Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 00:27
  • Data zakończenia: 17 grudnia 2025 00:40

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 4 lata
B. 2 lata
C. 3 lata
D. 5 lat
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 2

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
B. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
C. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
D. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 3

Jaką minimalną liczbę osób należy zaangażować do pracy w warunkach szczególnego zagrożenia?

A. Cztery osoby
B. Dwie osoby
C. Jedna osoba
D. Trzy osoby
Minimalna liczba osób wykonujących prace w warunkach szczególnego zagrożenia powinna wynosić dwie osoby, co jest zgodne z zasadami bezpieczeństwa pracy oraz regulacjami prawnymi. W praktyce, obecność co najmniej dwóch pracowników zapewnia wzajemne wsparcie i możliwość szybkiej reakcji w sytuacjach awaryjnych. Na przykład, w przypadku prac w zamkniętych przestrzeniach, takich jak zbiorniki czy kanały, jeden pracownik może pełnić rolę osoby asekurującej, co jest niezbędne w przypadku wystąpienia zagrożenia zdrowia lub życia. Istotne jest, by w ramach tych prac, każdy z pracowników miał przypisane konkretne zadania oraz mógł efektywnie komunikować się z partnerem. Zgodnie z normami, takimi jak PN-N-18002 dotycząca zarządzania bezpieczeństwem i higieną pracy, pracodawcy są zobowiązani do zapewnienia odpowiednich warunków, które minimalizują ryzyko wypadków. W praktyce, w przypadku awarii sprzętu lub nagłych problemów zdrowotnych, obecność drugiej osoby może być kluczowa w zapewnieniu szybkiej pomocy oraz wezwania służb ratunkowych.

Pytanie 4

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych IB wynosi 21 A, natomiast maksymalna obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed skutkami zbyt dużego prądu?

A. B16
B. B25
C. B20
D. B32
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdyż prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Wyłączniki nadprądowe klasy B charakteryzują się czasem zadziałania w zależności od wartości nadmiaru prądu, co czyni je idealnymi do ochrony obwodów o obciążeniu rezystancyjnym. W tym przypadku, wyłącznik B25 posiada nominalny prąd 25 A, co zapewnia dodatkowy margines bezpieczeństwa w stosunku do rzeczywistego prądu obciążenia 21 A. Zastosowanie wyłącznika o wyższej wartości nominalnej, jak B32, mogłoby prowadzić do sytuacji, w której obwód nie byłby odpowiednio chroniony, a wyłączniki o niższej wartości, jak B20 czy B16, mogą zadziałać w sposób niepożądany w przypadku niewielkich skoków prądu. Zgodnie z zasadami projektowania instalacji elektrycznych, wyłącznik należy dobierać w taki sposób, aby jego wartość nominalna była nieco wyższa niż wartość prądu roboczego, co zwiększa niezawodność systemu oraz zapewnia bezpieczeństwo użytkowania.

Pytanie 5

Zamieszczone w tabeli wyniki pomiarów rezystancji izolacji uzwojeń trójfazowego silnika asynchronicznego o napięciu Un = 400 V i prądzie In = 20 A świadczą o uszkodzeniu izolacji

UzwojenieRezystancja izolacji między uzwojeniem a obudową
U1-U24 000
V1-V26 000
W1-W28 000
A. uzwojeń U1-U2 i V1-V2.
B. uzwojenia U1-U2.
C. uzwojenia V1-V2.
D. uzwojeń U1-U2 i W1-W2.
Odpowiedź dotycząca uzwojenia U1-U2 jest poprawna, ponieważ pomiar rezystancji izolacji wykazuje, że wartość ta wynosi 4000 kΩ, co jest najniższą wartością spośród wszystkich analizowanych uzwojeń. W kontekście norm dotyczących izolacji w silnikach asynchronicznych, taka rezystancja jest nieprzystosowana do bezpiecznego użytkowania. Zgodnie z normami, rezystancja izolacji powinna być jak najwyższa, aby zminimalizować ryzyko przebicia izolacji i zapewnić właściwe działanie silnika. W praktyce, w przypadku stwierdzenia niskiej rezystancji, konieczne jest przeprowadzenie dodatkowych badań, w tym testów wytrzymałościowych lub wymiany uszkodzonego uzwojenia. Przykładowo, w silnikach przemysłowych często stosuje się procedury rutynowej konserwacji, które obejmują regularne pomiary rezystancji izolacji, aby zapewnić, że silnik działa w optymalnych warunkach. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się eksploatacją i utrzymaniem maszyn, co pozwala unikać kosztownych przestojów oraz awarii.

Pytanie 6

Jakie czynności związane z eksploatacją instalacji elektrycznych powinny być realizowane jedynie na podstawie pisemnego zlecenia?

A. Eksploatacyjne, które mogą prowadzić do szczególnego zagrożenia dla życia i zdrowia ludzi
B. Eksploatacyjne, wskazane w instrukcjach stanowiskowych i realizowane przez uprawnione osoby
C. Związane z ratowaniem życia i zdrowia ludzi
D. Dotyczące zabezpieczania instalacji przed uszkodzeniem
To, że czynności eksploatacyjne, które mogą grozić zdrowiu i życiu, powinny być robione tylko na pisemne polecenie, to dobra odpowiedź. Właściwie, takie sytuacje mogą się zdarzać, gdy ktoś ma do czynienia z urządzeniami pod napięciem albo w przypadku ryzyka porażenia prądem czy pożaru. Wymóg pisemnego polecenia pomaga upewnić się, że wszystko jest dokładnie opracowane, a ryzyko zminimalizowane zgodnie z normami, jak na przykład PN-IEC 60364. Oprócz tego, te procedury powinny być opisane w instrukcjach stanowiskowych i powinny być realizowane przez ludzi, którzy mają odpowiednie uprawnienia. Wiedza o bezpieczeństwie i procedurach związanych z elektrycznością jest naprawdę ważna dla każdego, kto pracuje w tej dziedzinie.

Pytanie 7

Jaką minimalną wartość rezystancji powinno się zmierzyć w ścianach i podłodze w izolowanym miejscu pracy z urządzeniami o napięciu 400 V, aby zabezpieczenie przed dotykiem pośrednim było efektywne?

A. 10 kΩ
B. 75 kΩ
C. 25 kΩ
D. 50 kΩ
Najmniejsza zmierzona wartość rezystancji ścian i podłogi na izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić 50 kΩ, aby zapewnić skuteczną ochronę przeciwporażeniową. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-EN 61140, minimalna rezystancja izolacji jest kluczowym czynnikiem, który wpływa na bezpieczeństwo użytkowników. W praktyce, wyższa rezystancja izolacji oznacza mniejsze ryzyko przebicia i przemieszczenia prądu do części nieizolowanych. W przypadku pracy z urządzeniami o napięciu 400 V, wartość 50 kΩ jest często stosowana jako standardowy wskaźnik, aby zminimalizować ryzyko porażenia prądem. Wartości te stosuje się nie tylko w przemyśle, ale również w kontekście instalacji elektrycznych w budynkach. Regularne pomiary rezystancji izolacji powinny być przeprowadzane na stanowiskach pracy, aby upewnić się, że systemy ochrony są nadal skuteczne. Przykładem może być przemysł produkcyjny, gdzie urządzenia o wysokim napięciu są powszechnie używane, a każda usterka izolacji może prowadzić do poważnych wypadków, podkreślając znaczenie monitorowania rezystancji izolacji.

Pytanie 8

Korzystając z tabeli podaj jakimi przewodami, według sposobu A1, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
AYDYp 2×1,514,5
BYDYp 2×2,519,5
CYDYp 3×1,513,5
DYDYp 3×2,518
A. B.
B. D.
C. A.
D. C.
Odpowiedź D jest prawidłowa, ponieważ wybór przewodów YDYp 3×2,5 mm² do instalacji podtynkowej gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S spełnia wszystkie wymogi bezpieczeństwa i normy obciążalności. Zgodnie z normą PN-IEC 60364, przewody muszą być dobrane w taki sposób, aby ich obciążalność długotrwała była wyższa od prądu znamionowego zabezpieczenia, w tym przypadku 16A. Przewody YDYp 3×2,5 mm² charakteryzują się obciążalnością długotrwałą wynoszącą 18A, co sprawia, że są odpowiednie do tego zastosowania. Takie podejście zapewnia nie tylko zgodność z przepisami, ale również minimalizuje ryzyko przegrzania oraz uszkodzenia instalacji. W praktyce, dobra jakość przewodów oraz ich odpowiedni dobór mają kluczowe znaczenie dla bezpieczeństwa użytkowników oraz niezawodności instalacji. Przewody podtynkowe powinny być również odpowiednio zabezpieczone przed uszkodzeniami mechanicznymi oraz działaniem wilgoci, co potwierdza znaczenie staranności w realizacji projektów elektrycznych.

Pytanie 9

które z poniższych stwierdzeń dotyczących działania silnika bocznikowego prądu stałego wskazuje na występującą w nim nieprawidłowość?

A. Prędkość obrotowa wirnika rośnie przy osłabieniu wzbudzenia
B. Natężenie prądu w obwodzie wzbudzenia przekracza to w obwodzie twornika
C. Natężenie prądu w obwodzie wzbudzenia jest niższe niż w obwodzie twornika
D. Prędkość obrotowa wirnika na biegu jałowym jest wyższa od prędkości znamionowej
Prąd w obwodzie wzbudzenia silnika bocznikowego prądu stałego powinien być mniejszy niż prąd w obwodzie twornika. Jeśli prąd w obwodzie wzbudzenia jest większy, może to świadczyć o nieprawidłowości w pracy silnika, takiej jak uszkodzenie wirnika lub niewłaściwe ustawienie szczotek. W normalnych warunkach, prąd wzbudzenia jest regulowany przez wartość oporu w obwodzie wzbudzenia, co wpływa na siłę wzbudzenia i w konsekwencji na moment obrotowy silnika. Przykładem zastosowania wiedzy na ten temat jest diagnostyka silników elektrycznych w przemyśle, gdzie monitorowanie prądu wzbudzenia pozwala na wczesne wykrywanie problemów, co jest zgodne z dobrymi praktykami w utrzymaniu ruchu. Aby zapewnić płynność pracy i unikać awarii, ważne jest przestrzeganie zasad dotyczących konserwacji i inspekcji elementów silnika, takich jak szczotki i wirnik, w celu zapewnienia ich prawidłowego funkcjonowania oraz optymalizacji efektywności energetycznej układu napędowego.

Pytanie 10

Po włączeniu oświetlenia na klatce schodowej przez automat schodowy, żarówka na pierwszym piętrze nie zaświeciła, podczas gdy pozostałe żarówki na innych piętrach działały bez zarzutów. Jakie może być źródło tej awarii?

A. Niedokręcony przewód do oprawy na pierwszym piętrze
B. Niedokręcony przewód do łącznika na pierwszym piętrze
C. Uszkodzony automat schodowy
D. Uszkodzony łącznik na pierwszym piętrze
Niedokręcony przewód do oprawy na pierwszym piętrze może być przyczyną braku działania żarówki w tym miejscu. Ta sytuacja często występuje w instalacjach elektrycznych, gdy podczas montażu lub konserwacji, przewody nie są odpowiednio dokręcone. W przypadku oświetlenia na klatkach schodowych, gdzie automaty schodowe kontrolują oświetlenie, każdy element musi być prawidłowo podłączony, aby zapewnić szczelność obwodu. Przykładem może być sytuacja, gdy podczas wymiany żarówki osoba nie zwraca uwagi na stan połączeń, co może prowadzić do ich luzowania. W praktyce, regularne kontrole i konserwacja instalacji elektrycznych, zgodne z normami PN-IEC 60364, są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności działania systemów oświetleniowych. Zawsze warto sprawdzić połączenia przed uznaniem, że część jest uszkodzona, co może zaoszczędzić czas i koszty związane z naprawą.

Pytanie 11

Jaka powinna być minimalna wartość natężenia prądu przy pomiarze ciągłości przewodu ochronnego?

A. 200 mA
B. 500 mA
C. 100 mA
D. 400 mA
Minimalna wartość natężenia prądu podczas wykonywania pomiaru ciągłości przewodu ochronnego wynosząca 200 mA jest określona przez normy, takie jak PN-EN 61557-4. Pomiary te mają na celu potwierdzenie, że przewody ochronne są w stanie zapewnić odpowiednią ochronę przed porażeniem elektrycznym. Wartość ta została ustalona na podstawie doświadczeń inżynieryjnych i badań, które wykazały, że natężenie prądu na poziomie 200 mA jest wystarczające do wykrycia ewentualnych wad w izolacji przewodów, a jednocześnie jest na tyle bezpieczne, aby nie stanowić zagrożenia dla osób wykonujących pomiar. W praktyce, podczas testów, jeśli wartość ta nie zostanie osiągnięta, może to sugerować problemy z przewodem ochronnym, co może prowadzić do niebezpiecznych sytuacji w instalacji elektrycznej. Regularne wykonywanie takich pomiarów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z przepisami. Prawidłowe pomiary ciągłości przewodów ochronnych powinny być częścią regularnego serwisu i konserwacji instalacji elektrycznej, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 12

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Każdy pracownik na pisemne zlecenie pracodawcy
B. Operator tej maszyny
C. Kierownik grupy mechaników
D. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 13

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby zwiększyć moment rozruchowy
B. Aby zredukować prąd rozruchowy
C. Aby poprawić przeciążalność
D. Aby obniżyć prędkość obrotową
Przełącznik gwiazda-trójkąt jest powszechnie stosowany w układach zasilania silników trójfazowych w celu ograniczenia prądu rozruchowego. Kiedy silnik jest uruchamiany w układzie gwiazdy, napięcie na każdej fazie wynosi tylko 1/√3 (około 58%) napięcia międzyfazowego, co powoduje znaczące zmniejszenie prądu rozruchowego, który jest proporcjonalny do napięcia. Dzięki temu unika się przeciążenia sieci zasilającej oraz zmniejsza ryzyko uszkodzenia silnika. Po osiągnięciu odpowiednich obrotów, przełącznik zmienia połączenie na układ trójkąta, co pozwala na uzyskanie pełnej mocy silnika. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami, takimi jak IEC 60034, które regulują zasady stosowania silników elektrycznych. W praktyce, ten system jest niezwykle przydatny w aplikacjach, w których wymagany jest wysoki moment rozruchowy, np. w młynach, dźwigach czy kompresorach, gdzie kontrola prądu podczas rozruchu jest kluczowa dla zapewnienia bezpiecznej i efektywnej pracy.

Pytanie 14

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Wzrośnie o 21%
B. Wzrośnie o 10%
C. Spadnie o 19%
D. Spadnie o 10%
Zrozumienie wpływu zmiany liczby zwojów na przekładnię napięciową transformatora jest kluczowe dla prawidłowego działania układów elektrycznych. Niepoprawne odpowiedzi często wynikają z mylnych założeń dotyczących zasad działania transformatorów. Na przykład, odpowiedzi sugerujące, że przekładnia napięciowa zwiększy się o 10% lub więcej, ignorują fundamentalną zasadę działania transformatora, która mówi o proporcjonalności między liczbą zwojów a napięciem. Przy dodaniu zwojów po stronie niskiego napięcia, wzrasta liczba zwojów uzwojenia, co z kolei zmienia stosunek zwojów z uzwojenia wysokiego napięcia. To prowadzi do zmniejszenia przekładni napięciowej, co jest kluczowym aspektem, który wiele osób pomija. Odpowiedź o zmniejszeniu przekładni o 19% także jest błędna, ponieważ nie bazuje na prostych zasadach matematycznych związanych z obliczeniami przekładni. Przekładnia transformatora nie jest liniową funkcją liczby zwojów; zmiana liczby zwojów w jednym uzwojeniu wpływa na całą relację z innym uzwojeniem. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, obejmują nadmierne uproszczenie problemu lub błędne zakładanie, że zmiana w jednym z uzwojeń nie wpływa na całokształt działania transformatora. W praktyce, odpowiednia analiza wpływu zmian w transformatorach jest niezbędna dla zapewnienia ich efektywności i bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 15

Który z podanych sposobów ochrony przed porażeniem elektrycznym pełni rolę zabezpieczenia dodatkowego w przypadku uszkodzenia instalacji elektrycznych niskonapięciowych?

A. Umieszczenie części czynnych poza zasięgiem ręki
B. Separacja elektryczna odbiornika
C. Podwójna lub wzmocniona izolacja elektryczna
D. Ochronne miejscowe połączenia wyrównawcze
Ochronne miejscowe połączenia wyrównawcze stanowią kluczowy element systemów ochrony przeciwporażeniowej, zwłaszcza w instalacjach elektrycznych niskich napięć. Działają one w celu minimalizacji różnic potencjałów między różnymi metalowymi elementami instalacji, co zmniejsza ryzyko porażenia prądem elektrycznym. W sytuacji awaryjnej, gdy dojdzie do uszkodzenia izolacji lub innej awarii, połączenia wyrównawcze zapewniają alternatywną drogę dla prądu, co przyczynia się do szybszego działania zabezpieczeń. Przykładowo, w obiektach użyteczności publicznej, takich jak szkoły czy szpitale, implementacja miejscowych połączeń wyrównawczych jest zgodna z normami PN-EN 61140, które podkreślają znaczenie zachowania niskiego poziomu ryzyka w zakresie bezpieczeństwa elektrycznego. Dobrą praktyką jest również regularne sprawdzanie stanu technicznego tych połączeń, aby zapewnić ich pełną funkcjonalność w razie potrzeby.

Pytanie 16

Jakie czynności związane z użytkowaniem urządzeń elektrycznych są obowiązkiem personelu odpowiedzialnego za te urządzenia?

A. Oględziny wymagające demontażu
B. Zarządzanie czasem pracy
C. Włączanie i wyłączanie
D. Przeglądy wymagające demontażu
Uruchamianie i zatrzymywanie urządzeń elektrycznych to kluczowe zadanie pracowników obsługi, które wymaga znajomości procedur operacyjnych oraz bezpieczeństwa. Te czynności są istotne dla zapewnienia prawidłowego funkcjonowania urządzeń, co ma bezpośredni wpływ na efektywność produkcji. Przykładowo, w przemyśle wytwórczym, gdzie linie produkcyjne są często zautomatyzowane, pracownicy muszą umieć bezpiecznie uruchamiać i zatrzymywać maszyny, aby uniknąć przestojów lub uszkodzeń sprzętu. Ponadto, zgodnie z normami ISO 9001 dotyczącymi zarządzania jakością, skuteczne zarządzanie procesami, w tym właściwe uruchamianie i zatrzymywanie urządzeń, jest kluczowe dla zachowania wysokiej jakości produktów. Dobrą praktyką jest regularne szkolenie pracowników w zakresie procedur operacyjnych oraz stosowanie checklist, co zwiększa bezpieczeństwo i minimalizuje ryzyko wystąpienia awarii.

Pytanie 17

Która z podanych czynności nie zalicza się do weryfikacji stanu technicznego podczas przeglądu układu napędowego z energoelektronicznym przekształtnikiem?

A. Sprawdzenie jakości zabezpieczeń nadprądowych i zmiennozwarciowych
B. Pomiar natężenia oświetlenia na stanowisku obsługi układu napędowego
C. Ocena czystości filtrów powietrza chłodzącego
D. Weryfikacja połączeń stykowych
Sprawdzenie oświetlenia na stanowisku obsługi układu napędowego nie jest tak naprawdę częścią ogólnej oceny stanu technicznego tego układu, szczególnie jeśli chodzi o przekształtniki energoelektroniczne. Większość przeglądów skupia się na tym, czy wszystkie elementy mechaniczne i elektryczne są w porządku. To znaczy, trzeba porządnie sprawdzić połączenia stykowe, upewnić się, że filtry powietrza chłodzącego są czyste, a także kontrolować zabezpieczenia nadprądowe i zmiennozwarciowe. Oświetlenie jest ważne dla bezpieczeństwa ludzi pracujących przy tych urządzeniach, ale nie ma bezpośredniego wpływu na to, jak wydajnie układ działa. Na przykład, jeśli mówimy o przekształtnikach, kluczowe jest zapewnienie właściwego chłodzenia, co możemy kontrolować poprzez te filtry powietrza. Dobre połączenia stykowe i odpowiednie zabezpieczenia są także bardzo ważne, żeby uniknąć awarii. Warto pamiętać, że istnieją normy, jak IEC czy ISO, które podkreślają, jak istotne są regularne przeglądy komponentów elektrycznych dla bezpieczeństwa w pracy.

Pytanie 18

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H03V2V2-F 3G2,5
B. H07VV-U 5G2,5
C. H03V2V2H2-F 2X2,5
D. H07RR-F 5G2,5
Odpowiedź H07RR-F 5G2,5 jest poprawna, ponieważ przewody te charakteryzują się odpowiednią konstrukcją oraz właściwościami mechanicznymi, które są niezbędne do zasilania silników indukcyjnych w warunkach warsztatowych. Przewód H07RR-F to elastyczny przewód gumowy, co oznacza, że jest odporny na zginanie i uszkodzenia mechaniczne. Dzięki temu idealnie nadaje się do pracy w miejscach o dużym ryzyku uszkodzenia, takich jak warsztaty, gdzie maszyny są często przemieszczane. Dodatkowo, przewód ten posiada pięć żył o przekroju 2,5 mm², co zapewnia odpowiednią nośność prądową oraz możliwość podłączenia do trójfazowych silników indukcyjnych. Zgodnie z normą IEC 60227, H07RR-F spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz jakości, co czyni go odpowiednim wyborem w kontekście zasilania silników. W praktyce, stosując ten przewód, można zminimalizować ryzyko pożaru oraz awarii sprzętu, co jest kluczowe w każdej przestrzeni roboczej.

Pytanie 19

Aby ocenić kondycję techniczną przewodów wyrównawczych, należy zmierzyć między każdą dostępną częścią przewodzącą a najbliższym punktem głównego przewodu wyrównawczego

A. natężenie prądu
B. pojemność doziemną
C. rezystancję przewodów
D. spadek napięcia
Pomiar rezystancji przewodów wyrównawczych jest kluczowym elementem w ocenie ich stanu technicznego. Wyrównanie potencjałów w instalacjach elektrycznych ma na celu zwiększenie bezpieczeństwa oraz ochronę przed porażeniem prądem. W przypadku przewodów wyrównawczych, ich ciągłość oraz niski opór elektryczny są niezbędne, aby zapewnić skuteczne odprowadzanie prądów zwarciowych. Zgodnie z normami, takimi jak PN-HD 60364, powinny być one badane, aby weryfikować, że rezystancja nie przekracza określonych wartości, co może zapobiegać niebezpiecznym sytuacjom. Praktycznym przykładem jest pomiar rezystancji przewodu między punktami, gdzie przewody są połączone z ziemią lub innymi elementami instalacji. Wartości te powinny być rejestrowane i analizowane, aby zapewnić, że instalacja spełnia wymogi bezpieczeństwa oraz normy techniczne. W przypadku wykrycia wysokiej rezystancji, konieczne mogą być działania naprawcze, takie jak wymiana lub naprawa przewodów, co jest niezbędne dla prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 20

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. czujnik temperatury
B. koło pasowe
C. klatka wirnika
D. wlot powietrza
Wlot powietrza odgrywa kluczową rolę w efektywności chłodzenia indukcyjnego silnika elektrycznego. Odpowiednia wentylacja jest niezbędna do odprowadzania ciepła generowanego podczas pracy silnika, co wpływa na jego wydajność i żywotność. Wlot powietrza umożliwia cyrkulację chłodnego powietrza do wnętrza silnika, co przyczynia się do obniżenia temperatury komponentów, takich jak stator i wirnik. Zastosowanie odpowiednio zaprojektowanych kanałów wentylacyjnych, zgodnych z normami IEC 60034, pozwala na optymalne chłodzenie silnika, minimalizując ryzyko przegrzania. W praktyce, wloty powietrza powinny być regularnie kontrolowane oraz wentylowane, aby zapewnić właściwe odprowadzanie ciepła. Przykładem skutecznego zastosowania jest użycie wentylatorów chłodzących, które wspomagają naturalną cyrkulację powietrza w silnikach o dużej mocy, co znacząco poprawia ich efektywność energetyczną i wydajność operacyjną.

Pytanie 21

W instalacji elektrycznej w celu stwierdzenia skuteczności ochrony przeciwporażeniowej dokonano pomiarów i otrzymano wartości napięcia fazowego oraz impedancji pętli zwarcia wskazywane przez zamieszczony na rysunku miernik MZC-304. Które z zabezpieczeń nadprądowych przy tym stanie technicznym instalacji spełni warunek samoczynnego wyłączenia zasilania?

Ilustracja do pytania
A. D32
B. C32
C. C25
D. D25
Zabezpieczenie nadprądowe C25 jest w porządku w tej sytuacji, bo jego maksymalny prąd wyzwalania to 250A. Jakby doszło do zwarcia w instalacji, to prąd zwarcia wynosi około 315A, a to już więcej niż C25 może znieść. To zabezpieczenie działa tak, że automatycznie odłącza zasilanie, a to jest naprawdę ważne dla bezpieczeństwa, żeby uniknąć porażenia. W praktyce, takie zabezpieczenia z charakterystyką C są często stosowane tam, gdzie mamy duże obciążenia, które przy zwarciu mogą dawać spore prądy. Różne normy, jak PN-IEC 60364-4-41, mówią o tym, jak ważne jest dobranie odpowiednich zabezpieczeń. Dlatego użycie C25 w tym przypadku jest zgodne z tym, co mówią te normy i daje większą pewność, jeśli chodzi o bezpieczeństwo użytkowników instalacji.

Pytanie 22

Podczas wymiany uzwojeń w transformatorze jednofazowym o parametrach: SN = 200 VA, U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o większej średnicy i mniejszej ilości zwojów niż uzwojenie wtórne
B. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
Odpowiedź wskazująca, że uzwojenie pierwotne powinno być wykonane z drutu o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne jest poprawna. W transformatorze jednofazowym, stosunek napięć uzwojeń związany jest z relacją liczby zwojów w każdym uzwojeniu. Zależność ta wyraża się wzorem: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia na uzwojeniach pierwotnym i wtórnym odpowiednio, a N1 i N2 to liczby zwojów. Wymiana uzwojeń pierwotnych i wtórnych wiąże się z doborem odpowiedniej średnicy drutu. Mniejsze napięcie na uzwojeniu wtórnym wymaga większej liczby zwojów, co z kolei oznacza, że uzwojenie pierwotne musi być wykonane z cieńszego drutu, aby pomieścić więcej zwojów na danej długości. Przykładowo, w transformatorach stosuje się standardy dotyczące przekrojów drutów, aby zapewnić odpowiednią wydajność prądową i minimalizować straty w cieple. Zastosowanie tej zasady w praktyce prowadzi do efektywniejszego projektu transformatora, co jest kluczowe w wielu aplikacjach elektrycznych, od zasilania urządzeń domowych po zastosowania w przemyśle. Właściwe dobranie wymagań dla uzwojeń jest istotnym elementem inżynieryjnym, który warunkuje trwałość i efektywność transformatora.

Pytanie 23

Właściciel budynku jednorodzinnego zauważył, że w pralce nastąpiło przebicie do obudowy. Instalacja została wykonana w układzie TN-S, a jako środek ochrony przed porażeniem elektrycznym przy awarii zastosowano samoczynne wyłączenie zasilania. W celu naprawienia usterki instalacji konieczne jest

A. zapewnić ciągłość przewodów ochronnych
B. zapewnić ciągłość przewodów neutralnych
C. wymienić wyłącznik nadprądowy
D. wymienić wkładkę ochronnika przeciwprzepięciowego
Zapewnienie ciągłości przewodów ochronnych w instalacji elektrycznej jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania urządzeń elektrycznych. W układzie TN-S, który charakteryzuje się oddzielnym przewodem neutralnym i ochronnym, ciągłość przewodów ochronnych (PE) jest niezbędna, aby zapewnić skuteczną ochronę przeciwporażeniową. W przypadku stwierdzenia przebicia do obudowy pralki, brak ciągłości przewodu ochronnego może prowadzić do niebezpiecznej sytuacji, w której obudowa urządzenia może mieć potencjał elektryczny, co naraża użytkowników na ryzyko porażenia prądem. Przykładem może być sytuacja, w której podczas użytkowania pralki dotknięcie obudowy może spowodować przepływ prądu przez ciało człowieka w kierunku uziemienia. Aby temu zapobiec, należy nie tylko zapewnić prawidłowe podłączenie przewodu ochronnego, ale również regularnie sprawdzać jego ciągłość oraz integralność. Zgodnie z normami PN-EN 60364 oraz zaleceniami polskiej normy dotyczącej instalacji elektrycznych, wykonywanie regularnych pomiarów i inspekcji instalacji jest niezbędnym wymogiem dla bezpieczeństwa użytkowników. Dbałość o ciągłość przewodów ochronnych jest elementem dobrych praktyk inżynieryjnych oraz kluczowym aspektem ochrony przed porażeniem elektrycznym.

Pytanie 24

Na podstawie wyników pomiarów zamieszczonych w przedstawionej tabeli określ uszkodzenie występujące w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna łazienkowa
232 V0 V51 V49 V0 V
Wynik:232 V0 V51 V49 V0 V
A. Zwarcie między przewodem neutralnym i fazowym.
B. Uszkodzone połączenia wyrównawcze miejscowe.
C. Przebicie izolacji przewodu fazowego do metalowych rur.
D. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
Poprawna odpowiedź wskazuje na uszkodzone połączenia wyrównawcze miejscowe, co jest zgodne z wynikami pomiarów. W przypadku, gdy napięcie na metalowych elementach instalacji, takich jak rury, wynosi 51 V i 49 V w stosunku do przewodu ochronnego PE, sugeruje to, że połączenia wyrównawcze nie funkcjonują prawidłowo. W dobrze zaprojektowanej instalacji elektrycznej, wszystkie metalowe elementy powinny być podłączone do systemu uziemiającego, co pozwala na równomierne rozłożenie potencjału elektrycznego. Uszkodzenie połączeń wyrównawczych może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem elektrycznym, a także stanowi naruszenie norm bezpieczeństwa określonych w Polskich Normach (PN) oraz Dyrektywie Niskonapięciowej. W praktyce, regularne kontrole i pomiary instalacji elektrycznych są kluczowe, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami. Wykonana analiza wskazuje na konieczność przeprowadzania napraw w celu przywrócenia prawidłowego działania systemu ochrony przeciwporażeniowej.

Pytanie 25

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 70 V
B. 220 V
C. 50 V
D. 110 V
Odpowiedź 50 V jest prawidłowa, ponieważ jest to wartość maksymalna dopuszczalnego napięcia dotykowego na częściach dostępnych przewodzących zgodnie z normą PN-IEC 61140. W przypadku instalacji elektrycznych o napięciu do 1 kV, w warunkach normalnych, napięcie dotykowe nie może przekraczać tej wartości, aby zapewnić bezpieczeństwo użytkowników. W instytucjach i obiektach, w których używa się urządzeń elektrycznych, kluczowe jest stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które w przypadku wykrycia upływu prądu mogą zadziałać w czasie poniżej 30 ms. Przykładem zastosowania tej zasady mogą być instalacje w budynkach mieszkalnych, gdzie konieczne jest zapewnienie bezpieczeństwa osób korzystających z urządzeń elektrycznych. Obowiązujące normy, takie jak PN-EN 60038, wskazują na znaczenie odpowiedniego doboru zabezpieczeń, aby w sytuacji zwarcia lub uszkodzenia izolacji nie doszło do niebezpiecznego wzrostu napięcia dotykowego. W ten sposób, przy właściwej ochronie, można skutecznie zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 26

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Uziemienie odłączonej linii
B. Ogrodzenie obszaru pracy
C. Używanie sprzętu izolacyjnego
D. Zarządzanie pracą w grupie
Odpowiedź 'Stosowanie sprzętu izolacyjnego' jest prawidłowa, ponieważ w przypadku prac przy linii napowietrznej, która jest wyłączona spod napięcia, nie ma konieczności stosowania sprzętu izolacyjnego. Sprzęt izolacyjny, taki jak rękawice i narzędzia, jest niezbędny w sytuacjach, gdy istnieje ryzyko wystąpienia wysokiego napięcia. W przypadku linii, która jest bezpiecznie wyłączona, nie ma takiego ryzyka, co oznacza, że użycie sprzętu izolacyjnego nie jest wymagane. Mimo to, w praktyce zaleca się stosowanie sprzętu ochronnego dla pewności, zwłaszcza gdy pracownicy nie mają pełnej pewności co do stanu instalacji. Dodatkowo, w wielu branżach stosuje się zasady BHP, które zalecają zachowanie ostrożności i przygotowanie do ewentualnych awarii, nawet gdy urządzenia są wyłączone. Standardy, takie jak normy ISO i PN, podkreślają znaczenie bezpieczeństwa pracy oraz stosowania odpowiednich procedur i praktyk przy wszelkich czynnościach związanych z energią elektryczną.

Pytanie 27

Jaką wartość prądu nominalnego powinien mieć wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz PN = 2,4 kW przed zwarciem?

A. 16 A
B. 20 A
C. 10 A
D. 6 A
Wyłącznik instalacyjny nadprądowy o charakterystyce typu B powinien mieć wartość prądu znamionowego dobraną odpowiednio do obciążenia, które ma zabezpieczać. W przypadku grzejnika jednofazowego o mocy P<sub>N</sub> = 2,4 kW oraz napięciu U<sub>N</sub> = 230 V, obliczamy prąd znamionowy, korzystając z wzoru: I<sub>N</sub> = P<sub>N</sub> / U<sub>N</sub>. Zatem I<sub>N</sub> = 2400 W / 230 V = 10,43 A. Ze względu na to, że wyłączniki nadprądowe są dobierane w standardowych wartościach, w tym przypadku zaleca się wybór wyłącznika o prądzie znamionowym 16 A, który jest wystarczający dla tego obciążenia, a jednocześnie zapewnia odpowiedni margines bezpieczeństwa. W praktyce, wybierając wyłącznik o wyższej wartości prądu, zmniejszamy ryzyko fałszywych wyłączeń, które mogą wystąpić w przypadku krótkotrwałych przeciążeń, a także zwiększamy żywotność urządzenia. Zgodnie z normą PN-EN 60898-1, dobór wyłączników nadprądowych powinien być zgodny z wymaganiami dla ochrony instalacji elektrycznych oraz jego przewodów.

Pytanie 28

Korzystając z tabeli podaj jakimi przewodami, według sposobu Al, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
A.YDYp 2×1,514,5
B.YDYp 2×2,519,5
C.YDYp 3×1,513,5
D.YDYp 3×2,518
A. A.
B. C.
C. B.
D. D.
Odpowiedź D to strzał w dziesiątkę! Przewód YDYp 3x2,5 mm², który jest 3-żyłowy, naprawdę spełnia wymagania dla gniazd jednofazowych z zabezpieczeniem B16A w systemie TN-S. Z tego co pamiętam, jego obciążalność długotrwała to 18A, a to całkiem spoko, bo zabezpieczenie wynosi 16A. W elektryce to mega ważne, żeby przewody mogły udźwignąć obciążenie, bo inaczej mogą się przegrzać, a tego chcemy uniknąć. Jak się buduje instalacje w systemie TN-S, to standardem są przewody 3-żyłowe. Dlaczego? Bo przewód ochronny (PE) jest oddzielony od fazowych, co bardzo zwiększa bezpieczeństwo. W praktyce, jakby się coś stało z izolacją przewodu fazowego, to prąd nie popłynie przez człowieka, tylko do ziemi. Dobrze jest też pamiętać, że wybierając przewody, trzeba uwzględnić długość instalacji i rodzaj obciążenia, więc znajomość tych rzeczy jest ważna dla każdego, kto zajmuje się elektryką.

Pytanie 29

Silnik prądu stałego w układzie szeregowym intensywnie iskrzy na segmentach komutatora. Najbardziej prawdopodobnym powodem uszkodzenia jest

A. zwarcie międzyzwojowe w obwodzie wirnika
B. przerwa w obwodzie wirnika
C. przerwa w obwodzie stojana
D. zwarcie międzyzwojowe w obwodzie stojana
Zwarcie międzyzwojowe w obwodzie wirnika jest najczęstszą przyczyną nadmiernego iskrzenia na komutatorze silnika szeregowego prądu stałego. Tego typu zwarcia powodują nieprawidłowy przepływ prądu w uzwojeniach wirnika, co skutkuje dużymi prądami roboczymi, a w konsekwencji prowadzi do powstania intensywnych łuków elektrycznych na komutatorze. Iskrzenie to nie tylko obniża efektywność pracy silnika, ale także może prowadzić do szybszego zużycia elementów komutatora oraz wirnika. Przykładowo, w silnikach stosowanych w aplikacjach przemysłowych, takich jak napędy trakcyjne czy maszyny robocze, kluczowe jest monitorowanie stanu uzwojeń, aby zminimalizować ryzyko zwarć. Regularne inspekcje oraz stosowanie systemów diagnostycznych, takich jak termowizja czy analiza drgań, mogą pomóc w wczesnym wykryciu problemów z uzwojeniami, co jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu. Ponadto, zrozumienie efektów zwarć międzyzwojowych jest kluczowe dla inżynierów projektujących układy napędowe, aby mogli tworzyć bardziej niezawodne i trwałe systemy.

Pytanie 30

Jaki jest główny powód stosowania bezpieczników w instalacjach elektrycznych?

A. Redukcja hałasu w instalacji
B. Poprawa jakości dostarczanej energii
C. Zmniejszenie wartości napięcia w obwodach
D. Ochrona przed przeciążeniem i zwarciem
Choć redukcja hałasu może być istotna w niektórych kontekstach, to nie jest główną funkcją bezpieczników. Hałas w instalacji elektrycznej nie jest bezpośrednio związany z działaniem bezpieczników. Poprawa jakości energii to z kolei zadanie bardziej zaawansowanych urządzeń, takich jak filtry harmonicznych czy kompensatory mocy biernej. Bezpieczniki nie są w stanie poprawiać jakości energii, ponieważ ich działanie ogranicza się do ochrony przed nadmiernym przepływem prądu. Zmniejszenie napięcia również nie jest funkcją bezpieczników. Napięcie w instalacji jest regulowane przez transformatory i inne urządzenia, a bezpieczniki nie wpływają na jego wartość. Myślenie, że bezpieczniki mogą zmniejszać napięcie, wynika często z błędnego rozumienia ich roli w instalacji. Bezpieczniki działają tylko wtedy, gdy prąd przekracza bezpieczny poziom, przerywając obwód i zapobiegając dalszym uszkodzeniom. Dlatego też, choć pozostałe odpowiedzi mogą wydawać się sensowne na pierwszy rzut oka, nie dotyczą one rzeczywistych funkcji bezpieczników w instalacjach elektrycznych.

Pytanie 31

Jakie rozwiązania powinny być wdrożone w celu kompensacji mocy biernej w zakładzie przemysłowym, w którym znajdują się liczne silniki indukcyjne?

A. Podłączyć dławiki indukcyjne szeregowo do silników
B. Podłączyć kondensatory równolegle do silników
C. Podłączyć dławiki indukcyjne równolegle do silników
D. Podłączyć kondensatory szeregowo do silników
Włączenie dławików indukcyjnych równolegle do silników nie jest skuteczną metodą kompensacji mocy biernej, ponieważ dławiki wytwarzają moc bierną indukcyjną. Ich zastosowanie w tej konfiguracji zwiększałoby zapotrzebowanie na moc bierną, co prowadziłoby do dalszego obciążenia sieci zasilającej i zwiększenia kosztów energii. Wprowadzenie kondensatorów szeregowo do silników również jest niewłaściwe, ponieważ tak skonfigurowane kondensatory nie mogą efektywnie kompensować mocy biernej silników indukcyjnych, gdyż ich działanie jest ograniczone do specyficznych warunków prądowych, co zmniejsza efektywność kompensacji. Działanie dławików indukcyjnych szeregowo z silnikami wprowadza dodatkowe straty mocy i może prowadzić do niestabilnych warunków pracy. Typowym błędem myślowym jest przyjmowanie, że urządzenia indukcyjne mogą być wspomagane przez inne urządzenia indukcyjne lub na zasadzie szeregowego połączenia. W praktyce, do efektywnej kompensacji mocy biernej w systemach z silnikami indukcyjnymi, niezbędne jest zastosowanie kondensatorów w konfiguracji równoległej, co pozwala na stabilizację mocy biernej i poprawę współczynnika mocy w instalacjach przemysłowych.

Pytanie 32

Na wartość impedancji pętli zwarcia w systemie sieciowym TN-C mają wpływ

A. wytrzymałość napięciowa izolacji przewodów
B. liczba zamontowanych ochronników przeciwprzepięciowych
C. pole przekroju poprzecznego żył przewodów
D. rodzaj zamontowanych ochronników przeciwprzepięciowych
Wartość impedancji pętli zwarcia w układzie sieciowym TN-C jest ściśle związana z polem przekroju poprzecznego żył przewodów. Pole to wpływa na opór przewodzenia prądu, co z kolei ma istotne znaczenie dla działania zabezpieczeń w przypadku zwarcia. Przewody o większym przekroju charakteryzują się mniejszym oporem, co pozwala na szybsze zadziałanie zabezpieczeń, takich jak wyłączniki nadprądowe. W praktyce oznacza to, że zwiększenie przekroju przewodów w instalacji elektrycznej może poprawić bezpieczeństwo, zmniejszając ryzyko uszkodzenia urządzeń oraz zapewniając lepszą ochronę osób. W Polskich Normach i europejskich standardach, takich jak PN-HD 60364-5-54, podkreśla się znaczenie odpowiedniego doboru przekrojów przewodów w kontekście ich zastosowania, zwłaszcza w instalacjach narażonych na zwarcia. Dlatego kluczowe jest, aby projektanci instalacji elektrycznych zwracali uwagę na te aspekty, aby zapewnić optymalną funkcjonalność oraz bezpieczeństwo systemów elektrycznych.

Pytanie 33

Podczas wymiany uszkodzonego przewodu PEN w instalacji o napięciu do 1 kV, która jest trwale zamontowana, należy pamiętać, aby nowy przewód miał przekrój co najmniej

A. 10 mm2 Cu lub 10 mm2 Al
B. 10 mm2 Cu lub 16 mm2 Al
C. 16 mm2 Cu lub 10 mm2 Al
D. 16 mm2 Cu lub 16 mm2 Al
Wybór odpowiedzi 10 mm2 Cu lub 16 mm2 Al jako minimalnego przekroju przewodu PEN w instalacji do 1 kV jest zgodny z obowiązującymi standardami oraz najlepszymi praktykami w zakresie instalacji elektrycznych. Przewód PEN, który łączy funkcje przewodu neutralnego i ochronnego, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji. W przypadku zastosowania przewodów miedzianych, minimalny przekrój 10 mm2 jest zgodny z normą PN-IEC 60364, która określa wymagania dla instalacji elektrycznych. Przewody aluminiowe muszą mieć większy przekrój, 16 mm2, ze względu na niższą przewodność elektryczną w porównaniu do miedzi. W praktyce, zastosowanie przewodu o odpowiednim przekroju zapewnia właściwe odprowadzanie prądu oraz minimalizuje ryzyko przegrzewania się przewodów, co z kolei zmniejsza ryzyko wystąpienia awarii instalacji. Dodatkowo, dobranie odpowiedniego przekroju przewodów wpływa na efektywność energetyczną instalacji oraz na jej długowieczność.

Pytanie 34

Który z poniższych przyrządów pozwala na zidentyfikowanie przerwy w przewodzie PE techniką bezpośrednią?

A. Detektor napięcia
B. Omomierz
C. Woltomierz
D. Miernik upływu
Wskaźnik napięcia, woltomierz i miernik upływu to przyrządy, które mają swoje specyficzne zastosowania, ale nie są odpowiednie do lokalizowania braków ciągłości przewodu PE metodą bezpośrednią. Wskaźnik napięcia służy głównie do szybkiego sprawdzania obecności napięcia w obwodach, co nie dostarcza informacji o ciągłości przewodów. Ten przyrząd może jednak sugerować, czy w danym miejscu obwodu występuje napięcie, ale nie informuje o ewentualnych przerwach czy uszkodzeniach. Użycie wskaźnika napięcia w kontekście pomiaru ciągłości przewodu PE może prowadzić do błędnych wniosków, gdyż może być sytuacja, w której napięcie jest obecne, ale przewód nie jest w pełni sprawny. Woltomierz, choć jest bardziej zaawansowanym narzędziem do pomiaru napięcia, również nie dostarcza danych na temat ciągłości przewodów, ponieważ jego głównym celem jest pomiar napięcia między dwoma punktami. Z kolei miernik upływu służy do oceny strumienia prądu, który przepływa przez ciało lub inne masy, co nie jest bezpośrednio związane z lokalizowaniem braków ciągłości przewodu. Użycie tych przyrządów w kontekście problemów z przewodem PE może prowadzić do pominięcia krytycznych usterek, co zagraża bezpieczeństwu instalacji elektrycznej. Dlatego kluczowe jest stosowanie odpowiednich narzędzi, takich jak omomierz, aby zapewnić dokładność i niezawodność pomiarów w systemach elektrycznych.

Pytanie 35

Oceń oraz uzasadnij stan techniczny transformatora jednofazowego UN = 230/115 V, który pracuje z prądem znamionowym, gdy podłączenie dodatkowego odbiornika doprowadziło do podwyższenia napięcia po stronie wtórnej o 5%, przy jednoczesnym obniżeniu prądu pobieranego z sieci o 3%?

A. Transformator jest uszkodzony, a przyczyną uszkodzenia jest zwarcie międzyzwojowe po stronie wtórnej
B. Transformator jest uszkodzony, a przyczyną uszkodzenia jest przerwa po stronie wtórnej
C. Transformator działa prawidłowo, a przyczyną zmian prądu i napięcia odbiornika jest obniżenie napięcia zasilającego
D. Transformator działa poprawnie, a powodem zmian prądu i napięcia jest pojemnościowy charakter dołączonego odbiornika
Analizując inne odpowiedzi, można zauważyć, że każda z nich zawiera istotne błędy w ocenie stanu technicznego transformatora. Wskazanie na uszkodzenie transformatora, takie jak zwarcie międzyzwojowe po stronie wtórnej, jest nieuzasadnione, ponieważ zwarcie zazwyczaj skutkuje poważnymi problemami z napięciem i prądem, a w analizowanym przypadku stwierdzono jedynie zmiany w obciążeniu. Z kolei sugestia, że zmiany napięcia i prądu wynikają ze zmniejszenia napięcia zasilającego, jest błędna, ponieważ zmniejszenie napięcia zasilającego powinno skutkować obniżeniem napięcia po stronie wtórnej, co nie miało miejsca w tej sytuacji. Chociaż przerwy po stronie wtórnej mogą powodować istotne zmiany w parametrach pracy transformatora, to jednak nie są one adekwatne do opisanych objawów. Kluczowe w tej analizie jest zrozumienie, że transformator w prawidłowych warunkach pracy powinien wykazywać stabilność napięcia oraz prądu, co potwierdza jego poprawną funkcjonalność. W przypadku wystąpienia jakichkolwiek anomalii, istotne jest przeprowadzenie szczegółowej analizy obciążenia oraz charakterystyki podłączonych odbiorników, aby uniknąć mylnych wniosków związanych z uszkodzeniami transformatora.

Pytanie 36

Który z jednofazowych wyłączników nadprądowych zapewnia odpowiednią ochronę przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. B16
B. B10
C. C16
D. C10
Wybór C10, B16 czy C16 jako odpowiedzi na pytanie o wyłącznik nadprądowy spełniający warunki ochrony przeciwporażeniowej w przypadku impedancji pętli zwarcia Z = 4,2 Ω jest nieprawidłowy z kilku powodów. Wyłączniki oznaczone literą C są przystosowane do ochrony obwodów z większymi prądami rozruchowymi, co czyni je mniej odpowiednimi w kontekście ochrony przed porażeniem, szczególnie w obwodach, gdzie występuje duża różnorodność obciążeń. Przykładowo, C10 przy prądzie znamionowym 10 A, w przypadku zwarcia może nie zadziałać w odpowiednio szybkim czasie, co może prowadzić do zagrożenia dla bezpieczeństwa. Z kolei B16 charakteryzuje się prądem znamionowym 16 A, co również jest niewłaściwym doborem, gdyż w przypadku pętli zwarcia o impedancji 4,2 Ω, może generować prąd zwarciowy, który przekroczy granice działania wyłącznika, co skutkuje opóźnieniem w zadziałaniu i ryzykiem uszkodzenia instalacji. Warto przypomnieć, że zgodnie z normami PN-EN 60898, wyłączniki nadprądowe powinny być dobierane w taki sposób, aby zapewniały nie tylko ochronę przed przeciążeniami, ale również skuteczną ochronę przed porażeniem elektrycznym. Użycie niewłaściwego typu wyłącznika może prowadzić do niebezpiecznych sytuacji, w których użytkownicy są narażeni na ryzyko porażenia prądem, a także do uszkodzenia sprzętu elektrycznego. Dlatego kluczowe jest, aby podczas doboru wyłączników uwzględniać zarówno ich charakterystykę, jak i konkretne warunki, w jakich będą pracować.

Pytanie 37

Jak często powinny być przeprowadzane okresowe kontrole użytkowe instalacji elektrycznej w budynku jednorodzinnym, minimalnie raz w czasie?

A. 8 lat
B. 6 lat
C. 4 lata
D. 5 lat
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia ich bezpieczeństwa i sprawności. Zgodnie z obowiązującymi normami, szczególnie z rozporządzeniem Ministra Infrastruktury oraz normami PN-IEC 60364 i PN-EN 61010, przeglądy te powinny być przeprowadzane co 5 lat. W praktyce, regularne kontrole umożliwiają wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe połączenia czy degradacja elementów systemu elektrycznego. Na przykład, w przypadku starych instalacji, działanie na granicy normy może prowadzić do przegrzewania się przewodów, co stwarza ryzyko pożaru. Dlatego ważne jest, aby użytkownicy domów jednorodzinnych byli świadomi tego obowiązku i zapewniali odpowiednie przeglądy w ustalonych interwałach. Dodatkowo, w miarę starzejących się instalacji, może być konieczne zwiększenie częstotliwości badań, co podkreśla znaczenie odpowiedzialnego zarządzania systemem elektrycznym w domu.

Pytanie 38

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
B. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
C. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
D. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
Wybrałeś odpowiedź o wymianie wkładek bezpiecznikowych i żarówek, co nie jest najlepszym wyborem. Może na pierwszy rzut oka to wydaje się proste i można to robić pod napięciem, ale w rzeczywistości jest to niebezpieczne. Wymiana nawet dobrych elementów elektrycznych może być ryzykowna, zwłaszcza jeśli nie zachowasz ostrożności. Prace przy instalacji elektrycznej powinny zawsze odbywać się bez napięcia. Jakiekolwiek złamanie tej zasady może prowadzić do niebezpiecznych sytuacji. Normy, jak PN-IEC 60364-5-51, mówią jasno, że prace pod napięciem to coś, co powinno być naprawdę ograniczone i przed tym powinno się dokładnie ocenić ryzyko. A jeśli chodzi o pomiary, to też warto pamiętać, że są one czasem dozwolone, ale tylko przy zachowaniu wszystkich zasad i użyciu odpowiednich narzędzi. Także przestrzeganie przepisów BHP to podstawa, żeby w pracy z prądem było bezpiecznie.

Pytanie 39

Jakiego z wymienionych przyrządów należy użyć wraz z watomierzem, aby obliczyć współczynnik mocy urządzenia elektrycznego zasilanego prądem sinusoidalnym?

A. Waromierza
B. Częstościomierza
C. Amperomierza
D. Woltomierza
Waromierz jest urządzeniem, które bezpośrednio umożliwia pomiar mocy czynnej w obwodach prądu sinusoidalnego. Współczynnik mocy, oznaczany jako cos φ, to miara efektywności, z jaką dane urządzenie elektryczne wykorzystuje moc. Jest on zdefiniowany jako stosunek mocy czynnej (wata) do mocy pozornej (woltampery). Aby precyzyjnie obliczyć współczynnik mocy, konieczne jest równoczesne stosowanie watomierza i waromierza. Waromierz mierzy różnicę fazy pomiędzy prądem a napięciem, co jest kluczowe dla określenia, jak efektywnie energia elektryczna jest konwertowana na pracę. W praktyce, użycie waromierza w połączeniu z watomierzem pozwala na właściwe określenie strat energii, co jest istotne w przypadku aplikacji przemysłowych oraz w systemach zasilania, gdzie efektywność energetyczna ma kluczowe znaczenie. Zgodnie z normami IEC 61000 oraz ANSI C12, stosowanie waromierza w obliczeniach związanych z mocą jest standardową praktyką inżynieryjną.

Pytanie 40

Który przekrój kabla najczęściej używa się do tworzenia obwodów gniazdek w instalacjach domowych podtynkowych?

A. 4 mm²
B. 2,5 mm²
C. 1 mm²
D. 1,5 mm²
Przekroje przewodów 1 mm² i 1,5 mm² są niewystarczające do wykonywania obwodów gniazd wtyczkowych w instalacjach mieszkaniowych, ponieważ ich nośność prądowa jest zbyt mała w porównaniu do wymagań typowych urządzeń elektrycznych. Przewód o przekroju 1 mm² może bezpiecznie przenosić prąd do 10A, co jest niewystarczające dla większości nowoczesnych urządzeń, które często wymagają większych poborów prądu, zwłaszcza przy jednoczesnym korzystaniu z wielu gniazd. Z kolei przewód 1,5 mm², choć bardziej odpowiedni niż 1 mm², ma limit prądowy wynoszący około 16A, co w praktyce może być zbyt bliskie maksymalnym obciążeniom dla gniazd, zwłaszcza jeżeli podpinane są urządzenia o dużej mocy, takie jak odkurzacze czy urządzenia kuchenne. Ponadto, wybór przewodu 4 mm² dla obwodów gniazd wtyczkowych jest przesadny i nieekonomiczny. Taki przekrój jest zazwyczaj stosowany w instalacjach, gdzie przewiduje się dużą długość przewodów oraz wysokie obciążenia, jak w przypadku obwodów zasilających silniki elektryczne czy instalacji trójfazowych. Stosowanie zbyt dużego przekroju może prowadzić do nadmiernych kosztów materiałowych oraz trudności w instalacji. Dlatego kluczowe jest rozumienie zasadności doboru przekroju przewodu do charakterystyki obwodu oraz jego przewidywanego obciążenia, co zapewnia bezpieczeństwo i efektywność instalacji elektrycznych.