Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 21 października 2025 06:07
  • Data zakończenia: 21 października 2025 06:44

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wykonano pomiar głębokości bieżnika czterech letnich opon w pojeździe. Otrzymano takie wartości: 1,3 mm; 1,5 mm; 1,7 mm; 2,0 mm. Ile opon nadaje się do dalszego użytkowania?

A. Cztery.
B. Dwie.
C. Jedna.
D. Trzy.
Odpowiedź, że dwie opony nadają się do dalszej eksploatacji, jest prawidłowa z uwagi na minimalną głębokość bieżnika zalecaną dla opon letnich. Zgodnie z normami bezpieczeństwa, minimalna głębokość bieżnika dla opon letnich powinna wynosić 1,6 mm. W analizowanych pomiarach dwie opony (1,7 mm oraz 2,0 mm) mają głębokość bieżnika, która przekracza tę wartość, co oznacza, że są wystarczająco bezpieczne do dalszej eksploatacji. Opony z głębokością bieżnika poniżej 1,6 mm, jak w przypadku opon mierzących 1,3 mm i 1,5 mm, nie powinny być użytkowane, ponieważ ich właściwości jezdne ulegają znacznemu pogorszeniu, co zwiększa ryzyko aquaplaningu i wydłuża drogę hamowania. Warto również zaznaczyć, że regularne sprawdzanie głębokości bieżnika jest kluczowym elementem utrzymania pojazdu w dobrym stanie technicznym, co jest zgodne z zaleceniami producentów opon oraz instytucji zajmujących się bezpieczeństwem drogowym. Takie praktyki nie tylko poprawiają bezpieczeństwo, ale także mogą wpłynąć na efektywność paliwową pojazdu.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Kluczowym czynnikiem wpływającym na możliwości dalszej eksploatacji instalacji LPG jest

A. ważność legalizacji butli gazowej
B. stan układu chłodzenia silnika
C. stan techniczny układu zasilania benzyną
D. ważność okresu gwarancyjnego instalacji LPG
Stan techniczny układu zasilania benzyną, stan układu chłodzenia silnika oraz ważność okresu gwarancyjnego instalacji LPG to elementy, które choć mają swoje znaczenie, nie są kluczowe dla dalszej eksploatacji samej instalacji LPG. Często mylone jest znaczenie stanu układu zasilania benzyną z koniecznością dbania o instalację gazową. W rzeczywistości obie instalacje – benzynowa i gazowa – mogą działać niezależnie, a ich funkcjonalność nie wpływa bezpośrednio na legalność i bezpieczeństwo butli LPG. Również stan układu chłodzenia, choć istotny dla prawidłowego działania silnika, nie decyduje o przydatności samej instalacji gazowej. Ponadto, okres gwarancyjny instalacji LPG jest istotny jedynie z perspektywy ewentualnych napraw czy serwisu, jednak nie reguluje zasadności dalszego użytkowania butli gazowej. Kluczowe jest, aby użytkownicy zdawali sobie sprawę, że legalizacja butli gazowej jest procesem, który zapewnia bezpieczeństwo i zgodność z przepisami, a ignorowanie tego aspektu może prowadzić do poważnych konsekwencji prawnych i zdrowotnych. Właściwe zarządzanie instalacją LPG powinno być oparte na przestrzeganiu standardów technicznych i prawnych, które mają na celu ochronę użytkowników i środowiska.

Pytanie 4

Zamiana klocków hamulcowych na tylnej osi w pojazdach z EPB lub SBC wiąże się z

A. odpowietrzeniem układu hamulcowego
B. jednoczesną wymianą tarcz i klocków hamulcowych
C. wymianą płynu hamulcowego
D. dezaktywacją zacisków hamulcowych
Dezaktywacja zacisków hamulcowych jest niezbędnym krokiem przy wymianie klocków hamulcowych w pojazdach wyposażonych w systemy EPB (elektroniczna ręczna sprężyna) lub SBC (inteligentny system hamulcowy). Przy tych rozwiązaniach, zaciski hamulcowe są sterowane elektronicznie, co oznacza, że przed przystąpieniem do wymiany klocków, konieczne jest ich odłączenie. Proces ten pozwala na prawidłowe usunięcie zużytych klocków bez ryzyka uszkodzenia systemu hamulcowego. W praktyce, aby dezaktywować zaciski, należy skorzystać z odpowiedniego narzędzia diagnostycznego, które umożliwia komunikację z jednostką sterującą systemu hamulcowego. Tego typu działania są zgodne z zaleceniami producentów i są kluczowe dla zachowania integralności układu hamulcowego. W przypadku nieprzeprowadzenia dezaktywacji, może dojść do uszkodzenia elementów zacisku lub niewłaściwej pracy hamulców po wymianie, co stwarza zagrożenie dla bezpieczeństwa jazdy. Prawidłowa procedura wymiany klocków hamulcowych, z uwzględnieniem dezaktywacji zacisków, jest zgodna z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 5

Jakie jest zadanie intercoolera?

A. redukcja temperatury spalin.
B. oczyszczanie powietrza zasilającego.
C. podgrzewanie powietrza zasilającego.
D. obniżenie temperatury powietrza zasilającego.
Intercooler jest kluczowym elementem systemu doładowania silnika, którego głównym zadaniem jest obniżenie temperatury powietrza dolotowego. Po sprężeniu, powietrze staje się gorące, co negatywnie wpływa na wydajność i moc silnika. Schłodzenie powietrza dolotowego przed jego wprowadzeniem do cylindrów przyczynia się do zwiększenia gęstości powietrza, co pozwala na lepsze spalanie mieszanki paliwowo-powietrznej. Dzięki temu silnik może pracować efektywniej, generując więcej mocy przy mniejszym zużyciu paliwa. W praktyce, zastosowanie intercoolera może przyczynić się do obniżenia temperatury powietrza o 30-50°C, co znacznie poprawia osiągi pojazdu. Intercoolery są stosowane w różnych typach silników, w tym w silnikach spalinowych z turbodoładowaniem oraz w aplikacjach wyścigowych, gdzie maksymalna wydajność jest kluczowa. Dobre praktyki w instalacji intercoolera obejmują jego umiejscowienie blisko turbosprężarki oraz optymalny dobór materiałów, aby zminimalizować straty ciepła oraz opory przepływu. Takie podejście jest zgodne z normami branżowymi w zakresie projektowania układów dolotowych.

Pytanie 6

Podczas przeglądu układu zawieszenia, co należy sprawdzić, aby ocenić stan amortyzatorów?

A. Kolor płynu chłodzącego
B. Napięcie pasków klinowych
C. Stan przewodów elektrycznych
D. Szczelność i wycieki oleju
Sprawdzanie szczelności i wycieków oleju w amortyzatorach jest kluczowe, ponieważ te komponenty zawierają ciecz hydrauliczną, która tłumi drgania. Jeśli amortyzator jest nieszczelny, ciecz może wyciekać, co prowadzi do utraty jego efektywności. To może skutkować gorszym tłumieniem nierówności drogi, co wpływa na komfort jazdy oraz bezpieczeństwo. Nieszczelność amortyzatora może prowadzić do niestabilności pojazdu, szczególnie podczas pokonywania zakrętów lub jazdy po nierównościach. W praktyce, kontrola amortyzatorów jest standardową procedurą podczas przeglądów technicznych pojazdów, a wykrycie wycieków oleju jest sygnałem do ich wymiany. Prawidłowo działające amortyzatory są niezbędne dla zachowania optymalnej przyczepności kół, co ma bezpośrednie przełożenie na drogę hamowania oraz ogólną kontrolę nad pojazdem. Dobrym zwyczajem jest regularne monitorowanie stanu amortyzatorów, nie czekając na pierwsze objawy zużycia, co może zapobiec poważniejszym problemom z zawieszeniem.

Pytanie 7

Regulacja silnika spalinowego na stanowisku serwisowym w czasie pracy silnika może być przeprowadzona po

A. zakładaniu okularów ochronnych
B. ustawieniu znaków ostrzegawczych
C. zakładaniu rękawic roboczych
D. podłączeniu odciągu spalin do rury wydechowej
Podłączenie odciągu spalin do rury wydechowej jest kluczowym krokiem w procesie regulacji silnika spalinowego, ponieważ minimalizuje ryzyko narażenia personelu na szkodliwe opary i substancje chemiczne. Spaliny emitowane przez silnik zawierają wiele toksycznych związków, dlatego ich odprowadzanie do atmosfery w sposób kontrolowany jest niezbędne dla zapewnienia bezpieczeństwa. Praktyka ta jest zgodna z normami BHP i ochrony środowiska, które wymagają stosowania odpowiednich systemów wentylacyjnych w miejscach pracy. Ważne jest, aby przed rozpoczęciem jakichkolwiek czynności regulacyjnych upewnić się, że układ odprowadzania spalin jest sprawny, a jego podłączenie nie stwarza dodatkowych zagrożeń. Przykładem dobrych praktyk jest przeprowadzanie regularnych inspekcji systemów wentylacyjnych oraz szkolenie pracowników w zakresie obsługi tych urządzeń, co pozwala na bezpieczne i efektywne wykonywanie prac na silnikach spalinowych.

Pytanie 8

Na rysunku przedstawiono mechanika, który

Ilustracja do pytania
A. sprawdza luzy w łożysku piasty.
B. używa podstawki warsztatowej w celu zmniejszenia obciążeń kręgosłupa.
C. przystąpi do doważania koła.
D. sprawdza luzy w zawieszeniu pojazdu przy pomocy szarpaka.
Wyważanie kół jest kluczowym elementem utrzymania właściwej pracy pojazdu, dlatego niektóre odpowiedzi mogą wydawać się podobne, ale odnoszą się do innych, nie mniej istotnych działań. Sprawdzanie luzów w łożysku piasty oraz luzów w zawieszeniu to działania, które mają na celu zapewnienie prawidłowego funkcjonowania tych komponentów. Jednak nie są to procesy związane z wyważaniem kół. W przypadku luzów w łożyskach piasty, ich sprawdzenie polega na ocenie stanu łożysk, które mogą być uszkodzone i prowadzić do nieprawidłowego działania kół. Podobnie, sprawdzanie luzów w zawieszeniu przy pomocy szarpaka to technika mająca na celu ocenę sprężystości elementów zawieszenia, co jest istotne dla komfortu jazdy i bezpieczeństwa, ale nie jest związane z wyważaniem kół. Użycie podstawki warsztatowej w celu zmniejszenia obciążeń kręgosłupa jest praktyką ergonomiczna i pomocną w pracy mechanika, jednak nie ma związku z wyważaniem kół. Takie myślenie może prowadzić do błędnych wniosków, ponieważ nie należy mylić różnych procedur serwisowych, które są wykonywane w różnych celach. Kluczowe jest zrozumienie, że każda z tych czynności ma swoje miejsce w procesie konserwacji pojazdu, ale nie wszystkie są powiązane z wyważaniem kół.

Pytanie 9

Zniekształcenie powierzchni przylegania głowicy silnika następuje w wyniku

A. nieprawidłowego dokręcenia śrub
B. niedostatecznego smarowania
C. zużytych gniazd zaworów
D. luźnych łożysk wału rozrządu
Jak wiesz, dobrze dokręcone śruby w układzie mocującym głowicę silnika są mega ważne. Jeśli nie dokręcisz ich odpowiednio, siły rozkładają się nierównomiernie i to może prowadzić do deformacji płaszczyzny. W efekcie może być problem z szczelnością komory spalania, co wpływa na to, jak działają układy zaworowe. Podczas montażu głowicy lepiej trzymać się sprawdzonych procedur, które opisują, jak dokręcać śruby - czasem są tam konkretne wartości momentu obrotowego i sekwencje. W motoryzacji mamy normy jak ISO 898-1, które mówią, jakie materiały i cechy mechaniczne powinny mieć śruby. Więc pamiętaj, żeby o to zadbać, bo to kluczowe dla długiej i bezawaryjnej pracy silnika, a co za tym idzie, bezpieczeństwo i wydajność twojego auta. Jeśli spróbujesz to zlekceważyć, możesz się zmierzyć z poważnymi problemami, takimi jak przegrzewanie silnika albo uszkodzenie uszczelki pod głowicą, a to może być naprawdę kosztowne.

Pytanie 10

Jakie narzędzie pomiarowe powinno być zastosowane do określenia wartości zużycia tulei cylindrowej?

A. Mikrometru
B. Suwmiarki
C. Sprawdzianu do otworów
D. Średnicówki zegarowej
Mikrometr, suwmiarka oraz sprawdzian do otworów to narzędzia, które również służą do pomiarów, jednak każde z nich ma swoje ograniczenia, które czynią je nieodpowiednimi w kontekście pomiaru tulei cylindra. Mikrometr, mimo że jest precyzyjny, jest projektowany głównie do pomiarów grubości lub średnic małych obiektów, co może być niewystarczające przy pomiarach większych otworów, takich jak tuleje cylindrów. Dodatkowo, mikrometr nie pozwala na pomiar wewnętrzny w tak wygodny sposób, jak średnicówka zegarowa. Suwmiarka, choć wszechstronna, ma swoje ograniczenia co do dokładności, szczególnie w kontekście pomiarów wewnętrznych. Jej odczyty mogą być mniej precyzyjne w porównaniu do średnicówki zegarowej, co jest kluczowe przy pomiarach, gdzie tolerancje są bardzo małe. Sprawdzian do otworów, z kolei, jest narzędziem dostosowującym, które służy do oceny, czy dany otwór spełnia określone normy wymiarowe, ale nie dostarcza dokładnych wartości pomiarowych. W praktyce, podejmowanie decyzji o wyborze narzędzi pomiarowych wymaga zrozumienia ich specyfiki oraz zakresu zastosowania, co w tym przypadku prowadzi do błędnych wniosków, gdyż prawidłowy wybór narzędzia zapewnia skuteczność procesów pomiarowych i gwarantuje jakość wytworzonych elementów.

Pytanie 11

Jak odbywa się identyfikacja pojazdu?

A. tabliczki znamionowej
B. prawa jazdy
C. dokumentacji AC
D. dokumentacji OC
Identyfikacja pojazdu za pomocą tabliczki znamionowej jest kluczowym elementem w procesie rejestracji oraz weryfikacji pojazdów. Tabliczka ta zawiera unikalny numer VIN (Vehicle Identification Number), który jest przypisany do każdego pojazdu i pozwala na jego jednoznaczną identyfikację. Dzięki temu możliwe jest uzyskanie istotnych informacji dotyczących historii pojazdu, takich jak jego dane techniczne, historia wypadków, czy zmiany właścicieli. W praktyce, tabliczki znamionowe są umieszczane w standardowych lokalizacjach, takich jak deska rozdzielcza, w oknie przedniej szyby lub na wewnętrznej stronie drzwi kierowcy. Znajomość lokalizacji tabliczki oraz umiejętność odczytywania z niej informacji jest niezbędna dla osób zajmujących się handlem pojazdami używanymi, a także dla instytucji zajmujących się kontrolą stanu technicznego pojazdów. W związku z tym, zaznajomienie się z zasadami identyfikacji pojazdów za pomocą tabliczki znamionowej jest kluczowe dla zapewnienia bezpieczeństwa na drogach oraz ochrony przed oszustwami związanymi z rejestracją pojazdów.

Pytanie 12

Najbardziej efektywną metodą ochrony antykorozyjnej nadwozia w trakcie produkcji jest

A. pokrywanie metalu pastami uszczelniającymi
B. cynkowanie części nadwozia
C. malowanie blach farbami chlorokauczukowymi
D. montowanie osłon z plastiku
Cynkowanie elementów nadwozia to jedna z najskuteczniejszych metod ochrony przed korozją, szeroko stosowana w przemyśle motoryzacyjnym. Proces ten polega na nałożeniu warstwy cynku na metalowe powierzchnie, co skutecznie chroni przed działaniem wilgoci i innych czynników atmosferycznych. Warstwa cynku działa jako katoda, co oznacza, że nawet w przypadku uszkodzenia powłoki, metalowa powierzchnia nadal jest chroniona przez cynk, który utlenia się zamiast stali. Przykładem zastosowania cynkowania jest wiele nowoczesnych pojazdów, które w procesie produkcji są cynkowane ogniowo, co zapewnia długotrwałą ochronę przed rdzą. W praktyce, zgodnie z normą ISO 1461, cynkowanie ogniowe zapewnia doskonałą przyczepność oraz odporność na zarysowania, co jest kluczowe w kontekście trwałości i estetyki nadwozia samochodowego. Wybór cynkowania jako metody zabezpieczenia antykorozyjnego jest zgodny z dobrymi praktykami branżowymi, co potwierdzają liczne badania dotyczące efektywności ochrony przed korozją w różnych warunkach eksploatacyjnych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Przed przystąpieniem do pomiaru składu spalin w silniku ZI należy

A. odłączyć akumulator
B. usunąć nagar z układu wydechowego silnika
C. rozgrzać silnik pojazdu do osiągnięcia temperatury roboczej
D. skalibrować dymomierz
Rozgrzewanie silnika pojazdu do temperatury eksploatacyjnej przed rozpoczęciem pomiaru składu spalin jest kluczowym krokiem, który zapewnia wiarygodność i dokładność uzyskiwanych wyników. Silniki spalinowe, w tym silniki ZI (zapłon iskrowy), osiągają optymalną efektywność operacyjną oraz właściwe parametry spalania dopiero po osiągnięciu określonej temperatury. W niskich temperaturach, w których silnik nie jest w pełni rozgrzany, proces spalania może być nieefektywny, co prowadzi do zwiększonej emisji szkodliwych substancji, takich jak tlenki azotu (NOx) czy węglowodory niespalone (HC). Praktyczne zastosowanie tej wiedzy jest szczególnie istotne podczas diagnostyki, kontroli emisji spalin oraz przeglądów technicznych. Zgodnie z normami jakości powietrza i przepisami dotyczącymi emisji spalin, takie jak Euro 6, pomiar powinien być przeprowadzany w warunkach rzeczywistych, co obliguje do uwzględnienia pracy silnika w normalnej temperaturze eksploatacyjnej, aby uzyskać rzetelne dane do analizy i oceny stanu technicznego pojazdu.

Pytanie 16

SL/CH 5W/40 to symbol oleju silnikowego, który można wykorzystać

A. w silniku czterosuwowym z zapłonem iskrowym lub samoczynnym
B. wyłącznie w silniku czterosuwowym z zapłonem samoczynnym
C. tylko w silniku czterosuwowym z zapłonem iskrowym
D. w silniku dwusuwowym z zapłonem iskrowym
Olej silnikowy oznaczony jako SL/CH 5W/40 to dobry wybór dla silników czterosuwowych. Można go używać zarówno w silnikach benzynowych, jak i diesla. To oznaczenie SL mówi nam, że ten olej spełnia normy API, co oznacza, że dobrze chroni silnik, a także może pomóc w oszczędności paliwa. Lepkość 5W/40 sprawia, że olej jest efektywny w różnych temperaturach, co jest ważne, bo warunki pogodowe często się zmieniają. Co ciekawe, takich olejów używa się w wielu autach, jak na przykład Volkswagen, Ford czy Toyota. Używając takiego oleju, można liczyć na dłuższy czas życia silnika i mniejsze koszty utrzymania.

Pytanie 17

Dzięki lampie stroboskopowej możliwe jest wykonanie pomiaru

A. ustawień świateł.
B. kąta wyprzedzenia zapłonu.
C. ciśnienia sprężania.
D. zbieżności kół.
Lampy stroboskopowe są nieocenionym narzędziem w diagnostyce pojazdów, szczególnie do pomiaru kąta wyprzedzenia zapłonu. Działanie lampy stroboskopowej opiera się na zjawisku, które pozwala na wizualizację ruchomych punktów w czasie, w tym przypadku wałka rozrządu lub koła zamachowego. Dzięki synchronizacji błysków lampy z obrotami silnika można określić, czy kąt wyprzedzenia zapłonu jest zgodny z wartościami podanymi przez producenta pojazdu. Użycie lampy stroboskopowej pozwala na precyzyjne ustawienie zapłonu, co ma kluczowe znaczenie dla prawidłowego funkcjonowania silnika, jego wydajności oraz emisji spalin. W praktyce, podczas diagnostyki, technik ustawia lampę stroboskopową w odpowiedniej pozycji, a następnie obserwuje, w którym miejscu znacznik na obudowie silnika jest wyznaczony przez błysk lampy. W przypadku odchyleń, mechaniczną regulację można przeprowadzić w celu optymalizacji pracy silnika. Standardy branżowe, takie jak te określone przez SAE (Society of Automotive Engineers), podkreślają znaczenie precyzyjnego pomiaru i ustawienia kąta zapłonu dla zapewnienia efektywności operacyjnej silników spalinowych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

W pneumatycznym systemie hamulcowym, elementem odpowiedzialnym za przechowywanie sprężonego powietrza jest

A. siłownik pneumatyczny
B. poduszka powietrzna
C. zbiornik powietrza
D. manometr
Zbiornik powietrza w pneumatycznym układzie hamulcowym jest kluczowym elementem odpowiedzialnym za magazynowanie sprężonego powietrza, które jest niezbędne do skutecznego działania hamulców. Zbiornik ten gromadzi powietrze w odpowiednim ciśnieniu, co umożliwia szybkie i efektywne uruchamianie hamulców w sytuacjach awaryjnych oraz w normalnych warunkach eksploatacyjnych. Przykładowo, w pojazdach ciężarowych oraz autobusach, zbiornik powietrza jest projektowany zgodnie z określonymi normami bezpieczeństwa, aby wytrzymał wysokie ciśnienia robocze. Dobre praktyki branżowe wskazują również na regularne kontrole zbiorników, w tym sprawdzanie ich szczelności oraz stanu technicznego, co jest niezbędne do zapewnienia bezpieczeństwa użytkowania. Utrzymując zbiornik powietrza w dobrym stanie, można zminimalizować ryzyko awarii układu hamulcowego i zapewnić nieprzerwaną wydajność działania systemu hamulcowego, co jest kluczowe w kontekście bezpieczeństwa transportu.

Pytanie 20

Wartości sił hamowania kół na jednej osi pojazdu nie mogą różnić się o więcej niż 30%, przyjmując 100% jako standard

A. zmierzoną siłę niższą
B. suma zmierzonych sił
C. zmierzoną siłę wyższą
D. siłę określoną przez producenta
Pomiar sił hamowania kół na jednej osi pojazdu jest kluczowym parametrem w zapewnieniu bezpieczeństwa oraz prawidłowego działania systemu hamulcowego. Zgodnie z obowiązującymi normami, różnice w zmierzonych siłach hamowania kół nie powinny przekraczać 30%. Wybór zmierzonej siły większej jako poprawnej odpowiedzi odnosi się do faktu, że w sytuacji, gdy jedna z sił jest wyraźnie większa, może to wskazywać na problemy z równomiernym rozkładem siły hamowania, co prowadzi do ryzyka wypadku. Przykładem zastosowania tej wiedzy w praktyce jest testowanie pojazdów w laboratoriach badawczo-rozwojowych, gdzie inżynierowie analizują różnice w siłach hamowania w kontekście określonych norm, takich jak te zdefiniowane przez ECE R13. Utrzymanie odpowiedniego poziomu sił hamowania na poziomie 30% jest istotne dla stabilności pojazdu oraz jego zdolności do zatrzymania się w bezpieczny sposób.

Pytanie 21

Udarność określa, jaką odporność ma materiał na

A. szlifowanie
B. uderzenie
C. zginanie
D. ściskanie
Udarność to zdolność materiału do absorbujowania energii w momencie uderzenia, co jest kluczowym wskaźnikiem jego odporności na dynamiczne obciążenia. Materiały o wysokiej udarności są w stanie znieść znaczne naprężenia, nie ulegając trwałemu odkształceniu ani łamaniu. Przykładem materiałów o wysokiej udarności są stopy stali, które są powszechnie wykorzystywane w przemyśle budowlanym i motoryzacyjnym, gdzie odporność na uderzenia jest kluczowa dla bezpieczeństwa konstrukcji oraz użytkowników. Dobre praktyki projektowe obejmują analizę udarności materiałów w kontekście ich zastosowania, na przykład poprzez testy Charpy'ego, które pozwalają ocenić, jak materiał zachowa się w zmiennych warunkach temperaturowych. Znalezienie odpowiedniego materiału o odpowiedniej udarności jest kluczowe, zwłaszcza w aplikacjach, takich jak osłony ochronne, gdzie ryzyko upadków lub uderzeń jest wysokie. Zrozumienie udarności materiałów przyczynia się do poprawy trwałości i bezpieczeństwa produktów.

Pytanie 22

Silnik z zapłonem iskrowym, w którym olej silnikowy przedostaje się przez nieszczelności do komory spalania, generuje z rury wydechowej dym o odcieniu

A. czerwonym
B. niebieskim
C. białym
D. czarnym
Silnik z zapłonem iskrowym, w którym olej silnikowy przenika do komory spalania, emituje dym o niebieskim zabarwieniu. To zjawisko jest wynikiem spalania oleju, który zawiera w sobie substancje smarne i dodatki chemiczne. Kiedy olej dostaje się do komory spalania, jego spalanie prowadzi do powstania charakterystycznych, niebieskich spalin. Niebieski dym jest często sygnałem, że silnik może mieć problemy z uszczelnieniem, co może prowadzić do dalszych uszkodzeń, jeśli nie zostanie naprawione. W praktyce, wykrycie niebieskiego dymu w spalinach silnika powinno skłonić właściciela pojazdu do natychmiastowej diagnostyki, aby zidentyfikować przyczynę wycieku oleju. Można to osiągnąć za pomocą testów ciśnienia kompresji, analizy oleju oraz inspekcji wizualnej uszczelek i pierścieni tłokowych. W motoryzacji, stosowanie odpowiednich standardów, jak SAE dla olejów silnikowych, jest kluczowe dla utrzymania silnika w dobrym stanie oraz minimalizowania emisji spalania oleju.

Pytanie 23

Krzywa charakterystyki zewnętrznej silnika oznaczona symbolem "X" obrazuje

Ilustracja do pytania
A. moment obrotowy silnika Mo
B. jednostkowe zużycie paliwa Ge
C. moc silnika N.
D. sekundowe zużycie paliwa ge
Odpowiedzi, takie jak "jednostkowe zużycie paliwa Ge", "moment obrotowy silnika Mo" oraz "sekundowe zużycie paliwa ge", są niepoprawne, ponieważ mylą kluczowe pojęcia związane z charakterystykami silnika. Jednostkowe zużycie paliwa Ge odnosi się do ilości paliwa zużywanego na jednostkę mocy, co nie jest bezpośrednio związane z mocą silnika, lecz raczej z jego efektywnością. Moment obrotowy Mo, z kolei, definiuje siłę, z jaką silnik może obracać wał, co jest różnym parametrem technicznym, który wpływa na przyspieszenie pojazdu, ale nie obrazuje bezpośrednio jego mocy. Sekundowe zużycie paliwa ge porusza się w podobnym zakresie, jako że odnosi się do ilości paliwa zużywanego w danym czasie, a nie do wydajności silnika jako takiej. Typowe błędy prowadzące do takich nieprawidłowych odpowiedzi obejmują mylenie terminów technicznych oraz brak zrozumienia zależności między mocą, momentem obrotowym a zużyciem paliwa. Dla inżynierów oraz techników istotne jest rozróżnienie tych parametrów, aby móc skutecznie projektować i oceniać silniki pod kątem ich zastosowań oraz efektywności, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej oraz mechanicznej.

Pytanie 24

Do metod ilościowych stosowanych przy weryfikacji elementów samochodowych należy metoda

A. penetrująca
B. magnetyczna
C. ultradźwiękowa
D. objętościowa
Wybór metod ultradźwiękowych, magnetycznych i penetrujących w kontekście weryfikacji części samochodowych to nie jest najlepszy pomysł. Te metody są raczej nieniszczące - na przykład, ultradźwięki świetnie wykrywają wewnętrzne defekty materiałów, ale nie nadają się do pomiarów ilościowych, co czyni je dość mało trafnymi w tym pytaniu. Z kolei metoda magnetyczna, która służy do identyfikacji pęknięć w materiałach ferromagnetycznych, też nie jest metodą ilościową, bo przede wszystkim ocenia jakość struktury materiału. Metoda penetrująca, jak sama nazwa wskazuje, polega na oglądaniu powierzchni materiału pod kątem wad, ale znowu - nie dostarcza nam konkretnej ilości, co jest istotne tutaj. Takie pomyłki wynikają z braku zrozumienia, jakie mają zastosowanie poszczególne metody badawcze. Wiedza na temat różnicy pomiędzy metodami nieniszczącymi a ilościowymi jest kluczowa, żeby poprawnie przeprowadzać weryfikację i utrzymywać wysokie standardy jakości w produkcji.

Pytanie 25

Wymiana klocków hamulcowych na tylnej osi w pojazdach z systemem Electronic Power Board lub Sensotronic Brake Control wiąże się z

A. jednoczesną wymianą tarcz i klocków hamulcowych
B. odpowietrzeniem układu hamulcowego
C. dezaktywacją zacisków hamulcowych
D. wymianą płynu hamulcowego
Dezaktywacja zacisków hamulcowych to naprawdę ważny krok, gdy wymieniamy klocki w autach z systemami jak Electronic Power Board czy Sensotronic Brake Control. Chodzi o to, żeby najpierw odłączyć zasilanie lub zresetować system, dzięki czemu możemy bez stresu zdemontować klocki, nie obawiając się o uszkodzenia. Na przykład, jeśli nie zastosujemy się do tego, to możemy przypadkiem zepsuć czujniki czy inne elementy regulacyjne. Dlatego zawsze warto zajrzeć do instrukcji serwisowej przed przystąpieniem do pracy. Dzięki temu mamy pewność, że wszystko zrobimy jak należy, co jest kluczowe dla bezpieczeństwa i prawidłowego działania układu hamulcowego po wymianie. No i przestrzeganie dobrych praktyk serwisowych to podstawa, jeśli chcemy czuć się pewnie za kierownicą.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Do jakich pomiarów stosuje się wakuometry?

A. ciśnienia atmosferycznego
B. wydajności pompy paliwowej
C. ciśnienia paliwa
D. podciśnienia w układzie dolotowym
Wakuometry są instrumentami służącymi do pomiaru ciśnienia, a ich głównym zastosowaniem jest pomiar podciśnienia w układzie dolotowym silników spalinowych. Podciśnienie w tym kontekście jest kluczowym parametrem, ponieważ wpływa na proces mieszania paliwa z powietrzem oraz na eficjencję pracy silnika. Przykładowo, prawidłowe ustawienie podciśnienia zapewnia optymalne warunki do spalania, co przekłada się na lepszą wydajność i oszczędność paliwa. W branży motoryzacyjnej, wakuometry są często wykorzystywane do diagnostyki układów dolotowych i mogą pomóc zidentyfikować problemy, takie jak nieszczelności w systemie dolotowym czy niewłaściwe ustawienia gaźnika. Standardy przemysłowe sugerują użycie wakuometrów w regularnych przeglądach technicznych, co zapewnia utrzymanie silników w dobrej kondycji. W związku z tym, umiejętność interpretacji wyników pomiarów wakuometrycznych jest kluczowa dla mechaników i techników samochodowych.

Pytanie 28

Proporcja objętości cylindra powyżej tłoka w pozycjach DMP oraz GMP definiuje

A. długość skoku tłoka
B. stopień sprężania
C. ciśnienie sprężonego powietrza
D. objętość jednego skoku silnika
Stopień sprężania jest kluczowym parametrem w silnikach spalinowych, określającym stosunek objętości cylindra w położeniu dolnym martwym (DMP) do objętości cylindra w położeniu górnym martwym (GMP). Jest to fundamentalny wskaźnik, który wpływa na wydajność silnika oraz jego moc. Wysoki stopień sprężania przyczynia się do efektywniejszego spalania mieszanki paliwowo-powietrznej, co prowadzi do zwiększenia mocy wyjściowej silnika. Przykładem zastosowania tej wiedzy jest tuning silników, gdzie inżynierowie często dążą do optymalizacji stopnia sprężania, aby poprawić osiągi pojazdu. Wartością standardową w silnikach benzynowych wynosi 9:1 do 12:1, podczas gdy w silnikach diesla może wynosić od 14:1 do 25:1, co podkreśla różnice w technologiach silnikowych. Przy projektowaniu silników, zrozumienie i kontrolowanie stopnia sprężania jest niezbędne dla osiągnięcia pożądanej dynamiki i efektywności paliwowej, co wpisuje się w egzekwowane standardy emisji oraz wydajności energetycznej.

Pytanie 29

Aby zmierzyć bicie boczne tarczy sprzęgła, należy zastosować

A. czujnik zegarowy.
B. diagnoskop.
C. mikrometr.
D. średnicówkę mikrometryczną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik zegarowy jest urządzeniem pomiarowym, które doskonale nadaje się do precyzyjnego określania bicia bocznego tarczy sprzęgła. Dzięki swojej budowie, czujnik zegarowy umożliwia dokładne pomiary małych odchyleń, co jest kluczowe dla zapewnienia prawidłowej pracy komponentów mechanicznych. Przykładowo, w procesie ustawiania sprzęgła w pojazdach, czujnik zegarowy pozwala na szybkie i dokładne określenie, czy tarcza jest zainstalowana prawidłowo, co w konsekwencji wpływa na efektywność przenoszenia momentu obrotowego. Zgodnie z najlepszymi praktykami w branży motoryzacyjnej, regularne sprawdzanie bicia bocznego tarczy sprzęgła z wykorzystaniem czujnika zegarowego jest zalecane, aby zminimalizować ryzyko awarii i przedłużyć żywotność elementów układu napędowego. Należy również zwrócić uwagę na kalibrację czujnika, aby zapewnić jego dokładność oraz wiarygodność odczytów, co jest niezbędne w kontekście diagnostyki pojazdów.

Pytanie 30

W trakcie diagnostyki pompy paliwowej nie wykonuje się pomiaru

A. ciśnienia tłoczenia
B. podciśnienia ssania
C. ciśnienia wtrysku
D. wydatku pompy
Pompa paliwowa jest kluczowym elementem systemu zasilania silnika, a podczas jej diagnostyki istotne jest zrozumienie, jakie parametry są monitorowane. Pomiar ciśnienia wtrysku nie jest standardowym pomiarem przeprowadzanym podczas diagnostyki samej pompy paliwowej. Ciśnienie wtrysku odnosi się do ciśnienia, z jakim paliwo wtryskiwane jest do komory spalania przez wtryskiwacze i jest odzwierciedleniem działania układu wtryskowego, a nie samej pompy. Z drugiej strony, ciśnienie tłoczenia i wydatek pompy są kluczowymi parametrami, które określają efektywność działania pompy paliwowej. W praktyce, podczas diagnostyki należy skupić się na pomiarach, które bezpośrednio odnoszą się do wydajności pompy, takich jak ciśnienie tłoczenia oraz wydatek, aby zapewnić poprawne funkcjonowanie systemu zasilania. Dobrą praktyką jest także regularne kontrolowanie tych parametrów, aby upewnić się, że pompa działa w optymalnym zakresie, co ma kluczowe znaczenie dla wydajności i niezawodności silnika.

Pytanie 31

Jakie jest znaczenie liczby cetanowej?

A. petrolu do samochodów
B. oleju napędowego
C. oleju do silników
D. gazu LPG
Liczba cetanowa jest kluczowym parametrem, który odnosi się do jakości oleju napędowego, czyli paliwa wykorzystywanego w silnikach diesla. Wartość ta wskazuje na zdolność paliwa do samoczynnego zapłonu w komorze spalania silnika. Im wyższa liczba cetanowa, tym krótszy czas, jaki upływa od momentu wtrysku paliwa do zapłonu. Jest to istotne dla efektywności pracy silnika, ponieważ paliwa o niskiej liczbie cetanowej mogą prowadzić do problemów takich jak trudności z uruchomieniem silnika, niestabilna praca i zwiększone emisje spalin. Standardy branżowe, takie jak normy EN 590, określają minimalną wartość liczby cetanowej, która powinna wynosić przynajmniej 51 dla oleju napędowego w Europie. Praktycznym przykładem zastosowania wiedzy o liczbie cetanowej jest dobór odpowiedniego paliwa w zależności od warunków eksploatacji pojazdu, co pozwala na optymalizację osiągów silnika oraz redukcję jego zużycia paliwa.

Pytanie 32

Zanim rozpoczniesz diagnostykę układu hamulcowego na stanowisku rolkowym, na początku należy zweryfikować

A. obciążenie pojazdu.
B. szczelność układu.
C. stan płynu hamulcowego.
D. ciśnienie w ogumieniu.
Przed przystąpieniem do diagnostyki układu hamulcowego, niektórzy mogą błędnie uznać, że najpierw należy sprawdzić szczelność układu, stan płynu hamulcowego lub obciążenie pojazdu. Jednak te aspekty, choć ważne, powinny być oceniane po upewnieniu się, że ciśnienie w oponach jest na prawidłowym poziomie. W przypadku sprawdzania szczelności układu hamulcowego, kluczowe jest, aby zrozumieć, że nawet jeśli sam układ jest szczelny, to niewłaściwe ciśnienie w oponach może prowadzić do nieprawidłowego działania hamulców. Stan płynu hamulcowego, równie istotny, nie ma sensu kontrolować, jeśli pojazd nie jest stabilny z powodu niewłaściwego ciśnienia w oponach. Każda z tych czynności ma swoje miejsce i kolejność w diagnostyce, a ich pominięcie może prowadzić do błędnych diagnoz i decyzji. Dodatkowo, obciążenie pojazdu, chociaż istotne z perspektywy oceny jego zdolności do hamowania, nie jest pierwszym krokiem w diagnostyce. Niewłaściwe ciśnienie w oponach wpływa na zachowanie pojazdu na drodze, co ma kluczowe znaczenie dla efektywności hamowania. W praktyce, nieprzestrzeganie tej kolejności może prowadzić do poważnych konsekwencji, w tym do wypadków drogowych, co podkreśla znaczenie przestrzegania protokołów diagnostycznych i norm branżowych.

Pytanie 33

Ostatnia obróbka cylindra w silniku spalinowym to

A. honowanie
B. szlifowanie
C. toczenie
D. planowanie
Honowanie to naprawdę ważny proces, kiedy mówimy o końcowej obróbce cylindrów w silnikach spalinowych. Chodzi o to, żeby osiągnąć właściwą chropowatość i dokładne wymiary. Dzięki honowaniu, wewnętrzne ścianki cylindrów są gładkie i pozbawione malutkich niedoskonałości, co jest kluczowe, żeby pierścienie tłokowe dobrze przylegały. To z kolei wpływa na efektywność spalania i zmniejsza zużycie paliwa. Widziałem, że w nowoczesnych silnikach wyścigowych honowanie to standard, który pomaga uzyskać maksymalne osiągi. W motoryzacji mamy różne techniki honowania, jak honowanie na sucho czy na mokro, co zależy od materiałów i wymagań budowy. Dobre honowanie daje chropowatość Ra w granicach 0,2 - 0,5 μm, co jest naprawdę na poziomie najlepszych praktyk w branży.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Zmiana koloru cieczy stosowanej do identyfikacji nieszczelności uszczelki pod głowicą jest spowodowana gazem obecnym w spalinach

A. O2
B. NOx
C. CO2
D. CO
Wybór NOx, CO lub O2 jako odpowiedzi na pytanie o zmianę zabarwienia płynu wykrywającego nieszczelności uszczelki pod głowicą jest niepoprawny i oparty na nieporozumieniach dotyczących chemii spalin. NOx, czyli tlenki azotu, powstają w wyniku wysokotemperaturowego spalania paliw, ale nie mają wpływu na kolor płynu chłodniczego. CO, czyli tlenek węgla, jest gazem o dużym potencjale toksycznym, lecz także nie jest bezpośrednio reakcjonujący z wskaźnikami zabarwienia płynów w wykrywaniu nieszczelności. O2, czyli tlen, jest gazem niezbędnym do procesu spalania, ale jego obecność również nie powoduje zmiany kolorystycznej w płynie używanym w tych testach. Typowym błędem myślowym jest niewłaściwe postrzeganie roli poszczególnych gazów w procesach chemicznych i ich reakcji z innymi substancjami. W praktyce inżynieryjnej, ważne jest zrozumienie, że różne gazy mają różne właściwości chemiczne i fizyczne, co wpływa na ich zastosowanie w diagnostyce silników spalinowych. Dlatego skuteczna diagnostyka silników powinna opierać się na zrozumieniu specyfiki każdego z tych gazów oraz ich reakcji z innymi substancjami, aby optymalizować procesy diagnostyczne i zapewnić długotrwałe działanie układów mechanicznych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Który z komponentów należy do hydraulicznego systemu hamulcowego?

A. Pompa hamulcowa
B. Kable hamulcowe
C. Zbiornik powietrza
D. Zawór sterujący
Pompa hamulcowa jest kluczowym elementem hydraulicznego układu hamulcowego, ponieważ odpowiada za generowanie ciśnienia w układzie. Kiedy kierowca wciśnie pedał hamulca, pompa hamulcowa przetłacza płyn hamulcowy do cylindra hamulcowego, co z kolei powoduje, że klocki hamulcowe są dociskane do tarczy hamulcowej. Ten proces jest niezbędny do skutecznego spowolnienia lub zatrzymania pojazdu. W nowoczesnych samochodach stosuje się pompy hamulcowe o różnej budowie, w tym pompy z jednostkami ABS, które zapobiegają blokowaniu kół podczas hamowania. Przykładem zastosowania może być układ hamulcowy w samochodach osobowych, gdzie pompy hamulcowe są projektowane zgodnie z wytycznymi zawartymi w normach ISO oraz SAE, co gwarantuje ich niezawodność i efektywność. Dobrą praktyką jest regularne sprawdzanie stanu pompy hamulcowej oraz pozostałych komponentów układu w celu zapewnienia pełnej sprawności i bezpieczeństwa pojazdu.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Aby zmierzyć średnice czopów wału korbowego, należy zastosować

A. głębokościomierz mikrometryczny
B. mikrometr wewnętrzny
C. mikrometr zewnętrzny
D. średnicówkę mikrometryczną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mikrometr zewnętrzny jest narzędziem pomiarowym, które idealnie nadaje się do pomiarów średnic zewnętrznych obiektów cylindrycznych, takich jak czopy wału korbowego. Jego konstrukcja pozwala na uzyskanie bardzo precyzyjnych wyników, z dokładnością nawet do 0,01 mm. Mikrometr zewnętrzny składa się z szczęk, które obejmują mierzoną część, a skala na mikrometrze umożliwia odczyt wartości pomiarowej. Przykładowo, w przemyśle motoryzacyjnym, precyzyjne pomiary średnic czopów wału korbowego są niezbędne do zapewnienia prawidłowego funkcjonowania silnika. Zbyt mała lub zbyt duża średnica czopów może prowadzić do nieprawidłowego osadzenia łożysk, co z kolei może skutkować ich przedwczesnym zużyciem lub uszkodzeniem silnika. W standardach branżowych, takich jak ISO 286, podkreśla się znaczenie precyzyjnych pomiarów w procesie wytwarzania, co czyni mikrometr zewnętrzny niezbędnym narzędziem w warsztatach i zakładach produkcyjnych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.