Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 1 lutego 2026 13:26
  • Data zakończenia: 1 lutego 2026 14:11

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Cyfrowy tachometr jest narzędziem do mierzenia

A. natężenia przepływu powietrza
B. prędkości obrotowej wału silnika
C. lepkości cieczy
D. naprężeń w metalach
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.

Pytanie 3

Jaką odległość określa skok siłownika?

A. odległość między skrajnymi położeniami końca tłoczyska (w stanie wsunięcia i wysunięcia)
B. odległość między obudową siłownika a końcem tłoczyska w pozycji wysunięcia
C. odległość pomiędzy krućcem zasilającym a końcem tłoczyska, gdy jest w wysuniętej pozycji
D. odległość między obudową siłownika a końcem tłoczyska, gdy jest w pozycji wsuniętej
Skok siłownika definiuje odległość pomiędzy jego skrajnymi położeniami, czyli w stanie całkowitego wsunięcia oraz całkowitego wysunięcia tłoczyska. Ta definicja jest kluczowa dla zrozumienia funkcji siłowników, które znajdują zastosowanie w wielu dziedzinach inżynierii, takich jak automatyka, robotyka czy przemysł motoryzacyjny. Przykładem praktycznym mogą być siłowniki hydrauliczne używane w prasach czy systemach podnoszenia, gdzie precyzyjne określenie skoku jest niezbędne do zapewnienia prawidłowego działania maszyn. W standardach branżowych, takich jak ISO 6432, definiowane są parametry siłowników, w tym skok, co pozwala na ich odpowiednie dobieranie do konkretnych zastosowań. Zrozumienie tej koncepcji umożliwia inżynierom właściwe projektowanie systemów, a także przeprowadzanie skutecznych analiz działania urządzeń. W praktyce, znajomość skoku siłownika jest kluczowa przy planowaniu układów automatyzacji oraz w procesie konserwacji i diagnostyki urządzeń.

Pytanie 4

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. ustawienie na boku, sztuczne oddychanie
B. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
C. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
D. sztuczne oddychanie oraz masaż serca
Wybór innych odpowiedzi wskazuje na pewne nieporozumienia dotyczące kolejności działań przy udzielaniu pomocy osobie porażonej prądem elektrycznym. Na przykład, w sytuacjach, w których krążenie jest zachowane, ale oddech jest zatrzymany, kluczowe jest najpierw zapewnienie drożności dróg oddechowych, a następnie przystąpienie do sztucznego oddychania. Wybór odpowiedzi, która pomija ten krok, może prowadzić do poważnych konsekwencji zdrowotnych, takich jak niedotlenienie mózgu, które może nastąpić w ciągu kilku minut. Ułożenie na boku, które można znaleźć w niektórych odpowiedziach, jest istotne w kontekście ochrony dróg oddechowych, jednak stosuje się je głównie w przypadku, gdy pacjent wykazuje oznaki świadomego oddychania lub po epizodach wymiotów, a nie w sytuacji całkowitego zatrzymania oddechu. Dodatkowo, przeprowadzanie masażu serca w sytuacji, gdy krążenie jest zachowane, jest nieuzasadnione i może prowadzić do niepotrzebnych uszkodzeń klatki piersiowej oraz zaburzeń rytmu serca. Takie podejścia mogą wskazywać na niepełne zrozumienie zasad pierwszej pomocy, co może zagrażać życiu poszkodowanego. W sytuacji udzielania pomocy przedlekarskiej, kluczowe znaczenie ma znajomość właściwej sekwencji działań, co opiera się na wiedzy z zakresu medycyny ratunkowej i wytycznych resuscytacyjnych.

Pytanie 5

Na rysunku przedstawiono

Ilustracja do pytania
A. transoptor szczelinowy.
B. mostek prostowniczy.
C. fotorezystor.
D. tranzystor unipolarny.
Wybranie innej odpowiedzi niż transoptor szczelinowy pokazuje, że można mieć pewne nieporozumienia odnośnie funkcji i budowy różnych elementów elektronicznych. Na przykład, tranzystor unipolarny to zupełnie coś innego, bo działa na zasadzie jednego typu nośników ładunku. Nie ma za bardzo związku z optycznym przesyłaniem sygnałów. Transoptory szczelinowe, w przeciwieństwie do tranzystorów, są robione z myślą o izolacji galwanicznej i przesyłaniu sygnałów optycznych. Dlatego są mega potrzebne w wielu miejscach, gdzie bezpieczeństwo elektryczne ma znaczenie. Wybór mostka prostowniczego, który zmienia prąd zmienny na stały, też nie jest dobry, bo nie ma to nic wspólnego z optycznym przesyłaniem sygnałów i nie przypomina budowy transoptora. Fotorezystor z kolei to element pasywny, którego oporność zmienia się w zależności od światła, co również nie jest tym, co robi transoptor. Z mojego doświadczenia wynika, że często mylenie tych elementów bierze się z braku zrozumienia ich zastosowań i konstrukcji, a także z nieodpowiedniego kojarzenia ich z ogólnym pojęciem optoelektroniki. Kluczowe jest zrozumienie, że transoptory to połączenie optyki i elektroniki, co czyni je unikalnymi w dzisiejszych technologiach.

Pytanie 6

Jaką rolę odgrywają zawory przelewowe w systemach hydraulicznych?

A. Redukują nagłe skoki ciśnienia
B. Utrzymują ustalony poziom ciśnienia
C. Zapewniają ustawiony, stały spadek ciśnienia
D. Ograniczają ciśnienie do ustalonego poziomu
Zawory przelewowe pełnią kluczową rolę w układach hydraulicznych, a ich główną funkcją jest utrzymywanie określonego poziomu ciśnienia. Działają one na zasadzie otwierania się w momencie, gdy ciśnienie w systemie przekracza zdefiniowaną wartość, co pozwala na odprowadzenie nadmiaru cieczy z systemu. Dzięki temu zapobiegają one uszkodzeniom elementów układu hydraulicznego, takich jak pompy czy silniki hydrauliczne. Przykładem zastosowania zaworów przelewowych może być system hydrauliczny stosowany w maszynach budowlanych, gdzie stabilne ciśnienie jest niezbędne do prawidłowego działania narzędzi roboczych. W branży hydraulicznej powszechnie stosuje się standardy, takie jak ISO 4413, które określają wymagania dotyczące układów hydraulicznych, w tym zastosowania zaworów przelewowych. Utrzymanie stałego ciśnienia nie tylko zwiększa efektywność działania systemu, ale również wpływa na jego bezpieczeństwo oraz trwałość.

Pytanie 7

Który podzespół jest badany pod względem szczelności w układzie przedstawionym na ilustracji?

Ilustracja do pytania
A. Zespół przygotowania powietrza.
B. Zawór Z3.
C. Siłownik pneumatyczny.
D. Zawór Z1.
Siłownik pneumatyczny jest kluczowym elementem układu pneumatycznego, który odpowiada za przekształcanie energii sprężonego powietrza w ruch mechaniczny. Jego szczelność jest niezbędna dla prawidłowego funkcjonowania systemu, ponieważ nieszczelności mogą prowadzić do strat ciśnienia, co z kolei wpływa na siłę i precyzję ruchu. W praktyce, jeśli siłownik nie jest szczelny, może to skutkować nieefektywnym działaniem maszyn, co w konsekwencji prowadzi do awarii lub obniżenia jakości produkcji. W branży automatyzacji standardy takie jak ISO 8573 dotyczące jakości powietrza sprężonego również zwracają uwagę na kwestię szczelności komponentów pneumatycznych. Dobre praktyki wskazują na regularne kontrole szczelności siłowników, co pozwala na wczesne wykrycie problemów i minimalizację kosztów związanych z przestojami produkcyjnymi oraz naprawami.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Prawidłowo wykonane połączenie lutowane przedstawiono

Ilustracja do pytania
A. tylko na rysunku 2
B. tylko na rysunku 1
C. na rysunkach 1 i 2
D. na rysunkach 2 i 3
W przypadku niepoprawnych odpowiedzi, często spotykanym błędem jest mylenie cech właściwie wykonanych połączeń lutowanych. Wybierając odpowiedzi, które wskazują tylko jeden rysunek, użytkownicy mogą przeoczyć istotne cechy, które decydują o jakości lutowania. Na przykład, twierdzenie, że tylko rysunek 1 przedstawia prawidłowe połączenie, ignoruje fakt, że rysunek 2 także ilustruje poprawne parametry lutowania, takie jak odpowiednia ilość cyny i dobra przyczepność. Z kolei odpowiedzi wskazujące na rysunek 3 jako poprawny, często wynika z niezrozumienia niebezpieczeństw związanych z nadmiarem cyny, co może prowadzić do tzw. zimnych lutów, które są jednymi z najczęstszych problemów w elektronice. Warto także wspomnieć, że kryteria oceny jakości lutowania są ściśle określone przez standardy branżowe, które zalecają unikanie nadmiaru materiału lutowniczego oraz dbałość o odpowiednią temperaturę podczas lutowania. Ignorowanie tych zasad prowadzi do powstawania połączeń, które nie tylko są zawodne, ale mogą również generować dodatkowe koszty naprawy i serwisowania. Dlatego niezwykle istotne jest, aby zrozumieć, jakie cechy definiują prawidłowo lutowane połączenia oraz jakie konsekwencje mogą wynikać z ich zaniedbania.

Pytanie 10

Na podstawie przedstawionej noty katalogowej termostatu HONEYWELL 3455RC określ temperaturę otwarcia oraz amplitudę.

Typ czujnikatermostat
Konfiguracja wyjściaNC
Temperatura otwarcia18°C
Temperatura zamknięcia-1°C
Prąd pracy maks.10A
Napięcie pracy maks.240V AC
Przyłączekonektory
6,4mm
A. Temperatura otwarcia 18°C, amplituda 19°C
B. Temperatura otwarcia -1°C, amplituda 18°C
C. Temperatura otwarcia 18°C, amplituda 17°C
D. Temperatura otwarcia 18°C, amplituda -1°C
Odpowiedź jest poprawna! Temperaturę otwarcia ustawiono na 18°C, a amplituda wynosi 19°C. Z tego wynika, że termostat HONEYWELL 3455RC zaczyna działać, gdy temperatura osiągnie 18°C. Amplituda wskazuje, że różnica między temperaturą otwarcia a zamknięcia to 19°C. W takim razie, temperatura zamknięcia powinna wynosić -1°C. Te parametry mają duże znaczenie w projektowaniu systemów HVAC, bo precyzyjne zarządzanie temperaturą jest ważne, żeby użytkownicy czuli się komfortowo i żeby oszczędzać energię. Na przykład, w systemach grzewczych dobrze skalibrowany termostat pomaga uniknąć niepotrzebnego zużycia energii i poprawia efektywność grzewczą. A odpowiednio dobrane parametry termostatów wpływają na to, jak działają systemy klimatyzacyjne i grzewcze, co jest istotne w naszej branży.

Pytanie 11

Jakie urządzenie umożliwia pomiar temperatury łopat sprężarki o ruchu obrotowym?

A. tensometru
B. termistora
C. pirometru
D. manometru
Wybór tensometru do pomiaru temperatury wirujących łopat sprężarki przepływowej jest nieadekwatny, ponieważ tensometry służą do pomiaru deformacji materiałów, a nie temperatury. Ich działanie opiera się na pomiarze zmiany oporu elektrycznego w wyniku odkształcenia, co jest zupełnie inną kategorią pomiarów. Z kolei termistory, mimo że są czujnikami temperatury, działają na zasadzie zmiany oporu elektrycznego w odpowiedzi na zmiany temperatury, co może być stosunkowo powolne w kontekście dynamicznych warunków panujących w obrębie wirujących części sprężarki. Systemy kontroli w przemyśle często wymagają szybkich i dokładnych pomiarów, a termistory mogą nie zaspokajać tych potrzeb z uwagi na swoją konstrukcję i czas reakcji. Manometry, natomiast, służą do pomiaru ciśnienia gazów lub cieczy, co jest zupełnie innym parametrem niż temperatura. Pomiar ciśnienia nie ma bezpośredniego związku z temperaturą wirujących łopat, co czyni tę odpowiedź nieodpowiednią. Użycie niewłaściwych urządzeń pomiarowych prowadzi do błędnych wniosków i potencjalnych awarii, co podkreśla znaczenie wyboru odpowiednich narzędzi pomiarowych w kontekście specyficznych zastosowań inżynieryjnych. W praktyce inżynieryjnej istotne jest, aby wybierać urządzenia, które odpowiadają wymaganiom procesów, a zrozumienie różnic między różnymi typami czujników jest kluczowe dla zapewnienia efektywności operacyjnej i bezpieczeństwa systemów.

Pytanie 12

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. polerowania
B. lutowania
C. napawania
D. spawania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Gwintownik
B. Skrobak
C. Narzynka
D. Tłocznik
Narzynka jest narzędziem skrawającym, które służy do nacinania gwintów zewnętrznych na różnych materiałach, w tym metalach. Użycie narzynki jest szczególnie ważne w procesach obróbczych, gdzie precyzja i jakość gwintu mają kluczowe znaczenie. Narzynki są dostępne w różnych rozmiarach oraz typach, w zależności od wymaganego profilu gwintu, co umożliwia ich zastosowanie w szerokim zakresie aplikacji przemysłowych. W praktyce, narzynki są często używane w produkcji śrub oraz w przemyśle motoryzacyjnym, gdzie precyzyjne dopasowanie gwintów jest niezbędne. Dobrą praktyką jest również stosowanie smaru podczas nacinania gwintu, co minimalizuje tarcie i wydłuża żywotność narzędzia. Przestrzeganie standardów ISO dotyczących gwintów, takich jak ISO 965 dla gwintów metrycznych, gwarantuje, że wykonane gwinty będą odpowiednio dopasowane do elementów złącznych. W związku z tym, umiejętność prawidłowego użycia narzynki jest istotna dla każdego specjalisty w dziedzinie obróbki skrawaniem.

Pytanie 16

Ile minimalnie 8 bitowych portów we/wy powinien posiadać mikrokontroler PIC wyposażony w szeregowy
8-bitowy przetwornik analogowo-cyfrowy oznaczony ADC0831, aby można było zrealizować układ mechatroniczny przedstawiony na rysunku?

Ilustracja do pytania
A. 4 porty.
B. 5 portów.
C. 3 porty.
D. 2 porty.
Wybór większej liczby portów we/wy, niż dwa, świadczy o pewnym nieporozumieniu dotyczącym zasad komunikacji z przetwornikiem ADC0831 oraz sterowaniem silnikiem krokowym. Przy uwzględnieniu, że ADC0831 przesyła dane szeregowo, wystarczy jeden port do odbioru 8-bitowego sygnału cyfrowego. Wiele osób może błędnie przyjąć, że każdy sygnał sterujący wymaga oddzielnego portu, co nie jest prawdą. Zastosowanie jednego portu wyjściowego do przesyłania kombinacji sygnałów sterujących jest powszechną praktyką, która znacznie upraszcza projektowanie systemów mechatronicznych. Możliwe jest również zaimplementowanie dodatkowych sygnałów kontrolnych w ramach jednego portu poprzez odpowiednie kodowanie, co pozwala na dalszą oszczędność zasobów. Często w inżynierii zbyt duża liczba portów prowadzi do złożoności systemu, co może negatywnie wpływać na jego niezawodność i koszt produkcji. Ponadto, w kontekście projektów automatyki i robotyki, efektywne zarządzanie portami we/wy jest kluczowe, aby uniknąć sytuacji, w której system staje się nieefektywny i trudny do debugowania. Z tego względu, założenie większej liczby portów, jak np. 3, 4 czy 5, jest nieuzasadnione i niezgodne z dobrymi praktykami w projektowaniu układów mechatronicznych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Na którym z rysunków przedstawiono symbol graficzny warystora?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Symbol graficzny warystora, przedstawiony na rysunku D, jest zgodny z Międzynarodowym Standardem IEC 60617, który definiuje symbole dla elementów elektronicznych. Warystor to element, którego rezystancja zmienia się w zależności od przyłożonego napięcia, co czyni go istotnym komponentem w obwodach ochronnych i stabilizujących. Przykładowo, warystory są powszechnie stosowane w układach ochrony przed przepięciami, gdzie ich zadaniem jest ograniczenie napięcia do poziomu bezpiecznego dla innych komponentów. W obwodach elektronicznych, warystory są wykorzystywane do absorbcji impulsów napięciowych, co z kolei zmniejsza ryzyko uszkodzenia delikatnych układów. Warto również zwrócić uwagę, że warystory są często stosowane w połączeniu z innymi elementami, takimi jak bezpieczniki czy diody, w celu zwiększenia efektywności ochrony. Zrozumienie symboliki graficznej oraz funkcji warystora jest kluczowe dla właściwego projektowania obwodów elektronicznych z zachowaniem zasad bezpieczeństwa i efektywności działania.

Pytanie 22

Które urządzenie zostało przedstawione na zdjęciu?

Ilustracja do pytania
A. Rezystor drutowy.
B. Potencjometr montażowy.
C. Kondensator nastawny.
D. Przełącznik czteropozycyjny.
W odpowiedziach, które wybrano, można spotkać koncepcje, które są w istotny sposób mylone z zasadami działania potencjometru montażowego. Kondensator nastawny, jako element pasywny, służy do gromadzenia ładunku elektrycznego i nie ma zdolności do regulacji oporu. Jego zastosowanie polega na modyfikacji częstotliwości obwodów rezonansowych, co jest zupełnie innym procesem niż regulacja oporu. Tego rodzaju błędne rozumienie może wynikać z mylnych skojarzeń dotyczących regulacji parametrów w obwodach elektrycznych. Kolejnym błędnym podejściem jest przełącznik czteropozycyjny, który działa na zasadzie zmiany połączeń obwodów, a nie regulacji oporu. W praktyce, przełączniki tego rodzaju są wykorzystywane do wybierania różnych trybów działania urządzeń, co jest istotnie różne od funkcji potencjometru. W przypadku rezystora drutowego, jego konstrukcja nie zawiera ruchomego elementu, co wyklucza możliwość jakiejkolwiek regulacji. Błędy te wynikają często z nieprecyzyjnej wiedzy na temat budowy i działania elementów elektronicznych, co jest kluczowe dla zrozumienia ich zastosowań. Zrozumienie różnicy pomiędzy tymi urządzeniami jest fundamentalne dla właściwego projektowania oraz diagnozowania układów elektronicznych, co ma kluczowe znaczenie w inżynierii elektronicznej.

Pytanie 23

Który rodzaj zasilania jest wykorzystywany do pracy urządzenia mechatronicznego przedstawionego na rysunku?

Ilustracja do pytania
A. Elektryczny i hydrauliczny.
B. Tylko elektryczny.
C. Elektryczny i pneumatyczny.
D. Tylko pneumatyczny.
Poprawna odpowiedź to 'Elektryczny i hydrauliczny' ponieważ na zdjęciu przedstawiona jest prasa hydrauliczna, która jest typowym przykładem urządzenia mechatronicznego. W tego typu maszynach zasilanie elektryczne jest kluczowe, gdyż to elektryczny silnik napędza pompę hydrauliczną. Pompa ta generuje ciśnienie w układzie hydraulicznym, co pozwala na efektywne działanie prasy. W praktyce, połączenie zasilania elektrycznego z hydraulicznym umożliwia precyzyjne sterowanie siłą i ruchem, co jest niezbędne w wielu zastosowaniach przemysłowych, takich jak formowanie metalu, prasowanie czy tłoczenie. Takie rozwiązania są zgodne z najlepszymi praktykami w inżynierii mechatronicznej, gdzie integracja różnych systemów zasilania pozwala na uzyskanie większej efektywności oraz funkcjonalności urządzenia. Przykładem zastosowania mogą być linie produkcyjne w przemyśle motoryzacyjnym, gdzie prasy hydrauliczne odgrywają istotną rolę w procesie produkcji elementów samochodowych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakiego materiału powinno się użyć do ekranowania urządzeń pomiarowych, aby zredukować wpływ pól elektromagnetycznych na ich funkcjonowanie?

A. Aluminium
B. Preszpan
C. Szkło
D. Teflon
Teflon, szklano i preszpan to materiały, które z różnych powodów nie nadają się do ekranowania elektromagnetycznego. Teflon, chociaż ma dobre właściwości dielektryczne i jest odporny na wiele chemikaliów, nie ma ani wystarczającej przewodności elektrycznej, ani zdolności do odbicia fal elektromagnetycznych. Z tego powodu nie jest skutecznym materiałem do ochrony przed zakłóceniami elektromagnetycznymi. Podobnie szkło, które również charakteryzuje się niską przewodnością, nie ma zdolności do efektywnego blokowania pól elektromagnetycznych. W rzeczywistości szkło może nawet stwarzać problemy w aplikacjach wymagających ekranowania, ponieważ promieniowanie elektromagnetyczne może przechodzić przez nie, co skutkuje zakłóceniami w działaniu delikatnych urządzeń pomiarowych. Preszpan, z kolei, to materiał kompozytowy, który ma zastosowanie głównie w dziedzinie elektroniki ze względu na swoje właściwości izolacyjne, ale ponownie, jego brak przewodności elektrycznej czyni go nieodpowiednim do ekranowania. Nieporozumienia związane z tymi materiałami często wynikają z mylnego przekonania, że dobra izolacja wystarcza do ochrony przed zakłóceniami elektromagnetycznymi. Kluczowe jest rozumienie różnicy między materiałami dielektrycznymi a przewodzącymi w kontekście ekranowania, co prowadzi do bardziej efektywnego projektowania systemów odpornych na zakłócenia.

Pytanie 26

Który rodzaj sprężarki powietrza przedstawiono na rysunku?

Ilustracja do pytania
A. Membranową.
B. Tłokową.
C. Śrubową.
D. Spiralną.
Sformułowane odpowiedzi dotyczące sprężarek śrubowych, spiralnych oraz membranowych mogą prowadzić do nieporozumień związanych z zasadą działania oraz konstrukcją tych urządzeń. Sprężarki śrubowe działają na zasadzie sprężania powietrza poprzez obracające się śruby, co pozwala na ciągłą produkcję sprężonego powietrza, ale nie ma to nic wspólnego z mechanicznym ruchem tłoków, który jest typowy dla sprężarek tłokowych. Również sprężarki spiralne, znane z zastosowania w medycynie i w zastosowaniach wymagających bardzo wysokiej niezawodności, działają na zasadzie dwóch spiralnych wirników, a ich budowa znacznie różni się od tłokowej. Natomiast sprężarki membranowe, często stosowane w aplikacjach laboratoryjnych, wykorzystują membrany do sprężania gazu, co również nie odpowiada mechanizmowi tłokowemu. Te pomyłki mogą wynikać z mylenia typów sprężarek oraz ich zastosowań, co jest zrozumiałe, biorąc pod uwagę różnorodność technologii. Kluczowym błędem jest założenie, że wszystkie sprężarki działają na podobnej zasadzie, co prowadzi do błędnych wniosków. Wiedza na temat różnic w budowie i zastosowaniach poszczególnych typów sprężarek ma istotne znaczenie w praktyce inżynieryjnej, ponieważ wybór odpowiedniego urządzenia wpływa na efektywność procesów przemysłowych oraz kosztów eksploatacji.

Pytanie 27

Podczas instalacji systemu z kontrolerem PLC, przewody magistrali Profibus powinny

A. być wciągane do osłon jako pierwsze
B. być układane jak najdalej od przewodów silnoprądowych
C. być kładzione w bezpośrednim sąsiedztwie kabli energetycznych
D. być wciągane do osłon jako ostatnie
Układanie przewodów magistrali Profibus jak najdalej od przewodów silnoprądowych jest kluczowe dla zapewnienia niezawodności i integralności sygnału w systemach automatyki przemysłowej. Przewody silnoprądowe emitują pole elektromagnetyczne, które może zakłócać transmisję danych w kablach magistrali, prowadząc do błędów komunikacyjnych i spadku wydajności systemu. Dobre praktyki montażowe, zgodne z normami, takimi jak IEC 61158, zalecają trzymanie przynajmniej 30 centymetrów odstępu pomiędzy przewodami sygnałowymi a przewodami zasilającymi. Ponadto, umieszczając przewody w odpowiednich osłonach, można zminimalizować ryzyko uszkodzeń mechanicznych oraz wpływu czynników zewnętrznych, co ma istotne znaczenie w trudnych warunkach przemysłowych. Przykładowo, w zakładach produkcyjnych, w których występuje intensywna obecność maszyn elektrycznych, przestrzeganie tych zasad zapewnia stabilność działania systemu sterowania oraz minimalizuje ryzyko awarii, co przekłada się na zwiększenie efektywności produkcji.

Pytanie 28

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAE
B. CAD
C. SCADA
D. CAM
Odpowiedzi CAM (Computer-Aided Manufacturing), CAD (Computer-Aided Design) oraz CAE (Computer-Aided Engineering) odnoszą się do różnych aspektów procesów inżynieryjnych, które nie są przeznaczone do nadzorowania procesów przemysłowych. CAM skupia się na automatyzacji procesów produkcyjnych, umożliwiając konwersję projektów CAD na instrukcje maszynowe, co jest kluczowe w produkcji, ale nie w samym monitorowaniu. CAD zajmuje się projektowaniem, dostarczając narzędzia do tworzenia precyzyjnych rysunków i modeli 3D, co również nie obejmuje funkcji nadzoru. CAE koncentruje się na analizach inżynieryjnych, wspierając procesy projektowania przez symulacje i analizy wydajności, jednak nie ma na celu monitorowania rzeczywistych procesów w czasie rzeczywistym. Wybór tych opcji może wynikać z mylnego przekonania, że wszystkie te technologie obejmują aspekty zarządzania procesami, co jest nieprawidłowe. Kluczowym błędem jest nieodróżnianie funkcji projektowania i produkcji od nadzoru i kontroli. Zrozumienie różnic między tymi systemami jest kluczowe, aby skutecznie je stosować w odpowiednich kontekstach przemysłowych, i pomoże uniknąć nieefektywnego wykorzystania narzędzi inżynieryjnych w procesach, które wymagają monitorowania i kontroli.

Pytanie 29

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Żeliwo szare
B. Brąz
C. Stal szybkotnącą
D. Mosiądz
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Dławienie zaworów dławiąco-zwrotnych przedstawionych na schemacie ustawiono odpowiednio
1V1 – 50% i 1V2 - 100%. Określ prędkość wysuwania tłoczyska A1 przyjmując, że 0% oznacza całkowite dławienie, 100% oznacza brak dławienia.

Ilustracja do pytania
A. Równa prędkości wsuwania.
B. Dwa razy większa niż wsuwania.
C. Cztery razy większa niż wsuwania.
D. Dwa razy mniejsza niż wsuwania.
Prędkość wysuwania tłoczyska A1 wynika z różnych ustawień dławienia zaworów 1V1 i 1V2. Zawór 1V1 jest ustawiony na 50% dławienia, co oznacza, że ogranicza on przepływ oleju podczas wsuwania tłoczyska. Natomiast zawór 1V2 jest na 100%, co oznacza, że nie występuje żadne dławienie podczas wysuwania. W praktyce oznacza to, że podczas wysuwania tłoczyska dostępny jest pełny przepływ oleju, co zwiększa jego prędkość. Zastosowanie takich regulacji jest istotne w automatyzacji procesów, gdzie kontrola nad prędkościami ruchów jest kluczowa dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak ISO 4413 dotyczące hydrauliki, wskazuje się na znaczenie precyzyjnego dostosowania parametrów pracy urządzeń, co wpływa na ich żywotność oraz funkcjonalność. Dlatego zrozumienie, jak dławienie wpływa na prędkości wysuwania i wsuwania, jest niezbędne dla inżynierów projektujących systemy hydrauliczne.

Pytanie 32

Ile wynosi wartość pojemności kondensatora, przedstawionego na ilustracji?

Ilustracja do pytania
A. 470 nF
B. 474 μF
C. 470 μF
D. 474 nF
Wybór odpowiedzi 474 nF, 474 μF lub 470 μF wskazuje na nieporozumienie w zakresie interpretacji oznaczeń kondensatorów. W przypadku kondensatora oznaczonego jako "474" kluczowe jest właściwe zrozumienie, jak odczytywać wartość pojemności. Odpowiedzi te mogą wynikać z pomyłki przy interpretacji cyfry "4" jako wskazania wartości w nanofaradach lub mikrofaradach zamiast jako mnożnika, co jest typowe dla tego rodzaju kondensatorów. Dodatkowo, 474 μF jest wartością nieproporcjonalnie dużą w kontekście typowych zastosowań kondensatorów o oznaczeniu trzycyfrowym, co mogło prowadzić do błędnych konkluzji. Typowe błędy myślowe obejmują mylenie jednostek miary, co może być wynikiem braku zrozumienia różnic między nanofaradami a mikrofaradami. Bez prawidłowego odczytu wartości nie można skutecznie projektować układów elektronicznych, co jest fundamentalne w inżynierii elektroniki. W kontekście praktycznym, niepoprawne wartości mogą prowadzić do awarii układów lub niesprawności urządzeń, co podkreśla znaczenie dokładności w pracy z komponentami elektronicznymi.

Pytanie 33

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Silnika
B. Regulatora
C. Chwytaka
D. Sondy
Chwytak jest kluczowym elementem w systemach manipulacyjnych, odpowiedzialnym za wykonywanie operacji manipulacyjnych. Jego zadaniem jest chwytanie, przenoszenie i wydawanie obiektów w zadanych lokalizacjach, co jest fundamentalne w automatyzacji procesów produkcyjnych i logistycznych. Chwytaki mogą mieć różne formy, takie jak chwytaki pneumatyczne, elektryczne czy hydrauliczne, co pozwala na dostosowanie ich do specyfiki manipulowanych obiektów. Przykładowo, w przemyśle motoryzacyjnym chwytaki są wykorzystywane do montażu komponentów, gdzie precyzyjne i szybkie operacje są kluczowe dla efektywności produkcji. W praktyce, dobór odpowiedniego chwytaka wymaga analizy właściwości manipulowanych przedmiotów, takich jak ich waga, kształt i materiał, co jest zgodne z dobrą praktyką projektowania systemów automatyzacji. Standardy, takie jak ISO 9283, dotyczące oceny wydajności chwytaków, są również istotne, zapewniając ich odpowiednią funkcjonalność w zastosowaniach industrialnych.

Pytanie 34

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. przekładnik napięciowy
B. transformator do zmiany liczby faz
C. transformator bezpieczeństwa
D. przekładnik prądowy
Przekładnik prądowy jest urządzeniem zaprojektowanym do pomiaru prądu w obwodach elektrycznych, które działa w stanie zbliżonym do zwarcia. Jego głównym zadaniem jest proporcjonalne przekształcanie prądu wysokiego napięcia na prąd niskiego napięcia, umożliwiając tym samym bezpieczne podłączenie przyrządów pomiarowych, takich jak amperomierze, do obwodów. W praktyce, przekładniki prądowe są szeroko stosowane w systemach energetycznych, w tym w stacjach transformatorowych oraz rozdzielniach elektrycznych. Dzięki nim można monitorować i analizować prądy robocze oraz przeciążeniowe, co jest niezbędne do zapewnienia bezpieczeństwa i niezawodności pracy instalacji elektrycznych. W kontekście norm branżowych, przekładniki prądowe muszą spełniać określone standardy, takie jak normy IEC 60044, co zapewnia ich wysoką jakość i niezawodność w trudnych warunkach pracy. Użycie przekładników prądowych w systemach automatyki przemysłowej pozwala na dokładne monitorowanie parametrów energii, co jest kluczowe dla optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacji.

Pytanie 35

Ile urządzeń sieciowych można maksymalnie podłączyć do sterownika, wykorzystując jeden dodatkowy moduł CSM 1277 o parametrach podanych w tabeli?

WłaściwościCSM 1277 switch
Typ interfejsuEthernet / Profinet
Ilość interfejsów4 x RJ45
Szybkość transmisji danych10/100 Mbit/s
Typ switchaniezarządzalny
Zasilanie24 V DC
Max. długość kabla bez wzmacniacza100 m
Straty mocy1,6 W
Stopień ochronyIP 20
A. 1 urządzenie.
B. 3 urządzenia.
C. 4 urządzenia.
D. 2 urządzenia.
Wybór niewłaściwej odpowiedzi może wynikać z błędnego zrozumienia liczby dostępnych interfejsów w module CSM 1277. Istnieje mylne przekonanie, że wszystkie 4 interfejsy są dostępne do podłączenia urządzeń, co prowadzi do wniosków, że można podłączyć np. 4 lub 2 urządzenia. To podejście ignoruje kluczowy fakt, że jeden interfejs jest zarezerwowany dla połączenia z sterownikiem. Zatem, w przypadku wyboru odpowiedzi wskazującej na większą liczbę urządzeń, np. 4, użytkownik pomija fundamentalną zasadę dotycząca alokacji zasobów w sieciach. Warto również zauważyć, że niektóre odpowiedzi, takie jak 1 urządzenie, wskazują na zbyt restrykcyjne podejście do zasobów dostępnych w module. Dobrą praktyką jest zawsze mieć na uwadze, ile interfejsów jest faktycznie dostępnych po uwzględnieniu połączeń z innymi urządzeniami. Na przykład w sytuacjach, gdzie zasoby sieciowe są ograniczone, projektanci muszą podejmować decyzje oparte na rzeczywistej dostępności portów, aby uniknąć problemów z komunikacją oraz przeładowaniem sieci. W związku z tym, kluczowe jest nie tylko zapoznanie się z parametrami technicznymi, ale także zrozumienie zasad działania sieci i ich struktury. Tylko w ten sposób można skutecznie projektować i wdrażać systemy, które będą funkcjonowały zgodnie z oczekiwaniami i wymaganiami branżowymi.

Pytanie 36

Który z wymienionych elementów zabezpiecza łożysko przed wysunięciem z obudowy urządzenia przedstawionego na rysunku?

Ilustracja do pytania
A. Podkładka dystansująca.
B. Pierścień Segera.
C. Nakrętka koronowa.
D. Zawleczka zabezpieczająca.
Zawleczka zabezpieczająca, nakrętka koronowa i podkładka dystansująca to ciekawe elementy w mechanice, ale nie są najlepsze do trzymania łożysk na miejscu. Zawleczki najbardziej blokują ruch innych części, ale nie trzymają łożysk tak efektywnie. Nakrętki koronowe też są do mocowania, ale ich zadaniem nie jest ochrona łożysk. A podkładki dystansujące to coś, co utrzymuje odległości między elementami, co jest ważne, ale nie mają one właściwości do osadzania łożysk. Często ludzie zapominają, że każdy z tych elementów ma swoje konkretne funkcje, więc mogą się pomylić w wyborze. Przy wyborze komponentów w mechanice warto zwracać uwagę na ich specyfikację i przeznaczenie, a nie tylko na pierwsze wrażenie.

Pytanie 37

Który symbol graficzny oznacza sterowanie ręczne dźwignią?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Symbol graficzny oznaczający sterowanie ręczne dźwignią, przedstawiony przy odpowiedzi A, jest powszechnie stosowany w różnych dziedzinach inżynierii, w tym w automatyce i hydraulice. Dźwignie ręczne są kluczowym elementem w wielu urządzeniach, takich jak podnośniki, maszyny budowlane oraz systemy transportowe. Ich zrozumienie jest niezbędne dla inżynierów i techników, aby skutecznie projektować i obsługiwać urządzenia. W praktyce, dźwignia umożliwia użytkownikowi manualne sterowanie procesem, co jest istotne w sytuacjach, gdzie automatyzacja jest niewystarczająca. Symbol ten jest również zgodny z normami ISO, które regulują oznakowanie urządzeń i ich funkcji. Przy odpowiedniej interpretacji tego symbolu, operatorzy są w stanie skutecznie i bezpiecznie korzystać z urządzeń, co przekłada się na zwiększenie wydajności pracy oraz minimalizację ryzyka błędów. Zrozumienie tych symboli jest kluczowe w kontekście szkoleń BHP oraz przy wprowadzaniu nowych pracowników do procedur obsługi maszyn.

Pytanie 38

Aby zmierzyć temperaturę, należy podłączyć do wejścia sterownika PLC

A. czujnik indukcyjny
B. prądnicę tachometryczną
C. czujnik rezystancyjny
D. przekaźnik elektromagnetyczny
Czujnik rezystancyjny, znany również jako czujnik RTD (Resistance Temperature Detector), jest najczęściej wykorzystywany do pomiaru temperatury w systemach automatyki. Jego działanie opiera się na zasadzie zmiany oporu elektrycznego materiału w zależności od temperatury. W praktyce, czujniki te oferują wysoką precyzję oraz stabilność pomiaru, co czyni je odpowiednimi do zastosowań w przemyśle chemicznym, petrochemicznym oraz w systemach HVAC. Dodatkowo, czujniki rezystancyjne mogą być stosowane w szerokim zakresie temperatur, co sprawia, że są uniwersalne i elastyczne w zastosowaniach. W kontekście połączenia z PLC, czujnik rezystancyjny może być podłączony bezpośrednio do wejścia analogowego sterownika, umożliwiając dokładny odczyt temperatury oraz kontrolę procesów. Warto również dodać, że dla zapewnienia dokładnych pomiarów, stosuje się standardy takie jak IEC 60751, które określają charakterystyki czujników RTD.

Pytanie 39

Do czego przeznaczone są cęgi przedstawione na rysunku?

Ilustracja do pytania
A. Skręcania przewodów elektrycznych.
B. Dokręcania śrub i nakrętek o niewielkich wymiarach.
C. Zdejmowania izolacji z przewodów.
D. Przecinania drutu stalowego.
Cęgi do zdejmowania izolacji z przewodów, przedstawione na rysunku, są specjalistycznym narzędziem zaprojektowanym do precyzyjnego usuwania izolacji z przewodów elektrycznych. Ich charakterystyczna budowa, w tym profil szczęk, pozwala na łatwe i bezpieczne usunięcie izolacji bez ryzyka uszkodzenia samego przewodu. W praktyce, stosuje się je w instalacjach elektrycznych, gdzie ważne jest zachowanie integralności przewodu przy przeprowadzaniu połączeń. Użycie tych cęgów jest zgodne z najlepszymi praktykami branżowymi, co minimalizuje ryzyko błędów i uszkodzeń. Warto zauważyć, że przed rozpoczęciem pracy z przewodami elektrycznymi zawsze należy upewnić się, że źródło zasilania jest wyłączone, co stanowi kluczowy element bezpieczeństwa. Wiedza na temat stosowania odpowiednich narzędzi, takich jak cęgi do zdejmowania izolacji, jest niezbędna dla profesjonalnych elektryków oraz osób zajmujących się instalacjami elektrycznymi.

Pytanie 40

W trakcie pracy z urządzeniem hydraulicznym pracownik poślizgnął się na plamie oleju i doznał zwichnięcia kostki. Jakie czynności należy podjąć, aby udzielić pierwszej pomocy poszkodowanemu?

A. Przyłożyć zimny okład na zwichnięty staw i unieruchomić go
B. Podać leki przeciwbólowe
C. Nastawić staw i zabandażować kostkę
D. Zabandażować kostkę i przewieźć pacjenta do lekarza
Jak masz zwichnięty staw, to schłodzenie go zimnym okładem i unieruchomienie to naprawdę istotne kroki. Zimny okład zmniejsza obrzęk i ból, co jest zgodne z zasadami pierwszej pomocy, które mówią, że lód trzeba stosować w ciągu pierwszych 48 godzin po kontuzji. Zimno powoduje, że naczynia krwionośne się kurczą, przez co przepływ krwi do uszkodzonego miejsca jest mniejszy, a to znaczy, że obrzęk się nie powiększa. Unieruchomienie stawu to też ważna sprawa, bo pomaga zapobiec dalszym uszkodzeniom i stabilizuje kontuzjowany obszar, co zmniejsza ból. W praktyce powinieneś użyć elastycznego bandaża, żeby dobrze zabezpieczyć kostkę, bo to standard w takich sytuacjach. Nie zapomnij też monitorować stanu poszkodowanego i jeśli coś jest nie tak, to skontaktować się z lekarzem. Dobra pierwsza pomoc opiera się na wytycznych organizacji zajmujących się zdrowiem, więc możesz zwiększyć szansę na szybki powrót do zdrowia.