Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 08:32
  • Data zakończenia: 8 grudnia 2025 09:01

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z przedstawionych na rysunkach zestawów narzędzi należy dobrać do montażu elementów mieszkaniowych instalacji elektrycznych?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Zestaw narzędzi oznaczony literą C to właściwy wybór do montażu elementów mieszkaniowych instalacji elektrycznych, ponieważ zawiera narzędzia izolowane. Narzędzia te mają specjalną powłokę, która minimalizuje ryzyko porażenia prądem, co jest kluczowe, gdy pracujemy z instalacjami elektrycznymi. Przykładowo, obcęgi i szczypce izolowane pozwalają na precyzyjne manipulowanie przewodami bez obawy o kontakt z napięciem. Standardy bezpieczeństwa, takie jak normy IEC 60900, definiują wymagania dotyczące narzędzi używanych w środowiskach elektrycznych, w tym wymagania dotyczące izolacji. Ponadto, dobór narzędzi zgodnych z tymi normami jest często wymogiem w profesjonalnych pracach elektrycznych, co zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Zastosowanie odpowiednich narzędzi może znacząco zwiększyć komfort oraz bezpieczeństwo w trakcie realizacji zadań montażowych.

Pytanie 2

Na którym rysunku przedstawiono schemat podłączenia automatu schodowego, umożliwiający prawidłową pracę układu oświetlenia?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Nieprawidłowe odpowiedzi na pytanie o schemat podłączenia automatu schodowego często wynikają z niepełnego zrozumienia działania tego urządzenia oraz zasad elektryki. W przypadku odpowiedzi A, B i D, brak jest uwzględnienia kluczowych połączeń, które determinują, że automat schodowy działa poprawnie. Na przykład, w schematach, gdzie przewód fazowy nie jest podłączony do właściwego zacisku L, nie tylko dochodzi do nieprawidłowego działania, ale także do potencjalnych zagrożeń dla użytkowników. Niedostateczne połączenia przycisków A1 i A2 mogą skutkować brakiem możliwości włączania i wyłączania oświetlenia, co jest nieakceptowalne w przestrzeniach, gdzie kontrola nad oświetleniem jest istotna dla bezpieczeństwa. Często w tych błędnych interpretacjach mylone są podstawowe zasady obwodów elektrycznych, takie jak zasada działania obwodów równoległych i szeregowych. Warto również zwrócić uwagę na standardy bezpieczeństwa, które podkreślają konieczność prawidłowego podłączenia komponentów w celu uniknięcia zwarć oraz innych awarii elektrycznych. Zrozumienie tych zasad jest kluczem do samodzielnego projektowania prostych instalacji, a także do świadomego korzystania z technologii w codziennym życiu.

Pytanie 3

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. megaomomierz
B. miernik indukcyjny uziemień
C. omomierz
D. miernik obwodu zwarcia
Induktorowy miernik uziemień, omomierz i miernik pętli zwarcia to różne narzędzia do pomiarów, ale nie nadają się do sprawdzania rezystancji izolacji. Induktorowy miernik uziemień pomaga ocenić jakość uziemienia w elektryce, ale nie nadaje się do badania przewodów. Mierzy indukcyjność, a to nie jest przydatne, gdy chodzi o stan izolacji. Omomierz, chociaż mierzy rezystancję, działa na niskim napięciu, więc może nie wyłapać problemów z izolacją, które widać tylko przy wyższym napięciu. Miernik pętli zwarcia jest używany do analizy impedancji pętli zwarcia i nie ma zastosowania w testach izolacji. Czasem ludzie myślą, że każdy miernik rezystancji może zastąpić megaomomierz, ale to prowadzi do błędnych wniosków. Właściwe ocenienie rezystancji izolacji jest kluczowe, żeby zapewnić bezpieczeństwo instalacji elektrycznych, więc stosowanie odpowiednich narzędzi jest naprawdę ważne.

Pytanie 4

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
B. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
C. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
D. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
Wybór odpowiedzi "Ołówek, poziomnica, przymiar taśmowy, sznurek traserski" jest właściwy, ponieważ te narzędzia są kluczowe dla precyzyjnego trasowania instalacji elektrycznej podtynkowej w pomieszczeniach mieszkalnych. Ołówek służy do nanoszenia punktów oraz linii na ścianach, co ułatwia późniejsze wiercenie i układanie kabli. Poziomnica jest niezastąpiona przy sprawdzaniu poziomu instalacji, co jest niezbędne dla zachowania estetyki i funkcjonalności. Przymiar taśmowy pozwala na dokładne mierzenie odległości, co jest kluczowe dla precyzyjnego układania kabli, gniazdek oraz przełączników. Sznurek traserski umożliwia szybkie i łatwe zaznaczanie prostych linii na dużych powierzchniach, co znacznie przyspiesza proces trasowania. Te narzędzia są zgodne z najlepszymi praktykami branżowymi oraz standardami bezpieczeństwa, co czyni je niezbędnymi w procesie przygotowawczym przed wykonaniem instalacji elektrycznej.

Pytanie 5

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Brąz
B. Stal
C. Aluminium
D. Miedź
Aluminium, miedź i brąz, mimo że są to metale, nie są najlepszymi przewodnikami strumienia magnetycznego. Aluminium, na przykład, jest dobrym przewodnikiem elektryczności, ale jego permeabilność magnetyczna jest znacznie niższa niż stali. W rzeczywistości, aluminium jest stosowane w aplikacjach, gdzie kluczowa jest niska waga, ale nie spełnia oczekiwań w kontekście efektywnego przewodzenia strumienia magnetycznego. Miedź, chociaż jest doskonałym przewodnikiem elektrycznym, ma również niską permeabilność i nie nadaje się do koncentracji strumienia magnetycznego w zastosowaniach wymagających silnych pól magnetycznych. Brąz, będący stopem miedzi, także nie oferuje lepszych właściwości magnetycznych niż jego składniki. Typowym błędem myślowym, który prowadzi do wyboru tych metali jako potencjalnych przewodników strumienia magnetycznego, jest skupienie się na ich właściwościach elektrycznych, a nie magnetycznych. W zastosowaniach inżynieryjnych i elektrotechnicznych, skuteczność materiału w przewodzeniu strumieni magnetycznych jest kluczowa dla osiągania wysokiej wydajności energetycznej. Dlatego w kontekście odpowiedzi na pytanie o najlepszy przewodnik strumienia magnetycznego, stal wyraźnie wyróżnia się na tle innych materiałów, co każdorazowo należy brać pod uwagę w projektach inżynieryjnych.

Pytanie 6

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. występuje zwarcie między zwojami.
B. izolacja jest uszkodzona.
C. działa prawidłowo.
D. jest uszkodzone.
Rezystancja uzwojenia silnika elektrycznego, której pomiar wskazuje wartość nieskończoną (∞ Ω), jednoznacznie sugeruje, że obwód uzwojenia jest przerwany. Przerwanie uzwojenia może wynikać z różnych przyczyn, takich jak zużycie mechaniczne, przegrzanie czy uszkodzenie mechaniczne. Przykładowo, w silnikach asynchronicznych, przerwanie uzwojenia może prowadzić do całkowitej utraty funkcji silnika. W praktyce, jeśli podczas pomiaru omomierzem uzyskamy wartość nieskończoności, konieczne jest dalsze diagnozowanie silnika, w tym wizualna inspekcja uzwojenia oraz sprawdzenie innych elementów, takich jak łożyska czy wirnik. W kontekście standardów branżowych, zgodnie z normą IEC 60034-1, regularne sprawdzanie stanu uzwojeń silników elektrycznych jest kluczowe dla zapewnienia niezawodności i wydajności operacyjnej urządzeń. Dlatego, aby uniknąć kosztownych awarii, zaleca się przeprowadzanie systematycznych testów rezystancji i monitorowanie stanu technicznego silników w cyklu regularnych przeglądów.

Pytanie 7

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NC stycznika Q2
B. NO stycznika Q2
C. NC stycznika Q1
D. NO stycznika Q1
Odpowiedź "NC stycznika Q1" jest poprawna ponieważ w analizowanym układzie stycznik Q2 jest sterowany zarówno poprzez przycisk S4, jak i przez styk NO stycznika Q1. Aby styk NO stycznika Q1 mógł się zamknąć, musi być on w pozycji normalnie otwartej, co oznacza, że wcześniej musiał być aktywowany przez inny element obwodu. Jeśli stycznik Q1 jest uszkodzony, a jego styk NC (normalnie zamknięty) nie przełącza się na NO, to obwód zasilający stycznik Q2 nie zostanie zamknięty. W praktyce w takich układach automatyki przemysłowej, często zdarza się, że awarie styków w układach sterowania prowadzą do niemożności uruchomienia dalszych procesów, dlatego istotne jest systematyczne monitorowanie stanu tych elementów. Zgodnie z dobrymi praktykami, należy przeprowadzać regularne przeglądy i testy funkcjonalne takich obwodów, aby zapobiegać nieprzewidzianym zatrzymaniom. Zrozumienie działania styków oraz ich wpływu na całość układu jest kluczowe dla efektywnej diagnostyki i utrzymania ruchu w systemach automatyki.

Pytanie 8

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęciowa.
B. rtęci owo-żarowa.
C. sodowa.
D. halogenowa.
Lampy rtęciowe, sodowe i rtęciowo-żarowe różnią się istotnie od lamp halogenowych, co może prowadzić do mylnych wniosków. Lampy rtęciowe, na przykład, wykorzystują pary rtęci do emisji światła i charakteryzują się specyficznym, niebieskawym odcieniem, co sprawia, że ich zastosowanie jest bardziej ograniczone do oświetlenia ulicznego oraz przemysłowego. Kształt lampy rtęciowej jest przeważnie bardziej masywny niż lamp halogenowych, co także wpływa na ich aplikację. Z kolei lampy sodowe, które emitują ciepłe, żółte światło, są powszechnie używane w oświetleniu zewnętrznym, ale ich wydajność w zakresie odwzorowania barw jest znacznie gorsza niż w przypadku lamp halogenowych. Lampy sodowe mają również dłuższy czas nagrzewania się, co czyni je mniej praktycznymi w zastosowaniach wymagających natychmiastowego oświetlenia. Natomiast lampy rtęciowo-żarowe łączące elementy obu tych technologii, także nie są porównywalne z lampami halogenowymi, gdyż opierają się na klasycznym, żarowym źródle światła i nie oferują równie wysokiej efektywności energetycznej. Mylne uchwycenie konstrukcji i funkcji lamp prowadzi do wyboru niewłaściwego rozwiązania, co może skutkować nieefektywnym oświetleniem oraz wyższymi kosztami eksploatacji.

Pytanie 9

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Skrętną.
B. Śrubową.
C. Gwintową.
D. Samozaciskową.
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 10

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
B. Redukuje hałas podczas eksploatacji
C. Generuje moment magnetyczny o stałym kierunku
D. Tworzy nieruchome, stałe pole magnetyczne
Uzwojenie biegunów komutacyjnych w maszynach prądu stałego pełni kluczową rolę w kompensacji siły elektromotorycznej (SEM) samoindukcji, co jest istotne dla prawidłowego funkcjonowania silników. W trakcie pracy silnika, gdy zmienia się kierunek prądu, powstaje SEM samoindukcji, która może prowadzić do iskrzenia na szczotkach. Uzwojenie biegunów komutacyjnych, poprzez odpowiednie wytwarzanie pola magnetycznego, pomaga zminimalizować to zjawisko, co przekłada się na dłuższą żywotność szczotek oraz zmniejszenie strat energetycznych. Przykładem zastosowania tej zasady jest wykorzystanie silników prądu stałego w aplikacjach, gdzie wymagana jest duża niezawodność, jak w napędach elektrycznych tramwajów czy w robotyce. Dobre praktyki w projektowaniu maszyn prądu stałego uwzględniają parametry uzwojenia komutacyjnego, co umożliwia uzyskanie optymalnej charakterystyki pracy silnika oraz minimalizację zakłóceń.

Pytanie 11

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
W analizowanych schematach A, B oraz D występują poważne błędy konstrukcyjne, które mogą prowadzić do nieprawidłowego działania systemu oświetleniowego. W schemacie A oraz B przewód neutralny (N) jest połączony w łącznikach, co jest sprzeczne z zasadami dobrego montażu. Połączenie przewodu neutralnego z łącznikami zwiększa potencjalne ryzyko porażenia prądem, ponieważ w przypadku awarii może dojść do sytuacji, gdzie łącznik, który ma za zadanie włączać i wyłączać oświetlenie, będzie pod napięciem. Schemat D, z kolei, ilustruje sytuację, w której przewód fazowy rozgałęzia się na dwa włączniki, co jest niedopuszczalne w kontekście systemów oświetleniowych. Tego typu rozwiązanie nie tylko narusza zasady bezpieczeństwa, ale także może powodować problemy z równomiernym rozdzieleniem energii, co prowadzi do niestabilności w działaniu oświetlenia. Kluczowe jest, aby przy projektowaniu instalacji elektrycznych opierać się na uznawanych standardach, takich jak PN-IEC 60364, które nakładają obowiązek prawidłowego podłączenia przewodów, aby zapewnić zarówno efektywność, jak i bezpieczeństwo użytkowania systemów oświetleniowych.

Pytanie 12

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. linii napowietrznej niskiego napięcia.
B. linii kablowej zasilającej budynek.
C. instalacji odgromowej budynku.
D. instalacji elektrycznej.
Analizując inne dostępne odpowiedzi, można zauważyć, że linii kablowej zasilającej budynek, instalacji odgromowej oraz linii napowietrznej niskiego napięcia dotyczące parametry techniczne nie są w pełni adekwatne do opisanych w tabeli. W przypadku linii kablowej, chociaż mogą występować pewne parametry techniczne, jak długość czy przekrój żyły, to jednak kluczowe informacje dotyczące mocy przyłączeniowej oraz liczby obwodów są typowe dla instalacji elektrycznych wewnętrznych. Podobnie, instalacja odgromowa nie wymaga określenia mocy przyłączeniowej ani liczby obwodów, ponieważ jej celem jest ochrona budynku przed wyładowaniami atmosferycznymi, a nie efektywne zarządzanie energią. Odnośnie linii napowietrznej niskiego napięcia, to również nie podaje się parametrów takich jak rodzaj uziomu, które są kluczowe do określenia w kontekście instalacji elektrycznej wewnętrznej. Często mylenie tych kategorii wynika z niewłaściwego zrozumienia funkcji poszczególnych systemów elektrycznych w obiektach budowlanych. Warto pamiętać, że poprawne zrozumienie różnicy między tymi instalacjami oraz ich zastosowaniem jest niezbędne dla projektantów oraz techników zajmujących się instalacjami elektrycznymi i ich bezpieczeństwem.

Pytanie 13

Zamieszczony na rysunku zrzut ekranu przyrządu pomiarowego przedstawia wyniki pomiaru

Ilustracja do pytania
A. impedancji pętli zwarcia w sieci jednofazowej.
B. rezystancji izolacji przewodu w sieci trójfazowej.
C. impedancji pętli zwarcia w sieci trójfazowej.
D. rezystancji izolacji przewodu w sieci jednofazowej.
Poprawna odpowiedź wskazuje na pomiar rezystancji izolacji przewodu w sieci jednofazowej, co jest kluczowym aspektem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Na zrzucie ekranu widoczne są wartości rezystancji izolacji między przewodami, co pozwala na ocenę stanu izolacji. Wartości te wyrażane są w megaomach (MΩ), co jest standardem dla pomiarów izolacji, gdzie zaleca się, aby minimalna rezystancja izolacji wynosiła co najmniej 1 MΩ. Regularne pomiary rezystancji izolacji są zgodne z normą PN-EN 61557-2, która określa metody i wymagania dla takich badań. W praktyce, pomiar ten jest kluczowy dla identyfikacji ewentualnych defektów izolacji, które mogą prowadzić do porażenia prądem, a także do uszkodzeń urządzeń elektrycznych. Z tego powodu, zrozumienie i umiejętność interpretacji wyników pomiaru rezystancji izolacji jest niezbędne dla każdego technika elektryka.

Pytanie 14

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Zwarcie bezimpedancyjne
B. Prąd błądzący
C. Przepięcie
D. Przeciążenie
Przeciążenie obwodu elektrycznego jest jedną z najczęstszych przyczyn samoczynnego zadziałania wyłącznika instalacyjnego. Przeciążenie następuje w momencie, gdy obciążenie podłączone do obwodu przekracza jego dopuszczalną wartość prądową. Wyłączniki instalacyjne, zgodnie z normami PN-EN 60898, są zaprojektowane w taki sposób, aby chronić instalację przed uszkodzeniem w wyniku zbyt dużego natężenia prądu. W przypadku obwodów o niskiej impedancji, takie jak instalacje oświetleniowe czy gniazdka, obciążenie może wzrosnąć w wyniku uruchomienia wielu urządzeń jednocześnie, co prowadzi do przeciążenia. Gdy prąd przekracza wartość znamionową wyłącznika, mechanizm wyłączający uruchamia się automatycznie, co zapobiega ewentualnym uszkodzeniom kabli czy urządzeń. W praktyce, ważne jest, aby przed podłączeniem nowych urządzeń do instalacji, upewnić się, że całkowite obciążenie nie przekroczy wartości znamionowej wyłącznika, co jest kluczowe w zarządzaniu energią i zapewnieniu bezpieczeństwa instalacji elektrycznych.

Pytanie 15

W którym z punktów spośród wskazanych strzałkami na charakterystyce diody prostowniczej przedstawionej na rysunku odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Napięcie przebicia diody prostowniczej to kluczowy parametr, który odgrywa istotną rolę w projektowaniu układów elektronicznych. Odczytywane w punkcie A, napięcie przebicia wskazuje na moment, w którym dioda zaczyna przewodzić prąd w kierunku wstecznym, co może prowadzić do jej uszkodzenia, jeśli nie jest odpowiednio zabezpieczona. W praktyce, zrozumienie tego zjawiska jest niezbędne podczas projektowania układów z diodami prostowniczymi, takich jak zasilacze impulsowe czy układy zabezpieczeń. Warto pamiętać o standardach, takich jak IEC 60747, które definiują charakterystyki diod, w tym ich napięcie przebicia. Właściwe zastosowanie wartości napięcia przebicia w projektach pozwala na uniknięcie awarii i zwiększa niezawodność urządzeń. Zastosowanie tego w praktyce, na przykład w zasilaczach, pozwala na dobór odpowiednich komponentów, co jest kluczowe dla długoterminowej stabilności systemów elektronicznych.

Pytanie 16

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP33
B. IP44
C. IP55
D. IP20
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 17

Aby wymienić wadliwy łącznik w instalacji, należy wykonać następujące kroki:

A. wyłączyć napięcie, upewnić się o braku napięcia, wyjąć uszkodzony łącznik
B. podłączyć napięcie, zweryfikować ciągłość połączeń, wyjąć uszkodzony łącznik
C. wyłączyć napięcie, usunąć uszkodzony łącznik, zweryfikować ciągłość połączeń
D. usunąć uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń
Odpowiedź odłączająca napięcie, sprawdzająca brak napięcia, a następnie wymontowująca uszkodzony łącznik jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Odłączenie napięcia przed przystąpieniem do jakiejkolwiek pracy na instalacji elektrycznej jest kluczowe, aby zminimalizować ryzyko porażenia prądem. Sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak tester napięcia, jest niezbędne, aby potwierdzić, że instalacja jest bezpieczna do pracy. Po wykonaniu tych dwóch kroków można bezpiecznie wymontować uszkodzony łącznik. Przykładem praktycznym może być sytuacja, w której technik serwisowy wymienia łącznik w oświetleniu sufitowym. Stosując powyższe kroki, zapewnia sobie bezpieczeństwo oraz minimalizuje ryzyko uszkodzeń innych elementów instalacji. Zgodnie z normami IEC i PN-EN, przestrzeganie tych zasad jest obligatoryjne, aby utrzymać wysokie standardy bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 18

Na której ilustracji przedstawiono symbol graficzny przewodu ochronnego?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 1.
C. Na ilustracji 4.
D. Na ilustracji 3.
Ilustracja 2 przedstawia symbol graficzny przewodu ochronnego zgodny z normami i przepisami dotyczącymi oznaczeń w instalacjach elektrycznych. Przewód ochronny, zwany również przewodem uziemiającym, ma kluczowe znaczenie w zapewnieniu bezpieczeństwa instalacji oraz ochrony przed porażeniem elektrycznym. Oznaczenie to składa się z linii prostej oraz przylegającej do niej linii ukośnej, co jednoznacznie wskazuje na funkcję ochronną tego przewodu. Zgodnie z normą PN-EN 60446, symbole powinny być tak zaprojektowane, aby były łatwe do rozpoznania i zrozumienia dla wszystkich osób zajmujących się instalacjami elektrycznymi. Użycie poprawnego oznaczenia przewodu ochronnego jest kluczowe, aby upewnić się, że instalacje są realizowane zgodnie z najlepszymi praktykami, co w konsekwencji minimalizuje ryzyko wystąpienia awarii oraz wypadków. W praktyce, właściwe oznaczenie przewodów ochronnych można spotkać na placach budowy, w dokumentacji technicznej oraz w instrukcjach obsługi urządzeń elektrycznych, co potwierdza ich znaczenie w codziennej pracy specjalistów branży elektrycznej.

Pytanie 19

Na rysunku przedstawiono wnętrze jednej z rozdzielnic mieszkaniowych zasilonych z rozdzielnicy głównej trzypiętrowego budynku. Które urządzenie, stanowiące część rozdzielnicy mieszkaniowej, oznaczono strzałką?

Ilustracja do pytania
A. Stycznik.
B. Wyłącznik nadmiarowoprądowy.
C. Ogranicznik przepięć.
D. Rozłącznik instalacyjny.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ to urządzenie jest kluczowym elementem ochrony instalacji elektrycznej przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych lub nagłych zmian w sieci zasilającej. Ograniczniki przepięć mają za zadanie zredukować napięcie do poziomu, który nie zagraża sprzętowi elektrycznemu. W praktyce stosuje się je w mieszkaniach, biurach oraz w obiektach przemysłowych, aby zabezpieczyć wrażliwe urządzenia, takie jak komputery czy systemy automatyki. Zgodnie z normami, takimi jak PN-EN 61643-11, ograniczniki te powinny być instalowane w bliskim sąsiedztwie chronionych urządzeń, co zapewnia ich skuteczność. Warto również wspomnieć, że ograniczniki przepięć są dostępne w różnych klasach, co pozwala na ich dobór zgodnie z charakterystyką instalacji oraz potrzebami użytkownika, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 20

Na którym rysunku przedstawiono schemat montażowy poprawnie działającego układu, połączonego zgodnie z pokazanym schematem ideowym i zasadami montażu obwodów oświetleniowych?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Analizując błędne odpowiedzi, można dostrzec szereg nieprawidłowości, które mogą prowadzić do problemów w działaniu układu oświetleniowego. W przypadku połączeń, które nie są zgodne z zasadami montażu, jak w odpowiedzi A i C, występuje problem z podłączeniem przewodu neutralnego, co jest kluczowe dla prawidłowego funkcjonowania całego systemu. Przewód neutralny musi być podłączony właściwie, aby zapewnić powrót prądu z urządzenia do źródła zasilania. Niepoprawne połączenia mogą skutkować nieprawidłowym działaniem łączników, a nawet uszkodzeniem elementów instalacji. W odpowiedzi B zauważamy błąd w połączeniu ostatniego łącznika, co nie tylko uniemożliwia działanie układu, ale także stwarza ryzyko dla bezpieczeństwa, gdyż może prowadzić do niekontrolowanych wyładowań elektrycznych. W praktyce każdy element instalacji elektrycznej musi być starannie przemyślany i spełniać określone normy, aby zminimalizować ryzyko awarii. Często popełniane błędy myślowe polegają na niepełnym zrozumieniu zasad działania obwodów oświetleniowych oraz ignorowaniu standardów dotyczących instalacji elektrycznych. Zrozumienie fundamentalnych zasad dotyczących obwodów oraz ich prawidłowych połączeń jest niezbędne dla zachowania bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 21

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Nóż monterski, wiertarka, zestaw kluczy.
B. Zestaw kluczy, wkrętarka, wiertło, przecinak.
C. Piła do cięcia, przecinak, młotek.
D. Wiertarka, wiertło, piła do cięcia, wkrętak.
Odpowiedzi, które nie zawierają zestawu 'Wiertarka, wiertło, piła do cięcia, wkrętak', nie są adekwatne do opisanego zadania montażu listew elektroizolacyjnych na ścianie gipsowej. W przypadku zestawu narzędzi, który zawiera nóż monterski, wiertarkę i zestaw kluczy, brak jest elementów niezbędnych do precyzyjnego montażu. Nóż monterski praktycznie nie ma zastosowania w tym kontekście, ponieważ jego funkcja jest ograniczona do cięcia materiałów, a nie do mocowania. Z kolei zestaw kluczy również nie ma zastosowania, gdyż montaż listew nie wymaga kluczy, a bardziej narzędzi do wiercenia i wkręcania. W innych odpowiedziach, takich jak piła do cięcia i młotek, brakuje niezbędnych narzędzi do wykonania otworów w ścianie, co jest kluczowe dla stabilności i bezpieczeństwa zamocowania. Młotek, choć przydatny w innych kontekstach, nie jest odpowiedni do montażu listew elektroizolacyjnych, ponieważ nie pozwala na precyzyjne wkręcanie elementów mocujących. Typowe błędy myślowe prowadzące do niepoprawnych wniosków to niepełne zrozumienie procesu montażu oraz pominięcie kluczowych narzędzi związanych z obróbką gipsu i precyzyjnym montażem, co wskazuje na brak wiedzy o dobrych praktykach w zakresie instalacji.

Pytanie 22

Określ w kolejności od lewej strony nazwy narzędzi przedstawionych na rysunku.

Ilustracja do pytania
A. Obcinaczki czołowe, przyrząd do ściągania izolacji, szczypce uniwersalne, wskaźnik napięcia, szczypce do zaciskania końcówek, wkrętak izolowany płaski.
B. Obcinaczki boczne, przyrząd do ściągania izolacji, szczypce do zaciskania końcówek, szczypce uniwersalne, wkrętak izolowany, wskaźnik napięcia.
C. Szczypce uniwersalne, przyrząd do ściągania izolacji, obcinaczki boczne, szczypce do zaciskania końcówek, wkrętak izolowany, wskaźnik napięcia.
D. Szczypce do zaciskania końcówek, szczypce uniwersalne, wskaźnik napięcia, obcinaczki czołowe, szczypce do ściągania izolacji, wkrętak izolowany płaski.
Obcinaczki boczne to pierwsze narzędzie na zdjęciu. Mają ostrza skierowane ku sobie, co fajnie ułatwia precyzyjne cięcie drutów i kabli. W branży elektrycznej i podczas domowych napraw to naprawdę przydatne narzędzie. Potem mamy przyrząd do ściągania izolacji, który jest bardzo ważny, kiedy przygotowujemy przewody do połączeń elektrycznych. Dzięki niemu można łatwo usunąć izolację, nie uszkadzając rdzenia przewodu, co jest kluczowe. Dalej są szczypce do zaciskania końcówek, które są super przydatne, bo mocują końcówki kablowe na stałe. To bardzo ważne, żeby połączenia były niezawodne. Słyszałeś o szczypcach uniwersalnych? Te zajmują czwarte miejsce. Są mega wszechstronne i można ich używać do różnych zadań – od cięcia po chwytanie rzeczy. I nie zapomnijmy o wkrętaku izolowanym, bo to ważne narzędzie do pracy przy elektryce. Jest odporny na przebicie prądu. Na końcu mamy wskaźnik napięcia, który jest kluczowy dla bezpieczeństwa. Pozwala sprawdzić, czy jest napięcie, zanim zaczniemy jakąkolwiek robotę.

Pytanie 23

Symbol graficzny urządzenia AGD - suszarki, przedstawiono na rysunku

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedzi A, B i C odnoszą się do innych urządzeń AGD, co może prowadzić do nieporozumień przy identyfikacji symboli graficznych. Symbol A, przedstawiający zmywarkę do naczyń, jest często mylony z oznaczeniem suszarki, szczególnie przez osoby, które nie są zaznajomione z różnicami w symbolice. Zmywarka ma charakterystyczny symbol przedstawiający naczynia, co jest istotne w kontekście jej funkcji, ale nie ma nic wspólnego z obróbką tkanin. Symbol B, dotyczący kuchenki elektrycznej, również nie ma związku z suszarką, co może wynikać z niepoprawnego wnioskowania o podobieństwie kształtów czy form. Brak zrozumienia podstawowych różnic między tymi urządzeniami może prowadzić do błędnych wniosków. Przykładem może być mylenie funkcji kuchenki, która jest przeznaczona do gotowania, z suszarką, która służy do suszenia odzieży. Ostatecznie, symbol C przedstawia pralkę elektryczną, co także jest innym rodzajem urządzenia, które choć może mieć podobieństwo do suszarki, pełni zupełnie różne zadania w gospodarstwie domowym. Typowe błędy, które prowadzą do takich niepoprawnych wyborów, to ignorowanie kontekstu funkcjonalnego urządzenia, a także brak znajomości powszechnie stosowanych oznaczeń w branży AGD. Warto zapoznać się z tymi symbolami i ich znaczeniem, aby uniknąć nieporozumień w przyszłości.

Pytanie 24

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy D
B. Klasy B
C. Klasy C
D. Klasy A
Odpowiedź "Klasy D" jest jak najbardziej trafna. Ograniczniki tej klasy są stworzone po to, żeby chronić instalacje elektryczne przed dużymi przepięciami, które mogą się zdarzyć na przykład podczas burzy albo z powodu problemów w sieci energetycznej. To, co jest super w ogranicznikach klasy D, to ich zdolność do wchłaniania ogromnych energii w bardzo krótkim czasie, przez co świetnie sprawdzają się w systemach niskonapięciowych. Można je np. znaleźć w zasilaniu komputerowym, gdzie ochrona przed nagłymi wzrostami napięcia jest naprawdę ważna, żeby nie utracić danych. Zgodnie z normą IEC 62305, korzystanie z ograniczników klasy D jest polecane, żeby zminimalizować ryzyko zniszczenia sprzętu elektronicznego. Ważne jest, aby dobrać je do lokalnych warunków, bo to gwarantuje najlepszą ochronę.

Pytanie 25

Który symbol graficzny na schemacie ideowym projektowanej instalacji elektrycznej oznacza sposób prowadzenia przewodów w tynku?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
W przypadku wybrania innej odpowiedzi, warto przyjrzeć się, dlaczego te alternatywne symbole mogą prowadzić do nieporozumień. Symbole graficzne w schematach elektrycznych mają kluczowe znaczenie, ponieważ przekazują istotne informacje na temat sposobu instalacji oraz zarządzania przewodami. Wiele osób może pomylić sposób prowadzenia przewodów w tynku z innymi symbolami, które mogą sugerować różne metody układania kabli, na przykład w rurach lub podłogach. Każdy z tych symboli ma swoje zastosowanie i znaczenie, które muszą być zrozumiane w kontekście całej instalacji. Często zdarza się, że wybór niewłaściwego symbolu wynika z braku znajomości norm lub nieprzestrzegania dobrych praktyk przy projektowaniu instalacji. Warto zauważyć, że stosowanie niewłaściwych symboli może prowadzić do problemów w trakcie realizacji projektu, takich jak nieodpowiednie prowadzenie przewodów, co w konsekwencji może prowadzić do uszkodzeń instalacji lub zagrożeń dla bezpieczeństwa. Dlatego tak istotne jest, aby przed przystąpieniem do pracy w dziedzinie elektryki, projektanci i instalatorzy byli dobrze zaznajomieni z aktualnymi normami oraz symboliką stosowaną w branży. Zrozumienie, że każdy symbol na schemacie ma swoje dokładne miejsce i zastosowanie, jest kluczem do prawidłowej realizacji projektów elektrycznych.

Pytanie 26

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,0% + 2 cyfry
B. ±2,5% + 1 cyfra
C. ±1,5% + 3 cyfry
D. ±1,0% + 4 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 27

Który przewód oznacza symbol PE?

A. Uziemiający
B. Ochronno-neutralny
C. Wyrównawczy
D. Ochronny
Odpowiedź "Ochronny" jest prawidłowa, ponieważ przewód oznaczony symbolem PE (ang. Protective Earth) jest kluczowym elementem systemów ochrony przed porażeniem elektrycznym. Przewód PE ma za zadanie prowadzenie prądu doziemnego w przypadku awarii urządzenia, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce, przewód ten jest integralną częścią instalacji elektrycznych w budynkach, a jego właściwe podłączenie do uziemienia jest niezbędne dla zapewnienia bezpieczeństwa. Zgodnie z normami, takimi jak PN-IEC 60364, przewód PE powinien być stosowany w każdym obwodzie elektrycznym, w którym zainstalowane są urządzenia elektryczne. Jego zastosowanie obejmuje zarówno instalacje przemysłowe, jak i domowe, gdzie uziemienie urządzeń, takich jak lodówki czy pralki, jest niezbędne dla ochrony przed skutkami zwarcia. Warto również podkreślić, że stosowanie przewodu PE w instalacjach elektrycznych jest wymagane przez przepisy prawa budowlanego, co dodatkowo podkreśla jego znaczenie w kontekście bezpieczeństwa użytkowników.

Pytanie 28

Schemat jakiego łącznika instalacyjnego przedstawiono na rysunku?

Ilustracja do pytania
A. Krzyżowego.
B. Schodowego.
C. Hotelowego.
D. Świecznikowego.
Schemat przedstawiony na rysunku to schemat łącznika krzyżowego, który jest kluczowym elementem w bardziej złożonych instalacjach oświetleniowych. Łącznik krzyżowy umożliwia sterowanie jednym obwodem świetlnym z więcej niż dwóch miejsc, co jest szczególnie przydatne w dużych pomieszczeniach, korytarzach czy schodach. Wykorzystuje się go w połączeniu z łącznikami schodowymi, dzięki czemu można włączać i wyłączać światło w różnych punktach budynku. Schemat łącznika krzyżowego charakteryzuje się czterema zaciskami: dwa zaciski wejściowe i dwa wyjściowe. Taki układ pozwala na swobodne przełączanie prądu między różnymi obwodami, co zwiększa elastyczność instalacji. Zgodnie z dobrymi praktykami branżowymi, instalacje elektryczne powinny być projektowane z myślą o wygodzie użytkowników, a zastosowanie łącznika krzyżowego stanowi doskonały przykład tego podejścia. Warto również pamiętać, że poprawne zainstalowanie łącznika krzyżowego wymaga odpowiedniego przeszkolenia, aby zapewnić bezpieczeństwo i trwałość instalacji.

Pytanie 29

Na rysunku przedstawiono symbol graficzny przewodu

Ilustracja do pytania
A. PEN
B. L
C. PE
D. N
Symbol przedstawiony na rysunku oznacza przewód neutralny, który w instalacjach elektrycznych jest kluczowym elementem systemu zasilania. Oznaczenie "N" wskazuje na przewód, który ma za zadanie prowadzić prąd powracający z obciążenia do źródła zasilania. Przewód neutralny jest niezbędny w układach jedno- i trójfazowych, gdzie zapewnia równowagę obciążenia w instalacji. W praktyce oznaczenie to jest stosowane zgodnie z normami IEC 60446, które definiują sposób oznaczania przewodów w instalacjach elektrycznych. Poprawne rozróżnianie między przewodami fazowymi a neutralnym jest kluczowe dla bezpieczeństwa eksploatacji instalacji. Przykładowo, w budynkach mieszkalnych przewód neutralny jest wykorzystywany w instalacjach oświetleniowych oraz gniazdach elektrycznych, gdzie zapewnia powrót prądu do źródła zasilania, co jest niezbędne do prawidłowego działania urządzeń elektrycznych. Bez przewodu neutralnego, obwody nie byłyby w stanie funkcjonować prawidłowo, co mogłoby prowadzić do niebezpiecznych sytuacji takich jak przegrzanie czy zwarcia.

Pytanie 30

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242
A. 6,0 mm2
B. 2,5 mm2
C. 1,5 mm2
D. 4,0 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 31

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. cewkę przekaźnika z opóźnionym odpadaniem.
B. wyzwalanie elektroniczne.
C. wyzwalanie cieplne.
D. cewkę przekaźnika z opóźnionym działaniem.
Wyzwalanie cieplne, przedstawione na schemacie, jest kluczowym elementem w kontekście zabezpieczeń elektrycznych, które ma na celu ochronę przed przeciążeniem. Zgodnie z normą PN-EN 60617, symbol ten odnosi się do mechanizmu, który działa na zasadzie rozszerzalności cieplnej materiałów. Przykładem zastosowania wyzwalania cieplnego są wyłączniki nadprądowe, które automatycznie odłączają obwód, gdy prąd przekracza określony próg przez zbyt długi czas. Dzięki temu zapobiegają uszkodzeniu urządzeń oraz minimalizują ryzyko pożaru. Oprócz wyłączników nadprądowych, wyzwalanie cieplne stosowane jest również w przekaźnikach termicznych, które mogą być używane w silnikach elektrycznych do monitorowania temperatury i zapobiegania przegrzaniu. Zrozumienie działania tego mechanizmu jest fundamentem dla inżynierów pracujących nad projektowaniem systemów zabezpieczeń elektrycznych, co podkreśla znaczenie znajomości symboliki występującej w dokumentacji technicznej.

Pytanie 32

Który element i z jakiego silnika przedstawiony jest na ilustracji a) i schemacie b)?

Ilustracja do pytania
A. Wirnik silnika pierścieniowego.
B. Wirnik silnika komutatorowego.
C. Stojan silnika pierścieniowego.
D. Stojan silnika komutatorowego.
Niezrozumienie, który element silnika przedstawiony jest na ilustracji, może prowadzić do wielu nieporozumień. W przypadku silnika komutatorowego, wirnik i stojan mają zupełnie inną konstrukcję, co jest kluczowe dla ich działania. Wirnik silnika komutatorowego zazwyczaj nie posiada pierścieni ślizgowych, lecz komutator, który jest odpowiedzialny za zmianę kierunku prądu w uzwojeniach wirnika. Stojan silnika pierścieniowego, z kolei, jest nieodłącznym elementem, który współpracuje z wirnikiem, ale nie można go pomylić z wirnikiem, ponieważ jego funkcja polega na generowaniu pola magnetycznego, które umożliwia ruch wirnika. Typowym błędem myślowym jest założenie, że wirnik i stojan mogą być używane zamiennie, co prowadzi do niepoprawnych wniosków. Warto również zauważyć, że silnik pierścieniowy ma swoją specyfikę i różni się od silnika komutatorowego w zakresie budowy i zastosowania. Wiedza na temat różnic w tych konstrukcjach jest kluczowa dla zrozumienia ich działania i możliwości zastosowania. Dlatego istotne jest, aby nie tylko znać nazwy elementów, ale również ich funkcje i właściwości.

Pytanie 33

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Neutralny.
B. Uziemiający.
C. Wyrównawczy.
D. Ochronny.
Odpowiedź "Ochronny" jest prawidłowa, ponieważ symbol przedstawiony na rysunku odnosi się do przewodu ochronnego PE (Protective Earth). Przewód ten jest kluczowym elementem instalacji elektrycznej, mającym na celu zabezpieczenie użytkowników przed porażeniem prądem elektrycznym. W sytuacji awaryjnej, przewód ochronny odprowadza niebezpieczne napięcie do ziemi, co znacząco zmniejsza ryzyko porażenia. W standardach, takich jak Polska Norma PN-IEC 60445:2017, przewód ten powinien być jednoznacznie oznaczony w schematach montażowych, co ułatwia identyfikację i prawidłowy montaż instalacji. Przykładowo, w przypadku uszkodzenia izolacji urządzenia elektrycznego, prawidłowe podłączenie przewodu ochronnego zapewnia, że prąd nie przepłynie przez ciało użytkownika, lecz zostanie skierowany do ziemi. Dzięki temu, stosowanie przewodów ochronnych zgodnie z normami jest fundamentem bezpieczeństwa w każdej instalacji elektrycznej.

Pytanie 34

Miernik rezystancji włączony do układu jak na rysunku służy do

Ilustracja do pytania
A. pomiaru impedancji pętli zwarciowej.
B. pomiaru rezystancji uziemienia.
C. sprawdzenia ciągłości przewodu głównego połączenia wyrównawczego.
D. sprawdzenia ciągłości przewodu miejscowego połączenia wyrównawczego.
Miernik rezystancji, podłączony w opisany sposób, rzeczywiście służy do sprawdzenia ciągłości przewodu głównego połączenia wyrównawczego. Jest to kluczowy element w zapewnieniu bezpieczeństwa instalacji elektrycznych. Zgodnie z polskimi normami oraz przepisami dotyczącymi instalacji, ciągłość przewodów ochronnych jest niezbędna dla prawidłowego funkcjonowania systemów ochrony przed porażeniem prądem elektrycznym. Mierzenie ciągłości polega na sprawdzeniu, czy nie ma przerw w obwodzie ochronnym, co mogłoby prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem. Przykładowo, w przypadku awarii instalacji, jeżeli przewód ochronny jest przerwany, prąd może nie mieć innej drogi powrotnej do ziemi, co zwiększa ryzyko porażenia prądem. W praktyce, przed rozpoczęciem jakichkolwiek prac elektrycznych, technicy powinni zawsze wykonywać takie pomiary, aby upewnić się, że instalacja jest w dobrym stanie. Właściwe przeprowadzenie takich testów jest zgodne z zasadami BHP oraz normami PN-IEC 60364, które regulują zasady projektowania i eksploatacji instalacji elektrycznych.

Pytanie 35

Które z wymienionych urządzeń elektrycznych jest pokazane na ilustracji?

Ilustracja do pytania
A. Dławik magnetyczny.
B. Transformator.
C. Wzbudnik indukcyjny.
D. Elektromagnes.
Transformator jest kluczowym urządzeniem elektrycznym, które służy do zmiany poziomu napięcia w systemach energetycznych. Na ilustracji widać, że transformator składa się z dwóch cewek – pierwotnej i wtórnej – nawiniętych na wspólnym rdzeniu magnetycznym, co jest typowym rozwiązaniem w tych urządzeniach. Dzięki zasadzie indukcji elektromagnetycznej transformator może efektywnie przenosić energię elektryczną między obwodami, co jest kluczowe w systemach przesyłowych energii. Na przykład, transformatory są niezbędne do podwyższania napięcia w stacjach transformacyjnych, co ogranicza straty energii w trakcie przesyłania jej na dużą odległość. Dobrą praktyką jest regularne przeprowadzanie konserwacji transformatorów oraz monitorowanie ich stanu, aby zapewnić niezawodność i efektywność ich działania. W branży energetycznej obowiązują normy takie jak IEC 60076, które regulują wszystkie aspekty projektowania, budowy i eksploatacji transformatorów.

Pytanie 36

Jakiego typu miernik należy zastosować do pomiaru rezystancji uziemienia systemu odgromowego?

A. Mostka rezystancyjnego
B. Multimetru
C. Miernika rezystancji uziemienia
D. Miernika rezystancji izolacji
Miernik rezystancji uziemienia to naprawdę przydatne narzędzie, które wykorzystywane jest do pomiaru rezystancji punktu uziemienia. To bardzo ważne w przypadku systemów odgromowych, bo dobra rezystancja to bezpieczeństwo. W odróżnieniu od multimetru, który może robić dużo różnych rzeczy, miernik rezystancji uziemienia jest stworzony specjalnie do tych pomiarów, szczególnie w trudnych warunkach, gdzie różne rzeczy, jak na przykład wilgoć, mogą wpłynąć na wyniki. Przykładowo, używa się go, żeby sprawdzić, czy system odgromowy działa jak należy, zanim zacznie działać albo po jakichś zmianach. Ważne, żeby rezystancja była na poziomie mniejszym niż 10 omów, zgodnie z normami takimi jak PN-EN 62305. To pokazuje, jak istotne są regularne przeglądy, żeby zajechać ryzyko porażenia prądem i lepiej chronić się przed wyładowaniami atmosferycznymi.

Pytanie 37

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TT
B. TN-S
C. TN-C-S
D. IT
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.

Pytanie 38

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 1,25 Ω
B. 2,50 Ω
C. 1,50 Ω
D. 2,75 Ω
Aby obliczyć wartość impedancji pętli zwarcia, należy uwzględnić spadek napięcia, który pojawia się przy zamkniętym wyłączniku W, oraz wartość prądu zmierzonego amperomierzem. W tym przypadku różnica napięcia wynosi 10 V (228 V - 218 V). Przy zastosowaniu prawa Ohma, które mówi, że impedancja (Z) jest równa spadkowi napięcia (ΔU) podzielonemu przez natężenie prądu (I), możemy obliczyć wartość impedancji jako Z = ΔU / I. Dla danych w pytaniu mamy Z = 10 V / 4 A = 2,50 Ω. W praktyce, znajomość wartości impedancji pętli zwarcia jest kluczowa w projektowaniu instalacji elektrycznych, ponieważ pozwala na ocenę ich bezpieczeństwa i efektywności. Wartości impedancji pętli zwarcia powinny być zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące zabezpieczeń i ochrony przed porażeniem prądem elektrycznym. W sytuacjach awaryjnych, takich jak zwarcia, niska wartość impedancji pętli zwarcia zapewnia szybkie zadziałanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i sprzętu. Poznanie metody obliczania impedancji pętli zwarcia pozwala na skuteczniejsze zapobieganie awariom i poprawę warunków pracy w instalacjach elektrycznych.

Pytanie 39

Na którym rysunku przedstawiono schemat montażowy zgodny z przedstawionym planem instalacji?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór odpowiedzi, która nie jest zgodna z planem instalacji, może wynikać z kilku błędnych założeń dotyczących montażu i podłączenia instalacji elektrycznych. Wiele osób myli pojęcia dotyczące przewodów PE, N i L, co prowadzi do nieprawidłowych wniosków. Przykładowo, w niepoprawnych schematach może występować niewłaściwe połączenie przewodu neutralnego z fazowym, co stwarza ryzyko zwarcia oraz uszkodzenia urządzeń elektrycznych. Często spotykaną pomyłką jest również brak odpowiedniego uziemienia, które jest kluczowe dla bezpieczeństwa. Bezpośrednie połączenie przewodów do gniazda wtyczkowego bez uwzględnienia zasadności ich rozmieszczenia może prowadzić do nieefektywności pracy urządzeń oraz zwiększonego ryzyka porażenia prądem. Ważne jest, aby pamiętać, że każdy element instalacji musi być zgodny z odpowiednimi normami, takimi jak normy PN-EN 60364, które precyzują zasady projektowania oraz montażu. Wiedza na temat symboliki i oznaczeń w schematach montażowych jest kluczowa dla zrozumienia, jak prawidłowo zrealizować instalację. Pomocne może być również zapoznanie się z wytycznymi dotyczącymi bezpieczeństwa, które podkreślają znaczenie zachowania odpowiednich odstępów pomiędzy przewodami, aby uniknąć zakłóceń oraz potencjalnych zagrożeń.

Pytanie 40

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zaciskania końcówek oczkowych.
B. Docinania przewodu.
C. Zaciskania końcówek tulejkowych.
D. Ściągania izolacji z przewodu.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.