Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 19:12
  • Data zakończenia: 19 grudnia 2025 19:15

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Symbol graficzny przekładni z pasem okrągłym, który należy umieścić na schemacie mechanicznym, przedstawiono na

Ilustracja do pytania
A. rysunku 4.
B. rysunku 1.
C. rysunku 3.
D. rysunku 2.
Rysunek 2 bardzo dobrze pokazuje symbol graficzny przekładni z pasem okrągłym, co jest super ważne, gdy myślimy o budowie maszyn i systemów mechanicznych. Taki typ przekładni używa kół pasowych połączonych elastycznym pasem. Dzięki temu napęd przenosi się efektywnie, a do tego wibracje i hałas są mniejsze. W przemyśle takie przekładnie można spotkać w różnych urządzeniach, jak taśmociągi, maszyny do pakowania czy systemy transportowe. Jak się projektuje schematy mechaniczne, to trzeba pamiętać o normach, takich jak ISO 14617. Te normy mówią, jak rysować symbole w dokumentacji technicznej. Jak używasz dobrych symboli, to wszyscy wiadomo, co i jak w systemie działa. To jest kluczowe dla efektywnej pracy zespołów inżynieryjnych i serwisowych.

Pytanie 2

Który z literowych identyfikatorów powinien być wykorzystany w poleceniu odnoszącym się do analogowych wyjść?

A. AQ
B. MW
C. AI
D. SM
Wybór identyfikatora "AQ" jako poprawnej odpowiedzi jest w pełni uzasadniony w kontekście systemów automatyki i sterowania. Skrót ten oznacza "Analog Output", co bezpośrednio odnosi się do wyjść analogowych w urządzeniach automatyki. Wyjścia analogowe są kluczowym elementem w procesach kontrolnych, ponieważ umożliwiają przekazywanie sygnałów w formie ciągłej, co jest istotne w przypadku aplikacji wymagających precyzyjnej regulacji, takich jak sterowanie silnikami czy regulacja temperatury. Zrozumienie roli identyfikatorów literowych, takich jak "AQ", jest fundamentalne dla projektantów systemów automatyki, gdyż pozwala na poprawne rozróżnienie między różnymi typami sygnałów. W praktyce identyfikatory te są niezbędne do programowania i konfigurowania urządzeń, co ma kluczowe znaczenie dla efektywności i niezawodności systemów. Zgodność z normami branżowymi, takimi jak IEC 61131-3, również podkreśla znaczenie stosowania odpowiednich identyfikatorów dla różnych typów I/O, co zapewnia spójność oraz prawidłowe działanie systemów w automatyce przemysłowej.

Pytanie 3

Jakie elementy powinny być zacienione na rysunku technicznym przekroju komponentu?

A. Tylko o kształtach obrotowych.
B. Wyrwania.
C. Żebra.
D. O kształtach oczywistych.
Wybór "Wyrwania" jako poprawnej odpowiedzi jest zgodny z zasadami rysunku technicznego oraz praktycznymi aspektami projektowania detali. W rysunku technicznym przekroju detalu zakreskowane elementy są kluczowe dla zrozumienia struktury i funkcji komponentu. Wyrwania, które są usuniętymi fragmentami, są ważne, ponieważ umożliwiają przedstawienie wewnętrznych elementów, które w przeciwnym razie byłyby niewidoczne. Przykładem mogą być otwory lub wcięcia, które są istotne dla montażu lub działania detalu. W praktyce, projektanci muszą przestrzegać norm, takich jak ISO 128 oraz ISO 1101, które określają zasady zakreskowania oraz prezentacji detali na rysunkach technicznych. Dzięki tym standardom, komunikacja pomiędzy inżynierami, producentami i wykonawcami jest bardziej klarowna. Prawidłowe zrozumienie, które elementy należy zakreskować, jest niezbędne w procesie projektowania, aby zapewnić, że wszystkie kluczowe aspekty konstrukcji są jasno przedstawione i zrozumiane przez wszystkich zainteresowanych.

Pytanie 4

Który komponent powinno się wykorzystać do galwanicznego oddzielenia wyjścia z PLC od elementów, które są nim sterowane?

A. Dławik
B. Kondensator
C. Transoptor
D. Transformator
Transoptor to element elektroniczny zaprojektowany w celu zapewnienia galwanicznej separacji sygnałów, co jest kluczowe w zastosowaniach automatyki i sterowania. Dzięki zastosowaniu transoptora, sygnały wejściowe są izolowane od sygnałów wyjściowych, co chroni wrażliwe komponenty sterujące przed niepożądanym wpływem zakłóceń lub awarii w obwodach wykonawczych. Przykładem zastosowania transoptora może być sytuacja, gdy sygnał z czujnika (np. fotokomórka) musi zostać przekazany do PLC, ale z uwagi na różnice poziomów napięcia lub ryzyko zakłóceń, konieczne jest zastosowanie izolacji. W takich przypadkach transoptor działa jako mostek, który pozwala na bezpieczne przekazywanie sygnału bez ryzyka uszkodzenia urządzenia. Ponadto, transoptory są wykorzystywane w systemach komunikacyjnych, gdzie wymagane jest zabezpieczenie przed zakłóceniami przesyłanymi przez medium transmisyjne. Przykładem dobrych praktyk w branży jest stosowanie transoptorów w kontrolerach, gdzie ich zastosowanie zwiększa niezawodność i bezpieczeństwo całego systemu.

Pytanie 5

Jaki symbol literowy jest używany w programie kontrolnym dla PLC, który spełnia normy IEC 61131, aby adresować jego fizyczne wyjścia?

A. R
B. S
C. I
D. Q
Odpowiedź "Q" jest poprawna, ponieważ w kontekście programowania sterowników PLC zgodnie z normą IEC 61131-3, litera "Q" jest bezpośrednio przypisana do fizycznych wyjść systemu. Każde wyjście w programie sterującym jest identyfikowane przez ten symbol, co umożliwia jednoznaczne rozróżnienie wyjść od wejść, które są oznaczane literą "I". Przykładowo, jeżeli programujesz układ, który steruje silnikiem elektrycznym, to odpowiednie wyjście do załączenia silnika zostanie oznaczone właśnie literą "Q". Taka konwencja jest nie tylko zgodna z normą, ale również ułatwia czytelność i utrzymanie kodu, co jest kluczowe w profesjonalnych zastosowaniach. Ponadto, posługiwanie się ustalonymi standardami, takimi jak IEC 61131-3, zwiększa interoperacyjność różnych urządzeń i ułatwia współpracę między inżynierami oraz poprawia efektywność projektowania systemów automatyki przemysłowej.

Pytanie 6

W jakiej postaci należy przedstawiać w schematach układów sterowania styki przekaźników i styczników?

A. Przewodzenia
B. Nieprzewodzenia
C. Niewzbudzonym
D. Wzbudzonym
Styki styczników i przekaźników należy przedstawiać w stanie niewzbudzonym, co jest zgodne z praktykami stosowanymi w projektowaniu schematów układów sterowania. Stan niewzbudzony odzwierciedla rzeczywistą sytuację, w której urządzenia te nie są aktywowane przez sygnał sterujący. Taki sposób reprezentacji ułatwia zrozumienie i analizę działania systemu, ponieważ jasno wskazuje na domyślne warunki pracy. W projektach zgodnych z normą IEC 61082, która dotyczy dokumentacji systemów automatyki, podkreśla się znaczenie reprezentacji stanów urządzeń w sposób, który odzwierciedla ich stan bez aktywacji. Niewzbudzone styki są także kluczowe w kontekście bezpieczeństwa, ponieważ nieprawidłowe przedstawienie ich w stanie przewodzenia mogłoby sugerować, że układ działa poprawnie, gdy w rzeczywistości może dochodzić do awarii. Przykładem zastosowania tej zasady może być układ sterujący silnikiem, gdzie styki muszą być przedstawione jako niewzbudzone, aby uniknąć ryzyka niekontrolowanego uruchomienia maszyny w wyniku błędnej interpretacji schematu.

Pytanie 7

Dwuwejściowa bramka NOR, w której wejścia zostały połączone, jest tożsame z bramką

A. OR
B. NAND
C. AND
D. NOT
Wybór odpowiedzi, która nie jest zgodna z rzeczywistością działania bramki NOR, może wynikać z błędnych założeń dotyczących logiki bramek. Odpowiedzi takie jak OR, AND, i NAND mają własne unikalne właściwości, które różnią się od zachowania bramki NOR. Bramka OR na przykład zwraca wynik prawdziwy, gdy przynajmniej jedno z wejść jest prawdziwe, co jest sprzeczne z definicją bramki NOR. W kontekście bram AND, te działają w odwrotny sposób, zwracając wynik prawdziwy tylko wtedy, gdy wszystkie wejścia są prawdziwe. Odpowiedź NAND, będąca negacją AND, również nie jest równoważna bramce NOR. Kluczowym błędem myślowym jest mylenie negacji z operacjami logicznymi. Aby zrozumieć różnice, warto przyjrzeć się tabelom prawdy dla każdej z bramek, co pozwoli dostrzec, że bramka NOR jest jedyną, która przy połączeniu wejść daje wynik odpowiadający funkcji NOT. W praktyce, takie pomyłki mogą prowadzić do niewłaściwego projektowania układów cyfrowych, co może skutkować błędami logicznymi w systemach. Zrozumienie podstawowych właściwości bramek logicznych i ich zastosowań jest kluczowe w inżynierii elektronicznej i projektowaniu układów cyfrowych.

Pytanie 8

Którego symbolu należy użyć rysując schemat elektroniczny z tranzystorem unipolarnym MOSFET-P?

Ilustracja do pytania
A. Symbolu 3.
B. Symbolu 2.
C. Symbolu 1.
D. Symbolu 4.
Wybrałeś symbol 2 jako oznaczenie tranzystora MOSFET-P i to jest dobrze, bo ten symbol ma strzałkę skierowaną do wewnątrz. To pokazuje, że w tranzystorach typu P nośnikiem ładunku są dziury, które poruszają się od źródła do drenu. Tranzystory MOSFET-P są często wykorzystywane w różnych układach analogowych i cyfrowych, na przykład jako wzmacniacze albo przełączniki. Można je spotkać w zasilaczach impulsowych czy konwerterach DC-DC. No i w schematach elektronicznych, takich jak ten symbol 2, są zgodne z normami, co pomaga w projektowaniu, bo wszystko jest jasne i czytelne. Dobrze jest używać poprawnych symboli, to ułatwia komunikację między inżynierami oraz czytelność schematów.

Pytanie 9

Jaki symbol literowy zgodny z normą IEC 61131 jest używany w oprogramowaniu sterującym dla PLC do wskazywania jego fizycznych dyskretnych wejść?

A. I
B. Q
C. S
D. R
Odpowiedź "I" jest poprawna, ponieważ zgodnie z normą IEC 61131, symbol "I" reprezentuje fizyczne wejścia dyskretne w programach sterujących PLC. Norma ta definiuje standardy dla programowalnych kontrolerów logicznych, a użycie odpowiednich symboli jest kluczowe dla zrozumienia i utrzymania systemów automatyki. Przykładowo, w praktyce inżynieryjnej, aby oznaczyć sensory, które generują sygnały cyfrowe, takie jak przyciski czy przełączniki, wykorzystuje się symbol "I". To pozwala na skuteczne adresowanie tych wejść w programie, co ma fundamentalne znaczenie dla poprawnego działania systemu. Używanie standardów IEC 61131 zapewnia spójność w projektowaniu i dokumentacji systemów automatyki, co jest niezbędne do prawidłowej integracji różnych urządzeń i komponentów w złożonych instalacjach przemysłowych. Przykładem może być system automatyzacji w fabryce, gdzie różne sensory są podłączone do PLC, a ich identyfikacja poprzez symbol "I" umożliwia łatwe śledzenie i diagnostykę w przypadku awarii.

Pytanie 10

Jakie oznaczenie literowe dotyczy manipulatora wyposażonego w dwa obrotowe napędy oraz jeden liniowy?

A. RRT
B. RTT
C. TTT
D. RRR
Wybór innego oznaczenia jest wynikiem nieporozumienia dotyczącego klasyfikacji manipulatorów. Oznaczenie 'TTT' wskazuje na manipulator z trzema napędami liniowymi, co nie odpowiada specyfice opisanego w pytaniu układu, który wymaga dwóch napędów obrotowych i jednego liniowego. Takie podejście ogranicza elastyczność w zastosowaniach, gdzie wymagany jest ruch w różnych płaszczyznach. Natomiast 'RTT' sugeruje, że manipulator składa się z jednego napędu obrotowego i dwóch liniowych, co również nie spełnia kryteriów opisanych w pytaniu. W sytuacjach, gdzie manipulacja wymaga precyzyjnych ruchów w kątowych płaszczyznach, napędy obrotowe są niezastąpione, a zaniedbanie ich zastosowania może prowadzić do niewłaściwej konfiguracji robota. Wreszcie, wybór 'RRR' oznacza manipulator z trzema napędami obrotowymi, co również nie odpowiada podanym wymaganiom. W kontekście projektowania systemów robotycznych, ważne jest zrozumienie, jakie kombinacje napędów są potrzebne do osiągnięcia pożądanej funkcjonalności, co często wymaga zastosowania analizy kinematycznej i dynamiki ruchu. Kluczowe jest, aby stosować odpowiednie klasyfikacje manipulatorów, aby uniknąć błędów w projektowaniu, które mogą prowadzić do nieefektywnych rozwiązań w aplikacjach przemysłowych.

Pytanie 11

Z jakiego układu zasilania powinna być zasilana maszyna mechatroniczna, skoro na schemacie sieć zasilającą oznaczono symbolem 400 V ~ 3/N/PE?

A. TI
B. TN – C
C. TT
D. TN – S
Odpowiedź TN-S jest prawidłowa, ponieważ oznaczenie 400 V ~ 3/N/PE wskazuje na sieć trójfazową z przewodem neutralnym oraz przewodem ochronnym. W układzie TN-S przewód neutralny (N) oraz przewód ochronny (PE) są odseparowane, co zwiększa bezpieczeństwo użytkowania urządzeń mechatronicznych. Stosowanie sieci TN-S jest zgodne z normami IEC 60364, które zalecają, by w przypadku zasilania systemów wymagających wysokiego poziomu bezpieczeństwa elektrycznego, stosować właśnie ten typ układu. Przykładem zastosowania układu TN-S mogą być środowiska przemysłowe, gdzie urządzenia mechatroniczne zasilane są z sieci o wysokiej mocy, minimalizując ryzyko porażenia prądem. Dodatkowo, TN-S pozwala na lepszą ochronę przed zakłóceniami elektromagnetycznymi, co jest kluczowe w przypadku wrażliwych urządzeń elektronicznych. Z tego względu układ TN-S jest preferowany w nowoczesnych instalacjach elektrycznych.

Pytanie 12

Jakim rodzajem linii oznacza się sygnały sterujące wewnętrzne na schematach pneumatycznych?

A. Kreskową
B. Ciągłą
C. Dwupunktową
D. Punktową
Kreskowa linia na schematach pneumatycznych jest kluczowym symbolem, który wskazuje na wewnętrzne sygnały sterujące w urządzeniach pneumatycznych. Te sygnały są odpowiedzialne za komunikację pomiędzy różnymi komponentami systemu, co pozwala na sprawne i efektywne zarządzanie procesami pneumatycznymi. Zgodnie z normami branżowymi, takimi jak ISO 1219, które definiują symbole i oznaczenia w technice pneumatycznej, kreskowa linia jest uniwersalnie uznawana za standardowy sposób reprezentacji sygnałów sterujących, co ułatwia zrozumienie schematów przez inżynierów i techników. W praktyce oznaczenia te pozwalają na szybsze diagnozowanie ewentualnych problemów w systemie, a także na łatwiejsze wprowadzanie modyfikacji w projektach. Warto również zauważyć, że umiejętność prawidłowego odczytywania schematów z zastosowaniem odpowiednich oznaczeń jest niezbędna w pracy związanej z automatyką i pneumatyka, co czyni tę wiedzę nie tylko teoretyczną, ale i praktyczną.

Pytanie 13

Aby na rysunku oznaczyć promień łuku, należy zastosować literę

A. Φ
B. D
C. X
D. R
Odpowiedź "R" jest poprawna, ponieważ w rysunku technicznym promień łuku oznacza się literą "R". Termin ten wywodzi się od angielskiego słowa "radius", które z kolei oznacza promień. Użycie symbolu "R" jest standardem w praktyce inżynieryjnej oraz architektonicznej, zgodnym z normami ISO oraz innymi wytycznymi branżowymi. W kontekście rysunku technicznego, precyzyjne oznaczenie promienia jest kluczowe dla zachowania właściwych proporcji oraz parametrów konstrukcyjnych. Na przykład, w projektowaniu elementów mechanicznych, takich jak wały, zębatki czy różnego rodzaju połączenia, właściwe oznaczenie promieni łuków ma kluczowe znaczenie dla prawidłowego dopasowania komponentów. Dobre praktyki w rysunku technicznym zalecają stosowanie jasnych i zrozumiałych symboli, co pozwala uniknąć błędów w interpretacji rysunków przez różnych wykonawców. Warto również dodać, że w przypadku bardziej złożonych projektów, w których występują różne promienie, stosowanie symbolu "R" jako oznaczenia jest niezwykle pomocne w identyfikacji i weryfikacji tych parametrów na etapie wytwarzania.

Pytanie 14

Jakimi literami oznaczane są analogowe wyjścia w sterownikach PLC?

A. AQ
B. Q
C. I
D. AI
Odpowiedź AQ jest prawidłowa, ponieważ symbol ten jest szeroko stosowany w branży automatyki przemysłowej do oznaczania wyjść analogowych w sterownikach PLC. Wyjścia analogowe są kluczowe w kontekście przetwarzania sygnałów, które mogą przyjmować różne wartości w określonym zakresie, co pozwala na precyzyjne sterowanie procesami technologicznymi. Na przykład, w systemach sterowania temperaturą, wyjścia analogowe umożliwiają regulację wartości na podstawie pomiarów z czujników, co jest niezbędne w wielu aplikacjach przemysłowych. Warto zaznaczyć, że standard ISO 61131-3 definiuje klasyfikację sygnałów w systemach PLC, a AQ jako oznaczenie wyjść analogowych jest zgodne z tą normą. Dobrą praktyką jest również stosowanie jednolitych konwencji w projektowaniu schematów elektrycznych, co ułatwia ich interpretację i współpracę między różnymi specjalistami.

Pytanie 15

W systemie hydraulicznym maksymalne ciśnienie robocze płynu wynosi 20 MPa. Jaki powinien być minimalny zakres pomiarowy manometru zamontowanego w tym systemie?

A. 0÷250 barów
B. 0÷25 barów
C. 0÷10 barów
D. 0÷160 barów
Wybór zakresu pomiarowego 0÷250 barów dla manometru zainstalowanego w układzie hydraulicznym, w którym maksymalne ciśnienie robocze wynosi 20 MPa, jest poprawny z kilku powodów. Po pierwsze, manometr powinien mieć zakres pomiarowy wyższy niż maksymalne ciśnienie, aby zapewnić dokładność i bezpieczeństwo pomiaru. Wybierając manometr o zakresie 0÷250 barów, uzyskujemy rezerwę bezpieczeństwa wynoszącą 5 MPa, co jest zgodne z praktykami branżowymi, gdzie standardem jest posiadanie co najmniej 25% zapasu nad maksymalne ciśnienie robocze. Takie podejście minimalizuje ryzyko przekroczenia zakresu pomiarowego i potencjalnych uszkodzeń urządzenia. Przykładowo, w przemyśle budowlanym i motoryzacyjnym, gdzie ciśnienia robocze mogą się szybko zmieniać, dobór odpowiedniego manometru jest kluczowy dla bezpieczeństwa i efektywności procesów. Ponadto, manometry z wyższymi zakresami pomiarowymi są bardziej odporne na uszkodzenia mechaniczne oraz lepiej radzą sobie z wysokimi impulsami ciśnienia, co jest istotne w dynamicznych układach hydraulicznych.

Pytanie 16

Aby przedstawić na schemacie rezonator kwarcowy należy użyć symbolu graficznego o numerze

Ilustracja do pytania
A. 2.
B. 3.
C. 1.
D. 4.
Symbol rezonatora kwarcowego, który wybrałeś, czyli ten z numerem 1, jest naprawdę popularny w schematach elektronicznych. Dzięki temu inżynierowie łatwiej rozumieją, co dany element robi w układzie. Te dwa równoległe pasy z liniami po boku to coś, co widzi się często, więc nie ma większych szans na błąd w odczycie. Rezonatory kwarcowe mają wiele zastosowań, jak generatory sygnałów czy układy zegarowe. Ich precyzyjność jest bardzo ważna, bo zapewniają stabilne częstotliwości w telekomunikacji, audio i komputerach. Używanie właściwego symbolu nie tylko pomaga zachować porządek, ale i sprawia, że dokumentacja techniczna staje się bardziej czytelna, a to jest kluczowe w projektowaniu elektroniki.

Pytanie 17

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Cienką ciągłą linią zygzakową.
B. Grubą linią punktową.
C. Grubą kreską.
D. Cienką z długą kreską oraz kropką.
Cienka ciągła zygzakowa linia jest standardem stosowanym w rysunku technicznym do oznaczania urwań i przerwań przedmiotów. W praktyce inżynieryjnej, użycie tej linii pozwala na jasne i jednoznaczne przedstawienie elementów, które nie są w pełni widoczne, co jest kluczowe w dokumentacji technicznej. Zygzakowa linia wskazuje, że dany fragment obiektu nie jest przedstawiony w całości, co może mieć znaczenie podczas produkcji czy montażu. Warto pamiętać, że zgodnie z normami ISO, stosowanie odpowiednich linii ma kluczowe znaczenie w komunikacji wizualnej w inżynierii. Umożliwia to projektantom i inżynierom lepsze zrozumienie zamysłu konstrukcyjnego oraz uniknięcie błędów w realizacji projektu. To zastosowanie podkreśla rolę standardów w procesie projektowania, gdzie nawet drobne szczegóły, jak typ linii, mogą mieć duże znaczenie dla finalnej jakości i funkcjonalności produktu.

Pytanie 18

Jaki symbol literowy, zgodny z normą IEC 61131, wykorzystywany jest w oprogramowaniu sterującym dla PLC do identyfikacji jego fizycznych wejść dyskretnych?

A. |
B. R
C. S
D. Q
Symbol literowy "|" jest kluczowym elementem w standardzie IEC 61131, który definiuje sposób programowania sterowników PLC. W kontekście adresowania fizycznych wejść dyskretnych, ten symbol pełni rolę prefiksu przed numerem wejścia, co umożliwia jednoznaczne wskazanie, które z cyfrowych wejść jest używane w danym programie. Przykładowo, zapis "|X0" odnosi się do pierwszego wejścia dyskretnego, co jest zgodne z najlepszymi praktykami w branży automatyki. Taki system adresowania ułatwia programistom pracę, ponieważ pozwala na łatwe rozpoznanie, które urządzenie jest połączone z danym wejściem. Ponadto, posługiwanie się tym standardem sprzyja lepszej organizacji kodu oraz jego późniejszej konserwacji, co jest szczególnie istotne w długoterminowych projektach automatyzacji. Zrozumienie i umiejętność stosowania tego symbolu jest podstawą efektywnego programowania w kontekście automatyki przemysłowej.

Pytanie 19

W schemacie układu hydraulicznego przyłącze rury zasilającej rozdzielacza oznaczane jest literą

A. B
B. P
C. A
D. T
Niepoprawne odpowiedzi, jak B, T czy A, wskazują na jakieś nieporozumienia w symbolice hydraulicznej. Symbol B zazwyczaj oznacza odpływ, więc można pomyśleć, że dotyczy przyłącza zasilającego, ale to nie to. Odpływ odprowadza medium robocze, a nie je dostarcza. Symbol T natomiast to powrót oleju do zbiornika, co też nie jest związane z przyłączem zasilającym. Używanie tych symboli w niewłaściwy sposób może powodować błędy w projektowaniu i używaniu układów hydraulicznych, co w praktyce może prowadzić do problemów z maszynami. Co do symboli A i B, to one oznaczają wyjścia robocze, więc też nie mają nic wspólnego z zasilaniem. Rozumienie tych różnic jest naprawdę kluczowe, żeby unikać typowych błędów w analizie schematów hydraulicznych. Jeśli nie ogarniasz tej symboliki, to może być nieefektywna instalacja i wyższe koszty. Dlatego ważne, by każdy, kto z tym pracuje, miał dobry przegląd oznaczeń i ich zastosowania.

Pytanie 20

Do zobrazowania relacji między elementami i zespołami projektowanej maszyny wykorzystuje się rysunek

A. częściowy
B. złożeniowy
C. rzutowy
D. zespołowy
Rysunek złożeniowy jest kluczowym elementem dokumentacji technicznej projektowanej maszyny, ponieważ przedstawia wszystkie komponenty oraz ich wzajemne usytuowanie w jednym, kompleksowym widoku. Dzięki temu inżynierowie i technicy mogą łatwo zrozumieć, jak poszczególne elementy współpracują ze sobą, co jest niezwykle istotne podczas procesu montażu oraz serwisowania maszyny. Na etapie projektowania, rysunki złożeniowe pozwalają na szybkie identyfikowanie potencjalnych problemów związanych z kolizjami elementów oraz optymalizację przestrzenną. Zgodnie z normami ISO dotyczącymi rysunku technicznego, rysunki złożeniowe powinny być jasne, czytelne i zawierać wszystkie niezbędne informacje, takie jak numery katalogowe części, materiały i wymiary. Przykładem zastosowania rysunku złożeniowego może być projektowanie skomplikowanych maszyn, takich jak obrabiarki czy urządzenia automatyki przemysłowej, gdzie zrozumienie interakcji pomiędzy komponentami jest kluczowe dla efektywności i bezpieczeństwa całego systemu.

Pytanie 21

Jaką linią powinno się przedstawiać niewidoczne kontury oraz krawędzie obiektów?

A. Cienką ciągłą
B. Grubą przerywaną
C. Cienką przerywaną
D. Grubą ciągłą
Cienka przerywana linia to naprawdę ważny element w rysunku technicznym. Zwłaszcza jak chodzi o pokazywanie krawędzi, których nie widać, czy zarysów różnych przedmiotów. W inżynierii i architekturze to jest wręcz standard, bo te linie są subtelne i nie psują odbioru najważniejszych detali rysunku. Dzięki cienkiej przerywanej linii łatwiej zauważyć elementy, które są zasłonięte przez inne części modelu. To jest kluczowe, zwłaszcza w projektach budowlanych, gdzie takie linie mogą wskazywać ukryte okna czy drzwi. Poza tym, trzymanie się tych norm ułatwia komunikację między projektantami a wykonawcami, minimalizując ryzyko nieporozumień. Takie podejście, zgodne z normami ISO 128 i ANSI Y14.2, gwarantuje, że nasze dokumentacje są na odpowiednim poziomie i dobrze zrozumiane przez wszystkich.

Pytanie 22

Podczas wymiany uszkodzonego kondensatora, można użyć zamiennika o

A. niższej wartości napięcia nominalnego
B. wyższej wartości napięcia nominalnego
C. niższej wartości pojemności
D. wyższej wartości pojemności
Wybór zamiennika kondensatora o mniejszej wartości napięcia nominalnego jest poważnym błędem, który może prowadzić do katastrofalnych skutków w działaniu układu elektronicznego. Wyższe napięcia mogą szybko zniszczyć kondensator o niższej wartości, co skutkuje nie tylko awarią samego kondensatora, ale także uszkodzeniem innych komponentów w układzie. Użytkownicy często mylą pojęcia związane z napięciem i pojemnością; mogą myśleć, że kondensator o niższej wartości napięcia będzie działał poprawnie, jeśli nie osiągnie on teoretycznie maksymalnego napięcia roboczego, co jest błędne. Oprócz tego, wybór kondensatora o mniejszej wartości pojemności, w odpowiedzi na pytanie, może prowadzić do nieprawidłowego działania obwodu, ponieważ zmienia to jego charakterystykę czasową i pojemnościową. W praktyce, błędne podejście do doboru kondensatorów często wynika z braku zrozumienia podstawowych zasad działania tych elementów. Konsekwencje mogą być poważne, od zwiększonej awaryjności układów aż po całkowitą utratę funkcjonalności. Standardy branżowe, takie jak IEC 61076, jasno określają, jakie wartości powinny być stosowane w różnych aplikacjach, a ich ignorowanie prowadzi do nieprzewidywalnych rezultatów i potencjalnych zagrożeń.

Pytanie 23

Urządzenie przedstawione na rysunku, w projektowanym systemie mechatronicznym, będzie mogło pełnić funkcję

Ilustracja do pytania
A. regulatora przepływu.
B. regulatora PID.
C. analizatora stanów logicznych.
D. dotykowego panelu operatorskiego.
Urządzenie przedstawione na zdjęciu to dotykowy panel operatorski, co można rozpoznać po charakterystycznym interfejsie graficznym oraz oznaczeniu "TOUCH". Panele te pełnią kluczową rolę w systemach mechatronicznych, umożliwiając operatorom intuicyjną interakcję z maszynami i procesami. Dzięki technologii dotykowej operatorzy mogą szybko i skutecznie wprowadzać dane oraz monitorować stan pracy urządzeń. Tego typu rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie wymagane jest efektywne zarządzanie złożonymi systemami. Przykładem zastosowania paneli dotykowych może być ich wykorzystanie w liniach produkcyjnych, gdzie umożliwiają one zarządzanie parametrami maszyn, ustawienie cykli pracy oraz nadzorowanie procesów w czasie rzeczywistym. W branży mechatronicznej stosowanie paneli operatorskich zgodnych z normą IEC 61131-3, dotyczącą programowania systemów automatyki, zapewnia wysoką interoperacyjność i efektywność w zarządzaniu systemami. Warto również podkreślić, że nowoczesne panele operatorskie często integrują funkcjonalności analityczne, co pozwala na lepsze śledzenie wydajności oraz diagnostykę awarii, co dodatkowo podnosi jakość pracy całego systemu.

Pytanie 24

Jakim symbolem literowym jest oznaczane na schemacie układu hydraulicznego przyłącze przewodu ciśnieniowego?

A. Symbolem T
B. Symbolem A
C. Symbolem P
D. Symbolem B
Odpowiedź "Symbolem P" jest poprawna, ponieważ w schematach układów hydraulicznych standardowe oznaczenia literowe mają kluczowe znaczenie dla prawidłowego montażu i serwisowania. Symbol P oznacza przyłącze przewodu tłocznego, co jest istotne, ponieważ to właśnie przez ten przewód płyn hydrauliczny jest dostarczany do systemu pod wysokim ciśnieniem. Oznaczenie to wywodzi się od angielskiego słowa "Pressure", co podkreśla jego związek z ciśnieniem. W praktyce, zrozumienie i poprawne odczytywanie tych symboli jest niezbędne, aby uniknąć błędów, które mogą prowadzić do awarii systemu hydraulicznego. Na przykład, nieprawidłowe podłączenie przewodów tłocznych może skutkować wyciekiem płynów, co z kolei wpłynie na efektywność układu oraz może prowadzić do kosztownych napraw. Dlatego znajomość standardów i dobrych praktyk dotyczących oznaczeń hydraulicznych jest kluczowa dla inżynierów i techników w tej dziedzinie, a symbol P stanowi fundament w rozumieniu schematów hydraulicznych.

Pytanie 25

Który z wymienionych kwalifikatorów działań, wykorzystywanych w metodzie SFC, może być pominięty w opisie bloku akcji, nie wpływając na sposób realizacji przypisanego w nim działania?

A. D
B. S
C. N
D. R
Wybierając inne kwalifikatory, można napotkać na kilka kluczowych nieporozumień dotyczących ich funkcji w metodzie SFC. Kwalifikator "D" oznacza działanie, które jest realizowane w danej chwili, co sugeruje konieczność podania dodatkowych warunków dla jego wykonania. Pominięcie tego kwalifikatora prowadziłoby do niejasności co do tego, kiedy dokładnie działanie powinno być zainicjowane. Kwalifikator "R" sygnalizuje, że działanie powinno być powtarzane, co jest kluczowe w kontekście zautomatyzowanych procesów, w których czas cyklu i sekwencje powtórzeń mają fundamentalne znaczenie dla efektywności. W przypadku jego pominięcia, efektor może nie działać zgodnie z zamierzeniem, co prowadzi do nieefektywności w operacjach. Kwalifikator "S" z kolei odnosi się do stanu, w którym powinno nastąpić określone działanie. Pominięcie go w opisie bloku akcji również może spowodować, że proces nie będzie realizowany zgodnie z zamierzeniem, co może mieć negatywne skutki w kontekście bezpieczeństwa i wydajności procesów. W praktyce, zrozumienie roli wszystkich kwalifikatorów oraz ich wpływu na wykonanie danego działania jest kluczowe dla właściwego modelowania procesów w automatyce przemysłowej. Typowe błędy myślowe związane z tym zagadnieniem to ignorowanie znaczenia poszczególnych kwalifikatorów, co prowadzi do uproszczeń i nieprawidłowych wniosków na temat działania systemu.

Pytanie 26

Parametry takie jak powierzchnia membrany, temperatura operacyjna, typ napędu, maksymalne ciśnienie, skok oraz precyzja położenia są charakterystyczne dla

A. smarownicy pneumatycznej
B. siłownika hydraulicznego
C. siłownika pneumatycznego
D. silnika hydraulicznego
Odpowiedzi takie jak smarownica pneumatyczna, silnik hydrauliczny i siłownik hydrauliczny zawierają szereg nieporozumień, które wynikają z mylenia różnych technologii napędowych. Smarownica pneumatyczna jest urządzeniem stosowanym do wprowadzania smarów do systemów pneumatycznych, a nie do generowania ruchu, co czyni ją nieodpowiednią w kontekście parametru skoku czy dokładności położenia. Silnik hydrauliczny, chociaż wykorzystuje ciśnienie płynów do generowania ruchu, funkcjonuje na zupełnie innych zasadach niż siłowniki pneumatyczne. Jego budowa i charakterystyka pracy opierają się na płynach hydraulicznych, co oznacza, że maksymalne ciśnienie i temperatura pracy są zupełnie inne. Siłowniki hydrauliczne, podobnie jak silniki hydrauliczne, także operują na zasadzie wykorzystania cieczy pod ciśnieniem, co diametralnie różni się od zasad działania siłowników pneumatycznych, gdzie główną rolę odgrywa sprężone powietrze. Wybór technologii powinien być uzasadniony specyfiką aplikacji, ponieważ zarówno siłowniki hydrauliczne, jak i pneumatyczne mają swoje unikalne zalety i ograniczenia. Zrozumienie tych różnic jest kluczowe dla właściwego doboru komponentów w systemach automatyki przemysłowej.

Pytanie 27

Na podstawie wymiarów łożysk podanych w tabeli dobierz łożysko kulkowe do silnika indukcyjnego o średnicy wału 10 mm i średnicy otworu w tarczy łożyskowej 30 mm.

Symbol łożyskaWymiary łożysk
śr. wewn. D
[mm]
śr. zewn. D
[mm]
wys. B, T, H
[mm]
600010268
620010309
6190112246
600112288
A. 6200
B. 61901
C. 6000
D. 6001
Odpowiedź 6200 jest na pewno dobra, bo to łożysko kulkowe ma wewnętrzną średnicę 10 mm i zewnętrzną średnicę 30 mm. To idealnie odpowiada wymaganiom, które były w pytaniu. W praktyce dobór odpowiedniego łożyska do silnika indukcyjnego to kluczowa sprawa. Dobrze dobrane łożysko pozwala na lepszą pracę silnika i wydłuża jego żywotność. Jak wiadomo, łożyska są mega ważne w maszynach, bo umożliwiają swobodne obracanie się części ruchomych, co zmniejsza tarcie. Łożysko 6200 ma naprawdę fajną konstrukcję, co zapewnia mu dużą nośność i odporność na zmęczenie, a to jest ważne, kiedy mamy do czynienia z dużymi prędkościami obrotowymi. Często znajdziesz je w różnych zakładach przemysłowych i urządzeniach elektrycznych, więc to pokazuje, jak wszechstronne to łożysko. Jak wybierasz łożysko, nie zapomnij zwrócić uwagi na oznaczenia i normy, które powinny pasować do standardów ISO. W przypadku 6200, to łożysko jest zgodne z tymi normami, co czyni je fajnym wyborem w różnych zastosowaniach.

Pytanie 28

Którego symbolu graficznego należy użyć w celu oznaczenia na schemacie pneumatycznym sposobu sterowania zaworem za pomocą dźwigni?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Symbol graficzny przedstawiony w odpowiedzi B jasno ilustruje sposób sterowania zaworem za pomocą dźwigni, co jest istotnym elementem w projektowaniu schematów pneumatycznych. Dźwignia, stosowana do sterowania zaworami, oferuje większą kontrolę nad procesem, co jest kluczowe w automatyzacji. W praktyce dźwignie są często stosowane w systemach, gdzie operatorzy muszą ręcznie modyfikować ustawienia w odpowiedzi na zmieniające się warunki operacyjne. W standardach ISO dotyczącym symboliki pneumatycznej, kluczowe jest, aby symbole były intuicyjne i jednoznaczne, co ruch dźwigni w odpowiedzi B odzwierciedla. Zastosowanie tego typu symboli w projektach zapewnia nie tylko zgodność z normami, ale także ułatwia komunikację między inżynierami a technikami, co jest niezbędne na etapie realizacji projektów. Prawidłowe stosowanie symboli graficznych w schematach zapewnia również bezpieczeństwo operacyjne, ponieważ pozwala na szybką identyfikację elementów i ich funkcji w systemie.

Pytanie 29

Który z rysunków przedstawia prawidłowo narysowany i opisany symbol graficzny przełącznika z zestykiem NC, przełączanym przez przekręcenie?

Ilustracja do pytania
A. Rysunek 2.
B. Rysunek 4.
C. Rysunek 3.
D. Rysunek 1.
Rysunek 2 przedstawia prawidłowy symbol graficzny przełącznika z zestykiem NC (Normally Closed), co oznacza, że w stanie spoczynkowym styk jest zamknięty, a prąd może przepływać. Przełącznik taki jest często wykorzystywany w systemach alarmowych, gdzie jego normalne zamknięcie oznacza, że obwód jest aktywny. Po przekręceniu przełącznika, styk otwiera się, co przerywa obwód i wywołuje alarm. W praktyce, przełączniki NC są kluczowe w sytuacjach, gdzie bezpieczeństwo jest na pierwszym miejscu, ponieważ ich otwarcie sygnalizuje niepożądane zdarzenie. Zgodnie z normami IEC 60617, symbole graficzne powinny być zgodne z ustalonymi standardami, co ułatwia ich zrozumienie i implementację w projektach elektrycznych. Prawidłowe oznaczanie symboli przełączników jest istotne dla zrozumienia schematów elektrycznych i ich późniejszej realizacji w instalacjach.

Pytanie 30

Zmierzyliśmy rezystancję pomiędzy czterema końcówkami 1, 2, 3, 4 uzwojeń transformatora napięcia 230 V/24 V i otrzymaliśmy następujące wartości: R12 = ∞, R13 = 0,05 Ω, R14 = ∞, R23 = ∞, R24 = 0,85 Ω, R34 = ∞. Które końcówki powinny być użyte do podłączenia napięcia 230 V?

A. 1, 2
B. 1, 3
C. 2, 4
D. 2, 3
Prawidłowa odpowiedź to 1, 2, ponieważ rezystancje pomiędzy końcówkami 2 i 4 oraz 1 i 3 wskazują, że te kombinacje stanowią uzwojenia, które można zasilać napięciem 230 V. Rezystancje R<sub>12</sub> i R<sub>14</sub> są nieskończone, co sugeruje brak połączenia między tymi końcówkami, jednak R<sub>13</sub> wynosi 0,05 Ω, co wskazuje na bezpośrednie połączenie między końcówkami 1 i 3. Ponadto, R<sub>24</sub> wynosi 0,85 Ω, co również sugeruje, że między końcówkami 2 i 4 istnieje niskoresystancyjne połączenie. W praktyce, aby efektywnie zasilać transformator, należy podłączyć go do końcówek, które wykazują odpowiednie połączenia niskoresystancyjne, co zminimalizuje straty energii i zapewni odpowiednie działanie transformatora. W tym przypadku, końcówki 1, 3 oraz 2, 4 są odpowiednie do podłączenia napięcia. W standardzie IEC 60076 dotyczącym transformatorów mocy, podłączenia te są kluczowe dla zapewnienia stabilności i bezpieczeństwa operacji elektrycznych.

Pytanie 31

Aby zmienić wartość skoku gwintu, należy dostosować wartość numeryczną obok litery adresowej

N100 G00 X55 Z5
N110 T3 S80 M03
N120 G31 X50 Z-30 D-2 F3 Q3

A. F (prędkość posuwu)
B. Q (promień wodzący)
C. D (korektor narzędzia)
D. T (wybór narzędzia)
Odpowiedzi D dotycząca korektora narzędzia, T dotycząca wyboru narzędzia, oraz Q dotycząca promienia wodzącego są nietrafione. Korektor narzędzia (D) ma swoją rolę w kompensacji zużycia i ustawieniu narzędzi, ale nie wpływa na skok gwintu bezpośrednio. Wybór narzędzia (T) to ważna sprawa, ale to się tyczy zmiany narzędzi w maszynie i nie ma to nic wspólnego ze skokiem gwintu, który związany jest z ruchem i prędkością posuwu. Oznaczenie Q, czyli promień wodzący, również nie jest tutaj istotne, bo dotyczy geometrii ruchu w przestrzeni, a nie skoku gwintu. Sporo osób myli te funkcje, co prowadzi do problemów z obróbką i błędnych ustawień. Ważne, żeby zrozumieć, jak te parametry działają, bo to jest kluczowe dla skutecznej obróbki skrawaniem.

Pytanie 32

Jakiego symbolu literowego zgodnego z normą IEC 61131 używa się w programie sterującym do wskazywania komórek pamięci danych w programowalnym sterowniku?

A. I
B. M
C. Q
D. W
Poprawna odpowiedź to 'M', ponieważ symbol ten w normie IEC 61131-3 odnosi się do komórek pamięci danych w programowalnych sterownikach logicznych (PLC). Komórki pamięci są kluczowe dla działania PLC, gdyż umożliwiają przechowywanie tymczasowych i trwałych danych, które są niezbędne do prawidłowego działania aplikacji automatyki. W przypadku programowania PLC, ważne jest zrozumienie różnorodności typów danych oraz ich adresowania. Przykładowo, w aplikacjach automatyki przemysłowej często wykorzystuje się pamięć do przechowywania stanów, danych procesowych oraz wyników obliczeń. Odpowiednie zarządzanie pamięcią jest kluczowe dla wydajności aplikacji oraz ich bezpieczeństwa. Zastosowanie symboli literowych zgodnie z normą IEC 61131-3 jest nie tylko praktyką standardową, ale również przyczynia się do łatwiejszej interpretacji kodu przez innych programistów, co jest istotne w kontekście współpracy w zespole oraz przyszłej konserwacji systemów.

Pytanie 33

Który z elektrycznych silników ma następujące parametry znamionowe: ∆/Y 230/400 V; 2/1,15 A; 0,37 kW; cosφ 0,71; 1350 min-1?

A. Silnik skokowy z wirnikiem czynnym
B. Silnik szeregowy prądu stałego
C. Silnik synchroniczny prądu przemiennego
D. Silnik klatkowy prądu przemiennego
Wybór silnika synchronicznego prądu przemiennego nie jest najlepszym pomysłem w tym przypadku. Te silniki działają w systemach, które potrzebują synchronizacji prędkości wirnika z częstotliwością sieci. Używa się ich z dodatkowymi układami sterującymi, co może być dość skomplikowane. A silniki krokowe z wirnikiem czynnym, to w ogóle inna bajka, bo są do precyzyjnego sterowania położeniem, co nie pasuje do podanych parametrów. Silniki szeregowe prądu stałego też działają na innej zasadzie, a ich prędkość reguluje się nieliniowo. Dlatego te wszystkie różne typy silników mogą wprowadzać w błąd. Ważne, żeby zrozumieć, że każdy silnik ma swoje specyficzne zastosowanie i ograniczenia, więc wybór powinien być dobrze przemyślany w kontekście wymagań aplikacji.

Pytanie 34

Jakiego symbolu należy użyć, pisząc program dla sterownika PLC, gdy chcemy odwołać się do 8-bitowej komórki pamięci wewnętrznej klasy M?

A. MV0
B. M0.0
C. MB0
D. MD0
Wybór innych symboli, takich jak M0.0, MD0 czy MV0, wynika z nieporozumienia dotyczącego systemu adresowania pamięci w sterownikach PLC. Oznaczenie M0.0 odnosi się do bitów w komórce pamięci, co czyni je odpowiednim dla odniesienia do pojedynczego bitu, a nie do całej 8-bitowej komórki. Z kolei MD0 odnosi się do pamięci słowo (word memory), która ma 16 bitów i nie jest tożsame z pamięcią 8-bitową, co wpływa na sposób, w jaki dane są przetwarzane. MD0 jest używana w kontekście większych jednostek danych, które wymagają innego podejścia podczas programowania. Symbol MV0 z kolei sugeruje dostęp do pamięci zmiennoprzecinkowej, co również nie jest zgodne z wymaganiami zadania. Nieporozumienie tych symboli może prowadzić do błędów w programowaniu, takich jak niepoprawne odczyty danych, co w systemach automatyki może skutkować awariami lub nieprawidłowym działaniem urządzeń. Kluczowe jest zrozumienie kontekstu zastosowania każdego symbolu oraz znajomość standardów dotyczących adresowania pamięci w PLC. Z tego względu wybór odpowiedniego symbolu jest krytyczny dla zachowania integralności danych i efektywności rozwiązań automatyzacyjnych.

Pytanie 35

Jaką rolę odgrywa zawór przelewowy w hydraulicznej prasie?

A. Zrzuca olej z siłownika do zbiornika.
B. Chroni przed powrotem oleju z rozdzielacza do pompy.
C. Umożliwia regulację wartości siły wytwarzanej przez prasę.
D. Filtruje zanieczyszczenia z oleju.
Istnieje wiele błędnych przekonań dotyczących funkcji zaworu przelewowego w prasie hydraulicznej, które mogą prowadzić do mylnych wniosków. Nieprawdziwe jest stwierdzenie, że zawór ten odprowadza olej z siłownika do zbiornika, ponieważ jego podstawowym zadaniem nie jest transport oleju, lecz regulacja ciśnienia w systemie. W praktyce, odprowadzanie oleju z siłownika realizowane jest przez inne elementy układu hydraulicznego, np. przez zawory sterujące. Również stwierdzenie, że zawór przelewowy zapobiega cofaniu oleju z rozdzielacza do pompy, jest mylne. Choć zawory mogą pełnić funkcję zabezpieczającą, to ich główną rolą nie jest zapobieganie cofaniu, ale raczej utrzymanie optymalnego ciśnienia. Kolejna niepoprawna koncepcja sugeruje, że zawór przelewowy odfiltrowuje zanieczyszczenia z oleju. W rzeczywistości filtracja oleju to zadanie innych elementów, takich jak filtry hydrauliczne, które są projektowane specjalnie do usuwania zanieczyszczeń. Zrozumienie rzeczywistej roli zaworu przelewowego jest kluczowe dla prawidłowego funkcjonowania układów hydraulicznych oraz zapewnienia ich efektywności i bezpieczeństwa. Wiedza na temat rzeczywistych funkcji poszczególnych komponentów systemu hydraulicznego jest niezbędna do dokonywania świadomych wyborów projektowych oraz eksploatacyjnych.

Pytanie 36

W jakiej kondycji powinny być przedstawiane styki przekaźników oraz styczników w schematach ideowych układów sterowania stycznikowo-przekaźnikowego?

A. Wzbudzonym
B. Niewzbudzonym
C. Przełączania
D. Wyłączania
Styki przekaźników i styczników na schematach ideowych układów sterowania stycznikowo-przekaźnikowego powinny być przedstawione w stanie niewzbudzonym, ponieważ jest to stan domyślny, który odzwierciedla, że dany element nie jest w chwili obecnej aktywowany. Prezentowanie styków w tym stanie pozwala na jasne zrozumienie schematu przez techników oraz inżynierów, którzy mogą na pierwszy rzut oka ocenić, jakie elementy są włączone lub wyłączone w danym układzie. W praktyce, identyfikacja stanu niewzbudzonego jest kluczowa w projektowaniu oraz diagnostyce systemów automatyki, ponieważ umożliwia szybkie zlokalizowanie potencjalnych problemów. Na przykład, podczas analizy schematu, technik może natrafić na elementy, które powinny być w stanie nieaktywnym, co wskazuje na konieczność ich uruchomienia w kontekście rozwiązywania usterek. Przestrzeganie tej zasady jest zgodne z międzynarodowymi standardami, takimi jak IEC 60617, które definiują sposób przedstawiania symboli w dokumentacji elektronicznej. Warto także wspomnieć, że niewłaściwe oznaczenie stanu styków może prowadzić do błędów w montażu i programowaniu, co w konsekwencji wpłynie na bezpieczeństwo i efektywność działania instalacji.

Pytanie 37

Która z liter adresowych zastosowanych w poniższej instrukcji programowania obrabiarki oznacza szybkość posuwu?

CNC N120 G31 X50 Z-30 D-2 F3 Q3
A. Q
B. N
C. G
D. F
Wybór liter adresowych w odpowiedziach na pytanie dotyczące szybkości posuwu w programowaniu obrabiarek CNC może prowadzić do wielu nieporozumień wśród operatorów, szczególnie, gdy nie są oni zaznajomieni ze standardami branżowymi. Odpowiedzi takie jak 'Q', 'G' i 'N' są w rzeczywistości związane z innymi aspektami programowania obrabiarek. Litera 'Q' często odnosi się do parametrów związanych z interpolacją lub innymi ustawieniami, które nie mają bezpośredniego związku z szybkością posuwu. Z kolei 'G' to prefiks, który oznacza różne funkcje i tryby pracy obrabiarki, jak np. ruch liniowy czy kołowy, ale nie definiuje szybkości posuwu. Natomiast litera 'N' zazwyczaj oznacza numer linii kodu, co jest kluczowe dla struktury programowania, ale także nie ma związku z szybkością posuwu narzędzia. To może prowadzić do typowych błędów myślowych, gdzie operatorzy mylą różne parametry i ich funkcje, co może skutkować błędami podczas obróbki. Dlatego tak ważne jest, aby w pełni rozumieć specyfikę i znaczenie poszczególnych liter w kontekście programowania CNC, co zdecydowanie pomoże w uniknięciu nieporozumień i w zapewnieniu wysokiej jakości obróbki. Edukacja i trening w zakresie użycia poprawnych oznaczeń są kluczowe dla efektywnego i bezpiecznego użytkowania obrabiarek.

Pytanie 38

Ile par połączonych ze sobą przewodów (ramek) tworzy najprostszy wirnik w trójfazowym silniku indukcyjnym?

A. Z trzech par
B. Z sześciu par
C. Z dziewięciu par
D. Z jednej pary
Zrozumienie konstrukcji wirnika silnika indukcyjnego trójfazowego jest kluczowe dla prawidłowego projektowania i zastosowania tych urządzeń. Odpowiedzi sugerujące, że wirnik składa się z trzech, sześciu lub dziewięciu par przewodów opierają się na błędnym założeniu, że więcej par przewodów przekłada się na lepsze właściwości silnika. W rzeczywistości, wirniki silników indukcyjnych trójfazowych najczęściej wykorzystują jedną parę przewodów w konstrukcji klatkowej. To podejście umożliwia stabilne wytwarzanie pola magnetycznego, co jest kluczowe dla działania silnika. W przypadku większej liczby par, takie jak sześć czy dziewięć, mogłoby to prowadzić do nieefektywności w generowaniu momentu obrotowego oraz zwiększenia strat energii. Typowym błędem myślowym jest mylenie liczby faz z liczbą par przewodów w wirniku. Silnik trójfazowy posiada trzy fazy zasilania, natomiast wirnik jako komponent ma jedną parę przewodów, co skutkuje powstawaniem obrotowego pola magnetycznego. Zgodnie ze standardami branżowymi, stosowanie wirników klatkowych z jedną parą przewodów zapewnia wysoką efektywność energetyczną oraz prostotę konstrukcji, co jest istotne w zastosowaniach przemysłowych. W ten sposób, opierając się na dobrych praktykach projektowych oraz normach, można zoptymalizować parametry pracy silnika, dostosowując go do konkretnych wymagań aplikacji.

Pytanie 39

Za pomocą którego symbolu powinno przedstawić się na schemacie magnetyczny czujnik zbliżeniowy?

Ilustracja do pytania
A. Symbolu 4.
B. Symbolu 3.
C. Symbolu 2.
D. Symbolu 1.
Wybierając inne symbole, można napotkać na szereg nieporozumień dotyczących ich zastosowania i znaczenia. Na przykład, symbol 1. mógłby być mylnie zinterpretowany jako reprezentacja czujnika, podczas gdy w rzeczywistości nie jest on standardowym oznaczeniem dla tego typu urządzeń. Istnieje powszechne przekonanie, że każdy symbol graficzny można stosować zamiennie, co jest błędne. Każdy symbol ma przypisane konkretne znaczenie, a jego niewłaściwe użycie może prowadzić do poważnych błędów w instalacjach elektrycznych. W szczególności, symbole 3. i 4. mogą odnosić się do innych typów czujników, które nie mają zastosowania w kontekście czujników zbliżeniowych. Błędna interpretacja symboli może prowadzić do nieodpowiednich podłączeń, co z kolei zwiększa ryzyko awarii systemu. Ponadto, zrozumienie różnic pomiędzy tymi symbolami jest kluczowe w kontekście projektowania systemów automatyki, gdzie precyzyjne przedstawienie komponentów ma fundamentalne znaczenie dla ich funkcjonowania. Użytkownicy często popełniają błąd, zakładając, że wystarczy znać ogólną funkcję urządzenia, aby poprawnie je oznaczyć na schemacie, co jest nieporozumieniem. Dlatego tak ważne jest, aby nauczyć się i stosować właściwe symbole, co pozwoli uniknąć wielu problemów w praktyce inżynierskiej.

Pytanie 40

Którego symbolu graficznego należy użyć, aby przedstawić na schemacie układu cyfrowego bramkę logiczną, której wyjście Y=1 tylko wtedy, gdy A ≠ B?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Wybór innej opcji niż D wskazuje na nieporozumienie dotyczące podstawowych zasad działania bramek logicznych. Bramki OR, NOR i NAND mają różne funkcje logiczne, które nie odpowiadają wymaganiu Y=1 w przypadku, gdy A i B są różne. Działanie bramki OR, na przykład, skutkuje wyjściem równym 1, gdy przynajmniej jedno z wejść jest równe 1, co nie spełnia warunku dotyczącego różności wartości wejściowych. Podobnie, bramka NAND zwraca 0 tylko wtedy, gdy oba wejścia są równe 1, co z kolei nie zaspokaja wymagań zadania. Ta nieprawidłowa interpretacja może wynikać z typowego błędu myślowego, polegającego na uogólnieniu funkcji logicznych bez dokładnego rozpatrzenia ich specyfiki. Ważne jest, aby zrozumieć różnice pomiędzy typami bramek oraz ich zastosowaniami w projektowaniu układów cyfrowych. Niezrozumienie tych koncepcji może prowadzić do błędnych wyborów przy projektowaniu układów lub analizowaniu algorytmów, co w praktyce przekłada się na wydajność oraz funkcjonalność systemów. Dlatego kluczowe jest, aby przy wyborze odpowiednich symboli graficznych kierować się ich rzeczywistym działaniem oraz zastosowaniem w kontekście rozwiązywanych problemów.