źródło, a nie na moc pobraną przez odbiornik. Ostatnia opcja, 1150W, jest sumą mocy wskazywanych przez oba watomierze bez uwzględniania ich charakterystyki, co prowadzi do fałszywego wniosku, że całkowita moc pobierana przez odbiornik wynosi tyle, ile suma odczytów, co jest błędne. W praktyce, przy pomiarach energii elektrycznej, konieczne jest rozumienie zasadów działania watomierzy, gdzie pomiar może wskazywać moc ujemną w przypadku niewłaściwego podłączenia. Ważne jest, aby zrozumieć, że moc dostarczana przez źródło i moc pobierana przez odbiorniki muszą być traktowane w kontekście całego układu, co pozwala na dokładne obliczenia i unikanie nieporozumień w analizie mocy w systemach elektrycznych.

Pytanie 20

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Dwubiegunowy.
B. Szeregowy.
C. Grupowy.
D. Jednobiegunowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 21

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 3-5 krotności prądu znamionowego
B. 10-20 krotności prądu znamionowego
C. 5-10 krotności prądu znamionowego
D. 20-30 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 22

Jaki element przewodu oznaczony jest cyfrą 1?

Ilustracja do pytania
A. Powłoka.
B. Uzbrojenie.
C. Izolacja żyły.
D. Oplot włóknisty.
Element oznaczony cyfrą 1 na załączonym obrazku jest powłoką przewodu, co jest kluczowe dla zapewnienia jego właściwego funkcjonowania i długowieczności. Powłoka zewnętrzna pełni istotną funkcję ochronną, osłaniając przewód przed niekorzystnymi warunkami środowiskowymi, takimi jak wilgoć czy zmiany temperatury, które mogą prowadzić do degradacji materiałów. Dobre praktyki branżowe zalecają stosowanie powłok wykonanych z materiałów odpornych na działanie chemikaliów oraz uszkodzenia mechaniczne. Na przykład, w instalacjach przemysłowych często stosuje się przewody z powłoką PVC lub PUR, które zapewniają wysoką odporność na ścieranie i działanie substancji chemicznych. Przykładem zastosowania powłok jest ich użycie w kablach zasilających, które muszą być odpowiednio zabezpieczone przed uszkodzeniami, aby zapewnić bezpieczeństwo użytkowników oraz ciągłość dostaw energii. Właściwie dobrana powłoka to kluczowy element w projektowaniu przewodów, co potwierdzają standardy takie jak IEC 60227 dla kabli instalacyjnych.

Pytanie 23

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. w łazienkach.
B. w sypialniach.
C. we wszystkich pomieszczeniach.
D. w holach.
Odpowiedź 'w łazienkach' jest poprawna, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami bezpieczeństwa, w łazienkach powinny być instalowane gniazda z kołkami ochronnymi. Gniazda te mają na celu zwiększenie bezpieczeństwa użytkowników poprzez minimalizację ryzyka porażenia prądem elektrycznym, co jest szczególnie istotne w pomieszczeniach narażonych na wilgoć. Właściwe zastosowanie takich gniazd w łazienkach jest zgodne z normą PN-IEC 60364-7-701, która reguluje wymagania dotyczące instalacji elektrycznych w pomieszczeniach mokrych. Praktycznie oznacza to, że wszelkie urządzenia elektryczne, które mogą być używane w łazienkach, powinny być podłączone do gniazd z zabezpieczeniem przeciwporażeniowym, co znacznie podnosi poziom bezpieczeństwa użytkowników. Na przykład, podłączenie pralki czy suszarki do gniazd z kołkami ochronnymi jest kluczowe, aby zapewnić pełne bezpieczeństwo w codziennym użytkowaniu. W związku z tym, projektując nowe budynki, warto stosować się do tych wymogów, aby chronić użytkowników przed potencjalnymi zagrożeniami elektrycznymi.

Pytanie 24

Zdjęcie przedstawia

Ilustracja do pytania
A. drabinkę kablową.
B. listwę montażową.
C. płytkę zaciskową.
D. szynę łączeniową.
Szyna łączeniowa to kluczowy element w instalacjach elektrycznych, służący do łączenia przewodów neutralnych w rozdzielnicach. Odpowiedź jest poprawna, ponieważ zdjęcie przedstawia właśnie ten element. Szyny łączeniowe są wykorzystywane w celu zapewnienia efektywności i bezpieczeństwa instalacji, umożliwiając łatwe połączenie wielu przewodów w jednym punkcie. Dzięki nim, instalacje są bardziej uporządkowane, co pozwala na łatwiejszą konserwację i zarządzanie okablowaniem. W praktyce, szyny łączeniowe są projektowane zgodnie z normami IEC oraz PN-EN, co zapewnia ich wysoką jakość i bezpieczeństwo. Zastosowanie szyn łączeniowych jest szczególnie istotne w rozdzielnicach, gdzie konieczne jest zminimalizowanie ryzyka zwarcia i zapewnienie niezawodności działania systemu. Warto również zaznaczyć, że różne typy szyn mogą być dostosowane do specyficznych potrzeb instalacji, co czyni je niezwykle wszechstronnym rozwiązaniem.

Pytanie 25

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. wyłącznik instalacyjny płaski
B. wyłącznik różnicowoprądowy
C. ochronnik przeciwprzepięciowy
D. bezpiecznik instalacyjny
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 26

Jaką rurę instalacyjną przedstawia symbol RKLF 20?

A. Karbowaną o średnicy 20 mm
B. Karbowaną o przekroju 20 mm2
C. Sztywną o średnicy 20 mm
D. Sztywną o przekroju 20 mm2
Odpowiedź 'Karbowaną o średnicy 20 mm' jest prawidłowa, ponieważ symbol RKLF odnosi się do rur karbowanych, które charakteryzują się elastycznością i możliwością łatwego formowania. Rura o średnicy 20 mm jest standardowym rozmiarem stosowanym w instalacjach elektrycznych i telekomunikacyjnych, co czyni ją praktycznym wyborem w projektach budowlanych. Kiedy stosuje się rury karbowane, ich struktura pozwala na łatwe dopasowanie do różnych kształtów oraz ułatwia układanie w trudnych warunkach, co jest istotne w przypadku instalacji w miejscach o ograniczonej przestrzeni. Rury te są również odporne na działanie czynników atmosferycznych i chemicznych, co zwiększa ich trwałość. Zgodnie z obowiązującymi standardami w branży budowlanej, użycie rur karbowanych w instalacjach elektrycznych zapewnia bezpieczeństwo oraz zgodność z przepisami. W związku z tym, znajomość oznaczeń takich jak RKLF jest kluczowa dla każdego profesjonalisty zajmującego się instalacjami. Przykładem zastosowania są instalacje w budynkach mieszkalnych oraz przemysłowych, gdzie elastyczność rur karbowanych pozwala na zminimalizowanie ryzyka uszkodzeń i ułatwienie konserwacji.

Pytanie 27

Który z podanych łączników elektrycznych jest przeznaczony do układu niezależnego sterowania światłem z przynajmniej 3 różnych lokalizacji?

A. Dwubiegunowy
B. Jednobiegunowy
C. Świecznikowy
D. Krzyżowy
Odpowiedź 'Krzyżowy' jest poprawna, ponieważ łącznik krzyżowy jest kluczowym elementem w instalacjach elektrycznych, które wymagają sterowania oświetleniem z wielu miejsc. Umożliwia on połączenie trzech lub więcej punktów sterujących, co znacznie zwiększa elastyczność w zarządzaniu oświetleniem w większych pomieszczeniach lub w korytarzach. Przykładem zastosowania łącznika krzyżowego może być sytuacja, w której światło w długim korytarzu jest kontrolowane zarówno na początku, w środku, jak i na końcu. W połączeniu z łącznikami schodowymi, które umożliwiają sterowanie z dwóch miejsc, łącznik krzyżowy wprowadza dodatkowy poziom kontroli, co jest zgodne z najlepszymi praktykami w instalacjach elektrycznych. Zgodnie z normami PN-IEC 60669-1, stosowanie łączników krzyżowych jest rekomendowane w celu zapewnienia wygodnego i funkcjonalnego dostępu do systemu oświetlenia, co zwiększa komfort użytkowania oraz efektywność energetyczną.

Pytanie 28

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. OMYp 3×1,5 mm2
B. YDY 3×1,5 mm2
C. LGu 3×1,5 mm2
D. YDYt 3×1,5 mm2
OMYp 3×1,5 mm2 to odpowiedni typ przewodu do zasilania jednofazowego odbiornika ruchomego, ponieważ charakteryzuje się on wysoką elastycznością oraz odpornością na uszkodzenia mechaniczne. Przewód OMYp jest stosowany głównie w instalacjach tymczasowych oraz w miejscach, gdzie przewody mogą być narażone na różne warunki atmosferyczne i mechaniczne. Zastosowanie przewodu z gumowym izolowaniem sprawia, że jest on odporny na działanie olejów, smarów oraz substancji chemicznych, co czyni go idealnym rozwiązaniem w przemyśle oraz w różnych aplikacjach budowlanych. W praktyce, przewody OMYp są stosowane w zasilaniu maszyn, urządzeń elektrycznych oraz narzędzi, które są używane w ruchu. Dodatkowo, zgodnie z normą PN-EN 50525-2-21, przewody te muszą spełniać określone wymagania dotyczące bezpieczeństwa i funkcjonalności, co podkreśla ich niezawodność w zastosowaniach wymagających mobilności.

Pytanie 29

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. zamiana jednej fazy z przewodem neutralnym
C. zamiana dwóch faz miejscami
D. brak podłączenia jednej fazy
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 30

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Przeciążenie obwodu
B. Skok napięcia
C. Zwarcie międzyfazowe
D. Upływ prądu
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 31

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. rok
B. 2 lata
C. 4 lata
D. kwartał
Przeprowadzanie kontroli instalacji elektrycznych narażonych na szkodliwe wpływy atmosferyczne co najmniej raz w roku jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami w branży budowlanej. Regularne inspekcje pozwalają na wczesne wykrycie potencjalnych problemów, takich jak korozja czy uszkodzenia izolacji, co może znacząco obniżyć ryzyko awarii elektrycznych. Na przykład, w przypadku instalacji znajdujących się na zewnątrz budynków, narażonych na opady deszczu, śniegu czy zmiany temperatury, roczna kontrola pozwala na ocenę stanu technicznego wszystkich elementów. Dzięki temu możemy podjąć działania prewencyjne, takie jak wymiana uszkodzonych części czy poprawa izolacji, co przekłada się na bezpieczniejsze użytkowanie budynków. Dodatkowo, zgodnie z przepisami prawa budowlanego oraz normami PN-IEC 60364, regularne kontrole są niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z normami technicznymi.

Pytanie 32

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór innych opcji jako odpowiedzi wskazuje na błędne zrozumienie zasad klasyfikacji łączników elektrycznych. Wiele osób myli różne typy łączników, co może prowadzić do nieodpowiednich wyborów w kontekście ich zastosowania. Opcja A sugeruje, że mamy do czynienia z łącznikiem wielobiegunowym, co jest nieprawidłowe, gdyż łącznik przedstawiony w pytaniu jest jednobiegunowy. Łączniki wielobiegunowe są stosowane w bardziej skomplikowanych instalacjach, gdzie wymagane jest włączanie i wyłączanie więcej niż jednego obwodu jednocześnie. W przypadku opcji C, błędna klasyfikacja jako łącznik krzyżowy, prowadzi do mylnego założenia, że można nim kontrolować kilka źródeł światła z różnych miejsc. Łączniki krzyżowe są używane w połączeniu z łącznikami schodowymi, co jest znacznie bardziej skomplikowanym rozwiązaniem. Z kolei opcja D, dotycząca łącznika podwójnego, również jest niewłaściwa, ponieważ taki łącznik byłby zdolny do włączania i wyłączania dwóch niezależnych obwodów, co nie ma miejsca w omawianym przypadku. Prawidłowe zrozumienie typów łączników oraz ich odpowiadających symboli graficznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych. Pomyłki w identyfikacji mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy uszkodzenia sprzętu. Zrozumienie tych podstawowych zasad jest niezbędne dla każdego, kto pracuje w branży elektrycznej.

Pytanie 33

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Stal
B. Brąz
C. Aluminium
D. Miedź
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 34

Które z poniższych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w obiektach mieszkalnych?

A. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z oddzielnego obwodu
B. Odbiorniki o dużej mocy należy zasilać z dedykowanych obwodów
C. Gniazda wtyczkowe w kuchni powinny być zasilane z oddzielnego obwodu
D. Obwody oświetleniowe powinny być oddzielone od gniazd wtyczkowych
Zalecenie dotyczące zasilania gniazd wtyczkowych w każdym pomieszczeniu z osobnego obwodu jest niezgodne z dobrymi praktykami instalacyjnymi i może prowadzić do nieefektywności w systemie elektrycznym. W rzeczywistości, podział gniazd na osobne obwody dla każdego pomieszczenia zwiększałby koszty zarówno materiałowe, jak i robocze. Przy projektowaniu instalacji elektrycznej kluczowe jest zapewnienie odpowiedniej równowagi między jakością a kosztami. Ponadto, standardy instalacji elektrycznych, takie jak PN-IEC 60364, zalecają grupowanie gniazd wtyczkowych w obwody, co pozwala na lepsze zarządzanie obciążeniem i unikanie przeciążeń. Osobne obwody dla gniazd w każdym pomieszczeniu mogą prowadzić do problemów z dostępnością energii elektrycznej w przypadku awarii jednego z obwodów. W praktyce, w budynkach mieszkalnych gniazda wtyczkowe są najczęściej grupowane według pomieszczeń, a ich zasilanie z jednego obwodu jest powszechne. Taki system zwiększa elastyczność użytkowania i zmniejsza ryzyko wystąpienia przerw w dostawie energii w całym budynku. Ważne jest również, aby pamiętać, że obwody gniazdowe powinny być odpowiednio zabezpieczone przed przeciążeniem, co można osiągnąć przez zastosowanie odpowiednich zabezpieczeń nadprądowych w rozdzielnicy. Takie podejście jest zgodne z obowiązującymi normami i zapewnia bezpieczne oraz funkcjonalne środowisko mieszkalne.

Pytanie 35

W jaki sposób należy połączyć zaciski sieci zasilającej L, N, PE do zacisków puszki zasilającej instalację elektryczną, której schemat przedstawiono na rysunku, aby połączenia były zgodne z przedstawionym schematem ideowym?

Ilustracja do pytania
A. L - 1, N - 3, PE - 4
B. L - 3, N - 4, PE - 1
C. L - 1, N - 4, PE - 3
D. L - 2, N - 3, PE - 4
Poprawna odpowiedź to L - 1, N - 3, PE - 4, co jest zgodne z obowiązującymi normami instalacji elektrycznych w Polsce. Zacisk L, odpowiadający za przesył energii elektrycznej, powinien być połączony z punktem 1. Jest to istotne, ponieważ zapewnia to prawidłowe zasilanie obwodu. Zacisk N, który jest neutralny, łączy się z punktem 3, co umożliwia bezpieczne odprowadzenie prądu wstecz do źródła. Wreszcie, zacisk PE, pełniący funkcję ochrony przed porażeniem elektrycznym, powinien być połączony z punktem 4. Takie połączenie minimalizuje ryzyko awarii oraz zapewnia bezpieczeństwo użytkowników. W praktyce, przy wykonywaniu instalacji elektrycznych, zgodność z tym schematem jest kluczowa. Ponadto, należy pamiętać o regularnych przeglądach instalacji oraz stosowaniu się do norm PN-IEC 60364, aby zapewnić trwałość oraz niezawodność sieci zasilającej.

Pytanie 36

Który z wymienionych typów instalacji elektrycznych jest używany w lokalach mieszkalnych?

A. W listwach przypodłogowych
B. W kanałach podłogowych
C. Prowadzona na drabinkach
D. Wykonana przewodami szynowymi
Pomimo że inne metody instalacji elektrycznej mogą być stosowane w różnych kontekstach, nie są one optymalnymi rozwiązaniami dla pomieszczeń mieszkalnych. Kanały podłogowe, mimo swojej funkcjonalności, często wymagają skomplikowanego montażu i mogą ograniczać elastyczność przestrzenną. Zainstalowanie kabli w kanałach podłogowych może prowadzić do problemów z dostępem do przewodów w przypadku awarii, co jest niepraktyczne w domowych warunkach. Prowadzenie instalacji na drabinkach zazwyczaj zarezerwowane jest dla zastosowań przemysłowych lub w obiektach o dużych wymaganiach przestrzennych, a nie dla pomieszczeń mieszkalnych, gdzie estetyka oraz funkcjonalność odgrywają kluczową rolę. Instalacje wykonane przewodami szynowymi są stosowane głównie w obiektach komercyjnych i przemysłowych, gdzie wymagane są zmiany i rozbudowy sieci elektrycznej. Takie podejście nie jest dostosowane do standardów domowych, w których przewody powinny być zakryte i zabezpieczone. Typowy błąd myślowy polega na myleniu funkcjonalności instalacji elektrycznych w różnych kontekstach, co może prowadzić do niewłaściwych wyborów w zakresie ich wykonania. Wniosek jest taki, że w kontekście pomieszczeń mieszkalnych preferowane są instalacje, które łączą estetykę z bezpieczeństwem oraz łatwością dostępu.

Pytanie 37

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP43 5x4 mm2
B. IP45 5x6 mm2
C. IP56 5x4 mm2
D. IP54 4x4 mm2
Prawidłowa odpowiedź, IP56 5x4 mm2, odnosi się do odpowiednich standardów ochrony przed pyłem i wodą, które są kluczowe w środowisku myjni samochodowych. Oznaczenie IP56 wskazuje na wysoką odporność na kurz oraz możliwość ochrony przed silnymi strumieniami wody, co jest istotne w kontekście pracy w mokrym środowisku. W przypadku połączeń elektrycznych w takich miejscach, szczególnie przy przewodach o przekroju 5x4 mm2, ważne jest, aby wybrać elementy spełniające normy bezpieczeństwa. W praktyce, zastosowanie puszki z oznaczeniem IP56 zapewnia, że instalacja będzie chroniona przed niekorzystnymi warunkami zewnętrznymi, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Standardy takie jak IEC 60529 definiują klasyfikację ochrony, co pozwala na dobór odpowiednich materiałów w zależności od specyfiki danego miejsca. W przypadku myjni, wytrzymałość na działanie wody oraz odporność na pył są niezbędne dla zapewnienia niezawodności i bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 38

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. YAKY
B. LY
C. OMY
D. YDY
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 39

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 1.
C. Narzędzie 4.
D. Narzędzie 2.
Narzędzie 2, czyli ściągacz, jest kluczowym narzędziem wykorzystywanym w procesie demontażu przewietrznika z wału silnika elektrycznego. Jego konstrukcja umożliwia równomierne rozłożenie siły, co jest niezwykle istotne, aby uniknąć uszkodzenia elementów. W praktyce, ściągacz stosuje się w sytuacjach, gdy przewietrznik mocno przylega do wału, co może zdarzyć się w wyniku długotrwałego użytkowania silnika. Właściwe użycie ściągacza polega na umieszczeniu go tak, aby mocno, ale delikatnie, chwytał za brzegi demontowanego elementu. Zgodnie z najlepszymi praktykami branżowymi, przed przystąpieniem do demontażu należy zawsze upewnić się, że silnik jest odłączony od źródła zasilania. Użycie ściągacza w ten sposób minimalizuje ryzyko uszkodzenia zarówno przewietrznika, jak i wału silnika. Pozostałe narzędzia, takie jak narzędzie 1, 3 i 4, nie są dostosowane do tej specyficznej pracy, co może prowadzić do nieefektywnego demontażu i potencjalnych uszkodzeń.

Pytanie 40

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. kuchni i pokoju 2
B. łazience i pokoju 1
C. łazience i pokoju 2
D. pokoju 1 i pokoju 2
Odpowiedź, w której zaznaczyłeś "pokoju 1 i pokoju 2", jest rzeczywiście trafna. W schemacie instalacji elektrycznej widać, że obwody gniazd w tych pomieszczeniach nie mają ochrony wyłącznika różnicowoprądowego (RCD). To ważne, bo RCD powinno się stosować w miejscach, gdzie ryzyko porażenia prądem jest większe, jak w łazienkach czy kuchniach, gdzie woda może być problemem. Normy mówią, że tam, gdzie może wystąpić kontakt z wodą, trzeba mieć RCD, żeby zapewnić bezpieczeństwo. W pokojach 1 i 2 brakuje tej ochrony, co oznacza, że gniazda nie są tak dobrze zabezpieczone. Dobrze zaprojektowana instalacja powinna zawsze brać to pod uwagę, zwłaszcza przy układzie gniazd w miejscach, gdzie może być wilgoć. Jakbyś planował przerobić te pomieszczenia lub dodać nowe urządzenia elektryczne, warto by było przemyśleć, czy nie trzeba coś zmienić w systemie ochrony.