Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 lutego 2026 20:51
  • Data zakończenia: 7 lutego 2026 21:10

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie danych przedstawionych w tabeli dotyczącej twardego dysku, ustal, który z wniosków jest poprawny?

Wolumin (C:)
    Rozmiar woluminu            = 39,06 GB
    Rozmiar klastra             =  4 KB
    Zajęte miejsce              = 31,60 GB
    Wolne miejsce               =  7,46 GB
    Procent wolnego miejsca     = 19 %
    
    Fragmentacja woluminu
    Fragmentacja całkowita       =  9 %
    Fragmentacja plików          = 19 %
    Fragmentacja wolnego miejsca =  0 %
A. Defragmentacja nie jest potrzebna, całkowita fragmentacja wynosi 9%
B. Defragmentacja jest niepotrzebna, fragmentacja plików wynosi 0%
C. Wymagana jest defragmentacja dysku, całkowita fragmentacja wynosi 19%
D. Dysk należy zdefragmentować, ponieważ fragmentacja wolnego miejsca wynosi 19%
Wielu użytkowników mylnie uważa, że wszelka fragmentacja wymaga natychmiastowej defragmentacji. Jednak nie każdy poziom fragmentacji wpływa znacząco na wydajność systemu. Przy fragmentacji całkowitej wynoszącej 9% wpływ na działanie systemu jest zazwyczaj niezauważalny. Tym bardziej, że nowoczesne systemy operacyjne są zoptymalizowane pod kątem zarządzania fragmentacją, co czyni ręczne interwencje często zbędnymi. Myśli, że fragmentacja plików na poziomie 19% wymaga defragmentacji, jest błędne, szczególnie gdy wolne miejsce jest dobrze zorganizowane, co pokazuje fragmentacja wolnego miejsca wynosząca 0%. Taki stan wskazuje, że nowe dane mogą być efektywnie zapisywane bez dodatkowego rozpraszania. Warto zauważyć, że częsta defragmentacja może być niekorzystna szczególnie dla dysków SSD, które nie działają na tej samej zasadzie co tradycyjne HDD. W ich przypadku defragmentacja może prowadzić do zużycia żywotności pamięci flash. Dobre praktyki branżowe zalecają ocenę rzeczywistego wpływu fragmentacji na wydajność i przeprowadzanie działań optymalizacyjnych tylko wtedy, gdy jest to absolutnie konieczne. Regularne monitorowanie oraz zarządzanie przestrzenią dyskową przy wykorzystaniu wbudowanych narzędzi może zapobiec niepotrzebnym interwencjom.

Pytanie 2

Aby odzyskać dane ze sformatowanego dysku twardego, należy wykorzystać program

A. Acronis True Image
B. CD Recovery Toolbox Free
C. CDTrack Rescue
D. RECUVA
Wśród dostępnych odpowiedzi pojawiają się różne programy związane z odzyskiwaniem danych, ale niestety nie wszystkie są uniwersalne, ani nawet przeznaczone do dysków twardych. Na przykład CDTrack Rescue oraz CD Recovery Toolbox Free to narzędzia, które w głównej mierze zostały zaprojektowane do pracy z płytami CD oraz DVD, głównie pod kątem ratowania plików z uszkodzonych, porysowanych lub źle nagranych nośników optycznych. To zupełnie inna kategoria problemów niż odzyskiwanie informacji ze sformatowanego dysku twardego. W praktyce te programy nie pracują z systemami plików typowymi dla dysków HDD czy SSD (jak NTFS czy exFAT), więc raczej się nie sprawdzą w sytuacjach, kiedy trzeba ratować dane po formacie dysku systemowego lub magazynującego. Z kolei Acronis True Image jest bardzo znanym oprogramowaniem, ale ono służy głównie do tworzenia kopii zapasowych i klonowania dysków, a nie do odzyskiwania pojedynczych skasowanych plików czy katalogów po formacie. Użytkownicy bardzo często mylą pojęcia backupu (kopii bezpieczeństwa) z odzyskiwaniem danych bezpośrednio z uszkodzonego nośnika. Moim zdaniem to dość powszechny błąd – wydaje się, że skoro program radzi sobie z obrazami dysków, to może też wydobyć coś po formacie. Jednak bez wcześniej wykonanego backupu Acronis nie pomoże. Standardy branżowe jasno określają, że do takich zadań używa się narzędzi typu data recovery, które wyszukują usunięte pliki na poziomie sektorów i rekordów MFT – a właśnie takie możliwości daje Recuva. Dobra praktyka polega na doborze rozwiązania do konkretnego problemu i nie mieszaniu procedur przeznaczonych dla różnych typów nośników czy scenariuszy awarii.

Pytanie 3

Program typu recovery, w warunkach domowych, pozwala na odzyskanie danych z dysku twardego w przypadku

A. uszkodzenia silnika dysku.
B. uszkodzenia elektroniki dysku.
C. przypadkowego usunięcia danych.
D. zalania dysku.
Programy typu recovery są zaprojektowane głównie z myślą o sytuacjach, gdy dane zostały przypadkowo usunięte – przez użytkownika lub w wyniku awarii systemu plików. To właśnie wtedy narzędzia takie jak Recuva, TestDisk czy EaseUS Data Recovery mają największą skuteczność. Mechanizm działania opiera się na fakcie, że po usunięciu pliku system operacyjny przeważnie tylko oznacza miejsce na dysku jako wolne, ale fizycznie dane nadal tam pozostają, póki nie zostaną nadpisane innymi plikami. Takie rozwiązania pozwalają odzyskać zdjęcia, dokumenty, a nawet całe partycje, jeśli tylko dysk jest sprawny fizycznie. Moim zdaniem warto znać różnicę między uszkodzeniem logicznym a fizycznym – programy recovery nie są w stanie naprawić sprzętu, ale świetnie radzą sobie z przypadkowym skasowaniem plików. Dobrą praktyką jest natychmiastowe zaprzestanie korzystania z dysku po utracie danych, by nie dopuścić do nadpisania tych sektorów. Branża IT poleca też robienie regularnych kopii zapasowych – to chyba najprostszy sposób na uniknięcie problemów z utraconymi plikami. Gdy dojdzie do sytuacji awaryjnej, warto pamiętać, by działać spokojnie i nie instalować narzędzi recovery na tym samym dysku, z którego chcemy odzyskać dane.

Pytanie 4

Na płycie głównej doszło do awarii zintegrowanej karty sieciowej. Komputer nie ma dysku twardego ani innych napędów, takich jak stacja dysków czy CD-ROM. Klient informuje, że w sieci firmowej komputery nie mają napędów, a wszystko "czyta" się z serwera. Aby przywrócić utraconą funkcjonalność, należy zainstalować

A. kartę sieciową samodzielnie wspierającą funkcję Postboot Execution Enumeration w gnieździe rozszerzeń
B. kartę sieciową samodzielnie wspierającą funkcję Preboot Execution Environment w gnieździe rozszerzeń
C. napęd CD-ROM w komputerze
D. dysk twardy w komputerze
Zastosowanie napędu CD-ROM czy dysku twardego w opisanej sytuacji jest nieodpowiednie z kilku kluczowych powodów. Komputer, który nie ma dostępu do lokalnych napędów, nie może korzystać z tradycyjnych metod rozruchu. Napęd CD-ROM, jako urządzenie optyczne, wymaga fizycznego dostępu do nośników danych, co stoi w sprzeczności z twierdzeniem klienta, że wszystkie operacje są wykonywane z serwera. Ponadto, instalacja dysku twardego nie zaspokaja potrzeby rozruchu zdalnego; wymagałoby to lokalnego systemu operacyjnego, co w opisanej sytuacji jest niemożliwe. Karty sieciowe wspierające funkcje Postboot Execution Enumeration (PBE) są także niewłaściwym wyborem, ponieważ ta technologia jest związana z późniejszym etapem rozruchu, a nie z jego inicjacją, co sprawia, że nie adresuje problemu z brakiem funkcjonalności spowodowanego uszkodzeniem zintegrowanej karty. W takich sytuacjach kluczowe jest zrozumienie, jak różne technologie są ze sobą powiązane oraz jakie są ich konkretne zastosowania w praktyce. Nieprawidłowe podejście do rozwiązywania problemów w takich sytuacjach może prowadzić do znacznych opóźnień w przywracaniu operacyjności systemu, co w środowisku firmowym może być szczególnie kosztowne.

Pytanie 5

Na początku procesu uruchamiania sprzętowego komputera, wykonywany jest test

A. POST
B. BIOS
C. MBR
D. DOS
Odpowiedź POST (Power-On Self-Test) jest prawidłowa, ponieważ jest to proces, który odbywa się zaraz po włączeniu komputera. Podczas POST system sprawdza podstawowe komponenty sprzętowe, takie jak pamięć RAM, procesor, karta graficzna oraz inne urządzenia peryferyjne, aby upewnić się, że wszystkie są poprawnie podłączone i działają. Jeśli testy te zakończą się pomyślnie, BIOS przechodzi do uruchomienia systemu operacyjnego z dysku twardego lub innego nośnika. Praktyczne zastosowanie tego mechanizmu ma kluczowe znaczenie dla stabilności i niezawodności systemu komputerowego, ponieważ pozwala zidentyfikować ewentualne problemy sprzętowe na wczesnym etapie. Dobrą praktyką jest również regularne sprawdzanie i diagnostyka sprzętu, co może zapobiec poważnym awariom. Wiedza na temat POST jest istotna dla specjalistów IT, którzy muszą być w stanie szybko diagnozować problemy z uruchamianiem komputerów.

Pytanie 6

Jakie urządzenie można kontrolować pod kątem parametrów za pomocą S.M.A.R.T.?

A. Dysku twardego
B. Procesora
C. Płyty głównej
D. Chipsetu
Płyty główne, procesory i chipsety nie są monitorowane za pomocą technologii S.M.A.R.T., co często prowadzi do nieporozumień wśród użytkowników. Płyta główna, jako centralny element komputera, nie posiada wbudowanego systemu S.M.A.R.T. do analizy swojego stanu. Jej komponenty, takie jak kondensatory, złącza czy układy scalone, mogą być monitorowane w inny sposób, ale nie przez S.M.A.R.T. Z kolei procesory, które odpowiadają za przetwarzanie danych, również nie są objęte tą technologią. Monitorowanie ich wydajności i temperatury odbywa się za pomocą innych narzędzi, takich jak Intel Power Gadget czy AMD Ryzen Master. Chipset, jako zestaw układów scalonych na płycie głównej, pełni funkcje komunikacyjne, ale także nie korzysta z S.M.A.R.T. do monitorowania stanu. Typowym błędem myślowym jest utożsamianie S.M.A.R.T. z ogólnym monitorowaniem sprzętu komputerowego, co powoduje, że użytkownicy mogą mylnie sądzić, że dotyczy to wszystkich komponentów. W rzeczywistości S.M.A.R.T. jest specyficzne dla dysków twardych i SSD, co podkreśla jego unikalność w kontekście monitorowania stanu nośników danych.

Pytanie 7

Na schemacie przedstawiono sieć o strukturze

Ilustracja do pytania
A. siatek
B. drzew
C. magistrali
D. gwiazd
Topologia magistrali to struktura sieciowa, w której wszystkie urządzenia są podłączone do jednego wspólnego medium transmisyjnego, najczęściej kabla, nazywanego magistralą. W tego typu sieci każde urządzenie może komunikować się bezpośrednio z innym poprzez to wspólne medium, co upraszcza proces instalacji i zmniejsza koszty materiałowe. Główna zaleta topologii magistrali to jej prostota i efektywność w małych sieciach, gdzie dane są przesyłane w jednym kierunku i nie ma potrzeby skomplikowanego zarządzania ruchem. Współczesne przykłady zastosowania to starsze sieci Ethernet, gdzie przesyłanie danych odbywa się w postaci ramek. Standardy takie jak IEEE 802.3 opisują specyfikacje dla sieci tego typu. Magistrala jest korzystna tam, gdzie wymagane są ekonomiczne rozwiązania w prostych konfiguracjach. Jednakże w miarę wzrostu liczby urządzeń mogą pojawić się problemy z przepustowością oraz kolizjami danych, dlatego w dużych sieciach często wybiera się inne topologie. Dodatkową korzyścią jest łatwość diagnozowania problemów przy użyciu narzędzi takich jak analizatory sygnałów, co przyspiesza proces rozwiązywania problemów technicznych.

Pytanie 8

Jaki adres IPv4 wykorzystuje się do testowania protokołów TCP/IP na jednym hoście?

A. 127.0.0.1
B. 128.0.0.1
C. 1.1.1.1
D. 224.0.0.9
Adres IPv4 127.0.0.1, znany również jako 'localhost' lub 'adres loopback', jest specjalnym adresem używanym do komunikacji wewnętrznej w obrębie jednego hosta. Dzięki temu adresowi aplikacje mogą wysyłać i odbierać dane bez konieczności interakcji z siecią zewnętrzną. Jest to kluczowe w testowaniu i diagnostyce aplikacji sieciowych, ponieważ umożliwia sprawdzenie, czy stos protokołów TCP/IP działa poprawnie na danym urządzeniu. Na przykład, programiści mogą korzystać z tego adresu do testowania serwerów aplikacyjnych, ponieważ pozwala to na symulację działania aplikacji bez potrzeby zakupu zewnętrznego dostępu do sieci. Adres 127.0.0.1 jest zarezerwowany przez standardy IETF w RFC 1122 i nie może być przypisany do fizycznego interfejsu sieciowego, co czyni go idealnym do lokalnych testów. W praktyce, aby przetestować działanie serwera HTTP, można użyć przeglądarki internetowej, wpisując 'http://127.0.0.1', co spowoduje połączenie z lokalnym serwerem, jeśli taki jest uruchomiony.

Pytanie 9

Jak można zwolnić miejsce na dysku, nie tracąc przy tym danych?

A. backup dysku
B. oczyszczanie dysku
C. sprawdzanie dysku
D. defragmentację dysku
Defragmentacja dysku to proces, który reorganizuje dane na dysku twardym, aby przyspieszyć dostęp do plików, ale nie zwalnia miejsca. Defragmentacja ma sens jedynie w kontekście dysków mechanicznych, gdzie dane mogą być rozproszone. W przypadku dysków SSD, defragmentacja jest niezalecana, ponieważ może prowadzić do szybszego zużycia nośnika. Backup dysku to czynność polegająca na tworzeniu kopii zapasowej danych, co jest kluczowe dla zapewnienia bezpieczeństwa informacji, ale również nie przyczynia się do zwolnienia miejsca na dysku. Sprawdzanie dysku dotyczy wykrywania błędów i problemów z nośnikiem, ale również nie ma wpływu na ilość zajmowanego miejsca. Typowym błędem jest mylenie tych procesów z oczyszczaniem dysku. Użytkownicy mogą sądzić, że defragmentacja, backup czy sprawdzanie dysku mają na celu zwolnienie miejsca, co jest nieprawidłowe. Kluczowe jest zrozumienie, że aby skutecznie zwolnić miejsce, należy skupić się na usuwaniu zbędnych plików, co jest esencją oczyszczania dysku. Każde z wymienionych działań ma swoje znaczenie i zastosowanie, ale nie powinny być mylone z funkcją oczyszczania, której celem jest bezpośrednie zwolnienie przestrzeni na dysku.

Pytanie 10

Administrator pragnie udostępnić w sieci folder C:instrukcje trzem użytkownikom z grupy Serwisanci. Jakie rozwiązanie powinien wybrać?

A. Udostępnić grupie Serwisanci folder C:instrukcje i nie ograniczać liczby równoczesnych połączeń
B. Udostępnić grupie Wszyscy folder C:instrukcje i ograniczyć liczbę równoczesnych połączeń do 3
C. Udostępnić grupie Wszyscy dysk C: i ograniczyć liczbę równoczesnych połączeń do 3
D. Udostępnić grupie Serwisanci dysk C: i nie ograniczać liczby równoczesnych połączeń
Poprawna odpowiedź to udostępnienie grupie Serwisanci folderu C:instrukcje oraz brak ograniczenia liczby równoczesnych połączeń. Ta opcja jest zgodna z zasadami wdrażania zarządzania dostępem w systemach operacyjnych. Udostępnienie konkretnego folderu, a nie całego dysku, minimalizuje możliwość nieautoryzowanego dostępu do innych danych, co jest kluczowe dla zachowania bezpieczeństwa. Przykładowo, w środowiskach serwerowych, gdy użytkownicy potrzebują dostępu do zasobów, administracja powinna implementować zasady dostępu oparte na rolach, co w tym przypadku można zrealizować poprzez przypisanie odpowiednich uprawnień do grupy Serwisanci. Dodatkowo brak ograniczenia liczby równoczesnych połączeń pozwala na swobodny dostęp wielu użytkowników, co zwiększa efektywność pracy zespołowej. W praktyce, jeśli użytkownicy korzystają z zasobów sieciowych, otwieranie ich w tym samym czasie może być korzystne, aby zminimalizować czas oczekiwania na dostęp do niezbędnych informacji, co jest zgodne z najlepszymi praktykami IT, takimi jak zasada minimalnych uprawnień oraz maksymalizacja dostępności zasobów.

Pytanie 11

Jakie będą całkowite wydatki na materiały potrzebne do stworzenia 20 kabli połączeniowych typu patchcord, z których każdy ma długość 1,5m, jeśli cena 1 metra bieżącego kabla wynosi 1zł, a cena wtyku to 50 gr?

A. 60 zł
B. 50 zł
C. 40 zł
D. 30 zł
Próba obliczenia łącznego kosztu materiałów do wykonania kabli połączeniowych często prowadzi do błędów, które wynikają z niewłaściwego zrozumienia zastosowanych jednostek oraz ilości potrzebnych materiałów. Na przykład, jeśli ktoś błędnie oszacuje ilość kabla, mogą przyjść do wniosku, że 30 zł to wystarczająca kwota tylko za kabel, co jest nieprawidłowe, ponieważ nie uwzględniają dodatkowego kosztu wtyków. Warto również zauważyć, że pomyłki w obliczeniach mogą wynikać z mylnego założenia, że koszt wtyków jest zbyt niski lub został pominięty całkowicie. Ponadto, odpowiedzi takie jak 40 zł, 60 zł czy 30 zł mogą wynikać z przypadkowego dodawania różnych wartości, które nie odpowiadają rzeczywistym potrzebom projektu. Na przykład, osoba mogąca wybrać opcję 60 zł mogła dodać koszt kabla jako 40 zł, myląc jednostki lub nie uwzględniając ilości kabli. Ważne jest, aby przy obliczeniach materiałowych stosować odpowiednie metodyki kosztorysowania oraz mieć na uwadze standardy branżowe, które sugerują dokładne obliczenia i kalkulacje oparte na rzeczywistych potrzebach projektu. Prawidłowe podejście do wyceniania zasobów jest kluczowe dla efektywnego zarządzania budżetem w projektach inżynieryjnych i technologicznych.

Pytanie 12

Jakie polecenie pozwala na uzyskanie informacji o bieżących połączeniach TCP oraz o portach źródłowych i docelowych?

A. ipconfig
B. ping
C. netstat
D. lookup
Odpowiedzi takie jak 'ping', 'lookup' i 'ipconfig' nie są odpowiednie w kontekście uzyskiwania informacji o aktualnych połączeniach TCP oraz portach. Polecenie 'ping' jest narzędziem diagnostycznym, które służy do testowania osiągalności hosta w sieci IP. Działa poprzez wysyłanie pakietów ICMP Echo Request, a następnie oczekiwanie na odpowiedzi. Nie dostarcza ono informacji o bieżących połączeniach ani portach, co czyni je nieprzydatnym w tym kontekście. 'Lookup' odnosi się do procesów rozpoznawania nazw DNS, jednak nie ma zastosowania przy monitorowaniu połączeń sieciowych. Z kolei 'ipconfig' to polecenie służące do wyświetlania konfiguracji IP na komputerze lokalnym, w tym adresów IP, masek podsieci i bramy domyślnej. Chociaż jest ono ważne dla zarządzania siecią lokalną, nie dostarcza informacji o aktywnych połączeniach TCP. Wiele osób może mylić te narzędzia, myśląc, że każde z nich może dostarczyć informacji o połączeniach sieciowych, co jest mylnym wnioskiem. Dobrym nawykiem jest zrozumienie specyfiki każdego narzędzia oraz jego zastosowania w kontekście monitorowania i zarządzania siecią, co pozwala na bardziej skuteczne diagnozowanie problemów i zapewnienie optymalnej wydajności sieci.

Pytanie 13

W systemie Windows zastosowanie zaprezentowanego polecenia spowoduje chwilową modyfikację koloru

Microsoft Windows [Version 10.0.14393]
(c) 2016 Microsoft Corporation. Wszelkie prawa zastrzeżone.

C:\Users\ak>color 1
A. tła oraz tekstu okna Windows
B. paska tytułowego okna Windows
C. czcionki wiersza poleceń, która była uruchomiona z ustawieniami domyślnymi
D. tła okna wiersza poleceń, które zostało uruchomione z domyślnymi ustawieniami
Polecenie color w wierszu poleceń systemu Windows służy do zmiany koloru czcionki oraz tła w oknie konsoli. W formacie color X, gdzie X to cyfry lub litery reprezentujące kolory, zmiana ta dotyczy aktualnie otwartego okna wiersza poleceń i nie wpływa na inne części systemu Windows. Przykładowo polecenie color 1 ustawi kolor czcionki na niebieski z domyślnym czarnym tłem. Zrozumienie tego mechanizmu jest istotne dla administratorów systemów i programistów, gdyż pozwala na szybkie dostosowywanie środowiska pracy w celach testowych czy diagnostycznych. Warto również znać inne opcje, takie jak color 0A, które mogą służyć do bardziej zaawansowanych konfiguracji. Dobre praktyki w administracji systemem Windows uwzględniają umiejętność korzystania z poleceń wiersza poleceń w celu automatyzacji zadań oraz dostosowywania środowiska. W przypadku ustawienia domyślnych parametrów polecenie color resetuje zmiany na standardowe ustawienia, co jest przydatne w przypadku skryptowania i powtarzalnych zadań.

Pytanie 14

Jakie polecenie w systemach z rodziny Windows Server umożliwia administratorowi przekierowanie komputerów do określonej jednostki organizacyjnej w ramach usług katalogowych?

A. redircmp
B. redirusr
C. dcdiag
D. dsrm
Odpowiedź 'redircmp' jest poprawna, ponieważ polecenie to służy do przekierowywania nowych komputerów, które są dołączane do domeny, do określonej jednostki organizacyjnej (OU) w Active Directory. Umożliwia to administratorom lepsze zarządzanie zasobami i politykami grupowymi, ponieważ komputery przypisane do konkretnej OU dziedziczą odpowiednie ustawienia polityki grupowej. Przykładowo, jeśli organizacja posiada różne jednostki, takie jak 'HR', 'IT' i 'Marketing', administrator może użyć redircmp, aby automatycznie przekierowywać nowe komputery użytkowników działu HR do odpowiedniej OU, co pozwala na nałożenie specyficznych polityk zabezpieczeń i dostępu. W praktyce, wykorzystanie redircmp wpisuje się w standardy zarządzania ITIL, gdzie kluczowym elementem jest efektywne zarządzanie konfiguracjami w środowisku IT. Dobrą praktyką jest regularne audytowanie OU oraz polityk, aby upewnić się, że nowe komputery są właściwie klasyfikowane i zarządzane.

Pytanie 15

Jaką liczbę podwójnych gniazd RJ45 należy zainstalować w pomieszczeniu o wymiarach 8 x 5 m, aby spełniać wymagania normy PN-EN 50173?

A. 4 gniazda
B. 8 gniazd
C. 10 gniazd
D. 5 gniazd
Odpowiedź 4 gniazda jest zgodna z zaleceniami normy PN-EN 50173, która określa minimalne wymagania dotyczące infrastruktury telekomunikacyjnej w budynkach. W przypadku pomieszczenia o wymiarach 8 x 5 m, norma zaleca jedną parę gniazd RJ45 na każde 10 m² powierzchni użytkowej. Obliczając powierzchnię tego pomieszczenia, otrzymujemy 40 m², co oznacza, że zaleca się zamontowanie co najmniej 4 gniazd RJ45. Taki układ zapewnia odpowiednią dostępność do sieci dla użytkowników oraz umożliwia elastyczne rozmieszczenie stanowisk pracy. Przykładem zastosowania tej normy może być biuro, gdzie każde stanowisko robocze powinno mieć dostęp do sieci, co z kolei umożliwia pracownikom korzystanie z komputerów stacjonarnych, drukarek sieciowych oraz innych urządzeń. Warto również pamiętać, że zgodność z normami zwiększa wartość nieruchomości oraz jej funkcjonalność, stawiając ją w lepszej pozycji na rynku nieruchomości komercyjnych.

Pytanie 16

Wskaż właściwą formę maski podsieci?

A. 255.255.0.128
B. 255.255.255.255
C. 0.0.0.0
D. 255.252.252.255
Masy podsieci są kluczowym elementem architektury sieci komputerowych, a zrozumienie ich znaczenia jest niezbędne dla każdego specjalisty IT. Odpowiedzi takie jak 0.0.0.0, 255.252.252.255 oraz 255.255.0.128 nie są poprawnymi maskami podsieci. Maska 0.0.0.0 jest używana głównie do oznaczenia braku dostępnych adresów, co czyni ją nieprzydatną w kontekście klasycznych masek podsieci. Z kolei 255.252.252.255, pomimo że wydaje się być maską użyteczną, nie jest standardowo uznaną maską podsieci, ponieważ nie spełnia kryteriów dla podsieci, które wymagają, aby liczba bitów ustawionych na 1 była ciągła od lewej strony maski. 255.255.0.128 również jest błędna, ponieważ prowadzi do podziału w sieci, który nie jest zgodny z praktykami przydzielania adresów IP. W konwencji CIDR (Classless Inter-Domain Routing), maski podsieci powinny mieć formę zdefiniowanych długości prefiksów, co sprawia, że odpowiedzi te są źle zinterpretowane jako maski podsieci. Typowe błędy myślowe, które mogą prowadzić do tych niepoprawnych odpowiedzi, obejmują brak znajomości zasad działania masek podsieci oraz zrozumienia, jak działają adresy IP w kontekście komunikacji w sieci. W związku z tym, kluczowe jest, aby każdy, kto pracuje z sieciami, zrozumiał różne typy masek, ich zastosowania oraz znaczenie poprawnej konfiguracji dla zapewnienia efektywności i bezpieczeństwa sieci.

Pytanie 17

Jaką maksymalną liczbę hostów można przypisać w sieci o adresie IP klasy B?

A. 1022
B. 16777214
C. 65535
D. 254
Odpowiedzi 254, 1022 i 16777214 są błędne z kilku powodów związanych z podstawami obliczania liczby adresów w sieciach IP. W przypadku odpowiedzi 254, wynika ona z pomyłki polegającej na zrozumieniu klasy C, która ma 8 bitów dla hostów, co daje 2^8 - 2 = 254. Zatem nie jest to właściwa liczba dla sieci klasy B. Odpowiedź 1022 powstaje na skutek błędnego przeliczenia. Użytkownicy mogą mylić ograniczenia dla liczby hostów w podsieciach, myśląc, że klasa B ma ograniczenia porównywalne z mniejszymi klasami. Rzeczywista liczba dostępnych adresów w podsieci klasy B to 65534, a nie 1022. Z kolei liczba 16777214 odnosi się do liczby adresów w sieci IPv4, ogólnie mówiąc, ale nie odnosi się do żadnej konkretnej klasy, co czyni tę odpowiedź zupełnie nieadekwatną. Typowym błędem myślowym, który prowadzi do takich wniosków, jest nieprawidłowa interpretacja struktury adresów IP oraz ich klas. Istotne jest zrozumienie, że każda klasa ma swoje unikalne właściwości oraz limity, a klasy B są zaprojektowane tak, aby obsługiwać znacznie większe sieci niż klasy A czy C. Znajomość tych zasad jest kluczowa dla skutecznego zarządzania infrastrukturą sieciową."

Pytanie 18

Na podstawie filmu wskaż z ilu modułów składa się zainstalowana w komputerze pamięć RAM oraz jaką ma pojemność.

A. 1 modułu 16 GB.
B. 2 modułów, każdy po 8 GB.
C. 2 modułów, każdy po 16 GB.
D. 1 modułu 32 GB.
Poprawnie wskazana została konfiguracja pamięci RAM: w komputerze zamontowane są 2 moduły, każdy o pojemności 16 GB, co razem daje 32 GB RAM. Na filmie zwykle widać dwa fizyczne moduły w slotach DIMM na płycie głównej – to są takie długie wąskie kości, wsuwane w gniazda obok procesora. Liczbę modułów określamy właśnie po liczbie tych fizycznych kości, a pojemność pojedynczego modułu odczytujemy z naklejki na pamięci, z opisu w BIOS/UEFI albo z programów diagnostycznych typu CPU‑Z, HWiNFO czy Speccy. W praktyce stosowanie dwóch modułów po 16 GB jest bardzo sensowne, bo pozwala uruchomić tryb dual channel. Płyta główna wtedy może równolegle obsługiwać oba kanały pamięci, co realnie zwiększa przepustowość RAM i poprawia wydajność w grach, programach graficznych, maszynach wirtualnych czy przy pracy z dużymi plikami. Z mojego doświadczenia lepiej mieć dwie takie same kości niż jedną dużą, bo to jest po prostu zgodne z zaleceniami producentów płyt głównych i praktyką serwisową. Do tego 2×16 GB to obecnie bardzo rozsądna konfiguracja pod Windows 10/11 i typowe zastosowania profesjonalne: obróbka wideo, programowanie, CAD, wirtualizacja. Warto też pamiętać, że moduły powinny mieć te same parametry: częstotliwość (np. 3200 MHz), opóźnienia (CL) oraz najlepiej ten sam model i producenta. Taka konfiguracja minimalizuje ryzyko problemów ze stabilnością i ułatwia poprawne działanie profili XMP/DOCP. W serwisie i przy montażu zawsze zwraca się uwagę, żeby moduły były w odpowiednich slotach (zwykle naprzemiennie, np. A2 i B2), bo to bezpośrednio wpływa na tryb pracy pamięci i osiąganą wydajność.

Pytanie 19

Jaką wartość w systemie szesnastkowym ma liczba 1101 0100 0111?

A. D47
B. C27
C. D43
D. C47
Odpowiedź D47 jest poprawna, ponieważ liczba binarna 1101 0100 0111 w systemie szesnastkowym to 0xD47. Aby to zrozumieć, należy podzielić liczbę binarną na grupy po cztery bity, zaczynając od prawej strony. W naszym przypadku mamy grupy: 1101, 0100, 0111. Teraz przekształcamy każdą z tych grup na system szesnastkowy: 1101 to D, 0100 to 4, a 0111 to 7. Łącząc te wartości, otrzymujemy D47. W praktyce, znajomość konwersji między systemami liczbowymi jest kluczowa w informatyce, zwłaszcza w programowaniu i inżynierii komputerowej, gdzie często używamy systemu szesnastkowego do reprezentacji wartości binarnych w bardziej zrozumiały sposób. Na przykład, adresy pamięci w systemach komputerowych często wyrażane są w formacie szesnastkowym, co upraszcza ich odczyt i zapamiętywanie. Warto także zauważyć, że w standardach informatycznych, takich jak IEEE 754, konwersje te są powszechnie stosowane przy reprezentacji wartości zmiennoprzecinkowych.

Pytanie 20

Na ilustracji zaprezentowano porty, które są częścią karty

Ilustracja do pytania
A. telewizyjnej
B. sieciowej
C. dźwiękowej
D. faksmodemowej
Gniazda przedstawione na zdjęciu to typowe porty RJ-45, które są powszechnie stosowane w kartach sieciowych. Karty sieciowe (NIC - Network Interface Card) to urządzenia, które umożliwiają komputerowi komunikację z siecią komputerową, zarówno przewodową jak i bezprzewodową. Standardowe gniazdo RJ-45 jest używane do podłączania kabla Ethernet, który jest najczęściej używanym medium transmisyjnym w sieciach lokalnych (LAN). Dzięki temu połączeniu możemy uzyskać dostęp do internetu lub innych zasobów sieciowych, co jest kluczowe w wielu zastosowaniach, takich jak praca zdalna, dostęp do baz danych czy przesyłanie plików. W nowoczesnych kartach sieciowych, oprócz standardowego portu RJ-45, mogą być także dostępne diody LED informujące o statusie połączenia, co pozwala na szybkie zdiagnozowanie problemów z siecią. Karty sieciowe mogą obsługiwać różne prędkości transmisji, takie jak 100 Mbps, 1 Gbps, czy nawet 10 Gbps, co pozwala na dostosowanie się do wymagań użytkownika i infrastruktury sieciowej. Poprawne zrozumienie funkcji i zastosowania kart sieciowych jest kluczowe dla każdego specjalisty IT, ponieważ sieć jest fundamentem współczesnej komunikacji cyfrowej.

Pytanie 21

Do podłączenia projektora multimedialnego do komputera, nie można użyć złącza

A. SATA
B. D-SUB
C. HDMI
D. USB
Wybrałeś SATA, czyli złącze, którego faktycznie nie używa się do podłączania projektora multimedialnego do komputera. SATA to interfejs, który służy w komputerach głównie do podłączania dysków twardych, SSD czy napędów optycznych, a nie urządzeń typu projektor czy monitor. Z mojego doświadczenia wynika, że nawet osoby dobrze obeznane w sprzęcie czasem mylą funkcje poszczególnych portów – łatwo zapomnieć, że SATA nie przesyła obrazu ani dźwięku, tylko dane w postaci plików z lub na dysk. Standardy takie jak HDMI, D-SUB (VGA) czy czasem USB są wykorzystywane właśnie do transmisji sygnału wideo (i niekiedy audio), co pozwala na komfortowe wyświetlanie obrazu z komputera na dużym ekranie projektora. W praktyce coraz częściej do projektorów używa się HDMI, bo to wygodne, zapewnia wysoką jakość obrazu i obsługuje dźwięk. D-SUB to już trochę przeszłość, ale nadal bywa spotykany w starszym sprzęcie – w sumie z ciekawości warto kiedyś wypróbować, jak oba standardy się różnią wizualnie. USB bywa używany do prezentacji multimedialnych bezpośrednio z pendrive’a czy do funkcji smart, ale to już inna bajka. SATA natomiast, mówiąc wprost, nie jest i nie był przewidziany do transmisji sygnału wideo do projektora – nie spotkałem się z żadnym projektorem wyposażonym w port SATA. Dobrym nawykiem jest przy podłączaniu urządzeń zawsze zerkać, do czego konkretnie służy dany port – sporo można uniknąć nieporozumień.

Pytanie 22

Użytkownicy w sieci lokalnej mogą się komunikować między sobą, lecz nie mają dostępu do serwera WWW. Wynik polecenia ping z komputerów bramy jest pozytywny. Który komponent sieci NIE MOŻE być powodem problemu?

Ilustracja do pytania
A. Router
B. Przełącznik
C. Karta sieciowa serwera
D. Kabel łączący router z serwerem WWW
Router jest kluczowym elementem sieci, odpowiedzialnym za kierowanie ruchu do różnych sieci. W przypadku problemów z połączeniem z serwerem WWW, router może być podejrzewany o nieprawidłową konfigurację, blokowanie ruchu lub problemy z trasowaniem. Błędy w konfiguracji tablic routingu mogą powodować, że pakiety nie docierają poza sieć lokalną, co jest częstym problemem w dużych sieciach. Karta sieciowa serwera może wpływać na dostępność serwera WWW. Jeśli karta sieciowa jest uszkodzona lub niepoprawnie skonfigurowana, może blokować lub niepoprawnie obsługiwać przychodzące połączenia, co uniemożliwia komunikację z serwerem. Ponadto, błędy związane z adresacją IP lub brak odpowiednich sterowników mogą prowadzić do podobnych problemów. Kabel między routerem a serwerem WWW jest fizycznym medium transmisyjnym, więc jego uszkodzenie mogłoby przerwać komunikację. Przewody należy regularnie sprawdzać pod kątem uszkodzeń mechanicznych lub luźnych połączeń, aby zapewnić ciągłość transmisji danych. Typowe błędy myślowe obejmują zakładanie, że problem dotyczy wyłącznie urządzeń aktywnych, pomijając fizyczne aspekty połączeń, które mogą być równie krytyczne w utrzymaniu niezawodności sieci. W tym przypadku, błędne założenie, że urządzenia aktywne są jedynym źródłem problemów, może prowadzić do niepoprawnej diagnozy sytuacji.

Pytanie 23

W komputerze użyto płyty głównej widocznej na obrazku. Aby podnieść wydajność obliczeniową maszyny, zaleca się

Ilustracja do pytania
A. dodanie dysku SAS
B. rozszerzenie pamięci RAM
C. instalację kontrolera RAID
D. zamontowanie dwóch procesorów
Instalacja dwóch procesorów jest prawidłową odpowiedzią ze względu na architekturę płyty głównej przedstawionej na rysunku, która jest wyposażona w dwa gniazda procesorowe typu Socket. Dodanie drugiego procesora pozwala na wykorzystanie pełnego potencjału płyty, co skutkuje znacznym wzrostem mocy obliczeniowej komputera. Dzięki pracy w konfiguracji wieloprocesorowej, system może lepiej obsługiwać wielozadaniowość, szczególnie w zastosowaniach wymagających dużych zasobów, takich jak renderowanie grafiki 3D, analiza danych czy hosting serwerów aplikacji. Praktyczne zastosowania tej architektury często znajdują się w środowiskach serwerowych, gdzie wydajność i szybkość przetwarzania danych są kluczowe. Instalacja i konfiguracja dwóch procesorów powinna być wykonana zgodnie ze specyfikacją producenta, aby uniknąć problemów kompatybilności i zapewnić stabilność systemu. Standardy branżowe zalecają także użycie identycznych modeli procesorów, co zapewnia optymalne działanie systemu i równomierne rozkładanie obciążenia między jednostkami obliczeniowymi co jest jednym z kluczowych aspektów budowy wydajnych systemów komputerowych.

Pytanie 24

Na wydruku z drukarki laserowej występują jasne i ciemne fragmenty. Jakie działania należy podjąć, by poprawić jakość druku oraz usunąć problemy z nieciągłością?

A. zastąpić nagrzewnicę
B. oczyścić wentylator drukarki
C. wymienić bęben światłoczuły
D. wyczyścić dysze drukarki
Wymiana bębna światłoczułego jest kluczowym krokiem w rozwiązaniu problemów z jakością wydruku w drukarce laserowej, w tym z jaśniejszymi i ciemniejszymi obszarami na stronie. Bęben światłoczuły odpowiada za przenoszenie obrazu na papier; jego zużycie lub uszkodzenie prowadzi do nieprawidłowej reprodukcji tonera. W przypadku, gdy bęben jest zarysowany, zabrudzony lub ma zużyte powierzchnie, toner nie przywiera równomiernie, co skutkuje widocznymi nieciągłościami w wydruku. Przykładem może być sytuacja, w której kończy się żywotność bębna po wielu stronach wydruku, co prowadzi do niszczenia jego powierzchni. Wymiana bębna na nowy, zgodny z zaleceniami producenta, powinna przywrócić prawidłową jakość wydruku. Warto także pamiętać, aby regularnie kontrolować stan bębna i zgodnie z harmonogramem konserwacji wymieniać go na nowy, co jest zgodne z dobrymi praktykami w zakresie zarządzania urządzeniami drukującymi.

Pytanie 25

Adres IP urządzenia, zapisany jako sekwencja 172.16.0.1, jest przedstawiony w systemie

A. dziesiętnym
B. ósemkowym
C. szesnastkowym
D. dwójkowym
Adres IP 172.16.0.1 jest zapisany w systemie dziesiętnym, co oznacza, że każda liczba w tej sekwencji jest wyrażona w standardowym formacie dziesiętnym. Adresy IP w wersji 4 (IPv4) składają się z czterech oktetów, z których każdy jest reprezentowany jako liczba całkowita w zakresie od 0 do 255. System dziesiętny jest najczęściej używany do prezentacji adresów IP, co ułatwia ich odczyt i zapamiętanie przez użytkowników. Przykładem zastosowania adresów IP jest konfiguracja urządzeń w sieci lokalnej czy przydzielanie adresów IP przez serwery DHCP. W praktyce, standardy takie jak RFC 791 określają zasady dotyczące struktury adresów IP, w tym ich przedstawianie. Użycie systemu dziesiętnego w adresach IP jest zgodne z najlepszymi praktykami w dziedzinie inżynierii sieciowej, zapewniając przejrzystość i ułatwiając diagnostykę problemów sieciowych.

Pytanie 26

Urządzenie pokazane na ilustracji ma na celu

Ilustracja do pytania
A. organizację przewodów wewnątrz jednostki centralnej
B. zmierzenie wartości napięcia dostarczanego przez zasilacz komputerowy
C. sprawdzenie długości przewodów sieciowych
D. odczytanie kodów POST z płyty głównej
Urządzenie przedstawione na rysunku to multimetr cyfrowy który jest podstawowym narzędziem w diagnostyce elektronicznej. Służy do pomiaru różnych parametrów elektrycznych w tym napięcia prądu i rezystancji. W kontekście komputerowym multimetr jest używany do sprawdzania napięć dostarczanych przez zasilacz komputerowy co jest kluczowe dla zapewnienia prawidłowego działania wszystkich komponentów komputerowych. Prawidłowe napięcia są niezbędne aby uniknąć uszkodzenia sprzętu lub niestabilności systemu. Multimetry oferują funkcjonalności takie jak pomiar napięcia stałego i zmiennego co jest istotne przy testowaniu zasilaczy komputerowych które mogą pracować w różnych trybach. Dobrą praktyką w branży IT jest regularne sprawdzanie napięć w celu wczesnego wykrywania potencjalnych problemów. Multimetr jest nieocenionym narzędziem dla techników serwisu komputerowego i inżynierów elektroników którzy muszą diagnozować i naprawiać sprzęt elektroniczny. Użycie multimetru zgodnie ze standardami bezpieczeństwa i zastosowanie odpowiednich zakresów pomiarowych są kluczowe dla uzyskania dokładnych wyników i ochrony sprzętu oraz użytkownika.

Pytanie 27

Czym jest MFT w systemie plików NTFS?

A. główny plik indeksowy partycji
B. plik zawierający dane o poszczególnych plikach i folderach na danym woluminie
C. główny rekord bootowania dysku
D. tablica partycji dysku twardego
Wybór odpowiedzi, która wskazuje na główny rekord rozruchowy dysku, nie jest właściwy, ponieważ główny rekord rozruchowy to segment danych, który zawiera instrukcje dotyczące uruchamiania systemu operacyjnego. Zawiera on informacje pozwalające na załadowanie systemu operacyjnego z nośnika bootowalnego, a nie szczegóły dotyczące plików i folderów. Z kolei tablica partycji na dysku twardym to struktura, która definiuje, jak dysk jest podzielony na partycje, co również nie odpowiada funkcji MFT. Tablica ta zawiera informacje o lokalizacji partycji na dysku, ale nie ma bezpośredniego związku z zarządzaniem plikami. W odniesieniu do głównego pliku indeksowego partycji, stwierdzenie to jest mylące – chociaż MFT pełni funkcję indeksu dla plików, nie może być utożsamiane z jednym plikiem indeksowym. MFT jest znacznie bardziej złożonym i wszechstronnym mechanizmem, który obejmuje wiele rekordów, z których każdy reprezentuje pojedynczy plik lub folder. Typowe błędy w myśleniu, które mogą prowadzić do wyboru tych odpowiedzi, obejmują nieprawidłowe zrozumienie ról i struktur systemu plików, co podkreśla znaczenie gruntownej wiedzy o architekturze systemów plików oraz ich funkcjonowania. Aby dobrze zrozumieć NTFS, warto zapoznać się z jego dokumentacją oraz standardami branżowymi, które opisują jego działanie i zastosowanie w praktyce.

Pytanie 28

Który z protokołów umożliwia szyfrowanie połączenia?

A. SSH
B. TELNET
C. DHCP
D. DNS
SSH, czyli Secure Shell, jest protokołem służącym do bezpiecznej komunikacji w sieciach komputerowych. Jego głównym celem jest zapewnienie szyfrowania danych przesyłanych pomiędzy urządzeniami, co chroni przed podsłuchiwaniem i innymi formami ataków. SSH jest szeroko stosowany do zdalnego logowania się na serwery oraz do zarządzania systemami operacyjnymi, w szczególności w kontekście administracji serwerami Linux i Unix. Dzięki zastosowaniu silnych algorytmów szyfrujących, takich jak AES (Advanced Encryption Standard), SSH zapewnia poufność i integralność przesyłanych informacji. Przykładem zastosowania SSH może być zdalne zarządzanie serwerem, gdzie administrator używa komendy 'ssh username@hostname' w celu nawiązania bezpiecznego połączenia. Warto również zaznaczyć, że standardy takie jak RFC 4251 definiują architekturę SSH i zasady jego działania, co czyni go uznawanym standardem w branży IT.

Pytanie 29

Zamiana taśmy barwiącej wiąże się z eksploatacją drukarki

A. termicznej
B. igłowej
C. atramentowej
D. laserowej
Drukowanie z użyciem technologii laserowej polega na tworzeniu obrazu na bębnie światłoczułym, a następnie przenoszeniu tonera na papier. Toner jest substancją w proszku, a nie płynem, co eliminuje potrzebę korzystania z taśmy barwiącej. W przypadku drukarek atramentowych, proces polega na nanoszeniu kropli atramentu na papier z kartridżów, co także nie wymaga taśmy. Drukarki termiczne działają na zupełnie innej zasadzie, wykorzystując ciepło do wywoływania reakcji chemicznych w papierze termicznym, co również nie ma nic wspólnego z taśmami barwiącymi. Zachowanie błędnych przekonań o wymianie taśmy w tych typach drukarek wynika z mylnego utożsamiania różnych technologii druku. Kluczowa różnica między tymi systemami, a drukarkami igłowymi, polega na mechanizmie transferu atramentu na papier oraz zastosowanych materiałach eksploatacyjnych. Dlatego ważne jest, aby użytkownicy dobrze rozumieli, jak funkcjonują różne technologie druku i jakie materiały są dla nich charakterystyczne, co zapobiega nieporozumieniom oraz nieefektywnemu użytkowaniu sprzętu.

Pytanie 30

Na podstawie nazw sygnałów sterujących zidentyfikuj funkcję komponentu komputera oznaczonego na schemacie symbolem X?

Ilustracja do pytania
A. Kontroler przerwań
B. Układ generatorów programowalnych
C. Kontroler DMA
D. Zegar czasu rzeczywistego
Kontroler DMA, czyli Direct Memory Access, jest podzespołem wykorzystywanym do bezpośredniego przesyłania danych między pamięcią a urządzeniami peryferyjnymi bez angażowania procesora. Choć DMA znacząco zwiększa efektywność przesyłu danych, nie jest związany z obsługą przerwań, które dotyczą sygnalizacji zdarzeń do procesora. Układ generatorów programowalnych z kolei pełni funkcję tworzenia różnorodnych sygnałów zegarowych, które są kluczowe w synchronizacji operacji w różnych częściach systemu komputerowego, ale nie ma on bezpośredniego związku z mechanizmem przerwań. Zegar czasu rzeczywistego (RTC) dostarcza informacji o bieżącym czasie i dacie, co jest niezbędne dla prawidłowego funkcjonowania systemów operacyjnych w kontekście zarządzania czasem, jednak nie pełni on roli w zarządzaniu przerwaniami sprzętowymi. Często błędnie identyfikuje się te elementy jako powiązane z mechanizmem przerwań, co może wynikać z niezrozumienia ich specyficznych funkcji i zastosowań w architekturze systemu komputerowego. Rozpoznanie roli kontrolera przerwań jest kluczowe dla zrozumienia, jak system komputerowy zarządza współbieżnością i priorytetyzacją zadań, co jest kluczowe zwłaszcza w systemach wymagających wysokiej responsywności i efektywności przetwarzania danych.

Pytanie 31

Co oznacza kod BREAK odczytany przez układ elektroniczny klawiatury?

A. uruchomienie funkcji czyszczącej bufor
B. zwolnienie klawisza
C. konieczność ustawienia wartości opóźnienia powtarzania znaków
D. awarię kontrolera klawiatury
Wiele osób może mylić kod BREAK z innymi funkcjami klawiatury, co prowadzi do niewłaściwych wniosków. Awaria kontrolera klawiatury, jak sugeruje jedna z odpowiedzi, jest zupełnie inną kwestią. Oznacza to, że klawiatura nie funkcjonuje poprawnie, co może być spowodowane uszkodzeniem sprzętu lub nieprawidłową konfiguracją, a nie konkretnym sygnałem o zwolnieniu klawisza. Problem ten wymaga diagnostyki sprzętowej, a nie analizy kodów generowanych przez klawiaturę. Podobnie, konieczność ustawienia wartości opóźnienia powtarzania znaków dotyczy kwestii konfiguracyjnych, które mają wpływ na to, jak długo system czeka przed ponownym wysłaniem sygnału, gdy klawisz jest przytrzymywany, co także nie ma związku z kodem BREAK. Funkcja czyszcząca bufor, z drugiej strony, wiąże się z zarządzaniem danymi w pamięci operacyjnej systemu lub aplikacji, co również nie ma związku z odczytem zwolnienia klawisza. Wskazówki te sugerują typowe błędy myślowe, w których użytkownicy mogą nie rozumieć, jak działa komunikacja między klawiaturą a komputerem, oraz jakie konkretne kody są generowane w odpowiedzi na różne działania użytkownika. Kluczowe jest zrozumienie, że każdy z tych kodów pełni określoną rolę w systemie, a ich właściwa interpretacja jest niezbędna do zapewnienia prawidłowego działania aplikacji. Z tego względu ważne jest, aby użytkownicy mieli solidne podstawy w zakresie działania sprzętu i oprogramowania, co pozwala uniknąć fałszywych założeń i poprawia ogólną efektywność pracy z komputerem.

Pytanie 32

Aby zapobiegać i eliminować szkodliwe oprogramowanie, takie jak exploity, robaki oraz trojany, konieczne jest zainstalowanie oprogramowania

A. antyspyware.
B. antyspam.
C. adblok.
D. antymalware.
Odpowiedź 'antymalware' jest naprawdę trafna. To oprogramowanie ma za zadanie wykrywać, blokować i usuwać różne rodzaje szkodliwego oprogramowania, takie jak exploity, robaki czy trojany. Działa na zasadzie skanowania systemów w poszukiwaniu znanych zagrożeń i wykorzystuje różne techniki, żeby znaleźć nowe, które jeszcze nikomu się nie trafiły. Myślę, że dobrym przykładem użycia antymalware jest regularne przeszukiwanie komputera, żeby upewnić się, że jest on bezpieczny. Ważne jest, żeby każda firma miała coś takiego zainstalowanego i aktualizowanego, bo to pomaga chronić dane przed najnowszymi zagrożeniami. Oprócz samego antymalware, warto też mieć dodatkowe zabezpieczenia, takie jak zapory ogniowe czy systemy wykrywania intruzów, co jeszcze bardziej zwiększa naszą ochranę przed atakami.

Pytanie 33

W sieci komputerowej działającej pod systemem Linux do udostępniania drukarek można zastosować serwer

A. Firebird
B. Nginx
C. Coda
D. Samba
Samba to oprogramowanie, które umożliwia współdzielenie zasobów między systemami operacyjnymi rodziny Unix (w tym Linux) a systemami Windows. Jest to implementacja protokołu SMB (Server Message Block), który pozwala na udostępnianie plików i drukarek w sieciach heterogenicznych. Dzięki Samba, użytkownicy systemów Linux mogą łatwo dzielić się drukarkami z komputerami działającymi w systemie Windows, co jest niezwykle praktyczne w środowiskach biurowych, gdzie różne systemy operacyjne współistnieją. Przykładem zastosowania Samba jest konfiguracja serwera druku, gdzie administratorzy mogą zdalnie zarządzać drukarkami oraz uprawnieniami użytkowników do korzystania z tych zasobów. W kontekście dobrych praktyk, Samba jest często używana w ramach infrastruktury sieciowej, aby zapewnić bezpieczne i efektywne zarządzanie zasobami, wspierając protokoły autoryzacji i szyfrowania. Dodatkowo, wprowadzenie Samba do środowiska IT może przyczynić się do redukcji kosztów operacyjnych, eliminując potrzebę posiadania osobnych serwerów druku dla różnych systemów operacyjnych, co w praktyce prowadzi do uproszczenia zarządzania systemami i zwiększenia efektywności pracy zespołów.

Pytanie 34

Jakim protokołem komunikacyjnym w warstwie transportowej, który zapewnia niezawodność przesyłania pakietów, jest protokół

A. IP (Internet Protocol)
B. ARP (Address Resolution Protocol)
C. UDP (User Datagram Protocol)
D. TCP (Transmission Control Protocol)
TCP (Transmission Control Protocol) jest protokołem warstwy transportowej, który zapewnia niezawodność w dostarczaniu danych poprzez zastosowanie mechanizmów potwierdzania odbioru, retransmisji pakietów oraz kontrolowania przepływu. Dzięki temu, TCP jest szeroko stosowany w aplikacjach wymagających wysokiej niezawodności, takich jak przeglądarki internetowe, poczta elektroniczna czy protokoły transferu plików (FTP). W odróżnieniu od UDP (User Datagram Protocol), który jest protokołem bezpołączeniowym i nie zapewnia gwarancji dostarczenia pakietów, TCP wykorzystuje połączenia oparte na sesji, co umożliwia osiągnięcie pełnej integralności danych. Mechanizmy takie jak 3-way handshake oraz numeracja sekwencyjna gwarantują, że dane są przesyłane w odpowiedniej kolejności i bez utraty. Dobrze zaprojektowane aplikacje sieciowe powinny wybierać TCP w sytuacjach, gdzie niezawodność i kolejność dostarczania informacji są kluczowe, co czyni go standardem w wielu rozwiązaniach stosowanych w Internecie.

Pytanie 35

Aby sprawdzić statystyki użycia pamięci wirtualnej w systemie Linux, należy sprawdzić zawartość pliku

A. /etc/inittab
B. /proc/vmstat
C. pagefile.sys
D. xload
Plik /proc/vmstat to zdecydowanie właściwe miejsce, jeśli chcesz sprawdzić szczegółowe statystyki dotyczące pamięci wirtualnej w systemie Linux. Ten plik jest częścią tzw. systemu plików procfs, który udostępnia informacje o stanie i parametrach jądra oraz procesów bezpośrednio z pamięci operacyjnej – praktycznie w czasie rzeczywistym. Co ciekawe, możesz go przeglądać zwykłym cat czy mniej wygodnym less (osobiście korzystam z cat, bo jest szybciej). Znajdziesz tam takie szczegóły jak liczba page faultów, operacje swapowania, wykorzystanie cache, a nawet liczba stron pamięci, które zostały załadowane lub zapisane na swap. W praktyce, w środowiskach produkcyjnych bardzo często monitoruje się /proc/vmstat w skryptach automatyzujących wykrywanie problemów z pamięcią czy wydajnością systemu. W mojej opinii, korzystanie z /proc/vmstat to już taki trochę must-have, jeśli ktoś zajmuje się administrowaniem serwerami Linux. No i jeszcze – to źródło jest niezależne od narzędzi zewnętrznych, więc nawet jak nie masz zainstalowanego top czy vmstat, zawsze możesz tu zajrzeć. Warto poeksperymentować i samemu zobaczyć, jak zmieniają się tam wartości podczas dużego obciążenia systemu. To naprawdę daje sporo do myślenia, jak działa zarządzanie pamięcią pod spodem.

Pytanie 36

Aby w systemie Windows Professional ustawić czas pracy drukarki oraz uprawnienia drukowania, należy skonfigurować

A. kolejkę wydruku.
B. udostępnianie wydruku.
C. preferencje drukowania.
D. właściwości drukarki.
Aby ustawić czas pracy drukarki oraz uprawnienia drukowania w systemie Windows Professional, trzeba wejść w właściwości drukarki. To właśnie tutaj administratorzy mają dostęp do szczegółowej konfiguracji, o której często zapominają początkujący użytkownicy – serio, różnica między preferencjami a właściwościami czasem bywa nieoczywista. W oknie właściwości drukarki można ustalić, w jakich godzinach drukarka ma być dostępna dla użytkowników sieci (czyli np. wyłączyć wydruki w nocy lub w weekendy), a także precyzyjnie przypisać prawa do drukowania, zarządzania dokumentami czy nawet pełnej administracji kolejką. Takie podejście jest zgodne ze standardami zarządzania zasobami sieciowymi w środowiskach profesjonalnych, gdzie bezpieczeństwo i wydajność mają znaczenie. Z mojego doświadczenia wynika, że świadome ustawienie tych parametrów często pozwala uniknąć problemów z nieautoryzowanym drukowaniem czy też niepotrzebnym obciążeniem drukarki poza godzinami pracy firmy. Właściwości drukarki umożliwiają również dostęp do logów oraz narzędzi diagnostycznych. Ważne jest, żeby odróżniać te ustawienia od preferencji drukowania, bo te drugie dotyczą tylko wyglądu wydruków, a nie zarządzania dostępem czy harmonogramem. Co ciekawe, niektóre firmy mają nawet polityki narzucające określone godziny pracy drukarek, a dobre praktyki IT przewidują takie konfiguracje jako element podniesienia bezpieczeństwa i kontroli kosztów eksploatacji sprzętu.

Pytanie 37

Jakie narzędzie jest używane do zakończenia skrętki wtykiem 8P8C?

A. zaciskarka do złączy typu RJ-45
B. zaciskarka do złączy typu F
C. narzędzie uderzeniowe
D. spawarka światłowodowa
Użycie narzędzi takich jak narzędzie uderzeniowe czy spawarka światłowodowa do zakończenia skrętki wtykiem 8P8C jest mylnym podejściem. Narzędzie uderzeniowe, stosowane głównie do montażu gniazd teleinformatycznych, działa na zasadzie uderzenia, które wbija żyły w odpowiednie złącza. Jakkolwiek narzędzie to może być użyteczne w kontekście niektórych rodzajów kabli, nie nadaje się do zakończenia skrętki wtykiem RJ-45, ponieważ nie zapewnia odpowiedniego docisku oraz nie pozwala na precyzyjne zarządzanie żyłami kabla, co jest kluczowe dla minimalizacji interferencji i zapewnienia optymalnej jakości sygnału. Spawarka światłowodowa z kolei ma zupełnie inny cel – służy do łączenia włókien światłowodowych poprzez ich spawanie. Użycie tego narzędzia do skrętki byłoby nie tylko nieefektywne, ale i zbędne. Ponadto, zaciskarka do złączy typu F, przeznaczona do innego typu złączy, również nie jest odpowiednia dla wtyków RJ-45. Wybór niewłaściwego narzędzia do zakończenia skrętki prowadzi do niepoprawnych połączeń, co może skutkować problemami z transmisją danych, takimi jak spadki prędkości, utrata pakietów czy zakłócenia sygnału. Kluczowym błędem myślowym w tym przypadku jest założenie, że różne narzędzia mogą być stosowane zamiennie, co zdecydowanie nie znajduje potwierdzenia w praktyce.

Pytanie 38

Element oznaczony cyfrą 1 na diagramie blokowym karty graficznej?

Ilustracja do pytania
A. przechowuje dane wyświetlane w trybie graficznym
B. zawiera matrycę znaków w trybie tekstowym
C. generuje sygnał RGB na wyjściu karty graficznej
D. konwertuje sygnał cyfrowy na analogowy
W niepoprawnych odpowiedziach znajdują się pewne nieporozumienia dotyczące funkcjonowania elementów karty graficznej. Generowanie sygnału RGB na wyjście karty graficznej jest odpowiedzialnością generatora sygnałów który przetwarza dane wideo na sygnał odpowiedni dla monitorów. Jest to kluczowy proces w trybie graficznym gdzie informacje o kolorze i jasności każdego piksela muszą być dokładnie przetworzone aby uzyskać poprawny obraz. Przechowywanie danych wyświetlanych w trybie graficznym odnosi się do pamięci wideo gdzie wszystkie informacje o obrazie są przechowywane zanim zostaną przekazane do przetworzenia przez GPU. Pamięć wideo jest kluczowym komponentem w zarządzaniu dużymi ilościami danych graficznych szczególnie w aplikacjach wymagających wysokiej rozdzielczości. Zamiana sygnału cyfrowego na sygnał analogowy dotyczy przetworników DAC (Digital-to-Analog Converter) które są używane w starszych systemach z analogowymi wyjściami wideo. Nowoczesne systemy używają głównie cyfrowych interfejsów takich jak HDMI czy DisplayPort eliminując potrzebę konwersji na sygnał analogowy. Rozumienie ról poszczególnych elementów jest kluczowe dla projektowania i diagnozowania systemów graficznych w nowoczesnym sprzęcie komputerowym.

Pytanie 39

Który zakres adresów IPv4 jest poprawnie przypisany do danej klasy?

Zakres adresów IPv4Klasa adresu IPv4
A.1.0.0.0 ÷ 127.255.255.255A
B.128.0.0.0 ÷ 191.255.255.255B
C.192.0.0.0 ÷ 232.255.255.255C
D.233.0.0.0 ÷ 239.255.255.255D
A. D
B. A
C. C
D. B
Zrozumienie klas adresów IP jest fundamentalne dla projektowania i zarządzania sieciami komputerowymi. Klasa A obejmuje adresy od 1.0.0.0 do 127.255.255.255, z czego pierwszy oktet jest używany do identyfikacji sieci, a pozostałe trzy dla hostów, co pozwala na 126 sieci z ogromną liczbą hostów, jednak adres 127.0.0.0 jest zarezerwowany dla pętli zwrotnej. Klasa C, od 192.0.0.0 do 223.255.255.255, jest przeznaczona dla małych sieci, oferując dużą liczbę sieci, ale z ograniczoną liczbą hostów – maksymalnie 254 hosty na sieć. Klasa D, zaczynająca się od 224.0.0.0 do 239.255.255.255, jest zarezerwowana dla multicastingu i nie jest używana do adresacji hostów. Często błędnym założeniem jest przypisywanie klasy D do standardowej komunikacji między hostami, co nie jest zgodne z rzeczywistą funkcją tej klasy. Błędy w rozpoznawaniu klas mogą prowadzić do nieefektywnego wykorzystania zasobów adresowych i problemów z routingiem, dlatego ważne jest, aby dobrze rozumieć specyfikacje definiowane przez standardy takie jak RFC 791, które opisują struktury i użycie adresów IP w sieciach komputerowych.

Pytanie 40

Co jest efektem polecenia ipconfig /release?

A. Zwolnienie wszystkich dzierżaw adresu IP uzyskanych z serwera DHCP.
B. Odnowienie wszystkich dzierżaw adresu IP uzyskanych z serwera DHCP.
C. Odświeżenie dzierżawy DHCP i ponowne zarejestrowanie nazwy.
D. Wyświetlenie pełnej informacji o konfiguracji karty sieciowej komputera.
Polecenie ipconfig w systemie Windows ma kilka różnych przełączników, które łatwo ze sobą pomylić, szczególnie kiedy dopiero zaczyna się przygodę z administracją sieciami. W tym pytaniu kluczowe jest zrozumienie różnicy między odświeżeniem, odnowieniem i zwolnieniem dzierżawy DHCP oraz zwykłym wyświetleniem konfiguracji. Częsty błąd polega na myleniu ipconfig /release z opcją, która „odświeża” lub „odnawia” dzierżawę. Za odnowienie odpowiada polecenie ipconfig /renew – to ono wysyła do serwera DHCP prośbę o przydzielenie (lub przedłużenie) adresu IP. Natomiast /release robi dokładnie odwrotną rzecz: klient rezygnuje z aktualnego adresu IP z DHCP, co skutkuje jego zwolnieniem. Dlatego odpowiedzi sugerujące odnowienie lub odświeżenie dzierżawy nie trafiają w sedno działania tego przełącznika. Pojawia się też czasem przekonanie, że każde polecenie ipconfig „coś wyświetla”, więc musi chodzić o pokazanie pełnej konfiguracji karty sieciowej. To akurat robi samo ipconfig (bez przełączników) lub ipconfig /all, które pokazuje szczegółowe informacje: adresy IP, maskę, bramę, serwery DNS, MAC, status DHCP itp. /release również może coś wypisać w konsoli, ale jego główna funkcja jest konfiguracyjna, a nie informacyjna. Inny typowy skrót myślowy to utożsamianie słowa „odświeżenie” z dowolną operacją na DHCP. W praktyce w środowiskach zgodnych z dobrymi praktykami sieciowymi używa się precyzyjnych terminów: „release” (zwolnienie dzierżawy) i „renew” (odnowienie dzierżawy). Jeśli administrator chce, żeby klient otrzymał nowy adres lub zaktualizował konfigurację po zmianach na serwerze, uruchamia /renew, czasem poprzedzone /release. W diagnostyce i serwisie sprzętu sieciowego ważne jest dokładne rozróżnianie tych operacji, bo inaczej trudno zrozumieć, dlaczego host nagle traci adres IP albo dlaczego nie pobiera nowych ustawień. Dlatego przy takich pytaniach warto zawsze odnieść się do logiki protokołu DHCP i tego, co faktycznie robi klient w danym stanie.