Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 5 stycznia 2026 14:44
  • Data zakończenia: 5 stycznia 2026 14:55

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z nowotworów jest hormonozależny?

A. Rak krtani.
B. Rak macicy.
C. Rak żołądka.
D. Rak skóry.
Prawidłowo wskazany został rak macicy, który klasycznie zalicza się do nowotworów hormonozależnych, szczególnie w kontekście działania estrogenów. W praktyce klinicznej często mówi się o tzw. nowotworach estrogenozależnych, gdzie nadmierna lub długotrwała stymulacja hormonalna sprzyja rozwojowi zmian nowotworowych. W przypadku raka trzonu macicy istotne znaczenie ma przewaga estrogenów przy braku równoważącego działania progesteronu, co prowadzi do rozrostu endometrium i zwiększa ryzyko transformacji nowotworowej. W standardach onkologicznych podkreśla się znaczenie oceny profilu hormonalnego, a także czynników ryzyka, takich jak otyłość, cykle bezowulacyjne, wczesna menarche czy późna menopauza. Moim zdaniem, z punktu widzenia osoby pracującej w medycynie, kluczowe jest rozumienie, że hormonozależność wpływa nie tylko na etiologię, ale też na diagnostykę i leczenie. W terapii mogą być stosowane leki modulujące gospodarkę hormonalną, np. progestageny w wybranych sytuacjach, a u pacjentek zawsze zwraca się uwagę na wywiad ginekologiczno-endokrynologiczny. W obrazowaniu (USG przezpochwowe, TK, MR) często ocenia się nie tylko sam guz, ale też cechy przerostu endometrium i ogólny stan narządu rodnego, co jest spójne z wiedzą o jego zależności od hormonów. W praktyce profilaktycznej ważne jest też monitorowanie kobiet z grup ryzyka, u których występują zaburzenia hormonalne, bo w tej grupie częściej dochodzi do rozwoju raka macicy. Dobrą praktyką jest łączenie danych klinicznych, endokrynologicznych i obrazowych, żeby jak najwcześniej wychwycić zmiany podejrzane o charakter nowotworowy, co realnie poprawia rokowanie.

Pytanie 2

Którą strukturę anatomiczną i w jakiej projekcji uwidoczniono na radiogramie?

Ilustracja do pytania
A. Wyrostek łokciowy w projekcji osiowej.
B. Wyrostek dziobiasty w projekcji skośnej.
C. Staw kolanowy w projekcji tunelowej.
D. Guz piętowy w projekcji osiowej.
Prawidłowo rozpoznałeś wyrostek łokciowy w projekcji osiowej. Na tym radiogramie patrzymy na staw łokciowy niejako „od tyłu”, wzdłuż długiej osi kości ramiennej i kości przedramienia. Charakterystyczny jest widok bloczka i główki kości ramiennej oraz wyraźne uwidocznienie wyrostka łokciowego, który w tej projekcji tworzy taką jakby półksiężycowatą, masywną strukturę w tylnej części stawu. W projekcji osiowej promień centralny jest skierowany wzdłuż osi wyrostka łokciowego, co pozwala dobrze ocenić jego zarys korowy, powierzchnię stawową oraz ewentualne odłamy kostne. W praktyce technik radiologii wykonuje takie zdjęcie głównie przy podejrzeniu złamania wyrostka łokciowego, awulsji przy urazach bezpośrednich, a także przy kontroli zrostu po zespoleniach chirurgicznych (np. płyty, śruby). Moim zdaniem to jedno z tych zdjęć, gdzie prawidłowe ułożenie pacjenta jest ważniejsze niż „dokręcanie kV” – jeśli łokieć nie jest odpowiednio zgięty (zwykle około 90°) i ustabilizowany, zarysy wyrostka nakładają się i obraz traci wartość diagnostyczną. Według dobrych praktyk (wg standardów radiologii narządu ruchu) w urazach łokcia zaleca się wykonanie minimum dwóch projekcji prostopadłych, ale właśnie projekcja osiowa wyrostka łokciowego jest często dodatkowo zlecana przez ortopedów, kiedy klinicznie bolesny jest tylny przedział stawu. Warto też pamiętać, że na takim zdjęciu łatwo ocenić nie tylko samo złamanie, ale też stopień przemieszczenia odłamów, co ma znaczenie przy kwalifikacji do leczenia operacyjnego lub zachowawczego. W codziennej pracy dobrze jest „nauczyć się na oko” typowego kształtu wyrostka łokciowego w tej projekcji, wtedy różne subtelne nierówności czy zatarcia warstwy korowej szybciej rzucają się w oczy.

Pytanie 3

Podczas którego badania zostały zarejestrowane przedstawione obrazy?

Ilustracja do pytania
A. Scyntygrafii nerek.
B. Ultrasonografii tarczycy.
C. Tomografii nerek.
D. Scyntygrafii tarczycy.
Na ilustracji widoczne są typowe obrazy scyntygraficzne, a więc badanie medycyny nuklearnej, a nie klasycznej radiologii czy ultrasonografii. Częsty błąd polega na tym, że wszystko co jest „obrazkiem z medycyny” wrzuca się do jednego worka i myli się tomografię komputerową z badaniami izotopowymi. W tomografii nerek mielibyśmy do czynienia z przekrojami anatomicznymi o wysokiej rozdzielczości przestrzennej, w odcieniach szarości, z dobrze widoczną korą, miedniczką, naczyniami, ewentualnie kontrastem jodowym w świetle układu kielichowo‑miedniczkowego. Tutaj tego nie ma: obraz jest ziarnisty, barwny, bez wyraźnych granic tkanek, co jednoznacznie sugeruje rejestrację promieniowania gamma pochodzącego z radioznacznika. Równie mylące bywa kojarzenie każdego badania scyntygraficznego z tarczycą, bo to jedno z najczęściej omawianych badań w podręcznikach. Scyntygrafia tarczycy pokazuje pojedynczy narząd w przedniej części szyi, zwykle w jednej projekcji, o kształcie motyla, z symetrycznymi płatami i cieśnią – a nie dwie struktury położone głęboko w jamie brzusznej, po obu stronach kręgosłupa. Rozmieszczenie ognisk na obrazie zdecydowanie nie odpowiada topografii tarczycy. Ultrasonografia tarczycy z kolei w ogóle nie wykorzystuje promieniowania jonizującego ani radiofarmaceutyków. Obraz USG jest czarno‑biały, oparty na echogeniczności tkanek, z widocznym zarysem skóry, mięśni i naczyń, często z dopplerem, ale nigdy w postaci kolorowych „plam aktywności”. Dobre praktyki w diagnostyce obrazowej wymagają, żeby przy rozpoznawaniu rodzaju badania zwracać uwagę na kilka cech: czy obraz jest anatomicznie szczegółowy czy funkcjonalny, czy widać przekroje poprzeczne lub podłużne, w jakiej skali barw jest prezentowany i czy forma obrazu pasuje do typowych przykładów z medycyny nuklearnej. W tym przypadku wszystkie te elementy jednoznacznie wskazują na scyntygrafię nerek, a nie na tomografię komputerową, scyntygrafię tarczycy ani ultrasonografię.

Pytanie 4

Przyczyną zaniku kostnego jest

A. przedawkowanie spożycia wapnia.
B. duży i częsty wysiłek.
C. nadmiar witaminy D3.
D. utrata macierzy kostnej.
Prawidłowo wskazana przyczyna zaniku kostnego to utrata macierzy kostnej. Kość nie jest strukturą „martwą”, tylko żywą tkanką, która stale się przebudowuje. Podstawą tej przebudowy jest właśnie macierz kostna, czyli rusztowanie zbudowane głównie z kolagenu typu I, na którym odkładają się sole mineralne – głównie fosforan wapnia w postaci hydroksyapatytu. Gdy dochodzi do przewagi procesów resorpcji (działanie osteoklastów) nad tworzeniem nowej tkanki kostnej (osteoblasty), macierz jest stopniowo tracona i rozwija się zanik kostny, np. w osteoporozie czy przy długotrwałym unieruchomieniu kończyny. W praktyce klinicznej widać to bardzo wyraźnie w badaniach obrazowych: na zdjęciach RTG obserwuje się obniżenie gęstości kostnej, ścieńczenie beleczek kostnych, poszerzenie jam szpikowych. W densytometrii (DXA) notuje się spadek T-score, co od razu kojarzy się z utratą masy i jakości macierzy kostnej. Moim zdaniem warto zapamiętać, że sama obecność wapnia to za mało – bez prawidłowej macierzy kolagenowej nie ma gdzie tego wapnia „przyczepić”. Dlatego w profilaktyce i leczeniu osteoporozy tak duży nacisk kładzie się nie tylko na suplementację wapnia i witaminy D3, ale też na aktywność fizyczną, prawidłową dietę białkową oraz unikanie leków i stanów, które nasilają resorpcję kości. W standardach postępowania (np. zalecenia towarzystw osteologicznych) wyraźnie podkreśla się rolę równowagi między tworzeniem macierzy a jej degradacją: jeśli ta równowaga jest zaburzona na korzyść utraty, to właśnie wtedy rozwija się zanik kostny, widoczny później w badaniach obrazowych i objawach klinicznych, jak złamania niskoenergetyczne czy obniżenie wzrostu.

Pytanie 5

Która struktura może być oknem akustycznym w badaniu ultrasonograficznym?

A. Wypełnione gazami jelito cienkie.
B. Złóg w pęcherzyku żółciowym.
C. Wypełniony płynem pęcherz moczowy.
D. Przestrzeń międzyżebrowa.
Prawidłowo wskazany wypełniony płynem pęcherz moczowy jest klasycznym przykładem tzw. okna akustycznego w badaniu USG. W praktyce oznacza to, że struktura zawierająca jednorodny płyn bardzo dobrze przewodzi fale ultradźwiękowe, nie rozprasza ich nadmiernie i nie tworzy silnych artefaktów, które zasłaniają głębiej położone narządy. Dzięki temu przez taki pęcherz można „podglądać” struktury leżące za nim, np. macicę, jajniki, prostatę czy fragmenty jelit, z dużo lepszą jakością obrazu. W standardach badań ginekologicznych i urologicznych USG jamy brzusznej zaleca się, żeby pacjent przyszedł z wypełnionym pęcherzem – to nie jest przypadek, tylko właśnie świadome wykorzystanie okna akustycznego. Płyn w pęcherzu jest anechogeniczny, czyli na monitorze widzimy czarny, jednolity obszar, bez wewnętrznych ech. Ułatwia to ocenę ściany pęcherza, polipów, guzów oraz umożliwia lepszą wizualizację narządów miednicy mniejszej. Moim zdaniem to jeden z najbardziej „namacalnych” przykładów, jak fizyka ultradźwięków przekłada się bezpośrednio na praktykę pracy technika elektroradiologii. W codziennej pracy dobrze jest pamiętać, że każde środowisko płynowe w ciele (torbiele, zbiorniki płynu w jamach ciała) może pełnić podobną rolę – często specjalnie wykorzystuje się wysięki lub płyn w jamie otrzewnej czy opłucnej, żeby lepiej zobrazować narządy, które normalnie byłyby częściowo zasłonięte przez gaz lub kości. To jest zgodne z dobrymi praktykami opisywanymi w podręcznikach USG i wytycznych towarzystw radiologicznych: szukamy takich „okien”, które poprawiają jakość obrazu, skracają czas badania i zmniejszają ryzyko błędnej interpretacji.

Pytanie 6

Hiperfrakcjonowanie dawki w teleradioterapii polega na napromienianiu 2 do 3 razy dziennie dawką frakcyjną

A. większą niż 2 Gy i wydłużeniu całkowitego czasu leczenia.
B. mniejszą niż 2 Gy bez zmiany całkowitego czasu leczenia.
C. większą niż 2 Gy bez zmiany całkowitego czasu leczenia.
D. mniejszą niż 2 Gy i wydłużeniu całkowitego czasu leczenia.
Poprawnie – w hiperfrakcjonowaniu w teleradioterapii kluczowe są dwie rzeczy: dawka frakcyjna jest mniejsza niż standardowe 2 Gy oraz całkowity czas leczenia zasadniczo się nie wydłuża. Czyli zamiast np. 1 × 2 Gy dziennie, pacjent dostaje 2–3 frakcje po ok. 1,1–1,2 Gy każda, ale cały plan (np. 6–7 tygodni) trwa podobnie jak w klasycznym schemacie. Z punktu widzenia radiobiologii chodzi o wykorzystanie różnic w zdolności do naprawy uszkodzeń DNA między guzem a zdrowymi tkankami. Mniejsza dawka na frakcję lepiej chroni tkanki późno reagujące (np. rdzeń kręgowy, nerki), a jednocześnie większa liczba frakcji pozwala podnieść całkowitą dawkę biologicznie skuteczną dla guza. Moim zdaniem to jest jeden z fajniejszych przykładów, jak teoria frakcji i model liniowo-kwadratowy (parametry α/β) przekładają się na praktykę. Nowotwory o wysokim współczynniku α/β (np. rak głowy i szyi, część guzów dziecięcych) szczególnie korzystają z takiego schematu, bo są wrażliwe na sumaryczną dawkę, a mniej na wielkość pojedynczej frakcji. W praktyce klinicznej wymaga to dobrej organizacji pracy ośrodka: dokładnego planowania czasów między frakcjami (minimum 6 godzin przerwy), pilnowania harmonogramu i bardzo precyzyjnej kontroli jakości ustawienia pacjenta przy każdym naświetlaniu. W wytycznych wielu towarzystw onkologicznych podkreśla się, że przy hiperfrakcjonowaniu nie chodzi o „wydłużanie leczenia”, tylko o modyfikację podziału dawki przy zachowaniu podobnego czasu całkowitego, tak żeby zwiększyć szansę wyleczenia przy akceptowalnej toksyczności późnej.

Pytanie 7

Który element żołądka zaznaczono strzałką na zdjęciu rentgenowskim?

Ilustracja do pytania
A. Trzon.
B. Wpust.
C. Odźwiernik.
D. Dno.
Na zdjęciu kontrastowym żołądka strzałka wskazuje najwyżej położoną część narządu, wypełnioną kontrastem i powietrzem – to właśnie dno żołądka. Anatomicznie dno leży powyżej linii wpustu (połączenia przełyku z żołądkiem) i tworzy charakterystyczną „kopułę”, która na zdjęciach w pozycji stojącej jest zwykle najbardziej ku górze i lekko po lewej stronie. W badaniach RTG z kontrastem, zgodnie z typowymi opisami radiologicznymi, dno jest miejscem, gdzie gromadzi się pęcherzyk gazowy żołądka, a kontrast układa się poniżej niego, co daje taki wyraźny, zaokrąglony obrys, jak na tym obrazie. W praktyce technika radiologii musi kojarzyć typowy kształt i położenie poszczególnych części żołądka na zdjęciach: dno u góry, trzon bardziej centralnie, odźwiernik niżej i po prawej. To pomaga nie tylko przy samym opisie, ale też przy prawidłowym pozycjonowaniu pacjenta do badań pasażu przewodu pokarmowego czy gastrografii. Moim zdaniem rozpoznawanie dna na RTG to jedna z podstaw, bo zaburzenia jego zarysowania (np. przemieszczenie kopuły gazowej, ubytki wypełnienia, poziomy płyn–gaz) mogą sugerować przepuklinę rozworu przełykowego, zmiany guzowate albo powikłania pooperacyjne. W standardach opisów badań przewodu pokarmowego zawsze zwraca się uwagę na zarys dna, jego wypełnienie kontrastem i obecność gazu. Jeśli na kolejnych zdjęciach widzisz, że najwyższa część żołądka jest gładka, dobrze obrysowana i kontrast rozlewa się szeroko – praktycznie zawsze patrzysz na dno. Takie kojarzenie anatomii z obrazem naprawdę ułatwia potem naukę bardziej skomplikowanych patologii.

Pytanie 8

Emisja fali elektromagnetycznej występuje w procesie rozpadu promieniotwórczego

A. alfa.
B. gamma.
C. beta minus.
D. beta plus.
Prawidłowo wskazana została emisja promieniowania gamma. W fizyce jądrowej mówimy, że rozpad gamma to proces, w którym jądro atomowe przechodzi ze stanu wzbudzonego do stanu o niższej energii, nie zmieniając ani liczby protonów, ani neutronów. Czyli skład jądra zostaje ten sam, ale pozbywa się ono nadmiaru energii właśnie w postaci fali elektromagnetycznej o bardzo wysokiej energii – fotonu gamma. To jest klucz: gamma to nie cząstka materialna jak elektron czy alfa, tylko kwant promieniowania elektromagnetycznego. W medycynie nuklearnej ta właściwość jest wykorzystywana non stop. W badaniach scyntygraficznych czy PET dobiera się takie radioizotopy, które emitują głównie promieniowanie gamma (lub w PET: parę fotonów 511 keV po anihilacji), bo fale elektromagnetyczne gamma dobrze przechodzą przez tkanki i można je zarejestrować gammakamerą lub detektorami PET. Standardem jest np. technet-99m, który po przejściu do stanu podstawowego emituje foton gamma, a aparat rejestruje jego tor i tworzy obraz rozmieszczenia radiofarmaceutyku. Z mojego doświadczenia, dobra praktyka w pracowni medycyny nuklearnej to zawsze myślenie o tym, jakie dokładnie promieniowanie emituje dany izotop: czy jest to czyste gamma, beta plus, beta minus, czy mieszane. Ma to znaczenie dla ochrony radiologicznej, jakości obrazu i dawki dla pacjenta. Warto też pamiętać, że po rozpadzie alfa lub beta jądro potomne często jest w stanie wzbudzonym i dopiero potem „dorzuca” rozpad gamma – więc w dokumentacji fizycznej często widzimy kaskadę: najpierw zmiana składu jądra, a potem emisja fali elektromagnetycznej gamma jako etap „dooczyszczający” energię.

Pytanie 9

Badanie gęstości mineralnej kości metodą DXA należy wykonać

A. z bliższego końca kości strzałkowej.
B. z bliższego końca kości udowej.
C. z dalszego końca kości udowej.
D. z dalszego końca kości strzałkowej.
Prawidłowa odpowiedź „z bliższego końca kości udowej” odnosi się do standardowego miejsca pomiaru gęstości mineralnej kości (BMD) w badaniu DXA w obrębie kończyny dolnej. W praktyce klinicznej za złoty standard uznaje się pomiar w okolicy szyjki kości udowej oraz w obrębie bliższego końca kości udowej, bo to właśnie tam najczęściej dochodzi do złamań osteoporotycznych biodra. Ten rejon zawiera dużo istotnej klinicznie kości beleczkowej, która szybko reaguje na ubytek masy kostnej, leczenie czy zmiany hormonalne. Dzięki temu wynik jest czuły na wczesne zmiany osteoporotyczne i dobrze koreluje z ryzykiem złamania. Z mojego doświadczenia, jeśli ktoś w diagnostyce osteoporozy pamięta tylko dwa miejsca do pomiaru DXA, to powinni to być: bliższy koniec kości udowej (biodro) i odcinek lędźwiowy kręgosłupa. W zaleceniach międzynarodowych (ISCD, IOF) właśnie biodro jest kluczowym obszarem do oceny BMD, szczególnie u osób starszych. Ważne jest też prawidłowe pozycjonowanie: kończyna dolna powinna być ułożona w lekkiej rotacji wewnętrznej, tak aby szyjka kości udowej była dobrze uwidoczniona, a pomiar powtarzalny w kolejnych badaniach kontrolnych. W praktyce technik radiologii zwraca uwagę na ustawienie miednicy, symetrię, brak artefaktów (np. metalowe implanty, zagięte ubranie), bo każdy taki szczegół może zafałszować wynik T-score i Z-score. Warto też wiedzieć, że na podstawie BMD z bliższego końca kości udowej obliczane jest ryzyko złamania w kalkulatorach typu FRAX, co jeszcze bardziej podkreśla wagę tego miejsca pomiaru. Moim zdaniem to jedno z tych pytań, które dobrze utrwalają, że DXA to nie „jakiekolwiek zdjęcie kości”, tylko bardzo ściśle zdefiniowane, powtarzalne pomiary w określonych lokalizacjach anatomicznych.

Pytanie 10

Na ilustracji przedstawiono przygotowanie pacjenta do badania

Ilustracja do pytania
A. ERG
B. KTG
C. EMG
D. EEG
Na zdjęciu widać bardzo typowe przygotowanie do badania EMG – dokładniej do elektroneurografii, czyli stymulacyjnej części badania przewodnictwa nerwowego. Mamy tutaj kończynę z założonym mankietem uziemiającym/odprowadzającym (zielony element) oraz dwie elektrody powierzchowne przyklejone nad mięśniem, do którego dochodzi badany nerw. Dodatkowo z boku widoczna jest elektroda stymulująca (igłowa lub pierścieniowa), którą podaje się krótkie impulsy prądowe. To klasyczny układ: elektroda aktywna i referencyjna nad brzuścem mięśnia oraz elektroda stymulująca w przebiegu nerwu. W EMG rejestruje się potencjały czynnościowe mięśni wywołane pobudzeniem nerwów obwodowych albo spontaniczną aktywność mięśnia. W praktyce technik musi zadbać o kilka rzeczy: dokładne odtłuszczenie skóry, prawidłowe rozmieszczenie elektrod w osi mięśnia, dobrą przyczepność żelowych elektrod i stabilne ułożenie kończyny, żeby artefakty ruchowe nie zniszczyły zapisu. Z mojego doświadczenia wiele problemów z jakością sygnału w EMG wynika z pośpiechu przy przygotowaniu skóry. W badaniach przewodnictwa nerwowego mierzy się latencję, amplitudę i prędkość przewodzenia, co jest kluczowe np. w diagnostyce zespołu cieśni nadgarstka, neuropatii cukrzycowych, uszkodzeń korzeni nerwowych czy urazów nerwów po złamaniach. Standardy pracowni neurofizjologii klinicznej zalecają też kontrolę temperatury kończyny, bo zbyt zimna ręka spowalnia przewodzenie i fałszuje wyniki. Właśnie ten układ elektrod na kończynie, bez udziału głowy, brzucha czy aparatury kardiotokograficznej, jednoznacznie wskazuje na EMG, a nie na EEG, ERG czy KTG.

Pytanie 11

Wynik badania słuchu metodą audiometrii tonalnej wskazuje na

Ilustracja do pytania
A. niedosłuch uwarunkowany genetycznie.
B. słuch w granicach normy.
C. starzenie się narządu słuchu.
D. uraz akustyczny.
Na przedstawionym audiogramie tonalnym widać bardzo charakterystyczny obraz: słuch w niskich i średnich częstotliwościach jest w zasadzie prawidłowy lub tylko lekko obniżony, natomiast w okolicy 4–6 kHz pojawia się wyraźny, głęboki dołek progów słyszenia. Ten tzw. „notch” w wysokich częstotliwościach jest klasycznym obrazem urazu akustycznego, czyli uszkodzenia narządu Cortiego spowodowanego hałasem o dużym natężeniu. Moim zdaniem, jak się raz to zobaczy na wykresie, to później już trudno pomylić z czymś innym. W praktyce zawodowej, szczególnie w medycynie pracy i w diagnostyce laryngologicznej, taki kształt audiogramu kojarzy się przede wszystkim z narażeniem na hałas impulsowy (wystrzał, petarda, prasa mimośrodowa) albo przewlekły hałas przemysłowy bez odpowiedniej ochrony słuchu. Standardy audiologiczne (zarówno krajowe, jak i np. zalecenia WHO czy OSHA) podkreślają, że pierwsze uszkodzenie od hałasu ujawnia się właśnie w zakresie 3–6 kHz, najczęściej z maksimum około 4 kHz, przy zachowanej w miarę dobrej słyszalności w częstotliwościach mowy (0,5–2 kHz). Dlatego pacjent może jeszcze całkiem nieźle rozumieć mowę w cichym otoczeniu, ale zaczyna mieć problemy w hałasie, skarży się na szumy uszne, dyskomfort przy głośnych dźwiękach. W dobrze prowadzonej praktyce diagnostycznej taki wynik zawsze trzeba połączyć z dokładnym wywiadem: praca w hałasie, strzelectwo, koncerty, słuchawki na uszach, brak stosowania ochronników słuchu. W badaniach okresowych pracowników wynik z typowym dołkiem 4 kHz jest sygnałem, że trzeba pilnie zweryfikować warunki akustyczne stanowiska, stosowanie ochronników i ewentualnie zmodyfikować narażenie. Dobrą praktyką jest też kontrolne powtórzenie audiometrii po okresie unikania hałasu, ale prawdziwy uraz akustyczny niestety jest zmianą trwałą, co warto mieć w głowie przy omawianiu wyniku z pacjentem.

Pytanie 12

Wskaż przyczynę powstania artefaktu widocznego na obrazie MR.

Ilustracja do pytania
A. Wymiary obiektu przekroczyły pole widzenia.
B. Błędny dobór cewki gradientowej.
C. Niejednorodność pola magnetycznego.
D. Nieprawidłowa kalibracja aparatu.
Prawidłowo powiązałeś artefakt z przekroczeniem pola widzenia (FOV) przez obrazowany obiekt. Na pokazanym obrazie MR mózgowia widać typowy przykład tzw. wrap-around albo aliasingu: struktury anatomiczne, które „nie mieszczą się” w zadanym polu widzenia, są składane z powrotem na przeciwległą krawędź obrazu. Dzieje się tak, bo system MR próbuje przypisać sygnał z obszaru poza FOV do najbliższej pozycji wynikającej z zakresu próbkowania w przestrzeni k‑przestrzeni. W praktyce wygląda to tak, że np. część tkanek z przodu lub z tyłu głowy pojawia się jakby „nad” mózgiem albo w innym nielogicznym miejscu przekroju. Z mojego doświadczenia, przy głowie ten artefakt widzi się dość często, gdy technik ustawi zbyt małe FOV w kierunku fazowym, bo chce poprawić rozdzielczość albo skrócić czas badania. Standardową dobrą praktyką jest tak dobrać FOV i kierunek kodowania fazy, żeby całe ciało pacjenta w danym przekroju znajdowało się wewnątrz pola widzenia, albo zastosować techniki antyaliasingowe (np. oversampling w kierunku fazowym, no phase wrap, sat bandy). W opisach MR radiolodzy zwracają uwagę, czy artefakt aliasingu nie maskuje istotnych struktur, zwłaszcza w okolicy czaszki, kręgosłupa szyjnego i kończyn. W codziennej pracy technika jest to też kwestia komfortu – jak FOV jest za małe, badanie często trzeba powtarzać, co wydłuża czas i irytuje pacjenta. Dlatego warto odruchowo sprawdzać, czy głowa, brzuch czy inny badany obszar naprawdę mieści się w polu widzenia w obu kierunkach kodowania.

Pytanie 13

Jak oznacza się w systemie międzynarodowym czwarty górny ząb mleczny po stronie prawej?

A. 54
B. 14
C. 84
D. 24
Prawidłowe oznaczenie czwartgo górnego zęba mlecznego po stronie prawej w systemie międzynarodowym (FDI) to 54. Ten system, nazywany też systemem dwucyfrowym, jest standardem przyjętym przez FDI World Dental Federation i stosowany praktycznie wszędzie w nowoczesnej stomatologii, także w opisach radiogramów. Pierwsza cyfra oznacza ćwiartkę łuku zębowego, a druga – pozycję zęba liczoną od linii pośrodkowej. Dla uzębienia mlecznego używa się cyfr 5–8 dla ćwiartek: 5 – górna prawa, 6 – górna lewa, 7 – dolna lewa, 8 – dolna prawa. W tej logice ząb 54 to: „5” – kwadrant górny prawy w uzębieniu mlecznym oraz „4” – czwarty ząb od środka, czyli czwarty ząb mleczny w tym kwadrancie. W praktyce, gdy opisujesz zdjęcie pantomograficzne albo skrzydłowo-zgryzowe u dziecka, wpisujesz właśnie takie oznaczenia: np. próchnica na powierzchni żującej 54, brak zawiązka 15, resorpcja korzenia 54 widoczna w RTG – i każdy stomatolog na świecie wie o jaki ząb chodzi. Moim zdaniem warto od razu wyrobić sobie nawyk rozróżniania: cyfry 1–4 w pierwszej pozycji to zawsze zęby stałe, a 5–8 – mleczne. To bardzo ułatwia czytanie dokumentacji, kart pacjenta i opisów badań obrazowych. W diagnostyce radiologicznej bez poprawnego oznaczenia zębów łatwo pomylić stronę lub ząb, co później może skutkować np. leczeniem niewłaściwego zęba, dlatego standard FDI jest traktowany jako dobra praktyka i wręcz obowiązkowy element profesjonalnego opisu.

Pytanie 14

Którą metodą i w której płaszczyźnie zostało wykonane badanie stawu kolanowego zobrazowane na zdjęciach?

Ilustracja do pytania
A. TK, w płaszczyźnie czołowej.
B. MR, w płaszczyźnie strzałkowej.
C. TK, w płaszczyźnie strzałkowej.
D. MR, w płaszczyźnie czołowej.
Prawidłowo rozpoznano, że na obrazach widoczny jest staw kolanowy w badaniu MR wykonanym w płaszczyźnie czołowej. Świadczą o tym typowe cechy rezonansu magnetycznego: wysoki kontrast tkanek miękkich, bardzo dobra widoczność chrząstki, łąkotek, więzadeł oraz istoty gąbczastej kości, a także charakterystyczny wygląd warstwic obrazów i opisów w nagłówkach. W tomografii komputerowej tkanki miękkie są zdecydowanie słabiej różnicowane, natomiast kość korowa daje bardzo mocny, jasny sygnał. Tutaj wyraźnie widać, że to obraz MR – kość jest bardziej „szara”, a znakomicie podkreślone są łąkotki w obrębie szpary stawowej. Płaszczyzna czołowa (frontalna) oznacza, że obraz przecina ciało z przodu na tył – widzimy jednocześnie przyśrodkową i boczną część stawu, kłykcie kości udowej i piszczeli obok siebie, a nie „z boku” jak w płaszczyźnie strzałkowej. W praktyce klinicznej badanie MR kolana w płaszczyźnie czołowej jest standardowym elementem protokołu – obok sekwencji w płaszczyźnie strzałkowej i poprzecznej. Dzięki temu radiolog może precyzyjnie ocenić łąkotki (szczególnie rogi i trzon), chrząstkę stawową, szparę stawową, obrzęk szpiku oraz ustawienie osi kończyny. Moim zdaniem, w pracy technika bardzo ważne jest, żeby już na pierwszy rzut oka kojarzyć, jak wygląda typowy obraz MR kolana w każdej z płaszczyzn, bo to pozwala od razu wychwycić błędne pozycjonowanie pacjenta albo niewłaściwie dobrany zakres skanowania. W dobrych pracowniach dba się o to, aby zawsze uzyskać komplet projekcji (czołowa, strzałkowa, poprzeczna) w co najmniej jednej sekwencji T1- lub PD-zależnej oraz jednej T2-zależnej, często z fat-sat, właśnie po to, żeby ortopeda miał pełny obraz uszkodzeń więzadeł i łąkotek.

Pytanie 15

Na obrazie radiologicznym uwidoczniono złamanie kości

Ilustracja do pytania
A. strzałkowej.
B. sześciennej.
C. skokowej.
D. piszczelowej.
Na przedstawionym zdjęciu RTG w projekcji bocznej widoczny jest staw skokowy lewy („L” przy obrazie) oraz dalsze odcinki kości podudzia i kości stępu. Linia złamania przebiega w obrębie kości strzałkowej – dokładniej w części dalszej, w okolicy kostki bocznej. Widać wyraźne przerwanie ciągłości warstwy korowej kości i zarys odłamu kostnego, co jest typowym obrazem złamania strzałki. Kość piszczelowa ma zachowaną, gładką korę, bez szczeliny złamania, a kość skokowa i sześcienna zachowują prawidłowy zarys i strukturę beleczkową. W praktyce technika radiologiczna zawsze ocenia takie zdjęcie pod kątem trzech rzeczy: ciągłości korowej, ustawienia odłamów oraz szerokości szpar stawowych. W złamaniach kostki bocznej (kości strzałkowej) zwraca się też uwagę na ewentualne poszerzenie szpary stawu skokowo-goleniowego i podwichnięcie kości skokowej, bo to ma wpływ na dalsze leczenie ortopedyczne. Moim zdaniem warto od razu wyrabiać sobie nawyk „skanowania” RTG od góry do dołu: najpierw trzon piszczeli, potem strzałka, dalej kości stępu i śródstopia, dzięki czemu dużo trudniej przeoczyć takie złamanie. W standardach opisu badań RTG (również wg zaleceń towarzystw ortopedyczno–radiologicznych) podkreśla się konieczność jednoznacznego nazwania złamanej kości, określenia lokalizacji (np. dalsza metaepifiza strzałki) oraz oceny ewentualnego przemieszczenia. Ten obraz dokładnie spełnia kryteria złamania kości strzałkowej, bez cech typowego uszkodzenia kości skokowej, sześciennej czy piszczelowej, dlatego wskazanie odpowiedzi „strzałkowej” jest zgodne z prawidłową interpretacją radiologiczną i z dobrą praktyką kliniczną.

Pytanie 16

Podczas wykonywania zdjęć wewnątrzustnych zębów górnych linia Campera powinna przebiegać w stosunku do płaszczyzny podłogi

A. pod kątem 30°.
B. równolegle.
C. prostopadle.
D. pod kątem 50°.
Prawidłowo – przy wykonywaniu zdjęć wewnątrzustnych zębów górnych linia Campera powinna przebiegać równolegle do płaszczyzny podłogi. Linia Campera to odcinek łączący skrzydełko nosa z górnym brzegiem małżowiny usznej (tragusem). W stomatologii i technice zdjęć wewnątrzustnych traktuje się ją jako orientacyjną płaszczyznę poziomą twarzy. Ustawienie jej równolegle do podłogi stabilizuje pozycję głowy pacjenta i zapewnia powtarzalne warunki ekspozycji. Z mojego doświadczenia, jeśli głowa jest dobrze ustawiona względem linii Campera, łatwiej uniknąć zniekształceń geometrycznych, skróceń czy wydłużeń zębów na obrazie. W praktyce wygląda to tak, że prosisz pacjenta, żeby usiadł prosto, patrzył mniej więcej na wprost, a potem delikatnie korygujesz pochylenie głowy tak, aby linia od skrzydełka nosa do tragusa była możliwie pozioma. To jest szczególnie istotne przy zdjęciach zębów górnych, gdzie łatwo o nachylenie głowy do tyłu lub do przodu, co od razu psuje projekcję. W dobrych praktykach radiologii stomatologicznej zawsze podkreśla się, że pozycjonowanie pacjenta jest tak samo ważne jak dobór parametrów ekspozycji. Właściwe ustawienie głowy względem linii Campera pomaga też zachować prawidłową relację łuku zębowego do wiązki promieniowania, co poprawia czytelność przestrzeni międzykorzeniowych, wierzchołków korzeni i okolicy przywierzchołkowej. W nowoczesnych pracowniach robi się to często „na oko”, ale mimo wszystko opierając się właśnie na tej prostej zasadzie – linia Campera równoległa do podłogi.

Pytanie 17

Do zdjęcia rentgenowskiego żeber w projekcji skośnej tylnej pacjenta należy ustawić

A. tyłem do lampy rentgenowskiej, stroną badaną bliżej kasety.
B. tyłem do lampy rentgenowskiej, stroną badaną oddaloną od kasety.
C. przodem do lampy rentgenowskiej, stroną badaną bliżej kasety.
D. przodem do lampy rentgenowskiej, stroną badaną oddaloną od kasety.
Prawidłowe ustawienie do projekcji skośnej tylnej żeber oznacza, że pacjent stoi przodem do lampy rentgenowskiej (czyli tyłem do kasety), a strona badana znajduje się bliżej kasety. W praktyce wygląda to tak: ustawiasz pacjenta w pozycji AP skośnej, obracając go wokół osi długiej ciała, tak aby badana połowa klatki piersiowej była dosunięta do kasety. Dzięki temu żebra po stronie badanej są rzutowane wyraźniej, z mniejszym powiększeniem i mniejszym zniekształceniem geometrycznym. To jest zgodne z typowymi opisami pozycji RAO/LAO dla żeber w podręcznikach z techniki RTG i zaleceniami większości pracowni. Moim zdaniem kluczowe jest tu zrozumienie, że w projekcjach skośnych żeber zawsze chcemy mieć stronę badaną bliżej detektora, bo to ogranicza efekt powiększenia i rozmycia wynikający z rozbieżności wiązki. Jeżeli badamy żebra przednie, używamy właśnie projekcji skośnych tylnych (AP oblique), a pacjent jest skierowany przodem do lampy. Jeżeli celem są raczej żebra tylne, wtedy częściej stosuje się projekcje skośne przednie (PA oblique), gdzie pacjent stoi tyłem do lampy, a przodem do kasety. W codziennej pracy technika elektroradiologii ważne jest też właściwe oznaczenie strony (L/P) i kąta obrotu, zwykle 35–45°. Przy żebrach bólowych, pourazowych, często robimy serię: projekcja PA lub AP całej klatki plus skośne po stronie bólowej właśnie w takim ustawieniu, jak w tym pytaniu. Dobrą praktyką jest również ustawienie pacjenta tak, aby miejsce największej bolesności znalazło się w centrum wiązki pierwotnej – to od razu poprawia czytelność obrazu i ułatwia lekarzowi ocenę złamań, zniekształceń czy zmian osteolitycznych.

Pytanie 18

Cholangiografia to badanie radiologiczne

A. dróg moczowych.
B. pęcherza moczowego.
C. pęcherzyka żółciowego.
D. dróg żółciowych.
Cholangiografia to radiologiczne badanie dróg żółciowych, czyli przede wszystkim przewodów żółciowych wewnątrz- i zewnątrzwątrobowych oraz przewodu żółciowego wspólnego. Kluczowe jest tu słowo „cholangio-”, które w terminologii medycznej odnosi się właśnie do dróg żółciowych. W praktyce badanie polega na podaniu środka cieniującego (kontrastu) do światła dróg żółciowych i wykonaniu serii zdjęć RTG lub obrazów fluoroskopowych. Dzięki temu przewody, które normalnie są na zdjęciu prawie niewidoczne, stają się wyraźnie zarysowane. Umożliwia to ocenę ich przebiegu, średnicy, obecności zwężeń, poszerzeń, kamieni czy przecieków żółci. W codziennej pracy najczęściej spotyka się cholangiografię śródoperacyjną (IOC) podczas cholecystektomii laparoskopowej, a także ECPW/ERCP, czyli endoskopową cholangiopankreatografię wsteczną, gdzie kontrast podaje się przez brodawkę Vatera pod kontrolą endoskopu. Moim zdaniem warto skojarzyć, że cholangiografia to zawsze obrazowanie dróg żółciowych z użyciem kontrastu i promieniowania rentgenowskiego, a nie np. USG. Z punktu widzenia dobrych praktyk radiologicznych ważne jest prawidłowe przygotowanie pacjenta, kontrola ryzyka alergii na jodowy środek kontrastowy, aseptyczna technika podania oraz ścisła współpraca z zespołem zabiegowym (chirurg, endoskopista). Wynik cholangiografii ma duże znaczenie przy kwalifikacji do zabiegów, np. usuwania złogów z przewodu żółciowego wspólnego, poszerzania zwężeń czy zakładania stentów. To badanie jest też standardem w diagnostyce powikłań pooperacyjnych, takich jak uszkodzenie dróg żółciowych czy przeciek żółci do jamy brzusznej.

Pytanie 19

Jakie symbole mają odprowadzenia kończynowe dwubiegunowe w badaniu EKG?

A. V4, V5, V6
B. I, II, III
C. V1, V2, V3
D. aVR, aVL, aVF
Prawidłowo – odprowadzenia kończynowe dwubiegunowe w standardowym 12‑odprowadzeniowym EKG mają symbole I, II, III. Nazywają się „dwubiegunowe”, bo rejestrują różnicę potencjałów pomiędzy dwiema elektrodami czynnościowymi założonymi na kończyny. W odprowadzeniu I aparat porównuje lewą rękę z prawą ręką (LA–RA), w odprowadzeniu II – lewą nogę z prawą ręką (LL–RA), a w odprowadzeniu III – lewą nogę z lewą ręką (LL–LA. W praktyce klinicznej właśnie te trzy odprowadzenia są podstawą tzw. trójkąta Einthovena, który opisuje elektryczną oś serca w płaszczyźnie czołowej. Z mojego doświadczenia, jeżeli ktoś dobrze ogarnia I, II, III, to dużo łatwiej rozumie potem interpretację osi serca, zmian niedokrwiennych czy przerostów komór. W zapisie monitorującym (np. na OIT czy w ratownictwie) najczęściej używa się właśnie odprowadzenia II, bo zwykle daje ono najwyższe, najbardziej czytelne załamki P i zespoły QRS. To jest taki „roboczy standard” w wielu oddziałach. Warto też pamiętać, że technik zakładający EKG musi poprawnie rozmieścić elektrody kończynowe (czerwony, żółty, zielony, czarny) – nawet jeśli w praktyce klinicznej często daje się je na przedramiona i podudzia, a nie na nadgarstki i kostki. Dla jakości zapisu i poprawnej interpretacji odprowadzeń I, II, III ważne jest jeszcze ograniczenie artefaktów ruchowych, dobra przyczepność elektrod i powtarzalny schemat podłączenia, zgodny z wytycznymi producenta aparatu i standardami pracowni EKG.

Pytanie 20

Na elektrokardiogramie uwidoczniono

Ilustracja do pytania
A. migotanie komór.
B. blok lewej odnogi pęczka Hisa.
C. blok prawej odnogi pęczka Hisa.
D. migotanie przedsionków.
Na przedstawionym zapisie EKG widać typowy obraz migotania przedsionków. Kluczowa cecha, na którą zawsze warto patrzeć, to brak wyraźnych, regularnych załamków P przed zespołami QRS. Zamiast nich linia izoelektryczna jest lekko „pofalowana” – widoczne są drobne, nieregularne fale przedsionkowe (tzw. fale f). Do tego dochodzi całkowicie niemiarowa, „chaotyczna” częstość zespołów QRS, czyli tzw. rytm całkowicie niemiarowy. W praktyce mówi się często: brak P, nieregularne R–R, obecne drobne fale – myślimy o migotaniu przedsionków. W codziennej pracy technika czy pielęgniarki EKG ważne jest, żeby przy każdym opisie rytmu świadomie przejść prosty schemat: najpierw ocena regularności odstępów R–R, potem szukanie załamków P, następnie ocena szerokości QRS. W migotaniu przedsionków QRS-y są zwykle wąskie (jeśli nie ma jednocześnie bloku odnóg), co też widać w tym przykładzie. Taki zapis oznacza, że skurcze przedsionków są całkowicie chaotyczne, a węzeł przedsionkowo‑komorowy przepuszcza impulsy w sposób nieregularny. Z praktycznego punktu widzenia rozpoznanie AF na EKG ma ogromne znaczenie kliniczne: pacjent z takim zapisem wymaga oceny ryzyka zatorowości (skala CHA₂DS₂‑VASc), często wdrożenia leczenia przeciwkrzepliwego i kontroli częstości rytmu komór. W standardach postępowania (m.in. wytyczne ESC) podkreśla się, że pojedynczy 12‑odprowadzeniowy zapis EKG z typowym obrazem, jak tutaj, wystarcza do potwierdzenia rozpoznania. Moim zdaniem warto sobie takie klasyczne przykłady „wdrukować w pamięć”, bo potem na dyżurze, gdy trzeba szybko ocenić monitor czy wydruk z aparatu, decyzja jest znacznie prostsza i pewniejsza. Ten rodzaj zadania dobrze uczy patrzenia na rytm całościowo, a nie tylko na pojedynczy odprowadzenie.

Pytanie 21

Które odprowadzenie w badaniu EKG rejestruje różnice potencjałów pomiędzy lewym a prawym przedramieniem?

A. aVR
B. aVL
C. I
D. III
Prawidłowe jest odprowadzenie I, bo właśnie ono rejestruje różnicę potencjałów pomiędzy prawym a lewym przedramieniem. W standardowym 12‑odprowadzeniowym EKG mamy trzy odprowadzenia kończynowe dwubiegunowe: I, II i III. Odprowadzenie I ma elektrodę dodatnią na lewym przedramieniu (lewa ręka – LA) i elektrodę ujemną na prawym przedramieniu (prawa ręka – RA). Czyli zapis pokazuje, jak impuls elektryczny serca „widzi” różnicę napięcia między tymi dwoma kończynami. To jest absolutna podstawa osi elektrycznej serca i ogólnej interpretacji EKG. W praktyce, jeśli np. elektrodę z prawej ręki założysz w złym miejscu albo odwrotnie podłączysz przewody, odprowadzenie I od razu będzie wyglądało dziwnie: załamki P, zespół QRS czy T mogą się odwrócić. Dlatego technicy EKG i pielęgniarki są uczeni, żeby bardzo pilnować prawidłowego rozmieszczenia elektrod kończynowych – bo odprowadzenia I, II, III są bazą do wyliczania osi serca, a także do tworzenia odprowadzeń aVR, aVL i aVF. Moim zdaniem, jeśli ktoś dobrze rozumie dokładnie to jedno odprowadzenie, to dużo łatwiej ogarnia resztę. W dobrych praktykach przyjmuje się, że elektrody kończynowe można zakładać nie tylko na nadgarstkach, ale też wyżej na przedramionach czy nawet na ramionach, byle zachować układ RA–LA–LL (prawa ręka, lewa ręka, lewa noga). Niezależnie od tego, czy elektroda jest trochę wyżej czy niżej, odprowadzenie I zawsze opisuje różnicę potencjałów między prawą a lewą kończyną górną. To też tłumaczy, dlaczego w odprowadzeniu I przy prawidłowym zapisie QRS jest najczęściej dodatni – fala depolaryzacji komór przebiega ogólnie z prawej strony klatki w lewo, więc wektor elektryczny jest skierowany mniej więcej w stronę elektrody dodatniej na lewej ręce. Dobrze jest sobie to wyobrazić na tzw. trójkącie Einthovena: wierzchołki to prawa ręka, lewa ręka, lewa noga, a odprowadzenie I to „górna krawędź” między RA i LA. To nie jest sucha teoria – w codziennej pracy przy EKG pomaga szybko wychwycić np. odwrotne podłączenie elektrod kończynowych, bo wtedy odprowadzenie I będzie kompletnie nielogiczne w stosunku do II i III.

Pytanie 22

Wskaż osłonę radiologiczną, która jest stosowana w pracowniach radiodiagnostyki stomatologicznej.

A. Osłona 2
Ilustracja do odpowiedzi A
B. Osłona 3
Ilustracja do odpowiedzi B
C. Osłona 4
Ilustracja do odpowiedzi C
D. Osłona 1
Ilustracja do odpowiedzi D
Prawidłowo wskazana „Osłona 2” odpowiada typowemu fartuchowi ochronnemu stosowanemu rutynowo w pracowniach radiodiagnostyki stomatologicznej. Jest to fartuch z materiału ołowiowego (lub równoważnego, np. kompozyty bez ołowiu) o określonym współczynniku równoważnika ołowiu, najczęściej 0,25–0,35 mm Pb dla badań stomatologicznych. Tego typu osłony są projektowane tak, żeby zabezpieczać tułów, narządy szczególnie wrażliwe (szpik kostny, gonady, część jamy brzusznej) oraz tarczycę, przy jednoczesnym zachowaniu wygody i swobody ruchów pacjenta. W gabinecie stomatologicznym, zgodnie z zasadami ochrony radiologicznej i wymaganiami wynikającymi z prawa atomowego oraz zaleceń Państwowej Agencji Atomistyki, pacjent podczas wykonywania zdjęć wewnątrzustnych, pantomograficznych czy cefalometrycznych powinien być osłonięty właśnie takim fartuchem lub jego odmianą (czasem połączoną z kołnierzem na tarczycę). Moim zdaniem kluczowe jest tutaj połączenie dwóch rzeczy: odpowiedniej grubości równoważnika ołowiu i właściwego dopasowania do sylwetki. Jeżeli fartuch jest za krótki, źle zapięty albo zsuwa się z barków, realna skuteczność ochrony spada, nawet jeśli teoretycznie spełnia normy. W praktyce technik elektroradiologii zawsze powinien sprawdzić, czy fartuch dobrze przylega, czy nie ma ubytków w materiale osłonowym i czy nie jest mechanicznie uszkodzony (pęknięcia, załamania). Dobrą praktyką jest też regularna kontrola fartuchów w badaniu rentgenowskim serwisowym, żeby wykryć ewentualne nieszczelności. W radiologii stomatologicznej stosuje się jeszcze dodatkowe osłony lokalne – np. kołnierze na tarczycę u dzieci – ale podstawowym elementem, który większość osób kojarzy z gabinetem RTG u dentysty, jest właśnie taki fartuch jak na ilustracji oznaczonej jako Osłona 2.

Pytanie 23

Na jakim etapie procesu karcynogenezy dochodzi do inwazji miejscowej nowotworu i tworzenia przerzutów odległych?

A. Inicjacji.
B. Konwersji.
C. Progresji.
D. Promocji.
Prawidłowo wskazany etap to progresja i to jest kluczowy moment w całej karcynogenezie. W fazie progresji nowotwór przestaje być tylko miejscową zmianą ograniczoną do nabłonka czy tkanki wyjściowej, a zaczyna wykazywać pełne cechy złośliwości klinicznej. Komórki nowotworowe nabywają zdolność do inwazji miejscowej – przechodzą przez błonę podstawną, niszczą podścielisko, wnikają do naczyń krwionośnych i limfatycznych. To właśnie wtedy dochodzi do tworzenia przerzutów odległych, czyli zajęcia narządów takich jak płuca, wątroba, kości czy mózg. Z punktu widzenia praktyki medycznej ten etap ma ogromne znaczenie rokownicze: nowotwór w fazie progresji zwykle odpowiada zaawansowanym stopniom TNM (np. T3–T4, N+, M1), co wpływa na wybór leczenia – częściej stosuje się leczenie systemowe (chemioterapia, immunoterapia, terapia celowana), a nie tylko zabieg chirurgiczny. W codziennej diagnostyce radiologicznej i onkologicznej właśnie w tej fazie szukamy cech inwazji: naciekania ścian narządów, przekraczania powięzi, zajęcia węzłów chłonnych, obecności zmian meta w narządach odległych. Moim zdaniem warto pamiętać też, że progresja to efekt nagromadzenia wielu mutacji i niestabilności genetycznej – komórki stają się coraz bardziej agresywne, szybciej rosną, są mniej zależne od sygnałów regulacyjnych organizmu. W standardach onkologicznych uznaje się, że dopiero nowotwór zdolny do inwazji i przerzutowania jest pełnoprawnym rakiem złośliwym, a nie tylko zmianą przedinwazyjną czy dysplastyczną. Dlatego skojarzenie: progresja = inwazja + przerzuty jest bardzo praktyczne i przydatne na egzaminach oraz w realnej pracy z pacjentami.

Pytanie 24

Zdjęcie zatok przynosowych wykonuje się w pozycji

A. siedzącej przy otwartych ustach.
B. siedzącej przy zamkniętych ustach.
C. leżącej przy otwartych ustach.
D. leżącej przy zamkniętych ustach.
Prawidłowa odpowiedź „siedzącej przy otwartych ustach” wynika z techniki klasycznego badania RTG zatok przynosowych, zwłaszcza zatok szczękowych, w tzw. projekcji Watersa (occipito–mentalnej) lub jej odmianach. Pozycja siedząca jest standardem w praktyce radiologicznej, bo pozwala na względnie komfortowe ułożenie pacjenta, stabilne oparcie głowy o kasetę lub detektor oraz łatwe skorygowanie ustawienia w trakcie badania. Co ważne, w pozycji siedzącej łatwiej też utrzymać prawidłowe oddychanie i współpracę pacjenta, co bezpośrednio przekłada się na mniejszą liczbę poruszonych, nieczytelnych zdjęć. Otworzenie ust ma znaczenie czysto anatomiczno–obrazowe: przy szeroko otwartej jamie ustnej opuszcza się żuchwa, a cień kości żuchwowej nie nakłada się tak mocno na obraz zatok, szczególnie zatok szczękowych i częściowo klinowych. Dzięki temu struktury powietrzne zatok są lepiej uwidocznione, łatwiej ocenić poziomy płynu, zgrubienia błony śluzowej, polipy czy inne zmiany zapalne. Z mojego doświadczenia, w pracowniach diagnostyki obrazowej bardzo pilnuje się właśnie tego detalu – technik często prosi: „proszę usiąść prosto, pochylić głowę i szeroko otworzyć usta”. Jest to zgodne z podręcznikowym opisem pozycjonowania pacjenta do RTG zatok i z wytycznymi, które kładą nacisk na maksymalne odsłonięcie zatok przy jednoczesnym ograniczeniu dawki i liczby powtórzeń zdjęć. W praktyce klinicznej, gdy pacjent nie jest w stanie stać (np. po urazie), pozycja siedząca jest najbardziej uniwersalnym kompromisem, łączącym bezpieczeństwo, wygodę i jakość obrazu, dlatego uważa się ją za podstawową dla klasycznego zdjęcia zatok przynosowych.

Pytanie 25

Który obraz MR mózgu został wykonany w sekwencji DWI?

A. Obraz 4
Ilustracja do odpowiedzi A
B. Obraz 1
Ilustracja do odpowiedzi B
C. Obraz 3
Ilustracja do odpowiedzi C
D. Obraz 2
Ilustracja do odpowiedzi D
Wybór innego obrazu niż Obraz 2 wynika zwykle z mylenia charakterystycznych cech sekwencji DWI z typowym wyglądem sekwencji T1-, T2- czy FLAIR-zależnych. W klasycznych sekwencjach anatomicznych patrzymy głównie na różnice w czasie relaksacji T1 i T2 oraz na zawartość płynu, natomiast w DWI kluczowa jest dyfuzja cząsteczek wody w tkankach. To zupełnie inny kontrast fizyczny. Obraz 1 prezentuje typowy obraz T1-zależny po kontraście: istotne jest dobre odwzorowanie struktur anatomicznych, jasne zarysy zakrętów, wyraźne wzmocnienie naczyń i opon, a płyn mózgowo-rdzeniowy jest ciemny. Wiele osób bierze taki obraz za „bardziej zaawansowany” i przez to kojarzy go z DWI, ale to błąd – DWI rzadko daje tak czytelny, kontrastowy obraz anatomiczny. Obraz 3 ma cechy sekwencji FLAIR: płyn mózgowo-rdzeniowy jest wygaszony (ciemny), istota biała i szara mają odwrócone kontrasty względem T1, a zmiany naczyniopochodne i demielinizacyjne są jasne w istocie białej. To bardzo użyteczna sekwencja w diagnostyce SM czy przewlekłych zmian naczyniowych, ale nie pokazuje wprost ograniczenia dyfuzji. Obraz 4 odpowiada sekwencji T2-zależnej: płyn jest bardzo jasny, istota biała ciemniejsza od szarej, a granice komór są dobrze podkreślone. T2 jest świetna do oceny obrzęku, guzów, zmian zapalnych, ale świeży udar może być tu jeszcze mało widoczny albo niespecyficzny. W DWI najważniejsze jest właśnie to, że zmiany z ograniczoną dyfuzją są bardzo jasne na tle relatywnie ciemnego mózgowia, a sam obraz bywa ziarnisty, z artefaktami EPI. Typowym błędem jest kierowanie się wyłącznie „ładnością” obrazu lub jasnością płynu w komorach zamiast świadomie rozpoznawać typ kontrastu i fizykę sekwencji. Dobra praktyka w pracowni MR to zawsze łączenie wyglądu obrazu z opisem parametrów na konsoli (b-wartości, EPI, DWI/ADC), żeby nie mylić DWI z T2 czy FLAIR, które też potrafią pokazywać jasne ogniska, ale z zupełnie innych przyczyn fizycznych.

Pytanie 26

„Ognisko zimne” w obrazie scyntygraficznym określa się jako

A. zmianę najczęściej o charakterze łagodnym.
B. zmianę o większej aktywności hormonalnej.
C. obszar niegromadzący radioznacznika.
D. obszar gromadzący znacznik jak reszta miąższu.
Pojęcie „ogniska zimnego” w scyntygrafii oznacza dokładnie obszar, który nie gromadzi radioznacznika, albo gromadzi go istotnie mniej niż otaczający, prawidłowy miąższ. Na obrazie z gammakamery taki obszar wygląda jak ubytek zliczeń, „dziura” w obrazie, miejsce ciemniejsze lub wręcz bez sygnału, podczas gdy reszta narządu świeci prawidłowo. Z mojego doświadczenia to jedno z podstawowych pojęć w medycynie nuklearnej, a mimo to często myli się je z terminami z USG czy TK. W praktyce klinicznej zimne ognisko może oznaczać np. torbiel, zwapnienie, martwicę, guz pozbawiony czynnego miąższu, a w tarczycy także nowotwór złośliwy – dlatego w standardach postępowania (np. w diagnostyce guzków tarczycy) podkreśla się, że guzek zimny wymaga dalszej oceny, często biopsji cienkoigłowej. Sam wygląd „zimny” nie oznacza automatycznie, że zmiana jest łagodna albo złośliwa, tylko że w tym miejscu nie ma prawidłowo funkcjonującej tkanki wychwytującej radiofarmaceutyk. W dobrych praktykach opisu badań scyntygraficznych zawsze porównuje się dystrybucję radioznacznika w obrębie całego narządu, oceniając czy ognisko jest izo-, hiper- czy hipouptake, czyli odpowiednio: prawidłowe, „gorące” lub właśnie „zimne”. Ważne jest też korelowanie obrazu scyntygraficznego z innymi metodami obrazowania (USG, TK, MR) oraz z objawami klinicznymi pacjenta. Dzięki temu technik czy lekarz medycyny nuklearnej może właściwie zinterpretować, czy zimne ognisko to np. torbiel, stary zawał narządowy, obszar pooperacyjny czy potencjalnie istotna zmiana onkologiczna. Moim zdaniem warto zapamiętać to w prosty sposób: zimne ognisko = brak wychwytu = „dziura” w obrazie, która zawsze wymaga chwili zastanowienia i zwykle dalszej diagnostyki.

Pytanie 27

Przedstawiony obraz radiologiczny został zarejestrowany podczas badania jelita

Ilustracja do pytania
A. cienkiego po doustnym podaniu środka kontrastującego.
B. cienkiego po doodbytniczym podaniu środka kontrastującego.
C. grubego po doustnym podaniu środka kontrastującego.
D. grubego po doodbytniczym podaniu środka kontrastującego.
Na obrazie widać klasyczną wlewkę doodbytniczą jelita grubego (tzw. badanie kontrastowe jelita grubego z barytem). Środek cieniujący został podany od strony odbytnicy, dlatego kontrast bardzo dokładnie wypełnia światło okrężnicy, odwzorowując jej zarys, haustracje i przebieg. Jelito grube ma charakterystyczny obraz: szerokie światło, wyraźne haustry układające się w takie jakby segmenty, brak typowych dla jelita cienkiego fałdów okrężnych przechodzących przez całe światło. Na zdjęciu widoczny jest zarys okrężnicy wstępującej, poprzecznej, zstępującej i esicy, co jednoznacznie przemawia za jelitem grubym. Po doodbytniczym podaniu kontrastu uzyskujemy tzw. badanie wlewu kontrastowego, które w standardowej praktyce radiologicznej stosuje się głównie do oceny zmian strukturalnych jelita grubego: zwężeń, uchyłków, guzów, nieprawidłowego poszerzenia, zaburzeń zarysów fałdów śluzówki. W technikach zgodnych z dobrymi praktykami (np. zalecenia towarzystw radiologicznych) pacjent jest odpowiednio przygotowany – oczyszczenie jelita, często dieta płynna dzień wcześniej – tak żeby kontrast równomiernie wypełniał światło i nie było artefaktów z zalegających mas kałowych. Moim zdaniem to jedno z badań, na których bardzo dobrze widać różnicę między jelitem cienkim a grubym, co przydaje się potem przy interpretacji tomografii czy badań z podwójnym kontrastem. Warto zapamiętać: jelito grube + baryt podany od dołu = wlew doodbytniczy, taki jak na tym zdjęciu.

Pytanie 28

W ułożeniu do rentgenografii AP stawu kolanowego promień główny pada

A. prostopadle na podstawę rzepki.
B. prostopadle na wierzchołek rzepki.
C. pod kątem 30° na wierzchołek rzepki.
D. pod kątem 30° na podstawę rzepki.
Prawidłowe ułożenie do projekcji AP stawu kolanowego zakłada, że promień główny pada prostopadle na wierzchołek rzepki. Chodzi o to, żeby centralna wiązka przechodziła przez oś stawu kolanowego, mniej więcej na poziomie szpary stawowej, a punktem orientacyjnym na skórze jest właśnie wierzchołek rzepki. Przy takim ustawieniu unikamy sztucznego wydłużenia lub skrócenia struktur kostnych, a odwzorowanie szpary stawowej jest możliwie najbardziej zbliżone do rzeczywistości anatomicznej. W standardach opisów projekcji AP kolana podkreśla się, że promień powinien być prostopadły do kasety i do płaszczyzny stawu, bez dodatkowej angulacji, chyba że mamy szczególne wskazania (np. ocena określonych powierzchni stawowych lub pacjent z deformacją osi kończyny). W praktyce technik ustawia pacjenta w pozycji leżącej na plecach lub stojącej, kończyna dolna wyprostowana, rzepka skierowana do przodu, a kaseta pod kolanem. Centralny promień kieruje dokładnie na wierzchołek rzepki – to jest wygodny, łatwy do znalezienia punkt orientacyjny, który dobrze pokrywa się z osią stawu. Moim zdaniem warto to sobie skojarzyć: AP kolana – prostopadle – wierzchołek rzepki. Dzięki temu uzyskujemy poprawną ocenę przynasad kości udowej i piszczeli, szerokości szpary stawowej, ewentualnych zwężeń w chorobie zwyrodnieniowej, ustawienia rzepki względem bloczka kości udowej. To ma bezpośrednie przełożenie na jakość diagnostyki, bo ortopeda czy radiolog od razu widzi, czy obraz jest wykonany zgodnie z zasadami, czy coś jest zniekształcone przez złe pozycjonowanie.

Pytanie 29

Podczas wykonywania zdjęcia rentgenowskiego klatki piersiowej w celu ochrony radiologicznej pacjenta należy zastosować

A. fartuch ołowiowy założony z tyłu pacjenta.
B. półfartuch ołowiowy założony z tyłu pacjenta.
C. półfartuch ołowiowy założony z przodu pacjenta.
D. fartuch ołowiowy założony z przodu pacjenta.
Prawidłowo wskazany został półfartuch ołowiowy założony z tyłu pacjenta. W projekcji PA klatki piersiowej pacjent stoi przodem do detektora, a lampa rentgenowska znajduje się z tyłu. To oznacza, że pierwotna wiązka promieniowania wchodzi od strony pleców, przechodzi przez klatkę piersiową i pada na detektor przed pacjentem. Z punktu widzenia ochrony radiologicznej właśnie od strony źródła promieniowania trzeba zabezpieczyć te okolice, które nie są przedmiotem badania, np. narządy rozrodcze, część jamy brzusznej czy tarczycę w pewnych ustawieniach. Półfartuch ołowiowy zakładany z tyłu osłania obszary znajdujące się bezpośrednio „po drodze” wiązki pierwotnej, a jednocześnie nie przysłania pola obrazowania klatki piersiowej, więc nie psuje zdjęcia. W praktyce klinicznej zgodnie z zasadą ALARA i wytycznymi ochrony radiologicznej unika się osłaniania tych części ciała, które mają być dokładnie zobrazowane, bo ołów powoduje artefakty i może zasłonić istotne struktury, np. fragment płuca czy śródpiersia. Dlatego fartuch z przodu w projekcji PA nie ma sensu – promieniowanie już przeszło przez pacjenta, a dodatkowo istnieje ryzyko, że krawędź fartucha wejdzie w pole obrazowania. Moim zdaniem dobrze jest zapamiętać prostą zasadę praktyczną: w standardowym RTG klatki piersiowej PA – osłona od strony lampy, czyli z tyłu; w innych projekcjach zawsze myślimy, skąd idzie wiązka i co chcemy chronić, żeby z jednej strony nie zwiększać niepotrzebnie dawki, a z drugiej nie utrudniać diagnostyki.

Pytanie 30

Osłony na gonady dla osób dorosłych powinny posiadać równoważnik osłabienia promieniowania nie mniejszy niż

A. 0,75 mm Pb
B. 0,50 mm Pb
C. 0,35 mm Pb
D. 1,00 mm Pb
Prawidłowo – dla osób dorosłych osłony na gonady powinny mieć równoważnik osłabienia co najmniej 1,00 mm Pb. Wynika to z zasad ochrony radiologicznej, gdzie gonady traktuje się jako narząd szczególnie wrażliwy, kluczowy dla płodności i ryzyka dziedzicznych skutków promieniowania. Grubość 1,00 mm ołowiu zapewnia bardzo wysoki stopień osłabienia wiązki promieniowania w typowych warunkach badań RTG, np. w radiografii miednicy, bioder, kręgosłupa lędźwiowego. Przy takiej grubości osłony dawka pochłonięta przez jądra lub jajniki jest istotnie zredukowana, a jednocześnie osłona jest jeszcze na tyle ergonomiczna, że da się ją wygodnie stosować w praktyce. Moim zdaniem ważne jest, żeby nie traktować tej wartości jako „opcji”, tylko jako minimum – jeśli w pracowni są osłony cieńsze, to dla dorosłych nie spełniają one standardów ochrony. W dobrych pracowniach radiologicznych rutynowo stosuje się osłony gonadowe właśnie o grubości około 1 mm Pb, dopasowane kształtem: fartuchy typu „figi”, ochraniacze moszny, osłony na okolice miednicy. Warto pamiętać, że zgodnie z zasadą ALARA (As Low As Reasonably Achievable) redukujemy dawkę wszędzie tam, gdzie to możliwe, bez utraty jakości diagnostycznej obrazu. Dobrze dobrana osłona 1 mm Pb nie powinna wchodzić w pole obrazowania i nie może zasłaniać interesujących nas struktur, dlatego tak ważne jest poprawne pozycjonowanie pacjenta i prawidłowe ułożenie samej osłony. Z mojego doświadczenia wiele błędów w pracowni polega właśnie na tym, że ktoś ma dobrą osłonę, ale źle ją zakłada i albo wchodzi w projekcję, albo w ogóle nie przykrywa gonad. Sama grubość 1,00 mm Pb to jedno, a prawidłowa technika i nawyk jej stosowania – drugie, równie ważne.

Pytanie 31

Radiogram przedstawia

Ilustracja do pytania
A. prawidłową miednicę 10-letniego chłopca w ocenie panewki.
B. ciężki uraz miednicy w mechanizmie stycznym.
C. prawidłową miednicę u osoby starszej w ocenie panewki.
D. złamanie w obrębie szyjki kości udowej z przemieszczeniem linii Shentona.
Prawidłowo rozpoznano złamanie szyjki kości udowej z przerwaniem i przemieszczeniem linii Shentona. Na standardowym zdjęciu AP miednicy linia Shentona to gładki, ciągły łuk biegnący wzdłuż dolnego brzegu gałęzi górnej kości łonowej i przyśrodkowego obrysu szyjki kości udowej. W zdrowym stawie biodrowym tworzy ona elegancki, równy łuk bez załamań. Każde jego przerwanie, uskoku czy „schodek” to klasyczny radiologiczny sygnał złamania szyjki lub zwichnięcia stawu biodrowego. Na tym radiogramie dokładnie to widać – łuk nie jest ciągły, a fragment bliższego końca kości udowej jest przemieszczony względem panewki. Moim zdaniem to jedno z tych badań, gdzie naprawdę warto przyzwyczaić oko do oceny linii Shentona, bo w praktyce SOR-owej czy na ortopedii często dostajemy zdjęcia słabej jakości, z rotacją, otyłością itd. i ten prosty znak bardzo pomaga. W dobrych praktykach radiologii układu kostno‑stawowego zaleca się rutynową ocenę kilku „linii kontrolnych”: właśnie linii Shentona, linii iliofemoralnej, ciągłości sklepienia panewki. U dorosłych, zwłaszcza u osób starszych, złamania szyjki kości udowej bywają trudne do zauważenia, szczególnie gdy przemieszczenie jest niewielkie. Dlatego standardem jest: jeśli klinika (ból biodra, brak obciążania kończyny, skrócenie i rotacja zewnętrzna) nie zgadza się z „prawidłowym” RTG, to robi się dodatkowe projekcje lub TK. W praktyce technika radiologii powinna też zadbać o prawidłowe ułożenie pacjenta – kończyny lekko do wewnątrz – żeby szyjka nie nakładała się na panewkę. To bardzo ułatwia ocenę linii Shentona i wczesne wychwycenie nawet dyskretnych złamań.

Pytanie 32

Zadaniem technika elektroradiologa w pracowni naczyniowej jest

A. nadzorowanie sprawnego działania aparatury rentgenowskiej.
B. wprowadzenie cewnika w światło naczyń.
C. przygotowanie cewników.
D. przygotowanie niezbędnych narzędzi.
Prawidłowo wskazana rola technika elektroradiologa w pracowni naczyniowej to nadzorowanie sprawnego działania aparatury rentgenowskiej. W pracowni angiograficznej technik jest odpowiedzialny przede wszystkim za stronę techniczną badania, a nie za wykonywanie czynności inwazyjnych w obrębie naczyń. To lekarz – najczęściej radiolog interwencyjny, kardiolog lub chirurg naczyniowy – wprowadza cewnik do światła naczynia, prowadzi go, podaje kontrast i wykonuje właściwy zabieg. Technik natomiast musi zadbać o to, żeby cały system obrazowania działał stabilnie, bezpiecznie i dawał obrazy o jak najlepszej jakości przy możliwie najmniejszej dawce promieniowania. W praktyce oznacza to m.in. prawidłowe ustawienie parametrów ekspozycji, kontrolę pracy lampy rentgenowskiej, generatora, stołu angiograficznego, systemu akwizycji obrazu oraz monitorów. Technik sprawdza przed badaniem poprawność działania układów sterowania, kolimatorów, systemów automatycznej kontroli ekspozycji, a także współpracuje z lekarzem przy doborze protokołów obrazowania, np. częstości serii, czasu akwizycji, projekcji, synchronizacji z podaniem kontrastu. Moim zdaniem bardzo ważne jest też to, że technik pilnuje bezpieczeństwa radiologicznego całego zespołu i pacjenta: dobiera osłony, kontroluje dawkę, dba o prawidłowe ustawienie ramienia C, żeby ograniczyć niepotrzebne ekspozycje. W dobrze działającej pracowni naczyniowej technik jest takim „operatorem systemu”, który musi szybko reagować, gdy pojawiają się komunikaty błędów, spadek jakości obrazu, przegrzewanie lampy czy problemy z archiwizacją w systemie PACS. To wszystko bezpośrednio przekłada się na bezpieczeństwo zabiegu, komfort pracy lekarza i skuteczność diagnostyki oraz terapii.

Pytanie 33

W pozytonowej tomografii emisyjnej PET zostaje zarejestrowane promieniowanie powstające podczas

A. rozpraszania culombowskiego.
B. rozpraszania comptonowskiego.
C. anihilacji pary proton-antyproton.
D. anihilacji pary elektron-pozyton.
W pozytonowej tomografii emisyjnej (PET) kluczowym zjawiskiem fizycznym jest właśnie anihilacja pary elektron–pozyton. Radiofarmaceutyk podany pacjentowi emituje pozytony, czyli antycząstki elektronów. Pozyton w tkankach bardzo szybko traci energię kinetyczną, zderzając się z elektronami otoczenia, aż w końcu dochodzi do ich spotkania i anihilacji. W wyniku tej anihilacji powstają dwa fotony promieniowania gamma o energii 511 keV każdy, emitowane prawie dokładnie w przeciwnych kierunkach (pod kątem około 180°). To właśnie te dwa skorelowane fotony są rejestrowane w aparacie PET w trybie tzw. koincydencji. Z mojego doświadczenia to jest najważniejszy fizyczny „trik” PET-u: aparat nie widzi bezpośrednio pozytonu, tylko parę fotonów po anihilacji. Detektory ułożone dookoła pacjenta rejestrują jednoczesne (w bardzo krótkim oknie czasowym) uderzenia fotonów w przeciwległe kryształy scyntylacyjne. Na tej podstawie system rekonstruuje linię, wzdłuż której musiała zajść anihilacja, czyli tzw. line of response (LOR). Sumując miliony takich zdarzeń, komputer odtwarza rozkład radioaktywności w organizmie. W praktyce klinicznej, np. w onkologii, pozwala to ocenić metabolizm glukozy w guzach przy użyciu 18F-FDG albo wychwyt innych znaczników. Standardy pracowni medycyny nuklearnej (np. EANM) podkreślają znaczenie prawidłowego doboru radiofarmaceutyku i kalibracji systemu detekcji właśnie pod kątem rejestracji fotonów 511 keV i ich koincydencji. Moim zdaniem, jak dobrze zrozumiesz mechanizm anihilacji i rejestracji tych dwóch fotonów, dużo łatwiej ogarnąć później takie rzeczy jak korekcja osłabienia, rozpraszania czy artefakty w obrazach PET/CT.

Pytanie 34

W jakiej pozycji układa się pacjenta do standardowego badania MR kręgosłupa szyjnego?

A. Na plecach, głową do magnesu.
B. Na plecach, nogami do magnesu.
C. Na brzuchu, nogami do magnesu.
D. Na brzuchu, głową do magnesu.
Prawidłowa pozycja do standardowego badania MR kręgosłupa szyjnego to ułożenie pacjenta na plecach (pozycja na wznak), głową wsuwaną jako pierwszą do otworu magnesu. Wynika to z budowy aparatu MRI i charakterystyki cewek nadawczo‑odbiorczych przeznaczonych do badania odcinka szyjnego. Dedykowana cewka szyjna, tzw. cewka „neck” lub „head & neck”, jest projektowana właśnie do pozycji leżącej na plecach, z głową stabilnie podpartą i unieruchomioną w jej wnętrzu. Taka konfiguracja zapewnia optymalny sygnał, równomierne pole magnetyczne oraz wysoką rozdzielczość przestrzenną obrazów. W praktyce technik najpierw układa pacjenta na stole, wyrównuje oś długą kręgosłupa z osią stołu, zakłada cewkę, stabilizuje głowę wałkami i podkładkami, a dopiero potem wsuwa stół do gantry, tak aby odcinek szyjny znalazł się dokładnie w centrum izocentrum magnesu. Standardy pracowni MR oraz dobre praktyki mówią też o komforcie pacjenta: pozycja na plecach jest dla większości osób najbardziej neutralna i możliwa do utrzymania przez kilkanaście–kilkadziesiąt minut bez nadmiernego bólu czy napięcia mięśni. Dodatkowo w tej pozycji łatwiej jest utrzymać głowę nieruchomo, co ma ogromne znaczenie, bo nawet niewielkie ruchy powodują artefakty ruchowe i pogorszenie jakości obrazów T1‑ i T2‑zależnych, sekwencji STIR czy 3D. Moim zdaniem warto też pamiętać o drobiazgach: przed badaniem zawsze prosimy pacjenta, żeby wygodnie ułożył barki i ręce, bo jeśli ramiona są nienaturalnie ułożone, to po kilku minutach zaczyna się wiercić i cała jakość sekwencji szyjnej leci w dół. W typowym protokole MR szyi i kręgosłupa szyjnego nie stosuje się pozycji na brzuchu, bo utrudnia ona oddychanie, komunikację z pacjentem i utrzymanie stabilnej pozycji głowy. Dlatego właśnie odpowiedź z pozycją na plecach i głową do magnesu odzwierciedla zarówno standardy producentów aparatów, jak i codzienną praktykę w pracowniach rezonansu magnetycznego.

Pytanie 35

Na obrazie scyntygrafii perfuzyjnej serca strzałką wskazano ścianę

Ilustracja do pytania
A. przegrodową serca.
B. boczną serca.
C. przednią serca.
D. dolną serca.
Na przedstawionym obrazie widzimy klasyczny wycinek z tomograficznej scyntygrafii perfuzyjnej mięśnia sercowego (SPECT) w projekcji krótkiej osi (short axis). Taki obraz pokazuje pierścień mięśnia lewej komory, a legenda z prawej strony wyraźnie opisuje orientację: po lewej mamy „septal”, po prawej „lateral”, u góry okolica podstawna, u dołu okolica koniuszka (apeksu), z przodu „anterior”, niżej „inferior”. Strzałka skierowana jest właśnie na stronę opisaną jako „septal”, czyli ścianę przegrodową serca. Ściana przegrodowa odpowiada za część przegrody międzykomorowej lewej komory i jest bardzo ważna w ocenie choroby wieńcowej, szczególnie przy podejrzeniu zwężeń w obrębie gałęzi międzykomorowej przedniej i pnia lewej tętnicy wieńcowej. W praktyce klinicznej, przy analizie takich obrazów, zawsze najpierw ustala się orientację: gdzie jest przegroda, gdzie ściana boczna, gdzie przednia i dolna. Standardem jest korzystanie z opisu orientacji na pasku referencyjnym po boku lub z szablonu „bull’s eye”. Moim zdaniem warto od początku wyrabiać sobie nawyk mentalnego „obracania” serca: pamiętać, że na ustandaryzowanych obrazach SPECT ściana przegrodowa leży zwykle po lewej stronie ekranu w projekcji short axis, a ściana boczna po prawej. Dokładna identyfikacja ściany przegrodowej ma znaczenie nie tylko przy rozpoznawaniu niedokrwienia, ale też przy planowaniu zabiegów kardiologii inwazyjnej, kontroli efektów rewaskularyzacji oraz przy kwalifikacji do terapii resynchronizującej. W dobrych pracowniach medycyny nuklearnej zawsze kładzie się nacisk na poprawne ustawienie pacjenta, korektę ruchu i prawidłową rekonstrukcję, żeby odwzorowanie ściany przegrodowej i pozostałych segmentów lewej komory było jak najbardziej wiarygodne i powtarzalne.

Pytanie 36

Skrótem HRCT (High Resolution Computed Tomography) określa się tomografię komputerową

A. wielorzędową.
B. wiązki stożkowej 3D.
C. spiralną.
D. wysokiej rozdzielczości.
Skrót HRCT rozwija się jako High Resolution Computed Tomography, czyli tomografia komputerowa wysokiej rozdzielczości. Chodzi tu przede wszystkim o specjalny sposób doboru parametrów badania (cienkie warstwy, małe pole obrazowania, wysokiej jakości rekonstrukcje przestrzenne), a nie o inny typ aparatu. Moim zdaniem warto to sobie dobrze poukładać: HRCT to nie jest osobny „rodzaj tomografu”, tylko specjalny protokół badania TK, najczęściej stosowany do oceny miąższu płuc. W praktyce klinicznej HRCT klatki piersiowej wykonuje się z bardzo cienkimi warstwami (np. 0,5–1,25 mm), przy użyciu algorytmu rekonstrukcji wysokiej rozdzielczości (tzw. filtr kostny lub filtr wysokiej częstotliwości), co pozwala zobaczyć drobne struktury, jak przegrody międzyzrazikowe, drobne oskrzeliki czy wczesne włóknienie. W standardach opisowych radiologii przy chorobach śródmiąższowych płuc (np. wytyczne Fleischner Society) właśnie HRCT jest badaniem referencyjnym, bo umożliwia ocenę charakteru zmian typu „matowa szyba”, siateczkowania, rozstrzeni oskrzeli czy obrazów typu plaster miodu. W codziennej pracy technika elektroradiologii oznacza to konieczność prawidłowego ustawienia cienkich warstw, odpowiedniego zakresu skanowania oraz dobrania rekonstrukcji w płaszczyznach dodatkowych (MPR), często w oknach płucnych i śródpiersia. Dobrą praktyką jest też ograniczanie dawki przy jednoczesnym zachowaniu wysokiej rozdzielczości przestrzennej, co realizuje się przez odpowiedni dobór mAs, kV oraz nowoczesne algorytmy rekonstrukcji iteracyjnej. Warto zapamiętać: HRCT = wysoka rozdzielczość przestrzenna obrazu, a nie konkretny kształt wiązki czy tryb pracy gantry.

Pytanie 37

Na zamieszczonym radiogramie strzałką oznaczono kość

Ilustracja do pytania
A. sześcienną.
B. grochowatą.
C. łódkowatą.
D. łódeczkowatą.
Na radiogramie w projekcji bocznej stawu skokowego strzałka wskazuje kość łódkowatą (ossa naviculare pedis). W tej projekcji kość łódkowata leży pomiędzy bloczkiem kości skokowej a trzema kośćmi klinowatymi, trochę jak „łącznik” w przedniej części stępu. Charakterystyczne jest to, że na zdjęciu bocznym widzimy ją jako owalną, dość zwartą strukturę kostną położoną przed głową kości skokowej. W praktyce technika radiologiczna zakłada, że przy ocenie bocznego RTG stawu skokowego zawsze „przesuwamy wzrok” od kości piszczelowej, przez skokową i piętową, aż do właśnie kości łódkowatej i dalszych kości śródstopia. Dobrą praktyką jest świadome identyfikowanie poszczególnych kości stępu, bo urazy w tej okolicy, szczególnie zmęczeniowe, bywają łatwo przeoczone. Moim zdaniem warto zapamiętać, że kość łódkowata stopy na bocznym RTG leży dokładnie przed głową kości skokowej – jakby ją „obejmuje” od przodu. To pomaga w szybkim rozpoznawaniu jej na każdym badaniu. W diagnostyce obrazowej typowe wskazania do oceny kości łódkowatej to urazy sportowe, bóle przodostopia, podejrzenie jałowej martwicy (choroba Köhlera), a także ocena łuku podłużnego stopy przy płaskostopiu. Standardy opisów radiologicznych zalecają systematyczną analizę wszystkich elementów stawu skokowego i stępu, właśnie po to, żeby nie skupić się tylko na kostkach i kości piętowej, a pominąć subtelne zmiany w obrębie kości łódkowatej. Im częściej będziesz na takich zdjęciach świadomie wyszukiwać tę kość, tym szybciej zaczniesz ją rozpoznawać niemal automatycznie.

Pytanie 38

Znak umieszczony w pracowni rezonansu magnetycznego zakazuje wstępu osobom

Ilustracja do pytania
A. z nadciśnieniem tętniczym.
B. z kardiomiopatią.
C. z zaburzeniami krążenia.
D. z rozrusznikiem serca.
W pracowni rezonansu magnetycznego kluczowe zagrożenie wynika z bardzo silnego stałego pola magnetycznego oraz szybko zmieniających się pól gradientowych. Rozrusznik serca to urządzenie elektroniczne oparte najczęściej na elementach ferromagnetycznych i wrażliwej elektronice. Silne pole magnetyczne może zakłócić jego pracę, przełączyć tryby, wywołać niekontrolowaną stymulację albo całkowicie uszkodzić układ. Może też dojść do przemieszczenia generatora lub elektrod, bo metal w polu magnetycznym „chce się ustawić” względem linii pola. Z mojego doświadczenia to jest absolutny klasyk przeciwwskazań, omawiany na każdym szkoleniu BHP do MR. Dlatego na drzwiach pracowni MR umieszcza się właśnie taki piktogram – serce z przewodem, przekreślone czerwonym znakiem zakazu. Ma on informować pacjentów i personel, że osoby z rozrusznikiem serca (chyba że to specjalny, certyfikowany MR-conditional i w ściśle kontrolowanych warunkach) nie mogą wchodzić do strefy pola magnetycznego. W wytycznych producentów MR oraz w standardach bezpieczeństwa (np. zalecenia Europejskiego Towarzystwa Radiologicznego, wytyczne kardiologiczne dotyczące urządzeń wszczepialnych) rozrusznik jest traktowany jako przeciwwskazanie bezwzględne albo co najmniej wymagające bardzo szczegółowej kwalifikacji. W praktyce technik radiologii zawsze przed badaniem MR przeprowadza dokładny wywiad: pyta o wszczepione urządzenia, karty implantów, zabiegi kardiochirurgiczne. Jeżeli pacjent zgłasza rozrusznik, badanie MR w standardowej pracowni po prostu się nie odbywa, a dobiera się inną metodę obrazowania, np. TK lub USG. Ten znak ma więc nie tylko znaczenie „teoretyczne”, ale jest codziennym, praktycznym narzędziem bezpieczeństwa, które ma zapobiec bardzo groźnym powikłaniom, włącznie z zatrzymaniem krążenia.

Pytanie 39

Do środków kontrastujących negatywnych należą

A. siarczan baru i dwutlenek węgla.
B. powietrze i podtlenek azotu.
C. związki jodu i siarczan baru.
D. podtlenek azotu i siarczan baru.
Prawidłowo wskazane zostały środki kontrastujące negatywne: powietrze i podtlenek azotu. W radiologii przyjęło się dzielić kontrasty na pozytywne i negatywne. Pozytywne to takie, które mają większą gęstość i większą liczbę atomową niż otaczające tkanki, więc na obrazie RTG, TK wychodzą jako jaśniejsze (radiopakowe) – typowy przykład to związki jodu czy siarczan baru. Natomiast środki kontrastujące negatywne mają mniejszą gęstość niż tkanki i zawierają pierwiastki o niskiej liczbie atomowej, głównie gazy, przez co pochłaniają mało promieniowania i na obrazie są ciemniejsze (radiolucentne). Do klasycznych negatywnych kontrastów zalicza się właśnie powietrze, dwutlenek węgla, czasem tlen, a w starszych technikach także podtlenek azotu. W praktyce klinicznej powietrze jako kontrast negatywny stosowano np. w podwójnym kontrastowaniu przewodu pokarmowego (baryt + powietrze) przy badaniu żołądka czy jelita grubego, żeby lepiej uwidocznić fałdy śluzówki, drobne nadżerki, polipy. Podtlenek azotu historycznie używano podobnie jak inne gazy, choć obecnie częściej korzysta się z powietrza lub CO2, bo są łatwiej dostępne i bezpieczniejsze przy odpowiednich procedurach. Moim zdaniem warto zapamiętać prostą zasadę: jeśli kontrast to gaz, zwykle mówimy o kontraście negatywnym; jeśli sól baru lub związek jodu – to kontrast pozytywny. W wytycznych i dobrych praktykach radiologicznych podkreśla się, że dobór typu kontrastu (pozytywny/negatywny lub kombinacja) zależy od tego, jaką strukturę chcemy uwidocznić i jakiej techniki obrazowania używamy. Kombinacja barytu z powietrzem w tzw. badaniu z podwójnym kontrastem do dziś jest wzorcowym przykładem wykorzystania kontrastu negatywnego do zwiększenia szczegółowości obrazu.

Pytanie 40

Fistulografia to badanie kontrastowe

A. naczyń włosowatych.
B. przetok.
C. naczyń tętniczych.
D. żylaków.
Fistulografia to klasyczne badanie kontrastowe wykonywane właśnie w przypadku przetok, czyli nieprawidłowych połączeń między narządami, jamami ciała albo skórą. Kluczowe jest tu to, że kontrast podaje się bezpośrednio do światła przetoki – przez zewnętrzny otwór skórny albo przez dren – a nie do naczynia krwionośnego. Dzięki temu na zdjęciach RTG dokładnie widać przebieg kanału przetoki, jego długość, szerokość, ewentualne rozgałęzienia i połączenia z sąsiednimi strukturami. W praktyce klinicznej fistulografia jest szczególnie ważna np. przy przetokach okołoodbytniczych, pooperacyjnych, jelitowo-skórnych czy przetokach w obrębie układu moczowego. Umożliwia chirurgowi zaplanowanie zabiegu – gdzie ciąć, czego się spodziewać, które odcinki przetoki są martwicze, a które jeszcze drożne. Z mojego doświadczenia nauki w pracowni RTG największym plusem jest to, że badanie jest relatywnie proste technicznie: potrzebny jest środek cieniujący (zwykle jodowy, czasem wodnorozpuszczalny, żeby nie podrażniał tkanek) i aparat RTG z możliwością fluoroskopii. Ważne są też zasady dobrej praktyki: delikatne wprowadzenie kaniuli do przetoki, powolne podawanie kontrastu, unikanie nadmiernego ciśnienia, żeby nie rozerwać ścian kanału. Zwraca się też uwagę na pozycjonowanie pacjenta – tak, aby cały przebieg przetoki był w polu obrazowania. W nowocześniejszych ośrodkach stosuje się czasem połączenie fistulografii z TK (tzw. CT-fistulografia), co daje jeszcze dokładniejszą ocenę relacji przetoki do narządów sąsiadujących. Mimo rozwoju USG i TK, klasyczna fistulografia nadal jest uznawana za wartościowe, tanie i dość łatwo dostępne badanie obrazowe w diagnostyce przetok.