Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 5 lutego 2026 09:48
  • Data zakończenia: 5 lutego 2026 09:56

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wartość punktu na profilu podłużnym 2/4+27 wskazuje, że znajduje się on w odległości od początku trasy wynoszącej

A. 2742 m
B. 2472 m
C. 2427 m
D. 2724 m
W przypadku błędnych odpowiedzi, takich jak 2472 m, 2724 m lub 2742 m, występują istotne niedopatrzenia w interpretacji zapisu punktu na profilu podłużnym. Często zdarza się, że osoby mylą odczytywanie wartości metrycznych, co prowadzi do zastosowania niewłaściwych jednostek do określenia odległości. Odpowiedź 2472 m sugeruje, że dodano 200 metrów do wartości kilometra, co nie znajduje uzasadnienia w standardzie zapisu. Analogicznie, w przypadku 2724 m i 2742 m błędne założenia dotyczą dodania lub odjęcia metrów od wartości podstawowej. W praktyce, takie błędne interpretacje mogą prowadzić do znacznych problemów przy planowaniu i realizacji projektów, jednocześnie zwiększając ryzyko wypadków i opóźnień. Istotne jest zrozumienie, że zapisy takie jak 2/4+27 są ściśle ustalone i każdy element ma swoje znaczenie, które należy respektować, aby uniknąć pomyłek. W branży budowlanej i transportowej kluczowe jest przestrzeganie standardów geodezyjnych, które definiują zasady dotyczące oznaczania i identyfikacji punktów na trasach. Właściwe interpretowanie profilu podłużnego jest niezbędne nie tylko w pracach inżynieryjnych, ale również w zarządzaniu ruchem drogowym, co podkreśla znaczenie rzetelnej edukacji w zakresie geodezji i inżynierii.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Zrealizowano pomiar sytuacyjny dla budynku jednorodzinnego, parterowego z poddaszem, które nie jest przeznaczone do użytku. Jakim symbolem powinno się oznaczyć ten obiekt na mapie?

A. m1
B. m
C. mj
D. mj2
Odpowiedź 'mj' jest poprawna, ponieważ symbol ten odnosi się do budynków mieszkalnych jednorodzinnych, w tym do budynków parterowych oraz tych z poddaszem nieużytkowym. W polskich standardach klasyfikacji obiektów budowlanych, symbol 'mj' stosuje się do identyfikacji budynków mieszkalnych, co jest zgodne z normami przedstawionymi w rozporządzeniu o klasyfikacji obiektów budowlanych. W praktyce, oznaczenie to ułatwia lokalizację budynków na mapach oraz w dokumentacji urbanistycznej, co jest kluczowe dla planowania przestrzennego i zarządzania infrastrukturą. Dodatkowo, w kontekście projektowania urbanistycznego, zastosowanie odpowiednich symboli umożliwia lepszą analizę zagospodarowania terenu oraz wpływa na prawidłowe funkcjonowanie systemów zarządzania kryzysowego oraz dostępu do usług komunalnych. Przykładem może być analiza potrzeb infrastrukturę dla budynków oznaczonych symbolem 'mj', co wpływa na planowanie sieci wodociągowych czy kanalizacyjnych, biorąc pod uwagę specyfikę zabudowy jednorodzinnej.

Pytanie 5

Ile wynosi różnica wysokości Δh pomiędzy punkami 1 i 2, na których ustawiono łaty niwelacyjne w sposób przedstawiony na zamieszczonym rysunku?

Ilustracja do pytania
A. 4 cm
B. 4 dm
C. 4 m
D. 4 mm
Różnica wysokości Δh pomiędzy punktami 1 i 2 została obliczona na podstawie odczytów z łaty niwelacyjnej. W kontekście niwelacji, kluczowym jest prawidłowe zrozumienie i interpretacja wyników pomiarów wysokości. Odczyty z łaty niwelacyjnej przedstawiają wartości wysokości w danym punkcie, które następnie można wykorzystać do obliczenia różnicy wysokości poprzez prostą matematyczną operację odjęcia. W tym przypadku, różnica ta wynosi 0,4 m, co po przeliczeniu na decymetry daje 4 dm. Ważne jest, aby przy wykonywaniu takich pomiarów stosować się do standardów, takich jak normy ISO dotyczące pomiarów geodezyjnych, które zapewniają dokładność i powtarzalność wyników. W praktyce, takie obliczenia stosuje się w projektach budowlanych, gdzie precyzyjne określenie różnicy wysokości jest kluczowe dla stabilności konstrukcji oraz odpowiedniego odwodnienia terenu.

Pytanie 6

Na rysunku przedstawiono fragment szkicu pomiaru szczegółów sytuacyjnych. Ile wynosi odchyłka między miarą czołową pomierzoną a obliczoną?

Ilustracja do pytania
A. 0 cm
B. 10 cm
C. 15 cm
D. 5 cm
Odchyłka między miarą czołową pomierzoną a obliczoną wynosi 0 cm, co oznacza, że pomiar został wykonany z odpowiednią precyzją. W przedstawionym fragmencie szkicu znajdują się dokładne wartości odległości, które, po obliczeniu, dają wynik zgodny z pomiarem czołowym wynoszącym 10.00 m. W kontekście pomiarów sytuacyjnych, zachowanie zgodności pomiarów jest kluczowe, szczególnie w inżynierii i geodezji, gdzie dokładność pomiarów wpływa na dalsze etapy projektów budowlanych i planowania przestrzennego. Zastosowanie standardów takich jak PN-EN ISO 17123 dotyczących pomiarów geometrycznych oraz PN-EN 1990, które podkreślają znaczenie precyzji pomiarów w inżynierii, potwierdzają wagę utrzymania niskiej odchyłki. Umiejętność właściwego pomiaru oraz obliczania odchyłek jest niezbędna, aby zapewnić jakość i wiarygodność wyników, co z kolei wpływa na bezpieczeństwo i efektywność realizowanych projektów.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jeśli długość odcinka na mapie w skali 1:500 wynosi 20 cm, to jaka jest rzeczywista długość tego odcinka w terenie?

A. 1000m
B. 50 m
C. 100 m
D. 500 m
Odpowiedź 100 m jest poprawna, ponieważ w skali 1:500 każdy 1 cm na mapie reprezentuje 500 cm w rzeczywistości, co odpowiada 5 m. Aby obliczyć rzeczywistą długość odcinka, należy pomnożyć długość odcinka na mapie przez wartość skali. W tym przypadku: 20 cm (długość na mapie) x 500 cm (w rzeczywistości na 1 cm) = 10000 cm, co przelicza się na 100 m. Przykład zastosowania tej wiedzy można znaleźć w geodezji i kartografii, gdzie precyzyjne pomiary są niezbędne do tworzenia map i planów. Stosowanie skal w praktyce umożliwia inżynierom, architektom oraz planistom przestrzennym dokładne odwzorowywanie rzeczywistych odległości i powierzchni, co jest kluczowe dla efektywnego projektowania i realizacji inwestycji budowlanych oraz zarządzania przestrzenią. Wiedza ta jest również przydatna w czasie wędrówek czy nawigacji, gdzie umiejętność odczytywania map i przeliczania skal jest niezbędna dla bezpieczeństwa i orientacji w terenie.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Która z wielkości jest obciążona błędem indeksu w trakcie pomiaru?

A. Odczyt na łacie
B. Kierunek poziomy
C. Odległość skośna
D. Kierunek pionowy
Odległość skośna, kierunek poziomy i odczyt na łacie to rzeczy, które mogą się mylić z błędem indeksu, ale tak naprawdę mają swoje zasady i błędy, które są inne. Odległość skośna, na przykład, jest mierzona w terenie i tam pojawiają się inne błędy, jak refrakcja atmosferyczna czy nieprecyzyjny odczyt. Kierunek poziomy, który jest prostopadły do pionowego, można mierzyć dokładniej, szczególnie z nowoczesnymi instrumentami, które pomagają ograniczyć błędy. Odczyt na łacie też nie jest bezpośrednio związany z błędem indeksu, ale można się pomylić przy odczycie lub gdy teren jest nierówny. Często mylimy te pojęcia z błędem indeksu, bo nie rozumiemy, jak wykonywane są różne pomiary i jakie błędy mogą się zdarzyć. Dlatego ważne jest, żeby korzystać z odpowiednich standardów pomiarowych i technik, żeby zminimalizować błędy i uzyskać wiarygodne wyniki.

Pytanie 11

Osnowę wysokościową określa się przy użyciu metody niwelacji

A. punktów rozproszonych
B. trygonometrycznej
C. hydrostatycznej
D. siatkowej
Pomiarowa osnowa wysokościowa wyznaczana metodą niwelacji trygonometrycznej to kluczowy element w geodezji, który pozwala na precyzyjne określenie różnic wysokości pomiędzy punktami w terenie. Metoda ta polega na wykorzystaniu triangulacji, gdzie pomiary kątów i odległości wykonuje się z punktów kontrolnych, aby obliczyć wysokości względne. Przykładem zastosowania tej metody jest budowa infrastruktury, gdzie niezbędne jest zapewnienie odpowiednich różnic wysokości dla dróg, mostów czy budynków. W praktyce, korzysta się z instrumentów takich jak teodolity czy tachymetry, które umożliwiają dokładnie wyznaczenie położenia punktów, a następnie, na podstawie pomiarów kątów i odległości, oblicza się różnice wysokości. Zastosowanie niwelacji trygonometrycznej jest zgodne z normami Polskiego Towarzystwa Geodezyjnego oraz międzynarodowymi standardami, co gwarantuje jej wysoką jakość oraz dokładność.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie prace geodezyjno-kartograficzne nie wymagają zgłoszenia ani przekazania dokumentacji do Zasobu Geodezyjnego i Kartograficznego?

A. Odniesione do pomiarów sytuacyjno-wysokościowych
B. Realizowane w celu określenia objętości mas ziemnych
C. Powiązane z inwentaryzacją powykonawczą budynków
D. Dotyczące aktualizacji mapy w celach projektowych
Odpowiedź o pracach geodezyjno-kartograficznych, które mają na celu ustalenie objętości mas ziemnych, jest absolutnie trafna. Takie działania zazwyczaj nie wymagają żadnych formalności, jak zgłoszenia czy przekazywania dokumentacji do Zasobu Geodezyjnego i Kartograficznego. W praktyce te prace często są częścią różnych procesów budowlanych, na przykład przy ocenie, ile ziemi musimy wykopać albo nasypać. Myślę, że ustalanie objętości tych mas to naprawdę istotne zadanie, które można robić na podstawie prostych pomiarów w terenie i obliczeń matematycznych. Przy większych projektach budowlanych korzysta się też z nowoczesnych technologii, jak skanowanie 3D czy fotogrametria, co znacznie poprawia dokładność wyników. Dodatkowo, wszystkie te prace są zgodne z aktualnymi normami branżowymi, co zapewnia ich jakość i zgodność z przepisami. Co więcej, ustalanie objętości mas ziemnych jest ważne nie tylko w budownictwie, ale też w gospodarce przestrzennej oraz w ochronie środowiska, gdzie zarządzanie odpadami ziemnymi jest bardzo istotne.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Za pomocą zamieszczonego wzoru można obliczyć błąd:$$ \frac{O_1 + O_{II} - 400^g}{2} $$\( O_1 \) i \( O_{II} \) – odczyty kąta pionowego zenitalnego w pierwszym i drugim położeniu lunety

A. podziału limbusa.
B. miejsca zera.
C. położenia punktu.
D. pojedynczego spostrzeżenia.
Odpowiedź "miejsca zera" jest poprawna, ponieważ wzór przedstawiony na zdjęciu jest bezpośrednio związany z określaniem błędu miejsca zera instrumentów pomiarowych, takich jak teodolity i tachimetry. Błąd miejsca zera odnosi się do różnicy między rzeczywistą wartością kąta a wartością zmierzoną przez instrument, co jest kluczowe dla uzyskania dokładnych pomiarów geodezyjnych. W praktyce, aby obliczyć ten błąd, odczyty kątów pionowych zenitalnych w dwóch różnych położeniach lunety są korygowane o stałą instrumentalną, co pozwala na zminimalizowanie wpływu stałych błędów systematycznych. Następnie, średnia wartość tych korekcji daje precyzyjny wynik błędu miejsca zera. Ustalanie i kalibracja miejsca zera są kluczowymi elementami w procesie pomiarowym, ponieważ zapewniają wiarygodność i precyzję zbieranych danych. W geodezji, stosowanie wzorów do obliczeń błędów jest zgodne z najlepszymi praktykami oraz standardami branżowymi, co pozwala na uzyskanie wiarygodnych wyników w pracach terenowych.

Pytanie 18

Jeśli pomiar na łacie niwelacyjnej w kierunku wstecznym wyniósł 3549, a na łacie w kierunku przednim 0506, jaka jest różnica wysokości na pozycji niwelatora?

A. -3,043 m
B. -4,055 m
C. +3,043 m
D. +4,055 m
Wybór błędnej odpowiedzi może wynikać z nieprawidłowego zrozumienia podstawowych zasad pomiarów niwelacyjnych. Kluczowym błędem jest nieprawidłowa interpretacja odczytów z łaty. Odczyt wstecz (3549 mm) należy odjąć od odczytu w przód (0506 mm), a nie odwrotnie. Wiele osób może mylnie sądzić, że należy dodać oba odczyty, co prowadzi do pomyłek w obliczeniach. W przypadku odpowiedzi -3,043 m, można zauważyć, że ktoś mógł spróbować wziąć różnicę, ale pomylił kierunki, co skutkuje negatywną wartością, zamiast zrozumieć, że różnica powinna być dodatnia, jeśli odczyt wstecz jest wyższy. Osoby, które wskazały opcję +4,055 m, najprawdopodobniej popełniły błąd obliczeniowy, dodając odczyty lub myląc się w przekształceniu jednostek. Również, wybór -4,055 m sugeruje mylne założenie, że odczyt w przód był wyższy, co jest sprzeczne z podanymi wartościami. W geodezji i innych dziedzinach związanych z pomiarami, kluczowe jest zrozumienie, jak poprawnie interpretować wyniki i stosować odpowiednie procedury, aby uzyskać rzetelne dane. Prawidłowe wykonanie niwelacji przed budową czy podczas pomiarów geodezyjnych ma fundamentalne znaczenie dla późniejszej jakości i trwałości budowli.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Teoretyczna suma kątów wewnętrznych w wieloboku zamkniętym liczona jest ze wzoru

A. \( [w]_t = (n + 2) \cdot 200^g \)
B. \( [w]_t = Ak - Ap + n \cdot 200^g \)
C. \( [w]_t = Ap - Ak + n \cdot 200^g \)
D. \( [w]_t = (n - 2) \cdot 200^g \)
Wzór \([w]_t = (n-2) \cdot 200^g\) to podstawa w geodezji i matematyce, jeśli chodzi o obliczanie sumy kątów wewnętrznych dowolnego wieloboku zamkniętego. To nie jest jakiś wymysł – to wynika z podziału wieloboku na trójkąty. Każdy wielobok o n wierzchołkach da się rozciąć na (n-2) trójkąty, a w geodezji używamy gradów (gdzie \(200^g\) to kąt prosty), więc suma kątów w trójkącie wynosi 200 gradów. Dla pięciokąta masz (5-2) = 3 trójkąty, czyli suma kątów to 600 gradów. Taki wzór daje się wykorzystać zarówno w obliczaniu miar kątów w zadaniach teoretycznych, jak i przy sprawdzaniu dokładności pomiarów terenowych, np. podczas tyczenia działek albo kontroli zamknięcia poligonów w praktyce inżynierskiej. W geodezji stosuje się ten wzór właściwie na każdym kroku – pozwala ocenić poprawność pomiarów i od razu wykryć ewentualne błędy zamknięcia. Moim zdaniem, dobrze zapamiętać nie tylko sam wzór, ale też rozumieć, skąd się bierze – to ułatwia radzenie sobie z nietypowymi zadaniami. Ostatecznie, jeżeli w obliczeniach wyjdzie Ci coś innego niż \((n-2) \cdot 200^g\), to znaczy, że gdzieś jest błąd. Warto od razu to zweryfikować na etapie szkicu czy obliczeń, zamiast potem poprawiać wszystko od początku.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Która z poniższych aktywności nie wchodzi w zakres działań Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej?

A. Rejestrowanie dokumentów przyjętych do zasobu geodezyjnego
B. Realizacja pomiarów w celu ustalenia współrzędnych oraz wysokości punktów osnowy
C. Przyjmowanie oraz rejestrowanie zgłoszeń prac geodezyjnych i kartograficznych
D. Wydawanie instrukcji do przeprowadzenia zgłoszonych prac
Nieprawidłowa odpowiedź może wynikać z niepełnego zrozumienia zakresu działań Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej. Wydawanie wytycznych do wykonania zgłoszonych robót oraz przyjmowanie i ewidencjonowanie zgłoszeń robót geodezyjnych i kartograficznych są fundamentalnymi obowiązkami PODGiK. Te działania obejmują nadzór nad pracami geodezyjnymi i zapewnienie ich zgodności z obowiązującymi przepisami oraz standardami jakości. Ponadto ewidencjonowanie dokumentów przyjętych do zasobu geodezyjnego jest kluczowe dla przechowywania oraz udostępniania danych, co jest niezbędne dla wszelkich działań związanych z zarządzaniem przestrzenią. W złożonym procesie zarządzania danymi geodezyjnymi istotne jest nie tylko ich zbieranie, ale także weryfikacja, archiwizacja i udostępnianie interesariuszom. Brak zrozumienia podziału ról pomiędzy różnymi jednostkami geodezyjnymi może prowadzić do błędnych wniosków co do zakresu odpowiedzialności poszczególnych instytucji. Zrozumienie tego podziału jest kluczowe w kontekście współpracy z innymi jednostkami oraz w realizacji zadań związanych z planowaniem przestrzennym i inwestycjami budowlanymi. To także pokazuje, jak ważne jest przestrzeganie procedur administracyjnych oraz inwestowanie w szkolenia, aby uniknąć takich nieporozumień w przyszłości.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakiej z poniższych czynności nie przeprowadza się podczas wywiadu terenowego?

A. Zestawienia treści materiałów PZG i K ze stanem rzeczywistym
B. Rozpoznania w terenie punktów osnowy geodezyjnej
C. Uzyskania informacji o terenie, który ma być poddany pomiarom
D. Stabilizacji znaków punktów osnowy geodezyjnej
Zgłoszone odpowiedzi dotyczące działań podejmowanych w czasie wywiadu terenowego, takie jak identyfikacja punktów osnowy geodezyjnej, porównanie treści materiałów PZG i K ze stanem faktycznym oraz pozyskiwanie informacji o terenie, są poprawne i zgodne z zakresem prac, które wykonuje się podczas takiego wywiadu. Identyfikacja punktów osnowy geodezyjnej jest niezbędna, aby upewnić się, że pomiary będą odnosiły się do precyzyjnych i aktualnych danych, które są kluczowe w geodezji. Porównanie treści materiałów PZG i K z rzeczywistością terenową pozwala na weryfikację poprawności wcześniejszych pomiarów i dokumentacji, co jest zwłaszcza istotne przy planowaniu nowych inwestycji budowlanych. Pozyskiwanie informacji o terenie, który ma być objęty pomiarem, jest kluczowym krokiem, aby zrozumieć kontekst geograficzny i prawny obszaru badań. Wszelkie te czynności są zgodne z najlepszymi praktykami branżowymi, które nakładają na geodetów obowiązek dokładnej analizy terenu przed przystąpieniem do bardziej technicznych działań, takich jak stabilizacja znaków. Ignorowanie tych procesów prowadzi do nieprawidłowego wykonywania prac geodezyjnych, co może skutkować błędami w pomiarach i w konsekwencji niewłaściwą dokumentacją, co z kolei stanowi naruszenie standardów jakości w geodezji.

Pytanie 28

Który rodzaj przewodu sieci uzbrojenia terenu przedstawia szkic z pomiaru inwentaryzacyjnego?

Ilustracja do pytania
A. Kanalizacyjny.
B. Wodociągowy.
C. Ciepłowniczy.
D. Elektroenergetyczny.
Poprawna odpowiedź to "kanalizacyjny", co potwierdzają widoczne na szkicu oznaczenia typowe dla infrastruktury kanalizacyjnej. W projekcie inwentaryzacyjnym niezwykle istotne jest prawidłowe oznaczenie elementów systemu, co ma kluczowe znaczenie dla późniejszych prac konserwacyjnych oraz planowania rozwoju infrastruktury. Oznaczenia studni rewizyjnych, takie jak k-29, k-30, k-31, są standardowo stosowane w projektach kanalizacyjnych i wskazują na miejsca, gdzie można dokonać inspekcji oraz kontroli stanu technicznego sieci. Ponadto, średnice rur (Dn150, Dn200) są istotnymi parametrami, które pozwalają określić zdolność transportową systemu kanalizacyjnego. Zgodnie z normami branżowymi, projektowanie systemów kanalizacyjnych wymaga uwzględnienia takich aspektów jak hydraulika oraz przepustowość, co przyczynia się do efektywnego odprowadzania ścieków i wód deszczowych, minimalizując ryzyko zatorów. Znajomość tych oznaczeń i ich znaczenia jest niezbędna dla inżynierów zajmujących się projektowaniem oraz zarządzaniem infrastrukturą komunalną.

Pytanie 29

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 22°
B. 19°
C. 20°
D. 21°
Odpowiedź 21° jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkiem osiowym odwzorowania Gaussa-Krügera dla strefy, w której mieści się Polska, jest właśnie południk 21°. Układ PL-2000 jest oparty na odwzorowaniu Gaussa-Krügera, które jest używane do precyzyjnego odwzorowywania powierzchni ziemi na płaszczyznach. Południki osiowe są kluczowe, ponieważ definiują strefy odwzorowań, co jest istotne w kontekście dokładności geodezyjnej oraz kartograficznej. Użycie południka 21° pozwala na minimalizację zniekształceń w obszarze, co jest przydatne w praktyce, na przykład w geodezji czy podczas tworzenia map topograficznych. Dobór odpowiednich południków jest zgodny z normami, takimi jak PN-EN ISO 19111, które określają zasady klasyfikacji i odwzorowań strefowych. Wiedza na temat południków osiowych jest kluczowa dla profesjonalistów zajmujących się kartografią i geodezją, ponieważ wpływa na jakość i dokładność realizowanych projektów.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Zmiany wynikające z wywiadu terenowego powinny być oznaczone kolorem

A. czarnym
B. czerwonym
C. brązowym
D. żółtym
Zaznaczanie zmian na mapie wywiadu terenowego czerwonym kolorem to naprawdę dobra praktyka w kartografii. Czerwony często używa się do oznaczania rzeczy, które są ważne, jak zmiany w infrastrukturze czy jakieś zagrożenia środowiskowe. Używając czerwieni, w szybki sposób możemy pokazać najistotniejsze info, co jest mega ważne, gdy podejmujemy decyzje. Na przykład, jak obserwujemy zmiany w gruntach, to obszary na czerwono mogą wskazywać miejsca, gdzie coś się mocno zmieniło, jak urbanizacja czy degradacja. Fajnie jest także mieć legendę na mapie, która wyjaśnia, co oznaczają kolory, bo to ułatwia zrozumienie danych. W kontekście GIS kolorowanie jest kluczowe dla wizualizacji, a dobre dobranie kolorów poprawia jakość analizy i interpretacji wyników.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Odczyt wartości podziału łaty niwelacyjnej kreską środkową niwelatora wynosi

Ilustracja do pytania
A. 0892
B. 0812
C. 0808
D. 0888
Odpowiedź 0812 jest na pewno trafna, bo odczyt z łaty niwelacyjnej na wysokości kreski środkowej niwelatora wskazuje dokładnie to, co trzeba. Tak naprawdę, umiejętność odczytywania wartości z łaty jest mega istotna w geodezji, bo pozwala precyzyjnie ustalić różnice wysokości. W budownictwie to w ogóle kluczowa sprawa, bo dokładność odczytu może wpływać na to, czy fundamenty, krawężniki czy inne elementy będą ustawione tak, jak powinny. Swoją drogą, każdy odczyt warto potwierdzić kilkoma pomiarami, no i zawsze dobrze pamiętać o ewentualnych błędach z instrumentu. Dokumentacja pomiarowa to konieczność, bo przyda się przy przyszłych kontrolach. W miejscach, gdzie precyzja to podstawa, jak w dużych budowach, dobrze jest postawić na niwelację precyzyjną.

Pytanie 36

Który z wymienionych obiektów może mieć domiar przekraczający 25 m, jeżeli pomiary szczegółów terenowych są realizowane metodą ortogonalną?

A. Stabilizowanego punktu załamania granicy działki.
B. Trwałego ogrodzenia.
C. Elementu podziemnej sieci gazowej.
D. Drewnianej podpory mostowego.
Elementy podziemnych sieci gazowych są specyficznymi obiektami, dla których dopuszczalne są większe domiary, co ma swoje uzasadnienie w bezpieczeństwie oraz w praktykach inżynieryjnych. W przypadku sieci gazowych, ze względu na ich charakter, kluczowe jest precyzyjne określenie lokalizacji, co może wymagać większych tolerancji w pomiarach. Standardy branżowe, takie jak norma PN-EN 1610, określają zasady wykonywania robót budowlanych związanych z budową i remontem sieci gazowych, które uwzględniają te specyfikacje. Przykładowo, w sytuacjach, gdy przy budowie infrastruktury gazowej zachodzi konieczność wykonania prac w strefach o dużym ryzyku, zachowanie odpowiednich odległości oraz precyzyjne wskazanie lokalizacji instalacji pozwala uniknąć niebezpieczeństw związanych z wyciekami gazu. Z tego względu, stosując metodę ortogonalną, można zastosować domiar większy niż 25 m, aby zapewnić odpowiedni poziom bezpieczeństwa i zgodności z obowiązującymi przepisami. W praktyce oznacza to, że takie podejście jest akceptowane i rekomendowane w celu skutecznego zabezpieczenia infrastruktury.

Pytanie 37

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 100÷200g
B. 0÷100g
C. 300÷400g
D. 200÷300g
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔX<sub>AB</sub> < 0 oraz ΔY<sub>AB</sub> < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 38

Jakiej metody nie należy używać do oceny pionowości komina przemysłowego?

A. fotogrametrycznej
B. trygonometrycznej
C. stałej prostej
D. wcięć kątowych
Metody wcięć kątowych, trygonometrycznej oraz fotogrametrycznej są powszechnie stosowane w analizie pionowości kominów przemysłowych, jednak każda z nich ma swoje ograniczenia, które mogą prowadzić do błędnych wniosków, jeśli nie są zastosowane w odpowiedni sposób. Metoda wcięć kątowych polega na pomiarze kątów między różnymi punktami na obwodzie komina, co może być problematyczne, gdy komin nie jest idealnie cylindryczny lub gdy występują zakłócenia wizualne. Ponadto, ta technika często wymaga skomplikowanych obliczeń, które mogą być podatne na błędy ludzkie. Z kolei metoda trygonometryczna, opierająca się na pomiarach kątów i odległości, może również być obarczona błędami, gdy nie uwzględnia się wpływu warunków atmosferycznych na pomiary. Zmienne takie jak refrakcja atmosferyczna mogą znacznie wpłynąć na dokładność wyników. Metoda fotogrametryczna, chociaż nowoczesna i skuteczna, wymaga zaawansowanego sprzętu oraz odpowiednich umiejętności analitycznych do przetwarzania danych, co może być problematyczne w praktyce. W związku z tym, każdy z tych błędnych wyborów opiera się na założeniu, że są one w pełni niezawodne, podczas gdy w rzeczywistości wymagają one starannego planowania, wykonania oraz weryfikacji. Dlatego kluczowe jest, aby wybierać techniki pomiarowe, które są zgodne z aktualnymi standardami branżowymi, takimi jak normy ISO czy wytyczne stowarzyszeń inżynieryjnych.

Pytanie 39

Określ wysokość osi celowej danego instrumentu, jeżeli pomiar na łacie niwelacyjnej umieszczonej na punkcie o wysokości 109,50 m wynosi 1300.

A. 109,63 m
B. 109,37 m
C. 108,20 m
D. 110,80 m
Wysokość osi celowej instrumentu niwelacyjnego można obliczyć, dodając wysokość punktu, na którym wykonano odczyt, do odczytu na łacie. W tym przypadku mamy punkt o wysokości 109,50 m oraz odczyt na łacie wynoszący 1300 mm, co oznacza 1,300 m. Zatem wysokość osi celowej instrumentu wynosi: 109,50 m + 1,300 m = 110,80 m. Taki sposób obliczeń jest stosowany w praktyce inżynieryjnej i geodezyjnej, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania może być niwelacja terenu przed budową, gdzie znajomość wysokości osi celowej umożliwia dokładne określenie wysokości elementów budowlanych. Warto również zwrócić uwagę na standardy geodezyjne, które podkreślają znaczenie dokładnych pomiarów i precyzyjnych obliczeń w procesie niwelacji, co wpływa na jakość i bezpieczeństwo realizowanych projektów.

Pytanie 40

Jak nazywa się wskazana strzałką część znaku osnowy geodezyjnej?

Ilustracja do pytania
A. Mimośród.
B. Podcentr.
C. Fundament.
D. Głowica.
Podcentr to kluczowy element znaku osnowy geodezyjnej. Jego główną funkcją jest stabilizacja i precyzyjne umiejscowienie znaku w terenie, co jest niezbędne dla poprawności wszelkich pomiarów geodezyjnych. W praktyce geodezyjnej, podcentr powinien być zainstalowany na odpowiednim poziomie, aby zapobiec przemieszczeniom znaku, które mogą prowadzić do błędów w pomiarach. Właściwe umiejscowienie podcentru w znaćie osnowy zapewnia integralność danych, co jest istotne w kontekście planowania przestrzennego czy prac inżynieryjnych. W standardach geodezyjnych, takich jak normy ISO czy przepisy krajowe, wskazuje się na znaczenie stabilnych punktów osnowy, co podkreśla rolę podcentru. Dodatkowo, w przypadku zmiany topografii terenu, podcentr może wymagać regulacji, aby dostosować się do nowych warunków, co jest praktyką zgodną z dobrą praktyką geodezyjną.