Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 15:21
  • Data zakończenia: 8 grudnia 2025 15:33

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jaki symbol literowy zgodny z normą IEC 61131 jest używany w oprogramowaniu sterującym dla PLC do wskazywania jego fizycznych dyskretnych wejść?

A. R
B. Q
C. I
D. S
Odpowiedź "I" jest poprawna, ponieważ zgodnie z normą IEC 61131, symbol "I" reprezentuje fizyczne wejścia dyskretne w programach sterujących PLC. Norma ta definiuje standardy dla programowalnych kontrolerów logicznych, a użycie odpowiednich symboli jest kluczowe dla zrozumienia i utrzymania systemów automatyki. Przykładowo, w praktyce inżynieryjnej, aby oznaczyć sensory, które generują sygnały cyfrowe, takie jak przyciski czy przełączniki, wykorzystuje się symbol "I". To pozwala na skuteczne adresowanie tych wejść w programie, co ma fundamentalne znaczenie dla poprawnego działania systemu. Używanie standardów IEC 61131 zapewnia spójność w projektowaniu i dokumentacji systemów automatyki, co jest niezbędne do prawidłowej integracji różnych urządzeń i komponentów w złożonych instalacjach przemysłowych. Przykładem może być system automatyzacji w fabryce, gdzie różne sensory są podłączone do PLC, a ich identyfikacja poprzez symbol "I" umożliwia łatwe śledzenie i diagnostykę w przypadku awarii.

Pytanie 4

Jaki program służy do gromadzenia informacji o procesie przemysłowym, ich przedstawiania oraz archiwizacji?

A. Kompilator
B. SCADA
C. CAD/CAM
D. Linker
SCADA, czyli System Control and Data Acquisition, to kluczowy program używany w przemyśle do zbierania, monitorowania oraz archiwizacji danych procesowych. Dzięki SCADA operatorzy mogą uzyskiwać w czasie rzeczywistym informacje na temat pracy maszyn oraz efektywności procesów przemysłowych. System ten umożliwia wizualizację danych w formie graficznych interfejsów, co ułatwia identyfikację problemów i szybką reakcję na nie. Przykładem zastosowania SCADA może być zarządzanie systemem wodociągowym, gdzie program monitoruje ciśnienie, przepływ wody oraz stan zbiorników. Standardy takie jak ISA-95 czy ISA-88 definiują ramy, w których SCADA operuje, co zapewnia interoperacyjność z innymi systemami automatyki przemysłowej. Wiele nowoczesnych instalacji przemysłowych korzysta z SCADA, aby zwiększyć efektywność operacyjną, poprawić jakość produkcji oraz zminimalizować przestoje, co przekłada się na oszczędności finansowe i lepszą jakość produktów.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Które z wymienionych zdarzeń może wydarzyć się w układzie ze sterownikiem PLC, jeżeli wykonuje on przedstawiony program?

Ilustracja do pytania
A. Elementy Y1 i Y2 mogą zadziałać jednocześnie przy aktywnym B2
B. Kiedy działa element Y1 to nie działa element Y2
C. Elementy Y1 i Y2 mogą zadziałać przy aktywnym S2
D. Kiedy działa element Y2 to nie działa element Y1
Wybór odpowiedzi sugerującej, że 'Kiedy działa element Y1 to nie działa element Y2' jest niepoprawny, ponieważ nie uwzględnia kluczowych zasad działania układów sterowania z PLC. W układzie, w którym obydwa elementy są współzależne, takie stwierdzenie zakłada, że Y1 może działać niezależnie od Y2 w sytuacji, gdy oba elementy są zasilane przez te same warunki. W rzeczywistości, jednak aktywacja Y1 wymaga, aby wszystkie warunki przypisane do jego działania były spełnione, co sprawia, że nie może on funkcjonować równocześnie z Y2 w kontekście, w którym Y2 zyskuje aktywację. Podobnie, stwierdzenie, że 'Elementy Y1 i Y2 mogą zadziałać przy aktywnym S2' nie jest zgodne z praktykami projektowymi, gdyż ignoruje specyfikę warunków, które muszą być spełnione dla działania poszczególnych elementów. W systemach PLC, każdy element jest zaprojektowany z myślą o konkretnych warunkach aktywacji, a błędna interpretacja tych warunków często prowadzi do nieefektywności w procesach automatyzacji. Warto zwrócić uwagę na to, że zrozumienie logiki działania poszczególnych elementów jest nie tylko kluczowe dla prawidłowego funkcjonowania systemu, lecz także dla unikania typowych błędów, takich jak mylenie relacji między elementami. Przykłady rzeczywistych aplikacji mogą pomóc w lepszym uchwyceniu tych zasad i ich praktycznego zastosowania.

Pytanie 10

Ręczne sterowanie prasą hydrauliczną postanowiono zastąpić automatycznym zarządzaniem przy pomocy sterownika PLC. Parametry technologiczne prasy pozostają bez zmian. Jakie elementy powinien uwzględniać projekt modernizacji prasy?

A. Przygotowanie schematów układu sterowania oraz opracowanie programu
B. Obliczenie parametrów elementów prasy oraz stworzenie programu
C. Określenie parametrów wytrzymałościowych mechanizmów i sprawdzenie zabezpieczeń
D. Obliczenie parametrów mediów zasilających prasę oraz zaprojektowanie zabezpieczeń
Sporządzenie schematów układu sterowania oraz opracowanie programu jest kluczowym krokiem w procesie modernizacji prasy hydraulicznej. Przeniesienie ręcznego sterowania na automatyczne za pomocą sterownika PLC wymaga precyzyjnego zaplanowania architektury układu sterowania, co obejmuje zarówno schematy ideowe, jak i szczegółowe. Schematy te powinny zawierać wszystkie elementy systemu, takie jak czujniki, wykonawcze elementy hydrauliczne oraz interfejsy komunikacyjne. Opracowanie programu sterującego jest równie istotne, gdyż to właśnie on definiuje logikę działania urządzenia, umożliwiając precyzyjne kontrolowanie procesu w czasie rzeczywistym. W praktyce, zastosowanie standardów takich jak IEC 61131-3 pozwala na tworzenie programów w sposób modularny, co ułatwia ich późniejszą modyfikację i konserwację. Dodatkowo, przy projektowaniu układu sterowania warto uwzględnić protokoły komunikacyjne, co pozwoli na integrację prasy z innymi elementami linii produkcyjnej, zapewniając większą elastyczność i efektywność w procesie produkcji.

Pytanie 11

Jaką czynność projektową można uznać za niemożliwą do zrealizowania w programie CAM?

A. Przygotowania dokumentacji technologicznej produktu
B. Realizowania symulacji obróbki elementu w środowisku wirtualnym
C. Przygotowania instrukcji (G-CODE) dla urządzeń Rapid Prototyping
D. Stworzenia kodu dla maszyny CNC
Opracowanie dokumentacji technologicznej wyrobu jest procesem, który zazwyczaj wymaga zastosowania oprogramowania CAD (Computer-Aided Design). Oprogramowanie CAM (Computer-Aided Manufacturing) jest natomiast skoncentrowane na aspektach produkcji, takich jak generowanie kodów maszynowych dla obrabiarek CNC oraz symulacja procesów obróbczych. Przy pomocy CAM można efektywnie przygotować programy do obróbki, co jest kluczowe w zautomatyzowanej produkcji. Przykładem praktycznym może być wykorzystanie oprogramowania CAM do zaprogramowania maszyny CNC w celu wytworzenia konkretnego detalu, co pozwala na precyzyjnie zdefiniowane operacje, ich czas i sekwencję. Dzięki symulacjom można również przewidzieć ewentualne problemy przed rozpoczęciem rzeczywistej produkcji, co znacznie zwiększa wydajność i redukuje koszty. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokumentacji w procesach technologicznych, jednak nie obejmują one działań związanych z przygotowaniem szczegółowej dokumentacji wyrobu, które są domeną CAD.

Pytanie 12

Jaki jest cel użycia oscyloskopu w diagnostyce układów elektronicznych?

A. Zasilanie obwodów niskim napięciem
B. Obserwacja kształtu sygnałów elektrycznych
C. Pomiar rezystancji izolacji
D. Zwiększenie częstotliwości sygnałów
Oscyloskop to niezwykle przydatne narzędzie w diagnostyce układów elektronicznych, ponieważ pozwala na obserwację kształtu sygnałów elektrycznych. Dzięki temu możemy wizualizować przebiegi czasowe, co jest kluczowe dla zrozumienia, jak sygnały przepływają przez układ. Wyobraź sobie, że masz do czynienia z układem, który nie działa prawidłowo. Dzięki oscyloskopowi możesz zidentyfikować, gdzie dokładnie występuje problem, czy to w postaci zakłóceń, zniekształceń, czy też nietypowych amplitud sygnałów. To narzędzie umożliwia również pomiar parametrów takich jak częstotliwość, amplituda, czas narastania czy opóźnienia sygnału. W praktyce inżynierskiej, umiejętność korzystania z oscyloskopu jest niezbędna, zwłaszcza w dziedzinach takich jak automatyka przemysłowa, elektronika użytkowa czy inżynieria telekomunikacyjna. Moim zdaniem, to jedno z tych narzędzi, które każdy inżynier powinien umieć obsługiwać, ponieważ daje ono wgląd w działanie układów na poziomie, którego nie można osiągnąć za pomocą innych urządzeń pomiarowych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnika mocy w układach napędów elektrycznych, o danych znamionowych zamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A
A. 230 V DC
B. 400 V AC
C. 400 V DC
D. 230 V AC
Poprawna odpowiedź to 400 V AC, co wynika z danych znamionowych regulatora DCRK 12, które wskazują na napięcie zasilania w zakresie 380...415V, 50/60Hz. W zastosowaniach przemysłowych, napięcia te są powszechnie stosowane w układach zasilających maszyny oraz urządzenia elektryczne. Napięcie 400 V AC jest standardem w Europie i wielu innych krajach, co czyni je odpowiednim wyborem dla aplikacji przemysłowych. Wartością wyjściową tego regulatora może być również dostosowanie do zmiennych warunków pracy, co jest istotne w kontekście optymalizacji współczynnika mocy. Znajomość standardowych napięć zasilających jest niezbędna dla inżynierów, aby projektować i wdrażać systemy zasilania, które są zarówno efektywne, jak i zgodne z normami bezpieczeństwa. W praktyce, korzystanie z odpowiednich napięć zasilających wpływa na stabilność i długowieczność sprzętu, co jest kluczowe w przemyśle.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Na rysunkach technicznych cienką linią dwupunktową oznacza się

A. przejścia pomiędzy jedną powierzchnią a drugą w miejscach delikatnie zaokrąglonych
B. powierzchnie elementów, które są poddawane obróbce powierzchniowej
C. linie gięcia przedmiotów ukazanych w rozwinięciu
D. widoczne krawędzie oraz wyraźne kontury obiektów w widokach i przekrojach
Linie dwupunktowe cienkie na rysunkach technicznych mają kluczowe znaczenie w procesie projektowania oraz produkcji elementów mechanicznych. Oznaczają one miejsca gięcia w przedmiotach przedstawionych w rozwinięciu, co pozwala na precyzyjne określenie kierunków oraz miejsc, w których materiał powinien być zginany. Przykładowo, w procesie produkcji blacharskiej, stosowanie tych linii jest niezwykle istotne, ponieważ umożliwia wykonanie elementów o zamierzonym kształcie oraz zapewnia ich prawidłowy montaż. Współczesne standardy branżowe, takie jak ISO 128-23, podkreślają znaczenie odpowiedniego oznaczania linii gięcia w dokumentacji technicznej. Dzięki temu możliwe jest uniknięcie błędów w obróbce oraz zapewnienie zgodności z wymaganiami technicznymi. W rezultacie, zrozumienie roli linii dwupunktowych cienkich w rysunkach technicznych jest niezbędne dla każdego inżyniera i technika, co przyczynia się do efektywności procesów produkcyjnych oraz jakości finalnych wyrobów.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Który z literowych symboli zastosowanych w programie do sterowania, według normy IEC 61131, reprezentuje fizyczne wyjście kontrolera PLC?

A. S
B. Q
C. R
D. I
Odpowiedź "Q" jest poprawna, ponieważ zgodnie z normą IEC 61131, symbol ten oznacza fizyczne wyjścia programowalnych sterowników logicznych (PLC). W praktyce, wyjścia PLC są komponentami, które sterują innymi elementami systemu automatyki, takimi jak przekaźniki, zawory czy silniki. Każde fizyczne wyjście jest zazwyczaj powiązane z określonym portem wyjściowym na sterowniku, co pozwala na precyzyjne kontrolowanie różnorodnych urządzeń. Na przykład, w systemach automatyki przemysłowej, wykorzystanie wyjść "Q" umożliwia załączenie lub wyłączenie urządzeń w odpowiedzi na zdefiniowane warunki. Kluczowe jest zrozumienie, że stosowanie odpowiednich symboli zgodnie z normą IEC 61131 nie tylko ułatwia programowanie, ale również zapewnia zgodność z międzynarodowymi standardami, co jest istotne dla jakości i bezpieczeństwa systemów automatyki. Zdefiniowane symbole, takie jak "I" dla wejść cyfrowych czy "R" dla funkcji rejestracyjnych, pomagają w integralności kodu i jego późniejszym utrzymaniu.

Pytanie 19

Jakie kroki należy podjąć w celu stworzenia układu kombinacyjnego asynchronicznego?

A. Zbudować tabelę Karnaugha, zredukować funkcję, sformułować równanie i w oparciu o nie wykonać schemat logiczny układu
B. Przygotować diagram czasowy, na jego podstawie sformułować równanie stanu oraz narysować schemat z użyciem przerzutników JK
C. Przygotować graf sekwencji, stworzyć program lub wykonać schemat układu z użyciem przerzutników
D. Opracować algorytm przy pomocy metody Grafcet, a następnie na jego podstawie stworzyć program dla sterownika PLC
Poprawna odpowiedź dotyczy procesu projektowania układu kombinacyjnego asynchronicznego, który jest kluczowy w elektronice cyfrowej. Opracowanie tabeli Karnaugha jest istotnym krokiem, ponieważ umożliwia zminimalizowanie funkcji logicznej, co w konsekwencji prowadzi do uproszczenia układu i redukcji liczby używanych bramek logicznych. Minimalizacja funkcji logicznej za pomocą tabeli Karnaugha jest powszechnie stosowaną metodą, która pozwala na wizualizację i eliminację zbędnych zmiennych, co przekłada się na mniejsze zużycie energii oraz miejsce na płytce drukowanej. Po uzyskaniu zminimalizowanej funkcji logicznej, kolejnym krokiem jest zapisanie równania, które służy jako podstawa do stworzenia schematu logicznego. Schemat logiczny przedstawia sposób połączeń między bramkami logicznymi, co jest niezbędne do zbudowania funkcjonalnego układu. Tego rodzaju podejście jest zgodne z dobrymi praktykami inżynierii cyfrowej, gdzie kluczowe jest nie tylko zrozumienie teorii, ale także umiejętność praktycznej aplikacji w projektach inżynieryjnych.

Pytanie 20

Na podstawie przedstawionej noty katalogowej czujników indukcyjnych dobierz sensor spełniający wytyczne do doboru czujnika.

Nota katalogowa czujników indukcyjnych
ModelJM12L – F2NHJM12L – F2PHJM12L – Y4NHJM12L – Y4PH
TypNPN, NO/NCPNP, NO/NCNPN, NO/NCPNP, NO
Napięcie zasilania10÷30 V DC10÷30 V AC10÷30 V DC10÷30 V DC
Pobór prądu100 mA200 mA300 mA200 mA
Robocza strefa działania2 mm2 mm4 mm4 mm
WymiaryM12 / 60 mmM12 / 60 mmM12 / 59,5 mmM18 / 60,5 mm
Sposób podłączeniakabelkabelkabelkabel
Czołozabudowanezabudowaneodkryteodkryte


Wytyczne do doboru czujnika:

  • pobór prądu – nie większy niż 250 mA,
  • średnica obudowy czujnika – 12 mm,
  • po aktywowaniu czujnika jego wyjście powinno zostać zwarte do potencjału dodatniego zasilania.
A. JM12L – F2PH
B. JM12L – Y4NH
C. JM12L – Y4PH
D. JM12L – F2NH
Model JM12L – F2PH został właściwie dobrany zgodnie z zasadami doboru czujników indukcyjnych. Pobór prądu tego czujnika wynosi 200 mA, co jest poniżej maksymalnego dopuszczalnego limitu 250 mA, co jest kluczowe dla zapewnienia stabilności i bezpieczeństwa w instalacjach elektronicznych. Średnica obudowy wynosząca 12 mm (M12) jest odpowiednia dla różnorodnych aplikacji przemysłowych, co czyni ten czujnik uniwersalnym rozwiązaniem. Typ PNP oznacza, że po aktywacji czujnika jego wyjście łączy się z dodatnim potencjałem zasilania, co jest istotne w kontekście integracji z innymi komponentami systemów automatyki. Zastosowanie takich czujników obejmuje m.in. detekcję obecności obiektów w liniach produkcyjnych, kontrolę położenia w mechanizmach oraz monitorowanie procesów, co zwiększa efektywność i precyzję działania maszyn. Warto również zauważyć, że przy wyborze czujników warto kierować się normami IEC oraz ISO, co zapewnia zgodność i bezpieczeństwo w aplikacjach przemysłowych.

Pytanie 21

W trakcie konserwacji układu przekaźników, który jest zabezpieczony bezpiecznikiem topikowym, należy przeprowadzić inspekcję układu, oczyścić go oraz

A. przeanalizować jego działanie oraz skontrolować działanie bezpiecznika topikowego
B. zweryfikować stan połączeń elektrycznych i stan izolacji podłączonych przewodów
C. wymienić przewody elektryczne w układzie i nałożyć cienką warstwę wazeliny na złącza
D. pomalować obudowę farbą i skontrolować momenty dokręcania połączeń śrubowych
Sprawdzanie stanu połączeń elektrycznych oraz izolacji przyłączonych przewodów podczas konserwacji układu przekaźnikowego jest kluczową czynnością, która ma na celu zapewnienie bezpieczeństwa oraz niezawodności systemu. Dobrą praktyką jest regularne monitorowanie stanu tych elementów, ponieważ ich uszkodzenie może prowadzić do awarii, a w konsekwencji do zagrożenia pożarowego czy uszkodzenia sprzętu. Warto zwrócić uwagę na takie aspekty jak: zużycie izolacji, oznaki przegrzewania się przewodów oraz korozję połączeń. Wymiana uszkodzonych elementów oraz zastosowanie odpowiednich materiałów izolacyjnych, zgodnych z normami IEC 60364, pozwala zminimalizować ryzyko uszkodzeń. Regularne przeglądy oraz konserwacje układów elektrycznych są zalecane przez producentów urządzeń i są integralną częścią zarządzania bezpieczeństwem w obiektach przemysłowych i komercyjnych.

Pytanie 22

Obniżenie błędu statycznego, skrócenie czasu odpowiedzi, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów z przetwornika pomiarowego charakteryzuje działanie regulatora

A. P
B. PD
C. PID
D. I
Regulator PD (proporcjonalno-derywacyjny) jest stosowany w systemach regulacji, gdzie kluczowe znaczenie ma szybka reakcja na zmiany w wartościach regulowanych. Jego działanie polega na ograniczeniu błędu statycznego oraz skróceniu czasu reakcji, co czyni go idealnym rozwiązaniem w aplikacjach wymagających dynamicznej regulacji. Przykładami zastosowania regulatora PD są systemy automatyki przemysłowej, gdzie szybkie dostosowanie parametrów, takich jak temperatura czy ciśnienie, jest niezbędne dla zachowania efektywności procesów produkcyjnych. W praktyce, zastosowanie regulatora PD może prowadzić do znacznego zmniejszenia czasu potrzebnego na osiągnięcie wartości docelowej, co jest zgodne z najlepszymi praktykami inżynieryjnymi. Jednakże, należy pamiętać, że przy niższych częstotliwościach może dojść do pogorszenia jakości regulacji, co jest istotnym czynnikiem, który warto uwzględnić podczas projektowania systemu regulacji.

Pytanie 23

Urządzenia mechatroniczne, które jako napędy wykorzystują silniki komutatorowe, nie powinny być stosowane w

A. pomieszczeniach narażonych na wybuch
B. pomieszczeniach o niskich temperaturach
C. pomieszczeniach z klimatyzacją
D. zadaszonej hali produkcyjnej
Silniki komutatorowe są powszechnie stosowane w aplikacjach mechatronicznych, jednak ich użycie w pomieszczeniach zagrożonych wybuchem jest niebezpieczne. Generowane przez nie iskry mogą stanowić bezpośrednie źródło zapłonu w obecności łatwopalnych gazów i pyłów, co jest zgodne z normami bezpieczeństwa, takimi jak ATEX (Dyrektywa Unii Europejskiej dotycząca sprzętu przeznaczonego do pracy w atmosferze wybuchowej). W praktyce, w takich środowiskach wybiera się silniki bezkomutatorowe lub inne konstrukcje zabezpieczone przed wybuchem, co minimalizuje ryzyko zapłonu. Warto zwrócić uwagę, że w przemyśle chemicznym, naftowym czy gazowym, użycie odpowiednich silników zgodnych z normami IECEx jest kluczowe dla zapewnienia bezpieczeństwa operacji. Prawidłowy dobór urządzeń napędowych w tych warunkach nie tylko spełnia wymogi prawne, ale także zabezpiecza ludzi i mienie przed poważnymi zagrożeniami.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Która z podanych zasad musi być przestrzegana przed przystąpieniem do konserwacji lub naprawy urządzenia mechatronicznego posiadającego oznaczenie przedstawione na rysunku?

Ilustracja do pytania
A. Odczytaj informacje o producencie i skontaktuj się z nim przed realizacją działań.
B. Zanotuj wyniki pomiarów podczas diagnostyki.
C. Przeczytaj instrukcję dla większego bezpieczeństwa.
D. Zapisz czynności wykonane podczas eksploatacji.
Poprawna odpowiedź "Przeczytaj instrukcję dla większego bezpieczeństwa" odzwierciedla istotę bezpieczeństwa w pracy z urządzeniami mechatronicznymi. Oznaczenie na rysunku to piktogram, który zwraca uwagę na obowiązek zapoznania się z instrukcją obsługi przed przystąpieniem do jakichkolwiek działań konserwacyjnych lub naprawczych. Instrukcja obsługi dostarcza istotnych informacji na temat poprawnej obsługi urządzenia, procedur bezpieczeństwa oraz wskazówek dotyczących konserwacji. Ignorowanie tych informacji może prowadzić do poważnych uszkodzeń sprzętu lub nawet zagrożeń dla zdrowia użytkownika. Przykładowo, w branży motoryzacyjnej, zaleca się zawsze czytać instrukcje dotyczące wymiany oleju lub filtrów, aby uniknąć błędów, które mogą zagrażać bezpieczeństwu pojazdu. Standardy ISO oraz normy branżowe, takie jak ISO 12100, podkreślają znaczenie oceny ryzyka oraz przestrzegania instrukcji obsługi jako kluczowych elementów bezpiecznej eksploatacji maszyn. W związku z tym, zapoznanie się z instrukcją jest kluczowym krokiem przed każdą interwencją serwisową.

Pytanie 27

W jakim celu stosuje się enkodery w systemach automatyki?

A. Poprawa jakości dźwięku
B. Zwiększanie mocy silnika
C. Pomiar przemieszczenia i prędkości
D. Redukcja zużycia energii
Chociaż wydaje się, że enkodery mogą wpływać na różne aspekty działania systemów, nie zwiększają one mocy silnika. Moc silnika jest określana przez jego konstrukcję oraz zasilanie i nie jest bezpośrednio kontrolowana przez enkodery. Dlatego myślenie, że enkoder mógłby zwiększyć moc, jest błędnym przekonaniem. Co więcej, enkodery same w sobie nie redukują zużycia energii. Ich funkcją jest dostarczanie informacji o położeniu i prędkości, a nie bezpośrednia optymalizacja zużycia energii. Jednak dokładne dane z enkoderów mogą pomóc systemom sterującym w bardziej efektywnym zarządzaniu silnikami, co może pośrednio prowadzić do oszczędności energii. Ostatnia opcja, poprawa jakości dźwięku, jest całkowicie niepowiązana z funkcją enkoderów. Enkodery nie mają wpływu na jakość dźwięku, ponieważ ich zadaniem jest przetwarzanie sygnałów mechanicznych na elektryczne do precyzyjnego pomiaru ruchu, a nie przetwarzanie dźwięku. Te błędne przekonania mogą wynikać z niedokładnego zrozumienia funkcji i zastosowań enkoderów w systemach automatyki, które są bardziej złożone niż mogłoby się wydawać na pierwszy rzut oka.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaki symbol literowy, zgodny z normą IEC 61131, wykorzystywany jest w oprogramowaniu sterującym dla PLC do identyfikacji jego fizycznych wejść dyskretnych?

A. Q
B. S
C. R
D. |
Symbol literowy "|" jest kluczowym elementem w standardzie IEC 61131, który definiuje sposób programowania sterowników PLC. W kontekście adresowania fizycznych wejść dyskretnych, ten symbol pełni rolę prefiksu przed numerem wejścia, co umożliwia jednoznaczne wskazanie, które z cyfrowych wejść jest używane w danym programie. Przykładowo, zapis "|X0" odnosi się do pierwszego wejścia dyskretnego, co jest zgodne z najlepszymi praktykami w branży automatyki. Taki system adresowania ułatwia programistom pracę, ponieważ pozwala na łatwe rozpoznanie, które urządzenie jest połączone z danym wejściem. Ponadto, posługiwanie się tym standardem sprzyja lepszej organizacji kodu oraz jego późniejszej konserwacji, co jest szczególnie istotne w długoterminowych projektach automatyzacji. Zrozumienie i umiejętność stosowania tego symbolu jest podstawą efektywnego programowania w kontekście automatyki przemysłowej.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Do pomiaru prędkości obrotowej wirującego elementu w sposób przedstawiony na rysunku zastosowano czujnik

Ilustracja do pytania
A. ultradźwiękowy.
B. indukcyjny.
C. stroboskopowy.
D. temperatury.
Wybór czujnika temperatury jako metody pomiaru prędkości obrotowej wykazuje fundamentalne błędne założenia dotyczące zasadności stosowania różnych technologii pomiarowych. Czujnik temperatury służy do monitorowania zmian temperatury otoczenia lub obiektów i nie ma zdolności detekcji ruchu ani prędkości obrotowej. Stosowanie go w kontekście pomiarów prędkości obrotowej jest nieuzasadnione, ponieważ nie jest on przystosowany do reagowania na zmiany w polu magnetycznym lub mechanicznych aspektach ruchu. Z kolei czujnik stroboskopowy, choć wykorzystuje zasady optyki do pomiaru prędkości obrotowej, nie jest tak powszechnie stosowany w warunkach przemysłowych, gdzie wymagane są pomiary w trudnych warunkach. Kolejnym błędnym podejściem jest wybór czujnika ultradźwiękowego, który jest przeznaczony do pomiarów odległości i nie jest w stanie efektywnie wykrywać szybkości obrotowej obiektów wirujących. Zrozumienie zasad działania różnych czujników oraz ich zastosowania w praktyce jest kluczowe dla efektywnego monitorowania i kontroli procesów przemysłowych. Niezrozumienie różnic w technologii prowadzi do zastosowania niewłaściwych narzędzi pomiarowych, co może skutkować błędnymi danymi i w konsekwencji negatywnymi skutkami dla całego systemu. W praktyce inżynieryjnej kluczowe jest stosowanie odpowiednich czujników zgodnych z wymaganiami konkretnego zastosowania, co podkreśla znaczenie wyboru odpowiedniej technologii pomiarowej w kontekście efektywności i niezawodności systemów. Właściwe dobieranie narzędzi pomiarowych jest zatem kluczowe dla uzyskania precyzyjnych i wiarygodnych wyników w analizach prędkości obrotowej.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie działania regulacyjne w systemie mechatronicznym opartym na falowniku i silniku indukcyjnym należy podjąć, aby obniżyć prędkość obrotową silnika bez zmiany wartości poślizgu?

A. Zwiększyć proporcjonalnie częstotliwość i wartość napięcia zasilającego
B. Zwiększyć wartość napięcia zasilającego
C. Zmniejszyć częstotliwość napięcia zasilającego
D. Obniżyć proporcjonalnie częstotliwość oraz wartość napięcia zasilającego
Poprawna odpowiedź polega na zmniejszeniu proporcjonalnie częstotliwości oraz wartości napięcia zasilającego w silniku indukcyjnym napędzanym przez przemiennik częstotliwości. W praktyce, takie działanie prowadzi do obniżenia prędkości wirowania wirnika, przy jednoczesnym zachowaniu stałego poziomu poślizgu. Poślizg jest to różnica między prędkością synchronizacyjną a rzeczywistą prędkością obrotową wirnika, a jego wartość pozostaje stabilna, gdy zmienia się obie te parametry w równym stopniu. W aplikacjach przemysłowych, gdy chcemy kontrolować prędkość silników, często stosuje się systemy regulacji, które uwzględniają te zależności. Zmniejszenie zarówno częstotliwości, jak i napięcia jest zgodne z zasadami dobrych praktyk w inżynierii mechatronicznej i pozwala na efektywne zarządzanie energią oraz minimalizację zużycia energii. Dodatkowo, takie podejście zapobiega przeciążeniom silnika oraz wydłuża jego żywotność.

Pytanie 36

Prawidłowo strukturę kinematyczną PPO (TTR) urządzenia manipulacyjnego przedstawiono na

Ilustracja do pytania
A. rysunku 3.
B. rysunku 2.
C. rysunku 4.
D. rysunku 1.
Odpowiedzi wskazujące na inne rysunki są nieprawidłowe, ponieważ nie odzwierciedlają rzeczywistej struktury kinematycznej PPO (TTR) w kontekście urządzeń manipulacyjnych. Rysunki, które nie zawierają poprawnej konfiguracji przegubów, mogą prowadzić do błędnych założeń w projektowaniu systemów robotycznych. Na przykład, jeśli rysunek przedstawia jedynie przeguby obrotowe bez zintegrowania przegubu liniowego, to sugeruje to ograniczenie w zdolności urządzenia do wykonywania złożonych ruchów, co jest kluczowe w wielu zastosowaniach przemysłowych. W praktyce, dobór odpowiednich przegubów ma bezpośredni wpływ na elastyczność i funkcjonalność robota. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wyborów obejmują niewłaściwe zrozumienie roli poszczególnych przegubów i ich wpływu na ruch. Bez zrozumienia, jak te elementy współdziałają, projektanci mogą popełniać błąd w ocenie zdolności kinematycznych urządzenia, co może skutkować niewłaściwym doborem komponentów oraz ograniczeniem funkcjonalności całego systemu. Dlatego tak ważne jest, aby przed podjęciem decyzji projektowych dokładnie analizować każdy aspekt kinematyki oraz stosować sprawdzone standardy branżowe.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Wskaż właściwy sposób odniesienia do zmiennej 64-bitowej w pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 14?

A. MB14
B. MD14
C. MW14
D. ML14
Podczas analizy niepoprawnych odpowiedzi, warto zwrócić uwagę na różnice między typami zmiennych oraz ich odpowiednimi prefiksami. MD14, oznaczające zmienną 32-bitową, jest błędne, ponieważ zmienna 64-bitowa wymaga innego adresowania. Programowanie w środowisku PLC wymaga zrozumienia, że zmienne 32-bitowe są stosowane do przechowywania danych mniejszych niż długość 64 bitów. Wybierając MD14, użytkownik sugeruje, że zmienna zajmuje jedynie połowę dostępnej przestrzeni pamięci, co prowadzi do niewłaściwego wykorzystania zasobów. Z kolei MW14, odnoszące się do zmiennych 16-bitowych, również nie pasuje do kontekstu 64-bitowego przechowywania. Przyjęcie takiego oznaczenia zafałszowuje rzeczywistość pamięci, ponieważ 16 bity to zdecydowanie za mało dla zmiennej, która potrzebuje 64 bitów pamięci. MB14, z kolei, wiąże się z 8-bitowymi zmiennymi i jest zupełnie nieadekwatne dla złożoności zmiennej 64-bitowej. Zrozumienie, jakie prefiksy są używane dla różnych typów zmiennych, jest podstawą programowania w PLC. Stosowanie niewłaściwych prefiksów może prowadzić nie tylko do błędów w adresowaniu, ale także do poważnych problemów z wydajnością i stabilnością całego systemu. Dlatego kluczowe jest, aby programiści PLC byli dobrze zaznajomieni z tymi zasadami oraz ich praktycznym zastosowaniem w codziennej pracy.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.