Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 7 lutego 2026 17:07
  • Data zakończenia: 7 lutego 2026 17:18

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na obrazie RM nadgarstka lewego strzałką oznaczono kość

Ilustracja do pytania
A. łódeczkowatą.
B. główkowatą.
C. księżycowatą.
D. haczykowatą.
Na obrazie MR nadgarstka bardzo łatwo pomylić poszczególne kości szeregu bliższego, zwłaszcza jeśli patrzy się bardziej na kształt niż na ich położenie względem kości promieniowej i łokciowej. Kość łódeczkowata zwykle kusi jako pierwsza odpowiedź, bo jest stosunkowo duża i ma wydłużony kształt. Jednak na przekroju czołowym leży ona bardziej po stronie promieniowej, czyli bocznie, a nie centralnie nad panewką stawu promieniowo‑nadgarstkowego. Strzałka na tym obrazie kieruje się zdecydowanie w środek szeregu bliższego, więc przypisanie jej do łódeczkowatej wynika raczej z automatycznego skojarzenia nazwy niż z analizy topografii. Z kolei kość haczykowata należy do szeregu dalszego nadgarstka i ma charakterystyczny wyrostek haczykowaty, dobrze widoczny zwłaszcza na projekcjach osiowych i skośnych. Na obrazie czołowym, jak ten w pytaniu, haczyk jest słabiej uchwytny, a sama kość leży bardziej dystalnie, bliżej nasad śródręcza, nie tak blisko panewki promieniowej. Jeśli strzałka wskazuje strukturę bez wyraźnego wyrostka, położoną bliżej stawu promieniowo‑nadgarstkowego, to nie pasuje to do obrazu typowej kości haczykowatej. Podobny problem dotyczy kości główkowatej: jest to centralna kość szeregu dalszego, o masywnym, „główkowatym” trzonie, która tworzy oś nadgarstka i łączy się ze środkowym palcem. Na MRI będzie położona wyżej, bardziej dystalnie niż kości szeregu bliższego, i będzie wyglądać jak duży, prawie owalny blok kostny w centrum. Pomylenie jej z kością księżycowatą to dość typowy błąd, gdy ktoś nie śledzi ułożenia warstwowo: najpierw rząd bliższy, potem dalszy. Dobra praktyka w diagnostyce obrazowej mówi, żeby zawsze zaczynać od orientacji w osi: rozpoznać kość promieniową, potem linię stawu promieniowo‑nadgarstkowego i dopiero wtedy identyfikować kolejno kości łódeczkowatą, księżycowatą i trójgraniastą. Ignorowanie tych relacji anatomicznych i skupianie się tylko na kształcie powoduje właśnie takie pomyłki, jak przypisanie centralnie położonej kości szeregu bliższego do łódeczkowatej, haczykowatej czy główkowatej, które anatomicznie leżą gdzie indziej.

Pytanie 2

W obrazowaniu MR wykorzystuje się moment magnetyczny

A. elektronów.
B. pozytonów.
C. neutronów.
D. protonów.
W rezonansie magnetycznym często myli się, które cząstki biorą realnie udział w wytwarzaniu sygnału. Intuicyjnie ktoś może pomyśleć: przecież jądro atomowe ma protony i neutrony, więc może każde z nich „coś tam daje” do obrazu. Albo: elektron też ma ładunek i moment magnetyczny, to czemu nie on? Technicznie rzecz biorąc, moment magnetyczny mają i protony, i neutrony, i elektrony, a nawet pozytony, ale w warunkach klinicznego MR wykorzystuje się praktycznie wyłącznie moment magnetyczny protonów wodoru. Neutrony są cząstkami obojętnymi elektrycznie, posiadają co prawda moment magnetyczny, jednak ich właściwości i liczebność w organizmie nie pozwalają na efektywne zastosowanie w standardowych skanerach MR. Cała aparatura, częstotliwości Larmora, cewki nadawczo-odbiorcze są zoptymalizowane właśnie pod rezonans jądrowy protonów wodoru, a nie neutronów. To nie jest przypadek, tylko wynik fizyki i praktyki inżynierskiej. Elektrony z kolei są wykorzystywane w zupełnie innej technice – w elektronowym rezonansie paramagnetycznym (EPR), który w medycynie klinicznej jest stosowany marginalnie, głównie w badaniach naukowych, a nie w klasycznym obrazowaniu MR całego ciała czy mózgu. Elektrony mają inne częstotliwości rezonansowe, wymagają innych pól magnetycznych i całkowicie innej konstrukcji urządzenia. Pozytony natomiast kojarzą się raczej z badaniem PET w medycynie nuklearnej, gdzie mamy anihilację pozyton–elektron i rejestrację fotonów 511 keV, a nie z MR. W rezonansie magnetycznym nie generujemy, nie śledzimy ani nie wykorzystujemy pozytonów. Typowy błąd myślowy polega na wrzuceniu wszystkich technik obrazowych „pod jedną czapkę” promieniowania i cząstek. Tymczasem MR to metoda oparta na zjawisku rezonansu jądrowego protonów wodoru w silnym polu magnetycznym, podczas gdy PET czy inne techniki nuklearne bazują na rozpadających się izotopach i promieniowaniu gamma. Dlatego wybór neutronów, pozytonów albo elektronów jako źródła sygnału w standardowym badaniu MR jest po prostu niezgodny z fizyką tej metody i z praktyką kliniczną stosowaną na co dzień w pracowniach rezonansu.

Pytanie 3

Który załamek odzwierciedla repolaryzację komór w zapisie EKG?

A. P
B. R
C. Q
D. T
Prawidłowa odpowiedź to załamek T, bo właśnie on odzwierciedla repolaryzację komór w standardowym 12‑odprowadzeniowym EKG. Mówiąc prościej: depolaryzacja komór to zespół QRS, a powrót ich błony komórkowej do stanu wyjściowego (czyli repolaryzacja) zapisuje się jako załamek T. W praktyce klinicznej obserwacja kształtu, wysokości i kierunku załamka T jest kluczowa np. w rozpoznawaniu niedokrwienia mięśnia sercowego, zawału, zaburzeń elektrolitowych (zwłaszcza potasu i wapnia) czy działań niepożądanych niektórych leków, np. antyarytmicznych. W dobrych standardach opisu EKG zawsze ocenia się załamki P, zespół QRS, odcinek ST i załamek T – nie można go pomijać, bo często to właśnie subtelna zmiana T jest pierwszym sygnałem, że coś jest nie tak. Moim zdaniem, jeżeli ktoś chce dobrze ogarniać EKG w praktyce, powinien wyrobić sobie nawyk porównywania załamka T w poszczególnych odprowadzeniach, zwracając uwagę czy jest symetryczny, czy spłaszczony, czy odwrócony. W ratownictwie medycznym czy na oddziale intensywnej terapii szybkie wychwycenie wysokich, ostro zakończonych załamków T może sugerować hiperkaliemię, co jest potencjalnie stanem zagrożenia życia. Z kolei głębokie, ujemne załamki T w odprowadzeniach przedsercowych mogą wskazywać na świeże niedokrwienie lub tzw. zespół Wellensa. W technice diagnostyki elektromedycznej ważne jest też, żeby pamiętać, że artefakty, złe przyleganie elektrod czy napięcie mięśni pacjenta mogą zniekształcać załamek T, dlatego zawsze warto oceniać EKG w kontekście klinicznym i jakości zapisu, zgodnie z obowiązującymi standardami opisów EKG.

Pytanie 4

W zapisie EKG załamek U występuje bezpośrednio po załamku

A. T, u wszystkich pacjentów.
B. P, u wszystkich pacjentów.
C. P, tylko u niektórych pacjentów.
D. T, tylko u niektórych pacjentów.
Wokół załamka U krąży sporo nieporozumień, głównie dlatego, że jest on często słabo widoczny i nie jest obowiązkowym elementem zapisu EKG. Błędne odpowiedzi wynikają zazwyczaj z dwóch typowych uproszczeń: przekonania, że wszystkie elementy krzywej EKG muszą występować u każdego pacjenta, oraz mylenia kolejności poszczególnych załamków. Załamek U nie występuje po załamku P, tylko po załamku T. Załamek P odzwierciedla depolaryzację przedsionków i jest początkiem całego cyklu. Po nim następuje zespół QRS, czyli depolaryzacja komór, a następnie załamek T – repolaryzacja komór. Dopiero po zakończeniu repolaryzacji komór, czyli po załamku T, w części zapisów może być widoczny mały, dodatni załamek U. Łączenie go z załamkiem P jest więc kompletnie sprzeczne z fizjologią przebiegu potencjału czynnościowego w sercu i z przyjętą na całym świecie kolejnością elementów krzywej EKG. Drugim błędnym założeniem jest traktowanie załamka U jako struktury stałej, występującej „u wszystkich pacjentów”. W podręcznikach i wytycznych dotyczących interpretacji EKG podkreśla się, że U jest elementem zmiennym osobniczo. U wielu zdrowych osób nie da się go jednoznacznie wyróżnić. W praktyce klinicznej technik i lekarz zwracają uwagę na U głównie wtedy, gdy jest on patologicznie wysoki, odwrócony, lub gdy zlewa się z załamkiem T i może fałszować pomiar odstępu QT. To, że w części zapisów go nie widać, nie jest błędem badania ani awarią aparatu, tylko cechą fizjologiczną. Typowym błędem myślowym jest też próba „dorysowania” sobie załamka U tam, gdzie linia po załamku T lekko faluję na skutek szumów, napięcia mięśniowego czy złego kontaktu elektrod. Dobra praktyka diagnostyki elektromedycznej polega na tym, żeby najpierw zadbać o prawidłowe wykonanie badania (skóra dobrze przygotowana, pacjent rozluźniony, elektrody dobrze przyklejone), a dopiero potem spokojnie analizować końcowe fragmenty zespołu komorowego. Jeżeli po T nie ma wyraźnego, powtarzalnego, małego załamka w kilku sąsiednich odprowadzeniach, to po prostu mówimy, że załamek U nie jest widoczny. Takie podejście zmniejsza ryzyko nadinterpretacji i jest zgodne z zaleceniami dotyczących systematycznej analizy EKG, gdzie załamek U traktuje się jako element dodatkowy, a nie obowiązkowy składnik każdego zapisu.

Pytanie 5

W radiografii mianem SID określa się

A. system automatycznej regulacji jasności.
B. system automatycznej kontroli ekspozycji.
C. odległość między obiektem badanym a detektorem obrazu.
D. odległość między źródłem promieniowania a detektorem obrazu.
Prawidłowo, w radiografii SID (Source to Image Distance) oznacza odległość między źródłem promieniowania rentgenowskiego a detektorem obrazu, czyli kasetą, przetwornikiem cyfrowym, płytą DR itp. To jest podstawowy parametr geometryczny badania RTG. Moim zdaniem warto go traktować tak samo poważnie, jak kV czy mAs, bo wpływa bezpośrednio na jakość obrazu i dawkę. Im większy SID, tym promieniowanie jest bardziej równoległe, co zmniejsza powiększenie i zniekształcenia obrazu, a poprawia odwzorowanie wymiarów anatomicznych. Standardowo przy zdjęciach klatki piersiowej stosuje się duży SID (np. ok. 180 cm), żeby ograniczyć powiększenie sylwetki serca i uzyskać lepszą ocenę pól płucnych. Przy zdjęciach kończyn często używa się krótszych odległości, np. 100–115 cm, bo łatwiej wtedy uzyskać odpowiednią ekspozycję przy mniejszej dawce. Z mojego doświadczenia w pracowni radiologicznej jednym z typowych błędów jest przypadkowa zmiana SID, np. przy przesuwaniu statywu, bez korekty parametrów ekspozycji. Prowadzi to do prześwietlonych lub niedoświetlonych zdjęć, a czasem do konieczności powtórzenia badania, czyli niepotrzebnego zwiększenia dawki dla pacjenta. Dobre praktyki mówią jasno: dla danej projekcji należy stosować stały, powtarzalny SID, zgodny z protokołem pracowni, a każda zmiana odległości wymaga przeliczenia ekspozycji zgodnie z prawem odwrotności kwadratu odległości. W nowoczesnych aparatach RTG SID jest zwykle wyświetlany na konsoli i warto na to zerkać rutynowo, bo to naprawdę ułatwia utrzymanie stałej jakości badań.

Pytanie 6

Którą strukturę anatomiczną oznaczono na zamieszczonym obrazie rezonansu magnetycznego?

Ilustracja do pytania
A. Trzon kości ramiennej.
B. Guzek mniejszy kości ramiennej.
C. Guzek większy kości ramiennej.
D. Głowę kości ramiennej.
Na obrazie rezonansu magnetycznego strzałka wskazuje gużek większy kości ramiennej, czyli bocznie położoną wyniosłość nasady bliższej. W klasycznych projekcjach MR barku gużek większy leży bardziej na zewnątrz (lateralnie) i nieco ku górze w stosunku do głowy kości ramiennej. To właśnie na nim przyczepia się większość ścięgien stożka rotatorów: nadgrzebieniowy, podgrzebieniowy i obły mniejszy. Dlatego w praktyce radiologicznej i ortopedycznej jest to punkt orientacyjny numer jeden przy ocenie urazów barku, konfliktu podbarkowego czy uszkodzeń stożka rotatorów. Moim zdaniem, jak ktoś dobrze „ogarnie” lokalizację guzka większego na MR, to połowa opisu badania barku staje się prostsza. W sekwencjach T1 i PD gużek większy ma typowy sygnał dla kości zbitej z cienką warstwą jasnej szpiki w środku, otoczony jest strukturami mięśniowo-ścięgnistymi. W przeciwieństwie do głowy kości ramiennej, która ma kształt bardziej kulisty i jest pokryta chrząstką, guzek większy jest nieregularną wyniosłością boczną. W dobrych praktykach opisu MR barku zawsze ocenia się: zarysy guzka większego, obecność nadżerek, osteofitów, obrzęku szpiku oraz relację do kaletki podbarkowej. To pozwala wcześnie wychwycić zmiany przeciążeniowe u pracowników fizycznych, sportowców czy nawet u osób pracujących długo przy komputerze z ręką w wymuszonej pozycji. W technice obrazowania ważne jest też prawidłowe ułożenie pacjenta – niewielka rotacja zewnętrzna ramienia lepiej odsłania guzek większy i przyczepy stożka rotatorów, co jest standardem w wielu pracowniach.

Pytanie 7

Który wynik badania tympanometrycznego potwierdza, że słuch badanego pacjenta jest w granicach normy?

A. Wynik badania 2
Ilustracja do odpowiedzi A
B. Wynik badania 3
Ilustracja do odpowiedzi B
C. Wynik badania 1
Ilustracja do odpowiedzi C
D. Wynik badania 4
Ilustracja do odpowiedzi D
Prawidłową krzywą tympanometryczną w kontekście prawidłowego słuchu pokazuje wynik badania 3, czyli klasyczny wykres typu A. W tym typie tympanogramu szczyt krzywej znajduje się w okolicy 0 daPa (zwykle między -100 a +50 daPa), co oznacza, że ciśnienie w uchu środkowym jest wyrównane z ciśnieniem atmosferycznym, a trąbka słuchowa działa prawidłowo. Dodatkowo wysokość szczytu (tzw. podatność, compliance) mieści się w normie – błona bębenkowa i łańcuch kosteczek są wystarczająco ruchome, ale nie nadmiernie wiotkie. W praktyce klinicznej właśnie taki tympanogram łączy się najczęściej z prawidłowymi progami w audiometrii tonalnej i brakiem przewodzeniowego ubytku słuchu. Moim zdaniem warto zapamiętać prostą zasadę: szczyt w okolicy zera = zdrowe ucho środkowe (oczywiście przy braku innych patologii). W gabinecie laryngologicznym taki wynik widzimy np. u dzieci po skutecznym leczeniu wysiękowego zapalenia ucha, kiedy płyn już się wchłonął, a wentylacja jamy bębenkowej wróciła do normy. Z mojego doświadczenia, przy ocenie tympanogramu zawsze trzeba popatrzeć jednocześnie na typ krzywej, jej wysokość oraz szerokość przy połowie amplitudy – zbyt szeroka krzywa albo bardzo niska podatność mogą już sugerować początki dysfunkcji ucha środkowego, nawet jeśli szczyt jest blisko 0 daPa. Jednak w typowych testach egzaminacyjnych za wzorzec prawidłowego ucha przyjmuje się właśnie taki kształt jak na wyniku 3: pojedynczy, wyraźny, wąski szczyt w okolicy ciśnienia atmosferycznego, bez spłaszczenia, bez przesunięcia w stronę ciśnień ujemnych czy dodatnich. To jest zgodne z podręcznikowymi kryteriami tympanogramu typu A.

Pytanie 8

Największa wartość energii promieniowania stosowanego w radioterapii jest generowana przy użyciu

A. aparatu kobaltowego.
B. aparatu rentgenowskiego.
C. przyspieszacza liniowego.
D. radioaktywnego cezu-137.
W radioterapii łatwo skojarzyć „mocne promieniowanie” z materiałami promieniotwórczymi, takimi jak kobalt‑60 czy cez‑137, albo po prostu z aparatem rentgenowskim, który przecież też emituje promieniowanie jonizujące. To jednak trochę mylące uproszczenie. Kluczowe jest tu pojęcie energii wiązki fotonów lub elektronów oraz możliwość jej wyboru i modulacji. Aparat kobaltowy wykorzystuje izotop Co‑60 i emituje promieniowanie gamma o stałej, z góry określonej energii około 1,25 MeV. Ta energia jest wystarczająca do prowadzenia teleterapii, ale nie daje takiej elastyczności jak nowoczesne przyspieszacze. Dodatkowo źródło kobaltowe cały czas się rozpada, więc aktywność i dawka z czasem spadają, co w praktyce komplikuje planowanie i kontrolę jakości. Cez‑137 ma jeszcze niższą energię fotonów i jest obecnie rzadziej stosowany w teleterapii; historycznie bywał używany, ale dziś raczej kojarzy się z niektórymi aplikatorami brachyterapeutycznymi lub zastosowaniami przemysłowymi, a nie z generowaniem najwyższych energii w radioterapii onkologicznej. Aparat rentgenowski, taki typowy do diagnostyki, pracuje w zakresie kilkudziesięciu do około 150 kV. To oznacza, że energia promieniowania jest znacznie niższa niż w wiązkach megawoltowych z przyspieszacza liniowego. Takie promieniowanie jest świetne do obrazowania, ale dla głębokiej radioterapii nowotworów jest po prostu za miękkie – dawka odkłada się głównie powierzchownie, co zwiększa uszkodzenia skóry i nie pozwala dobrze napromienić guza położonego głęboko. Typowym błędem myślowym jest utożsamianie „radioaktywnego izotopu” z „maksymalną energią”. W praktyce klinicznej najwyższe i najbardziej użyteczne energie wiązek terapeutycznych uzyskuje się w przyspieszaczach liniowych (linacach), gdzie elektrony są rozpędzane w polu elektromagnetycznym do energii kilku–kilkunastu MeV, a następnie wytwarzają wysokoenergetyczne fotony. To właśnie te urządzenia są standardem nowoczesnej radioterapii, a nie klasyczne aparaty kobaltowe, diagnostyczne aparaty RTG czy źródła cezu‑137.

Pytanie 9

Przedstawiony obraz radiologiczny został zarejestrowany podczas badania jelita

Ilustracja do pytania
A. cienkiego po doodbytniczym podaniu środka kontrastującego.
B. grubego po doodbytniczym podaniu środka kontrastującego.
C. cienkiego po doustnym podaniu środka kontrastującego.
D. grubego po doustnym podaniu środka kontrastującego.
Na obrazie widać klasyczną wlewkę doodbytniczą jelita grubego (tzw. badanie kontrastowe jelita grubego z barytem). Środek cieniujący został podany od strony odbytnicy, dlatego kontrast bardzo dokładnie wypełnia światło okrężnicy, odwzorowując jej zarys, haustracje i przebieg. Jelito grube ma charakterystyczny obraz: szerokie światło, wyraźne haustry układające się w takie jakby segmenty, brak typowych dla jelita cienkiego fałdów okrężnych przechodzących przez całe światło. Na zdjęciu widoczny jest zarys okrężnicy wstępującej, poprzecznej, zstępującej i esicy, co jednoznacznie przemawia za jelitem grubym. Po doodbytniczym podaniu kontrastu uzyskujemy tzw. badanie wlewu kontrastowego, które w standardowej praktyce radiologicznej stosuje się głównie do oceny zmian strukturalnych jelita grubego: zwężeń, uchyłków, guzów, nieprawidłowego poszerzenia, zaburzeń zarysów fałdów śluzówki. W technikach zgodnych z dobrymi praktykami (np. zalecenia towarzystw radiologicznych) pacjent jest odpowiednio przygotowany – oczyszczenie jelita, często dieta płynna dzień wcześniej – tak żeby kontrast równomiernie wypełniał światło i nie było artefaktów z zalegających mas kałowych. Moim zdaniem to jedno z badań, na których bardzo dobrze widać różnicę między jelitem cienkim a grubym, co przydaje się potem przy interpretacji tomografii czy badań z podwójnym kontrastem. Warto zapamiętać: jelito grube + baryt podany od dołu = wlew doodbytniczy, taki jak na tym zdjęciu.

Pytanie 10

Zadaniem technika elektroradiologii w pracowni badań naczyniowych jest

A. przygotowanie niezbędnych narzędzi.
B. przygotowanie cewników.
C. nadzorowanie czynności aparatury rentgenowskiej.
D. wprowadzenie cewnika w światło naczyń.
Prawidłowo wskazana rola technika elektroradiologii w pracowni badań naczyniowych to nadzorowanie czynności aparatury rentgenowskiej. W praktyce oznacza to, że technik odpowiada za poprawne przygotowanie, ustawienie i kontrolę pracy całego systemu angiograficznego: generatora, lampy rentgenowskiej, detektora, stołu, systemu akwizycji obrazu, a także parametrów ekspozycji. Lekarz wprowadza cewnik do naczynia, natomiast technik ma zadbać, żeby obrazowanie było bezpieczne, stabilne i dawało diagnostycznie przydatne obrazy. W czasie badania technik dobiera parametry takie jak kV, mA, czas ekspozycji, tryby pulsacji, kolimacja, filtracja, a także kontroluje projekcje, ruch stołu i synchronizację z podaniem kontrastu. Bardzo ważny jest też nadzór nad dawką promieniowania: monitorowanie czasu fluoroskopii, wskaźników dawki (DAP, KAP), stosowanie powiększeń tylko wtedy, gdy są naprawdę potrzebne, odpowiednie ekranowanie pacjenta i personelu. Z mojego doświadczenia, dobry technik w angiografii potrafi znacząco skrócić czas badania i zmniejszyć dawkę, a jednocześnie poprawić jakość obrazów. To on pilnuje jakości obrazu w czasie rzeczywistym, reaguje na artefakty, modyfikuje parametry przy otyłości, miażdżycy, szybkich ruchach pacjenta. Standardy pracy, także te wynikające z zasad optymalizacji dawki (ALARA), bardzo mocno podkreślają, że technik nie jest tylko „operatorem guzika”, ale specjalistą od obsługi i kontroli aparatury rentgenowskiej w całym procesie badania naczyniowego.

Pytanie 11

Czas repetycji w obrazowaniu metodą rezonansu magnetycznego to

A. czas mierzony od impulsu odwracającego 180° do impulsu 90°.
B. czas kąta przeskoku.
C. czas mierzony od impulsu 90° do szczytu amplitudy sygnału odebranego w cewce.
D. czas między dwoma impulsami częstotliwości radiowej.
W rezonansie magnetycznym łatwo się pogubić w różnych czasach: mamy czas repetycji (TR), czas echa (TE) i czas inwersji (TI). Jeżeli nie złapie się intuicji, co który oznacza, to odpowiedzi oparte na skojarzeniach typu „kąt”, „szczyt sygnału” czy „odwrócenie” brzmią sensownie, ale niestety mijają się z fizyką badania. Czas repetycji nie ma nic wspólnego z „czasem kąta przeskoku”. W MR owszem, mówimy o kącie odchylenia magnetyzacji (np. 90°, 180°, małe kąty w sekwencjach GRE), ale nie mierzymy żadnego „czasu kąta”. Kąt jest parametrem impulsu RF, a TR to odstęp czasowy między kolejnymi impulsami pobudzającymi. Łączenie TR z kątem wynika często z mylenia definicji z pracą gradientów i zmianą fazy, ale to zupełnie inna bajka. Z kolei określenie „czas mierzony od impulsu odwracającego 180° do impulsu 90°” opisuje w istocie czas inwersji (TI) stosowany w sekwencjach inwersyjno-odtworzeniowych, takich jak STIR czy FLAIR. TI dobieramy tak, żeby wygasić sygnał określonej tkanki, np. tłuszczu albo płynu mózgowo-rdzeniowego. To bardzo ważny parametr, ale nie jest to TR. W tych sekwencjach nadal istnieje TR, który liczymy od cyklu do cyklu pobudzenia, natomiast TI jest dodatkowym czasem w środku sekwencji. Następne błędne skojarzenie to „czas mierzony od impulsu 90° do szczytu amplitudy sygnału odebranego w cewce”. To już bardziej przypomina definicję czasu echa (TE). TE to odstęp między impulsem pobudzającym RF (zwykle 90°) a momentem, w którym rejestrujemy maksimum sygnału echa w cewce. TE wpływa głównie na ważenie T2, bo od niego zależy, jak bardzo zdąży zajść relaksacja poprzeczna. Typowy błąd myślowy polega na tym, że wszystko, co „czasowe” w MR, wrzuca się do jednego worka i nazywa TR. W dobrej praktyce diagnostycznej trzeba te pojęcia rozdzielić: TR – czas między kolejnymi impulsami RF pobudzającymi ten sam wycinek, TE – czas do szczytu echa, TI – czas od impulsu 180° do 90°. Dopiero świadome operowanie tymi trzema parametrami pozwala rozumieć, dlaczego dany protokół daje obraz bardziej T1-, T2- czy PD-zależny i jak modyfikacje wpływają na kontrast, SNR i całkowity czas badania.

Pytanie 12

Zgodnie z procedurą wzorcową w badaniu MR należy ułożyć pacjenta na brzuchu do diagnostyki

A. jamy brzusznej.
B. kręgosłupa szyjnego.
C. stawu barkowego.
D. gruczołu piersiowego.
W rezonansie magnetycznym pozycjonowanie pacjenta jest jednym z kluczowych elementów całej procedury – często ważniejszym, niż się na pierwszy rzut oka wydaje. Wiele osób zakłada, że skoro badanie dotyczy jamy brzusznej, barku czy odcinka szyjnego kręgosłupa, to pozycja na brzuchu będzie lepsza, bo „bliżej cewki” albo wygodniej ułożyć daną część ciała. To jest typowy skrót myślowy, który w praktyce prowadzi do gorszej jakości obrazów. W diagnostyce MR jamy brzusznej standardem jest pozycja na plecach (supinacyjna). Pozwala ona na stabilne ułożenie ciała, łatwą synchronizację z oddechem, wygodne podanie kontrastu i zastosowanie cewki brzusznej lub całociała. Pozycja na brzuchu utrudnia kontrolę oddechu, współpracę z pacjentem i zwyczajnie jest mniej komfortowa, a przy badaniu narządów jamy brzusznej nie daje żadnej realnej przewagi. Podobnie w badaniu stawu barkowego najczęściej stosuje się pozycję na plecach, z kończyną górną odpowiednio ułożoną w cewce dedykowanej do barku lub cewce na ramię. Pozycja na brzuchu przy barku jest raczej wyjątkiem i stosuje się ją tylko w bardzo specyficznych sytuacjach, a na pewno nie jako „procedurę wzorcową”. Z mojego doświadczenia takie kombinowanie z pozycją częściej kończy się artefaktami od ruchu i niewygodą pacjenta. W diagnostyce kręgosłupa szyjnego również dominują badania w pozycji na plecach. Głowa i szyja są stabilizowane, stosuje się cewkę głowowo-szyjną, pacjent ma kontakt wzrokowy/werbalny z personelem, łatwiej też monitorować jego stan. Układanie na brzuchu w tym przypadku nie przynosi korzyści, a może zwiększyć dyskomfort, szczególnie przy dolegliwościach bólowych czy urazach. W przeciwieństwie do tych badań, MR gruczołu piersiowego ma specjalnie opracowany standard: pozycja na brzuchu, piersi w cewce dedykowanej, bez ucisku klatki piersiowej. Pomylenie tych standardów wynika zwykle z ogólnego skojarzenia, że „jak coś z tyłu, to na brzuchu, jak z przodu, to na plecach”, a w obrazowaniu MR to tak nie działa. Kluczem jest dopasowanie pozycji do rodzaju cewki, ruchomości badanej okolicy i celu diagnostycznego, a nie tylko intuicja co do ułożenia pacjenta.

Pytanie 13

W medycznym przyspieszaczu liniowym jest generowana wiązka fotonów o energii w zakresie

A. 100 + 150 MeV
B. 1 + 3 MeV
C. 4 + 25 MeV
D. 0,1 + 0,3 MeV
Zakres energii wiązki fotonów w medycznym przyspieszaczu liniowym jest ściśle związany z jego przeznaczeniem: ma to być urządzenie terapeutyczne, a nie diagnostyczne. Odpowiedzi z zakresami 0,1–0,3 MeV oraz 1–3 MeV odzwierciedlają raczej myślenie kategoriami aparatury diagnostycznej albo historycznych urządzeń niskoenergetycznych. Foton o energii 0,1–0,3 MeV (czyli 100–300 keV) to typowy poziom dla klasycznego RTG czy mammografii, czasem także dolny zakres tomografii komputerowej. Takie promieniowanie bardzo silnie oddziałuje z tkankami powierzchownymi, co skutkuje wysoką dawką na skórze i szybkim spadkiem dawki w głąb. W radioterapii głębiej położonych guzów byłoby to kompletnie niepraktyczne i niezgodne z aktualnymi standardami leczenia, bo nie osiągnęlibyśmy pożądanej dawki w objętości guza, a za to mocno uszkodzilibyśmy skórę i tkanki podskórne. Zakres 1–3 MeV to z kolei coś pomiędzy klasycznym aparatem kobaltowym (ok. 1,25 MeV) a dolnym progiem typowego akceleratora megawoltowego. Współcześnie liniowe akceleratory medyczne do teleterapii są projektowane tak, by generować fotony o energii co najmniej kilku MeV, ponieważ dopiero wtedy uzyskujemy efekt budowy dawki w głębi (build-up) i lepszy rozkład dawki w tkankach. Zbyt niska energia wiązki powoduje zbyt duże obciążenie skóry i słabą penetrację, co przeczy idei radioterapii megawoltowej. Z drugiej strony zakres 100–150 MeV bardziej pasuje do wiązek protonowych lub wysokoenergetycznych elektronów w fizyce eksperymentalnej, a nie do klasycznych fotonów z akceleratora terapeutycznego. Tak wysokie energie fotonów byłyby ekstremalnie trudne do opanowania pod względem ochrony radiologicznej (produkcja neutronów, rozbudowane osłony), a w rutynowej onkologii po prostu nie ma takiej potrzeby. Typowym błędem jest tu mieszanie pojęć: ktoś kojarzy „im wyższa energia, tym lepiej penetruje”, więc intuicyjnie wybiera bardzo wysokie wartości, albo odwrotnie – kojarzy promieniowanie z diagnostyki RTG i wybiera zbyt niskie zakresy. Tymczasem współczesna radioterapia opiera się na fotonach rzędu kilku do kilkunastu MeV, z górnym zakresem w okolicy 20–25 MeV, co zapewnia optymalny kompromis między głębokością dawki, jakością planu a bezpieczeństwem pacjenta i personelu.

Pytanie 14

W sekwencji echa spinowego obraz T2-zależny uzyskuje się przy czasie repetycji TR

A. od 800 ms do 900 ms
B. powyżej 2000 ms
C. od 500 ms do 700 ms
D. od 300 ms do 400 ms
W tym pytaniu haczyk polega na zrozumieniu, jak parametry TR i TE wpływają na kontrast obrazu w sekwencji echa spinowego. Krótkie czasy repetycji, takie jak 300–400 ms czy 500–700 ms, są typowe raczej dla obrazów T1-zależnych, a nie T2-zależnych. Przy krótkim TR tkanki o różnym czasie relaksacji podłużnej T1 mają bardzo zróżnicowany stopień regeneracji magnetyzacji przed kolejnym impulsem RF. To powoduje silne uwidocznienie różnic w T1, natomiast wpływ T2 jest wtedy stosunkowo mniej widoczny. W praktyce przekłada się to na jasny obraz tłuszczu, dobrą wizualizację struktur anatomicznych i słabsze podkreślenie obrzęku czy zmian zapalnych. Odpowiedzi z zakresu 300–900 ms odzwierciedlają dość częste, ale mylne założenie, że „średni” TR da „mieszany” kontrast i można to nazwać T2. Z mojego doświadczenia wynika, że uczniowie często intuicyjnie myślą: trochę dłuższy TR niż w T1 to pewnie już T2. Niestety tak to nie działa. Żeby kontrast T2 naprawdę zdominował obraz, trzeba zastosować TR na tyle długi, aby wpływ T1 został w dużej części zminimalizowany. Dlatego w standardowych protokołach MR dla głowy, kręgosłupa czy stawów, sekwencje T2-zależne spin echo pracują zwykle z TR powyżej 2000 ms, często nawet 3000–5000 ms, przy jednoczesnym długim TE. Krótsze TR, jak w proponowanych błędnych odpowiedziach, prowadzą do obrazów mieszanych T1/T2 lub typowo T1-zależnych, co nie jest pożądane, gdy szukamy obrzęku, płynu, zmian demielinizacyjnych czy przewlekłych ognisk zapalnych. Dobrym nawykiem jest więc kojarzenie: krótkie TR i krótkie TE – T1, długie TR i długie TE – T2. Wtedy łatwiej unika się takich pułapek na egzaminach i w praktyce przy doborze protokołów.

Pytanie 15

Cholangiografia to badanie radiologiczne

A. dróg żółciowych.
B. dróg moczowych.
C. pęcherza moczowego.
D. pęcherzyka żółciowego.
Cholangiografia to klasyczne badanie radiologiczne układu żółciowego, w którym uwidacznia się przede wszystkim drogi żółciowe – wewnątrzwątrobowe i zewnątrzwątrobowe. Sama nazwa już podpowiada zakres: „chole” odnosi się do żółci, a „-graphia” do obrazowania. W praktyce klinicznej cholangiografia polega na podaniu środka cieniującego (kontrastu jodowego) do dróg żółciowych i wykonaniu serii zdjęć RTG lub obrazów fluoroskopowych. Dzięki temu radiolog może ocenić przebieg przewodów, ich szerokość, obecność zwężeń, zastoju żółci, złogów czy przecieków pooperacyjnych. W codziennej pracy szpitalnej spotyka się różne techniki cholangiografii: śródoperacyjną podczas cholecystektomii laparoskopowej, przezskórną przez wątrobę (PTC), a także cholangiopankreatografię wsteczną (ERCP), która łączy endoskopię z kontrolą radiologiczną. Moim zdaniem warto zapamiętać, że celem tego badania nie jest sam pęcherzyk żółciowy, tylko cały „system rur” od wątroby do dwunastnicy. Standardy dobrej praktyki wymagają m.in. prawidłowego przygotowania pacjenta, oceny przeciwwskazań do kontrastu jodowego (alergia, niewydolność nerek), osłony radiologicznej personelu i minimalizacji dawki promieniowania przy zachowaniu odpowiedniej jakości obrazu. W diagnostyce żółtaczki mechanicznej, kamicy przewodowej czy przed zabiegami endoskopowymi dróg żółciowych cholangiografia jest jednym z kluczowych narzędzi – pozwala nie tylko rozpoznać patologię, ale często od razu zaplanować leczenie zabiegowe.

Pytanie 16

Jednym z kryteriów poprawnie wykonanego badania spirometrycznego jest czas trwania natężonego wydechu, który powinien wynosić u osób powyżej 10 roku życia co najmniej

A. 2 sekundy.
B. 6 sekund.
C. 3 sekundy.
D. 4 sekundy.
W spirometrii bardzo łatwo dać się zwieść myśleniu, że skoro pacjent mocno dmuchnął przez kilka sekund, to wynik jest wystarczająco dobry. Intuicyjnie 2–4 sekundy wydają się długim czasem wysiłku, zwłaszcza gdy badany się męczy, kaszle albo mówi, że „już nie ma czym dmuchać”. Jednak z punktu widzenia fizjologii oddychania oraz obowiązujących standardów to po prostu za mało u osób powyżej 10. roku życia. Pojemność życiowa płuc jest na tyle duża, że przy obturacji część powietrza wydychana jest wolno, pod koniec manewru. Jeśli zakończymy manewr po 2, 3 czy 4 sekundach, ucinamy właśnie ten wolny fragment wydechu i sztucznie zaniżamy FVC. W efekcie można błędnie uznać, że nie ma restrykcji albo odwrotnie – niewłaściwie ocenić stopień obturacji. Czasy 2–3 sekund mogą być jeszcze akceptowalne u małych dzieci, które po prostu nie są w stanie dłużej dmuchać, ale pytanie dotyczy osób powyżej 10. roku życia, czyli grupy, dla której wytyczne jasno mówią o minimum 6 sekundach. W praktyce, jeśli ktoś kończy wydech po 3–4 sekundach, to najczęściej jest to klasyczne przedwczesne zakończenie manewru: pacjent „odpuszcza”, bo myśli, że już wystarczy. Technik, który nie pilnuje tego kryterium, popełnia błąd proceduralny, a wynik ma niską wiarygodność diagnostyczną. Inny typowy błąd myślowy to przekonanie, że skoro najważniejszy jest FEV1 (czyli objętość wydmuchana w pierwszej sekundzie), to reszta wydechu jest mniej istotna. Tymczasem poprawne wyliczenie stosunku FEV1/FVC zależy od rzetelnie zmierzonej FVC, a ta wymaga pełnego, długiego wydechu. Zbyt krótki wydech może sztucznie zawyżać ten stosunek i maskować obturację. Dla jakości badania równie ważne jak kalibracja spirometru jest trzymanie się kryteriów czasowych. Dlatego odpowiedzi sugerujące 2, 3 czy 4 sekundy nie są zgodne ani z aktualnymi zaleceniami, ani z dobrą praktyką pracy w pracowni czynnościowej układu oddechowego, i w praktyce prowadzą do wyników trudnych do obrony klinicznie.

Pytanie 17

W ułożeniu do rentgenografii AP stawu kolanowego promień główny pada

A. prostopadle na wierzchołek rzepki.
B. pod kątem 30° na wierzchołek rzepki.
C. pod kątem 30° na podstawę rzepki.
D. prostopadle na podstawę rzepki.
W obrazowaniu stawu kolanowego w projekcji AP kluczowe jest prawidłowe pozycjonowanie pacjenta i właściwy kierunek promienia głównego. Błędy w tym zakresie prowadzą do zniekształceń obrazu: zmiany wielkości, nałożenia struktur, pozornego zwężenia lub poszerzenia szpary stawowej. Częsty błąd myślowy polega na tym, że ktoś próbuje „celować” w podstawę rzepki, bo wydaje się ona bardziej masywna i wyraźna palpacyjnie. Jednak przy standardowej projekcji AP nie jest to punkt referencyjny. Podstawa rzepki leży wyżej, bliżej trzonu kości udowej, więc jeśli ustawimy centralny promień na ten obszar, może dojść do niewłaściwego przejścia wiązki przez szparę stawową i nierównomiernego odwzorowania kłykci. W efekcie obraz może sugerować patologię, której w rzeczywistości nie ma, albo odwrotnie – maskować drobne zmiany zwyrodnieniowe. Druga grupa pomyłek dotyczy stosowania kąta 30°. Taka wyraźna angulacja promienia w klasycznej projekcji AP stawu kolanowego nie jest standardem. W praktyce radiologicznej stosuje się niewielkie angulacje, rzędu kilku stopni, i to raczej w specyficznych projekcjach lub przy wyrównywaniu deformacji osi kończyny, a nie rutynowo. Ustawienie promienia pod kątem 30° na wierzchołek lub podstawę rzepki spowoduje znaczną zmianę rzutowania struktur: rzepka przemieści się optycznie, szpara stawowa zostanie zniekształcona, może dojść do nałożenia się fragmentów kłykci kości udowej i piszczeli. Z mojego doświadczenia wynika, że takie odpowiedzi biorą się z mieszania różnych projekcji: AP kolana, osiowych projekcji rzepki czy specjalnych projekcji stawu rzepkowo‑udowego, gdzie faktycznie stosuje się większe kąty. Dlatego w typowej projekcji AP stawu kolanowego trzymamy się prostej zasady: promień prostopadły do kasety, skierowany na wierzchołek rzepki, bez dużej angulacji i bez przesuwania punktu celowania na podstawę rzepki. To daje najbardziej wiarygodny, powtarzalny obraz zgodny z zaleceniami opisanymi w podręcznikach radiologii i wytycznych dobrej praktyki.

Pytanie 18

Którą strukturę anatomiczną oznaczono strzałką na obrazie rezonansu magnetycznego?

Ilustracja do pytania
A. Rdzeń przedłużony.
B. Zbiornik mostowy.
C. Most.
D. Móżdżek.
Na obrazie widoczny jest klasyczny strzałowy skan MR głowy (rezonans magnetyczny w projekcji strzałkowej), a strzałka wskazuje na móżdżek. Widzisz położenie tej struktury: znajduje się ku tyłowi od pnia mózgu (mostu i rdzenia przedłużonego) oraz powyżej części szyjnej rdzenia kręgowego, w tylnym dole czaszki. Charakterystyczny jest zarys tzw. drzewka życia – drobne, listewkowate zakręty móżdżku oddzielone bruzdami, co w MR T1/T2 daje taki „pierzasty” obraz. To właśnie ten układ fałdów najłatwiej zapamiętać w praktyce. Móżdżek składa się z dwóch półkul i robaka móżdżku pośrodku; na obrazie strzałkowym zwykle dobrze widać robaka jako strukturę leżącą w linii pośrodkowej, za komorą IV. W codziennej praktyce technika obrazowania móżdżku jest istotna np. w diagnostyce udarów w tylnym dole czaszki, guzów kąta mostowo-móżdżkowego, zmian demielinizacyjnych czy malformacji Arnolda–Chiariego. Dobre ułożenie pacjenta, cienkie warstwy i brak artefaktów ruchowych są kluczowe, bo struktury są małe i łatwo coś przeoczyć. Moim zdaniem warto wyrobić sobie nawyk „odhaczania” kolejno: półkule mózgu, pień mózgu, móżdżek, komory – zawsze w tej samej kolejności. Taka rutyna bardzo pomaga przy szybkiej ocenie MR zgodnie z zaleceniami opisowymi stosowanymi w radiologii. Rozpoznawanie anatomicznych struktur móżdżku na MR to podstawa, żeby potem móc świadomie ocenić patologie, a nie tylko „patrzeć na szarości”.

Pytanie 19

Na radiogramie strzałką oznaczono

Ilustracja do pytania
A. staw skokowo-piętowy.
B. kość łódkowatą.
C. kość sześcienną.
D. kość łódeczkowatą.
Na tym radiogramie bocznym stawu skokowego łatwo o pomyłkę, bo kości stępu częściowo się nakładają i zlewają swoimi zarysami. Jeżeli ktoś skojarzył zaznaczoną strukturę z kością sześcienną, to najczęściej wynika to z mylenia przyśrodkowej i bocznej strony stopy w projekcji bocznej. Kość sześcienna leży bardziej bocznie i dystalnie, łączy się z kością piętową oraz z IV i V kością śródstopia. Na typowym zdjęciu bocznym jej zarys znajduje się dalej od kostki przyśrodkowej, bliżej strony bocznej, i nie tworzy tak wyraźnego połączenia z głową kości skokowej, jak kość łódkowata. Pomyłka z kością łódeczkowatą wynika z kolei z podobieństwa nazwy. Kość łódeczkowata (scaphoideum) występuje w nadgarstku, a nie w stopie. W diagnostyce obrazowej bardzo ważne jest, żeby zawsze łączyć nazwę kości z regionem anatomicznym: w stawie skokowym mamy kość łódkowatą stępu, a w nadgarstku – kość łódeczkowatą. Mylenie tych pojęć bywa źródłem nieporozumień w opisach i dokumentacji medycznej. Zdarza się też, że strzałka interpretowana jest jako wskazująca jakiś staw, np. skokowo-piętowy. Tymczasem staw skokowo-piętowy to przestrzeń stawowa między kością skokową a piętową, o nieregularnym, szczelinowatym zarysie, a nie pojedyncza kość. W dobrych praktykach opisu radiogramów uczymy się najpierw rozpoznawać poszczególne kości, a dopiero później linie stawowe między nimi. Typowy błąd myślowy polega na tym, że wzrok od razu „łapie” miejsce, gdzie coś się wyróżnia strzałką, i dopasowujemy do tego pierwszą znaną nazwę, zamiast spokojnie przeanalizować położenie: względem kości skokowej, piętowej, kości piszczelowej i osi długiej stopy. W praktyce warto każdorazowo mentalnie prześledzić łańcuch: pięta – skokowa – łódkowata – kości klinowate / sześcienna – śródstopie. Taki schemat bardzo upraszcza orientację i zmniejsza ryzyko takich właśnie pomyłek topograficznych.

Pytanie 20

W celu wyeliminowania zakłóceń obrazu MR przez sygnały pochodzące z tkanki tłuszczowej, stosuje się

A. sekwencje FLAIR.
B. obrazowanie PD - zależne.
C. obrazowanie T1 - zależne.
D. sekwencje STIR.
Prawidłowo wskazano sekwencje STIR, bo to jest klasyczna, podręcznikowa metoda supresji sygnału z tkanki tłuszczowej w obrazowaniu MR. STIR (Short Tau Inversion Recovery) to sekwencja inwersyjno‑odzyskiwania, w której stosuje się impuls inwersyjny 180° i odpowiednio dobrany czas TI (inversion time), tak żeby magnetyzacja podłużna tłuszczu przechodziła przez zero w momencie rejestracji sygnału. Efekt w praktyce: tłuszcz na obrazach jest wygaszony, ciemny, dzięki czemu lepiej widać obrzęk, zmiany zapalne, nacieki nowotworowe czy urazy. W kończynach, w badaniach kręgosłupa, stawów czy w onkologii STIR jest, moim zdaniem, absolutnym „must have”, bo pozwala wyłapać nawet subtelne zmiany w szpiku kostnym i tkankach miękkich. W standardach protokołów MR, zwłaszcza narządu ruchu, bardzo często znajdziesz kombinację sekwencji T1‑zależnych, T2‑zależnych i właśnie STIR do oceny patologii. Warto pamiętać, że STIR jest sekwencją niespecyficzną dla pola – to znaczy działa dobrze zarówno w 1,5 T, jak i 3 T, w przeciwieństwie do klasycznego fat‑satu chemicznego, który bywa kapryśny przy niejednorodnościach pola. Z praktycznego punktu widzenia STIR jest też bezpieczny przy badaniach po kontraście gadolinowym, bo nie powinno się go łączyć z selektywną saturacją tłuszczu, natomiast STIR dalej poprawnie wygasza tłuszcz. Dobrą praktyką jest zapamiętanie: jeśli pytanie dotyczy tłumienia tłuszczu metodą inwersyjno‑odzyskiwania – odpowiedź to STIR, nie FLAIR ani inne sekwencje.

Pytanie 21

Limfografia to badanie kontrastowe

A. układu oddechowego.
B. układu chłonnego.
C. rdzenia kręgowego.
D. ślianek.
Prawidłowo – limfografia to badanie kontrastowe układu chłonnego. W praktyce oznacza to, że do wybranych naczyń lub węzłów chłonnych podaje się środek kontrastowy, który „wybarwia” drogę przepływu chłonki i pozwala dokładnie ocenić przebieg naczyń limfatycznych, ich drożność oraz wygląd węzłów. Klasyczna limfografia była wykonywana głównie z użyciem promieniowania rentgenowskiego i kontrastów jodowych, dziś częściej korzysta się z nowszych metod, np. limfangiografii TK, MR albo limfoscyntygrafii, ale idea jest podobna: uwidocznić układ chłonny. Moim zdaniem warto to sobie skojarzyć: „lympha” = chłonka, więc limfo-grafia to obrazowanie chłonki i jej dróg. W diagnostyce onkologicznej używa się takich badań np. przy podejrzeniu przerzutów do węzłów chłonnych, przy planowaniu leczenia nowotworów piersi, czerniaków skóry czy guzów miednicy. Limfografia pozwala ocenić, czy węzły są powiększone, zniekształcone, czy naczynia są zablokowane, co może dawać obrzęki limfatyczne kończyn. W standardach postępowania radiologicznego podkreśla się, że dobór rodzaju badania (klasyczna limfografia, TK, MR czy medycyna nuklearna) zależy od wskazań klinicznych i dostępnego sprzętu, ale za każdym razem celem jest ten sam układ – chłonny. Warto też pamiętać, że to badanie wymaga ostrożnego podania kontrastu, dobrej techniki obrazowania i ścisłej współpracy z lekarzem kierującym, bo nie jest to badanie „przesiewowe”, tylko wykonywane przy konkretnych, dość specjalistycznych wskazaniach.

Pytanie 22

Badanie cewki moczowej polegające na wstecznym wprowadzeniu środka kontrastowego to

A. pielografia zstępująca.
B. pielografia wstępująca.
C. cystouretrografia mikcyjna.
D. uretrografia wstępująca.
W tym pytaniu bardzo łatwo dać się złapać na skojarzeniach z innymi badaniami kontrastowymi układu moczowego. Kluczowe słowo to jednak „cewka moczowa”. Pielografia zstępująca i wstępująca dotyczą miedniczek nerkowych i moczowodów, a nie cewki. Wstępująca pielografia polega na podaniu kontrastu przez cewnik założony do moczowodu podczas cystoskopii, czyli kontrast idzie w górę, ale do górnych dróg moczowych. Z kolei zstępująca pielografia (dożylna urografia) opiera się na wydalaniu kontrastu przez nerki i jego spływie w dół drogami moczowymi. Oba te badania służą głównie ocenie nerek i moczowodów, np. w kamicy, guzach, wodonerczu, a nie do oceny zwężeń cewki. Cystouretrografia mikcyjna brzmi bardzo podobnie i to jest typowy błąd myślowy: skoro jest „uretro-”, to może chodzić o cewkę. Rzeczywiście, to badanie też pokazuje cewkę, ale jego założenie jest inne. Kontrast podaje się do pęcherza przez cewnik, następnie wykonuje się zdjęcia podczas mikcji, czyli opróżniania pęcherza. Przepływ kontrastu jest tu zgodny z naturalnym kierunkiem oddawania moczu, a głównym celem jest ocena pęcherza i odpływów pęcherzowo-moczowodowych, często u dzieci. W pytaniu wyraźnie podkreślono „wsteczne wprowadzenie środka kontrastowego do cewki”, czyli nie przez pęcherz, tylko bezpośrednio przez ujście zewnętrzne, pod prąd. I to jest istota uretrografii wstępującej. Z mojego doświadczenia wiele osób myli te nazwy, bo skupia się tylko na słowie „wstępująca”, nie patrząc, którego odcinka układu moczowego dotyczy badanie. Dobrą praktyką jest zawsze kojarzyć: pielografia – miedniczki i moczowody, cystografia – pęcherz, uretrografia – cewka. Dopiero potem dokładamy kierunek podania kontrastu i mamy pełną nazwę badania.

Pytanie 23

Na obrazie rezonansu magnetycznego strzałką oznaczono patologiczny kręg

Ilustracja do pytania
A. TH8
B. L1
C. L3
D. TH10
W tym zadaniu kluczowe jest nie tylko zauważenie patologicznego kręgu, ale przede wszystkim prawidłowe jego zliczenie na obrazie rezonansu magnetycznego. Na strzałkowym MR łatwo ulec złudzeniu, że zaznaczony trzon leży niżej lub wyżej, niż w rzeczywistości. Typowy błąd polega na liczeniu kręgów „od dołu”, czyli od kości krzyżowej w górę, bez wcześniejszego zidentyfikowania przejścia piersiowo‑lędźwiowego. Wtedy łatwo pomylić pierwszy kręg lędźwiowy z L3, a nawet z wyższymi kręgami piersiowymi, szczególnie gdy obraz nie obejmuje całych żeber. Warianty anatomiczne, takie jak krąg przejściowy lumbalizowany czy sakralizowany, tylko to dodatkowo komplikują. Z mojego doświadczenia najbezpieczniejszym podejściem jest zaczynanie liczenia od ostatniego kręgu piersiowego, który ma przyczepione żebro, czyli TH12, i dopiero potem przejście do L1, L2 itd. Odpowiedzi wskazujące na L3 ignorują tę zasadę: kręg oznaczony strzałką leży zdecydowanie bliżej przejścia piersiowo‑lędźwiowego, a nie w środkowej części lordozy lędźwiowej, gdzie spodziewalibyśmy się L3. Z kolei wybór TH8 lub TH10 wynika najczęściej z niedokładnego rozpoznania odcinka piersiowego – na obrazie nie widać tak długiego odcinka żeber, a krzywizna kręgosłupa oraz kształt trzonów sugerują raczej dolny odcinek piersiowy i początek lędźwiowego, a nie środkowe segmenty piersiowe. W poprawnej praktyce diagnostyki obrazowej zawsze staramy się łączyć kilka elementów: obecność żeber, kształt krzywizn (kifoza piersiowa, lordoza lędźwiowa), charakter trzonów i ewentualne znaczniki anatomiczne lub sekwencje lokalizacyjne. Pomijanie któregoś z tych kroków prowadzi właśnie do takich pomyłek jak przypisanie poziomu L3 czy TH8/TH10. Dlatego, analizując MR kręgosłupa, nie liczymy kręgów „na oko”, tylko według uporządkowanego schematu, co jest zgodne z dobrymi praktykami radiologicznymi i zaleceniami większości podręczników z zakresu anatomii w obrazowaniu.

Pytanie 24

Którą metodę badania zastosowano w obrazowaniu stawu kolanowego?

Ilustracja do pytania
A. MR, obraz T2- zależny.
B. MR, obraz T1- zależny.
C. TK.
D. TK z kontrastem.
Na obrazie widzisz typowe badanie MR stawu kolanowego w sekwencji T1‑zależnej, w projekcji strzałkowej. Świadczy o tym kilka charakterystycznych cech: tkanka tłuszczowa (szpik kostny w nasadach kości, tkanka podskórna) jest bardzo jasna, jednorodna, natomiast płyn stawowy i chrząstka są relatywnie ciemne. W obrazach T1‑zależnych kontrast pomiędzy tłuszczem a innymi tkankami jest wyraźny, co ułatwia ocenę budowy anatomicznej: kształtu nasad kości, ciągłości więzadeł, struktur łąkotek, relacji mięśni i ścięgien. Moim zdaniem to jest właśnie główny powód, dla którego T1 traktuje się często jako obraz „anatomiczny” – bardzo czytelny do nauki i do planowania dalszej diagnostyki. W praktyce klinicznej sekwencje T1‑zależne stosuje się do oceny szpiku kostnego (np. nacieki nowotworowe, pourazowe ogniska krwotoczne), do wstępnej oceny zarysów łąkotek i więzadeł, a także po podaniu kontrastu gadolinowego, gdzie obszary patologicznego wzmocnienia wyróżniają się na tle jasnego tłuszczu. W standardowych protokołach MR stawu kolanowego (np. wg zaleceń ESSR – European Society of Musculoskeletal Radiology) zawsze znajdują się obrazy T1, właśnie ze względu na dobrą wizualizację anatomii i szpiku. Warto kojarzyć: TK i TK z kontrastem dają zupełnie inną teksturę obrazu (szarości kości, brak tak mocno świecącego tłuszczu), a w typowym T2 płyn jest bardzo jasny. Tutaj jest odwrotnie – płyn nie „świeci”, co jednoznacznie kieruje na MR, obraz T1‑zależny. Rozpoznanie typu sekwencji po wyglądzie tkanek to praktyczna umiejętność w pracowni diagnostyki obrazowej – pomaga od razu zorientować się, co dokładnie oglądamy i jakie informacje można z tego obrazu wyciągnąć.

Pytanie 25

Rak drobnokomórkowy i rak niedrobnokomórkowy to postacie organiczne nowotworów złośliwych

A. płuc.
B. tarczycy.
C. prostaty.
D. piersi.
Rak drobnokomórkowy i rak niedrobnokomórkowy to klasyczny, wręcz podręcznikowy podział raka płuca. W praktyce klinicznej, w opisie histopatologicznym i w dokumentacji onkologicznej bardzo często zobaczysz właśnie takie sformułowanie: „rak płuca drobnokomórkowy (SCLC)” lub „rak płuca niedrobnokomórkowy (NSCLC)”. Ten podział jest kluczowy, bo obie grupy różnią się przebiegiem choroby, rokowaniem, a przede wszystkim wyborem leczenia. Rak drobnokomórkowy rośnie szybko, wcześnie daje przerzuty i zwykle jest bardzo wrażliwy na chemioterapię i radioterapię, ale niestety też często szybko nawraca. Rak niedrobnokomórkowy to cała grupa nowotworów: gruczołowy, płaskonabłonkowy, wielkokomórkowy. Dla nich podstawową metodą leczenia we wczesnych stadiach jest chirurgia (resekcja płuca lub płata), a radioterapia i chemioterapia są stosowane jako leczenie uzupełniające lub paliatywne. W diagnostyce obrazowej, szczególnie w RTG i TK klatki piersiowej, technik i lekarz muszą mieć z tyłu głowy, że każdy podejrzany guzek lub naciek w płucu może być jednym z tych typów raka. Moim zdaniem warto od razu kojarzyć: guz płuca + opis hist-pat = myślimy, czy to SCLC czy NSCLC, bo od tego zależy np. planowanie pola napromieniania, dobór protokołu TK z kontrastem, kwalifikacja do PET-CT. W dobrych praktykach klinicznych zawsze dąży się do potwierdzenia rozpoznania biopsją (bronchoskopia, biopsja przezskórna pod kontrolą TK), a dopiero potem planuje leczenie onkologiczne. Ten podział nie dotyczy piersi, prostaty ani tarczycy – tam obowiązują zupełnie inne klasyfikacje histologiczne, więc prawidłowe skojarzenie go wyłącznie z rakiem płuca jest bardzo ważne w codziennej pracy z opisami badań obrazowych i dokumentacją onkologiczną.

Pytanie 26

W scyntygrafii dynamiczne badanie najczęściej rozpoczyna się

A. po godzinie od chwili podania radiofarmaceutyku.
B. w momencie lub tuż po iniekcji radiofarmaceutyku.
C. w momencie uzyskania stałego poziomu aktywności radiofarmaceutyku.
D. po dwóch godzinach od chwili podania radiofarmaceutyku.
Prawidłowa odpowiedź wynika z samej istoty scyntygrafii dynamicznej. W tego typu badaniu interesuje nas przede wszystkim przebieg w czasie: jak radiofarmaceutyk napływa do narządu, jak jest wychwytywany przez tkanki i jak potem jest z nich usuwany. Żeby zarejestrować pełną krzywą czas–aktywność, trzeba zacząć akwizycję obrazów dokładnie w momencie lub dosłownie tuż po iniekcji radiofarmaceutyku. Wtedy gammakamera „widzi” zarówno bardzo wczesną fazę naczyniową (przepływ krwi), jak i kolejne etapy dystrybucji i eliminacji. W badaniach takich jak scyntygrafia nerek (renoscyntygrafia), scyntygrafia perfuzyjna serca w trybie first-pass czy badania przepływu mózgowego, rozpoczęcie akwizycji już w chwili podania preparatu jest standardem i znajduje się w zaleceniach towarzystw medycyny nuklearnej. Z mojego doświadczenia, nawet kilkudziesięciosekundowe opóźnienie potrafi zniekształcić kształt krzywej i utrudnić interpretację: np. gorzej widać fazę napływu, trudniej ocenić perfuzję czy funkcję wydalniczą. Technicznie wygląda to tak, że pacjent jest już ułożony na stole, gammakamera jest ustawiona, parametry akwizycji wprowadzone, a operator podaje radiofarmaceutyk dożylnie dokładnie w chwili startu rejestracji. To pozwala potem analizować pik aktywności, czasy półzaniku, wskaźniki przepływu i filtracji. Dobra praktyka jest taka, żeby wszystko było wcześniej przygotowane: wenflon założony, pacjent poinformowany, brak zbędnych ruchów w trakcie pierwszych minut. Dzięki temu uzyskujemy wiarygodne dane dynamiczne, a nie tylko „statyczny obraz” po czasie, który w ogóle nie oddaje charakteru badania dynamicznego.

Pytanie 27

Gadolin jako dożylny środek kontrastowy stosowany w MR powoduje

A. skrócenie czasu relaksacji T₁ i brak zmian w czasie relaksacji T₂
B. wydłużenie czasów relaksacji T₁ i T₂
C. skrócenie czasów relaksacji T₁ i T₂
D. wydłużenie czasu relaksacji T₂ i brak zmian w czasie relaksacji T₁
W tym zagadnieniu kluczowe jest zrozumienie, że gadolin jako środek kontrastowy w MR jest związkiem paramagnetycznym i jego głównym efektem fizycznym jest skracanie czasów relaksacji, a nie ich wydłużanie ani pozostawianie bez zmian. Typowym błędem jest mylenie działania gadolinu z działaniem środków negatywnych lub zjawisk powodujących wygaszanie sygnału na obrazach T2‑zależnych, co czasem prowadzi do przekonania, że kontrast „przedłuża” relaksację albo wpływa tylko na jeden z czasów. Założenie, że gadolin wydłuża T2 przy braku wpływu na T1, jest niezgodne z fizyką rezonansu. Obecność jonów gadolinu zwiększa lokalną niejednorodność pola magnetycznego na poziomie mikroskopowym, co ułatwia wymianę energii między jądrami wodoru a otoczeniem i skutkuje skróceniem zarówno T1, jak i T2. W warunkach klinicznych dominuje efekt T1‑skracający, ale to nie znaczy, że T2 pozostaje nietknięte. Stąd koncepcja „brak zmian T2” po kontraście gadolinowym jest uproszczeniem, które może być groźne, gdy ktoś próbuje tłumaczyć artefakty lub nietypowe obrazy tylko parametrami T1. Z kolei twierdzenie, że gadolin wpływa wyłącznie na T1, bez jakiegokolwiek wpływu na T2, też jest błędnym uproszczeniem. W praktyce, przy standardowych stężeniach klinicznych, efekt na T2 bywa mniej widoczny w porównaniu z T1, ale w wyższych stężeniach lub w sekwencjach bardzo czułych na T2* (np. GRE) dochodzi do wyraźnego spadku sygnału. To jest szczególnie ważne przy ocenie naczyń, krwawień, czy przy artefaktach od depozytów kontrastu. Nieprawidłowe jest też myślenie, że środki kontrastowe w MR „dodają jasności” bez zmiany parametrów relaksacji. W odróżnieniu od CT, gdzie kontrast zwiększa pochłanianie promieniowania i podnosi jednostki Hounsfielda, w MR cała historia kręci się właśnie wokół relaksacji T1 i T2. Gadolin nie działa jak barwnik, tylko jak modyfikator właściwości magnetycznych tkanek. Dobra praktyka w diagnostyce obrazowej zakłada rozumienie, że wzmacnianie kontrastowe na T1 po gadolinie wynika ze skrócenia T1, a potencjalne wygaszanie sygnału na pewnych T2/T2*‑zależnych sekwencjach to efekt skrócenia T2. Pomylenie tych mechanizmów może prowadzić do błędnej interpretacji badań, np. niedocenienia rozległości zmiany lub mylenia jej charakteru naczyniowego czy zapalnego.

Pytanie 28

W których projekcjach wykonuje się standardowe badanie mammograficzne?

A. Kaudokranialnej i zrotowanej.
B. Kraniokaudalnej i zrotowanej.
C. Kraniokaudalnej i skośnej przyśrodkowo-bocznej.
D. Kaudokranialnej i skośnej przyśrodkowo-bocznej.
Prawidłowo wskazana projekcja kraniokaudalna (CC) oraz skośna przyśrodkowo-boczna, czyli mediolateral oblique (MLO), to standardowy zestaw w rutynowym badaniu mammograficznym. W praktyce technik wykonuje dla każdej piersi przynajmniej te dwie projekcje, bo one się wzajemnie uzupełniają i dają możliwie pełny obraz gruczołu piersiowego. Projekcja kraniokaudalna polega na uciśnięciu piersi między detektorem a kompresorem z góry na dół. Dzięki temu dobrze oceniamy centralne i przyśrodkowe części piersi, a także struktury położone bardziej powierzchownie. Widzimy wtedy rozkład tkanki gruczołowej, mikrozwapnienia, zarysy ewentualnych guzków. Z mojego doświadczenia, jeśli CC jest dobrze wykonana, to brodawka jest widoczna w profilu, a pierś jest równomiernie spłaszczona, bez zagięć skóry, co ma ogromne znaczenie dla jakości obrazu. Z kolei projekcja skośna przyśrodkowo-boczna (MLO) jest kluczowa, bo obejmuje nie tylko pierś, ale też ogon pachowy, czyli fragment tkanki gruczołowej wchodzący w dół pachy. Właśnie tam często lokalizują się zmiany, które mogą umknąć w projekcji CC. W dobrych praktykach przyjmuje się, że na MLO powinna być widoczna fałda podpiersiowa, mięsień piersiowy większy i jak największa objętość tkanki piersi. To jest taki wyznacznik poprawnego pozycjonowania pacjentki. Standardy programów przesiewowych (np. europejskich EUREF) jasno wskazują zestaw CC + MLO jako podstawę badania screeningowego. Dodatkowe projekcje, jak np. powiększeniowe czy celowane, wykonuje się dopiero przy podejrzeniu zmiany. W praktyce technika najważniejsze jest prawidłowe ułożenie pacjentki, odpowiedni ucisk piersi (żeby zmniejszyć dawkę i poprawić kontrast) oraz unikanie artefaktów. Moim zdaniem im lepiej rozumiesz, po co robisz te dwie konkretne projekcje, tym łatwiej potem zauważyć, że czegoś na obrazie brakuje i trzeba np. powtórzyć ujęcie albo dodać kolejne.

Pytanie 29

Na scyntygramie strzałką oznaczono

Ilustracja do pytania
A. nerkę.
B. trzustkę.
C. śledzionę.
D. wątrobę.
Na przedstawionym obrazie widzisz klasyczne badanie medycyny nuklearnej – scyntygrafię nerek. Strzałka wskazuje prawą nerkę, która gromadzi podany dożylnie radiofarmaceutyk i dlatego świeci intensywnie na żółto‑pomarańczowo. Nerki leżą w górnej części jamy brzusznej, po obu stronach kręgosłupa, i na scyntygramie są zwykle widoczne jako dwa symetryczne, fasolowate ogniska wychwytu, mniej więcej na poziomie dolnych żeber. Dolne ognisko poniżej to pęcherz moczowy wypełniony radioznacznikiem wydalanym z moczem – to też jest typowy obraz w badaniach nerkowych. W praktyce klinicznej takie badanie wykonuje się głównie z użyciem technetu‑99m (np. 99mTc‑DTPA, 99mTc‑MAG3, 99mTc‑DMSA). Pozwala ono ocenić perfuzję, funkcję wydalniczą i miąższ nerek, a także podzieloną funkcję każdej nerki osobno. Z mojego doświadczenia to jedno z najczęściej spotykanych badań w pracowni medycyny nuklearnej, szczególnie u pacjentów z nadciśnieniem naczyniowo‑nerkowym, podejrzeniem zwężenia tętnicy nerkowej, wadami wrodzonymi układu moczowego czy po przebytych odmiedniczkowych zapaleniach nerek. Dobre praktyki mówią, żeby zawsze łączyć ocenę kształtu i położenia ognisk wychwytu z wiedzą anatomiczną oraz z innymi metodami obrazowania (USG, TK), bo dopiero wtedy interpretacja jest wiarygodna. Warto też pamiętać o prawidłowym przygotowaniu pacjenta: odpowiednie nawodnienie, opróżnienie pęcherza przed badaniem i unikanie leków zaburzających perfuzję nerek. Dzięki temu obraz jest czytelny, a ocena funkcji – bardziej miarodajna.

Pytanie 30

„Ognisko zimne” w obrazie scyntygraficznym określa się jako

A. zmianę najczęściej o charakterze łagodnym.
B. obszar niegromadzący radioznacznika.
C. zmianę o większej aktywności hormonalnej.
D. obszar gromadzący znacznik jak reszta miąższu.
Prawidłowo – „ognisko zimne” w scyntygrafii to obszar niegromadzący radioznacznika, czyli miejsce o obniżonej lub całkowicie braku wychwytu w porównaniu z otaczającym, prawidłowo funkcjonującym miąższem. W scyntygrafii patrzymy przede wszystkim na rozkład funkcji, a nie tylko na samą anatomię. Jeśli tkanka pracuje prawidłowo, wychwytuje radiofarmaceutyk i na obrazie widzimy równomierne „świecenie”. Gdy pojawia się obszar, który nie gromadzi znacznika, tworzy się właśnie ognisko zimne – ciemniejsza plama na tle bardziej aktywnego narządu. Moim zdaniem warto to kojarzyć z „dziurą” w funkcji. W praktyce klinicznej typowe przykłady to torbiele, zwapnienia, blizny, guzy o słabym unaczynieniu, martwica, a w scyntygrafii kości – np. przerzut osteolityczny, który niszczy struktury kostne i przez to mniej wiąże znacznika. W badaniach tarczycy zimne ognisko może odpowiadać zmianie, która nie produkuje hormonów tarczycowych (tzw. guzek nieczynny), co w standardach endokrynologicznych traktuje się bardziej podejrzanie onkologicznie niż ogniska „gorące”. Dlatego przy zimnym guzku tarczycy zwykle zaleca się dalszą diagnostykę – USG, biopsję cienkoigłową. W dobrych praktykach medycyny nuklearnej zawsze opisujemy ogniska jako zimne, izotopowe (obojętne) lub gorące w odniesieniu do tła. Ważne jest też odpowiednie okienkowanie obrazu i porównanie z obrazami anatomicznymi (np. USG, TK), żeby nie pomylić artefaktu technicznego z prawdziwym zimnym ogniskiem. Z mojego doświadczenia w nauce tego przedmiotu – jak tylko zapamiętasz, że „zimne = brak wychwytu”, reszta układa się już w głowie dość logicznie.

Pytanie 31

Który załamek w zapisie EKG odpowiada zjawisku depolaryzacji przedsionków mięśnia sercowego?

A. T
B. R
C. P
D. Q
Załamek P w zapisie EKG odpowiada depolaryzacji przedsionków, czyli momentowi, kiedy bodziec elektryczny rozchodzi się przez mięsień przedsionków i przygotowuje je do skurczu. To jest tak naprawdę pierwszy element całego cyklu sercowego widocznego w standardowym zapisie 12-odprowadzeniowego EKG. W fizjologicznych warunkach załamek P jest dodatni w większości odprowadzeń kończynowych, szczególnie w II odprowadzeniu, które zwykle analizuje się jako wzorcowe. Moim zdaniem warto „nauczyć się na pamięć”, że P = przedsionki, bo to potem bardzo ułatwia interpretację różnych zaburzeń rytmu, np. migotania czy trzepotania przedsionków. W praktyce technika EKG i personel medyczny, zgodnie z wytycznymi kardiologicznymi, zawsze ocenia obecność, kształt i częstość załamków P. Brak prawidłowych załamków P albo ich nietypowy kształt może sugerować np. rytm z węzła AV, ektopowe pobudzenie przedsionkowe albo przerost przedsionków. W badaniach wysiłkowych czy holterowskich ciągłe śledzenie załamków P pomaga odróżnić tachykardię zatokową od nadkomorowych zaburzeń rytmu. Warto też pamiętać, że załamek P kończy się przed zespołem QRS – to czas, kiedy impuls po przejściu przez przedsionki dociera do węzła przedsionkowo‑komorowego. W dobrych praktykach diagnostyki elektromedycznej zawsze analizuje się P w kontekście całego odstępu PQ (PR), bo to daje informację nie tylko o depolaryzacji przedsionków, ale też o przewodzeniu przedsionkowo‑komorowym. Z mojego doświadczenia, jak ktoś dobrze rozumie załamek P, to dużo szybciej ogarnia resztę zapisu EKG, bo ma solidny punkt odniesienia do oceny rytmu i przewodnictwa.

Pytanie 32

W standardowym badaniu elektrokardiologicznym elektrodę C4 należy umocować

A. w połowie odległości między punktem C2 i C4.
B. w IV międzyżebrzu przy lewym brzegu mostka.
C. w V międzyżebrzu w linii środkowo-obojczykowej lewej.
D. w IV międzyżebrzu przy prawym brzegu mostka.
W rozmieszczeniu elektrod przedsercowych w EKG łatwo pomylić się, bo punkty anatomiczne są do siebie relatywnie blisko, a oznaczenia V1–V6 lub C1–C6 bywają mylące. Podstawą jest jednak trzymanie się ściśle opisanych w wytycznych lokalizacji, bo każde przesunięcie zmienia obraz elektryczny serca rejestrowany przez aparat. Wiele osób intuicyjnie próbuje „uśredniać” położenie elektrod, na przykład umieszczając je w połowie drogi między dwiema innymi. To podejście kusi, zwłaszcza kiedy ktoś myśli kategoriami geometrii na klatce piersiowej, ale w EKG tak się nie robi. Punkt dla elektrody V3 rzeczywiście znajduje się pomiędzy V2 i V4, natomiast C4/V4 to konkretny, samodzielny punkt – nie umieszcza się go w połowie odległości między jakimikolwiek innymi elektrodami. To jest typowy błąd: pomylenie roli V3 z lokalizacją V4. Kolejna pułapka to mylenie poziomu żeber. IV międzyżebrze przy lewym brzegu mostka to klasyczne miejsce dla V2, a nie dla V4. Jeżeli elektrodę C4/V4 przykleimy tam, gdzie powinna być V2, uzyskamy obraz przesunięty bardziej ku przegrodzie i podstawie serca, przez co koniuszek i ściana przednia będą reprezentowane nieprawidłowo. To może dawać mylące wrażenie innej osi serca lub maskować wczesne zmiany niedokrwienne. Podobnie IV międzyżebrze przy prawym brzegu mostka to lokalizacja V1. Ta elektroda „patrzy” na prawą komorę i przegrodę, więc zamiana jej miejsca z V4/C4 kompletnie wypacza układ przedsercowy. W praktyce klinicznej takie przesunięcia prowadzą czasem do kuriozalnych opisów: np. „nietypowe uniesienie ST w V1–V2”, które tak naprawdę wynika tylko z błędnego położenia elektrod. Typowy błąd myślowy polega na tym, że ktoś uważa: „skoro wszystkie elektrody są na klatce piersiowej, to centymetr w tę czy w tamtą nie zrobi różnicy”. Niestety w EKG robi i to sporą. Dlatego w dobrych praktykach diagnostyki elektromedycznej zawsze podkreśla się: najpierw dokładna identyfikacja żeber i linii anatomicznych (mostek, linia środkowo‑obojczykowa, linie pachowe), dopiero potem przyklejanie elektrod. Utrzymywanie standaryzacji pozycji jest kluczowe, żeby zapis z dzisiaj dało się wiarygodnie porównać z zapisem sprzed tygodnia czy roku, a także z normami populacyjnymi.

Pytanie 33

Zamieszczony elektrokardiogram przedstawia

Ilustracja do pytania
A. zawał dolnej ściany serca.
B. migotanie komór.
C. zawał przedniej ściany serca.
D. blok prawej odnogi pęczka Hisa.
Na tym zapisie łatwo się pomylić, jeśli szuka się „klasycznego” obrazu zawału albo zaburzeń przewodzenia, zamiast najpierw ocenić, czy w ogóle występują prawidłowe zespoły QRS. W przedstawionym EKG nie ma żadnych wyraźnych, powtarzalnych zespołów komorowych, nie widać załamków P ani typowych odcinków ST. Linia jest całkowicie chaotyczna, o zmiennej amplitudzie, bez wyraźnej linii izoelektrycznej. To od razu powinno odsunąć od rozpoznań typu zawał czy blok odnogi. Zawał dolnej lub przedniej ściany serca rozpoznajemy na podstawie uniesień lub obniżeń odcinka ST w konkretnych odprowadzeniach (np. II, III, aVF dla ściany dolnej; V1–V4 dla ściany przedniej), często z towarzyszącymi zmianami w załamkach T i Q. Mimo że zawał może być przyczyną migotania komór, sam zapis zawału to nadal widoczne, zwykle miarowe lub niemiarowe zespoły QRS z charakterystycznymi zmianami ST/T, a nie ciągła, poszarpana linia. Próba „dopatrywania się” zawału w takim obrazie jest typowym błędem: zamiast patrzeć na ogólną organizację rytmu, skupiamy się na pojedynczych fragmentach fali. Podobnie blok prawej odnogi pęczka Hisa ma bardzo charakterystyczny obraz: poszerzone zespoły QRS z obrazem typu „królik” (Rsr', rsR') w V1–V2 oraz szerokie, rozszczepione zespoły w odprowadzeniach bocznych. Ale kluczowe jest to, że w bloku odnogi rytm jest zorganizowany, z wyraźnymi, powtarzalnymi zespołami QRS. Tutaj tego zupełnie nie ma. W praktyce klinicznej pierwszy krok przy analizie każdego EKG to odpowiedź na pytanie: czy widzę prawidłowe, powtarzalne zespoły QRS? Jeśli nie, a zapis jest tak chaotyczny jak na obrazku, należy przede wszystkim myśleć o migotaniu komór lub ewentualnie artefakcie zapisu, a nie o zawale czy bloku przewodzenia. To podejście bardzo ułatwia szybką, prawidłową interpretację i minimalizuje ryzyko takich pomyłek.

Pytanie 34

Wskazaniem do wykonania scyntygrafii perfuzyjnej jest

A. ciężkie nadciśnienie płucne.
B. zapalenie płuc.
C. zatorowość płucna.
D. ropień płuca.
Prawidłowo – klasycznym, wręcz podręcznikowym wskazaniem do wykonania scyntygrafii perfuzyjnej płuc jest właśnie podejrzenie zatorowości płucnej. Badanie perfuzyjne ocenia rozkład przepływu krwi w łożysku naczyniowym płuc, czyli mówiąc prościej: sprawdza, czy krew dociera równomiernie do wszystkich obszarów miąższu płucnego. W zatorowości płucnej fragment tętnicy płucnej zostaje zamknięty przez skrzeplinę, więc radiofarmaceutyk podany dożylnie nie dociera do odpowiedniego segmentu płuca i na obrazie scyntygraficznym widzimy ubytki perfuzji. Klasyczne jest porównywanie perfuzji z wentylacją (badanie V/Q – ventilation/perfusion). W zatorowości płucnej pojawiają się tzw. niezgodne ubytki: wentylacja jest zachowana, a perfuzja w danym obszarze jest wyraźnie upośledzona. To właśnie ten wzorzec w praktyce klinicznej bardzo silnie sugeruje zatorowość. Moim zdaniem warto zapamiętać, że scyntygrafia perfuzyjna jest szczególnie przydatna u pacjentów, u których nie można wykonać angio-TK (np. ciężka niewydolność nerek, uczulenie na jodowy środek kontrastowy, ciąża przy ograniczaniu dawki promieniowania). W wielu wytycznych medycyny nuklearnej i pulmonologii podkreśla się, że przy prawidłowym badaniu V/Q prawdopodobieństwo istotnej zatorowości jest bardzo małe. W codziennej pracy technika elektroradiologii ważne jest prawidłowe przygotowanie radiofarmaceutyku (najczęściej makroagregaty albuminy znakowane technetem-99m), odpowiednie ułożenie pacjenta, wykonanie kilku projekcji oraz współpraca z lekarzem w ocenie jakości obrazu. Dobrą praktyką jest też zawsze korelowanie wyniku scyntygrafii z obrazem RTG klatki piersiowej, żeby nie pomylić ubytków perfuzji z rozległymi zmianami strukturalnymi płuc.

Pytanie 35

W scyntygrafii serca metoda bramkowanej akwizycji SPECT umożliwia między innymi ocenę frakcji wyrzutowej

A. lewej komory.
B. prawego przedsionka.
C. lewego przedsionka.
D. prawej komory.
W bramkowanej akwizycji SPECT serca podstawowym i najlepiej zwalidowanym celem jest ilościowa ocena czynności lewej komory, a nie pozostałych jam serca. Oprogramowanie rekonstrukcyjne i analityczne, którego używa się rutynowo w medycynie nuklearnej, jest projektowane właśnie pod automatyczne wykrywanie konturu lewej komory, analizę jej objętości i kurczliwości oraz obliczenie frakcji wyrzutowej LVEF. Lewa komora ma stosunkowo grube ściany, charakterystyczny kształt i wysokie wychwytywanie radioznacznika perfuzyjnego, co ułatwia algorytmom segmentację i wiarygodne obliczenia. Prawa komora jest w SPECT dużo trudniejsza do oceny ilościowej: ma cieńszą ścianę, bardziej nieregularny kształt i zwykle niższy wychwyt radiofarmaceutyku, przez co granice są słabiej widoczne. Istnieją co prawda metody próbujące szacować frakcję wyrzutową prawej komory z SPECT, ale to nie jest standard kliniczny i w typowych testach podkreśla się właśnie lewą komorę. Przedsionki, zarówno lewy, jak i prawy, praktycznie nie są rutynowo analizowane ilościowo w gated SPECT. Ich ściany są bardzo cienkie, objętość nieduża, a rozdzielczość gammakamery i charakterystyka radioznacznika po prostu nie pozwalają na wiarygodne, powtarzalne wyliczanie frakcji wyrzutowej przedsionków. W praktyce, jeśli kardiolog potrzebuje dokładnej oceny funkcji prawej komory lub przedsionków, sięga po inne metody: rezonans magnetyczny serca, echokardiografię 3D czy czasem tomografię komputerową. Typowym błędem myślowym jest założenie, że skoro obrazowane jest całe serce, to każda jama może być tak samo dokładnie oceniona ilościowo. Niestety fizyka detekcji promieniowania gamma i ograniczenia przestrzenne układu SPECT sprawiają, że tylko lewa komora spełnia kryteria do rutynowego, wiarygodnego wyliczania frakcji wyrzutowej. Dlatego w pytaniach egzaminacyjnych odpowiedź o prawej komorze lub przedsionkach jako głównym celu oceny frakcji wyrzutowej w gated SPECT jest uznawana za nieprawidłową.

Pytanie 36

Podczas którego badania zostały zarejestrowane przedstawione obrazy?

Ilustracja do pytania
A. Tomografii nerek.
B. Ultrasonografii tarczycy.
C. Scyntygrafii tarczycy.
D. Scyntygrafii nerek.
Prawidłowo wskazana została scyntygrafia nerek. Na przedstawionych obrazach widać typowy, barwny rozkład radioaktywności w obrębie obu nerek, uzyskany gammakamerą po dożylnym podaniu radiofarmaceutyku (najczęściej 99mTc‑DTPA, 99mTc‑MAG3 albo 99mTc‑EC). Charakterystyczne jest to, że obrazy są „plamiste”, kolorowe (skala pseudokolorów: czerwony, żółty, niebieski) i pokazują głównie funkcję narządu – czyli jak szybko znacznik jest wychwytywany i wydalany przez nerki – a nie ich dokładną anatomię. Moim zdaniem to jedna z najważniejszych różnic między scyntygrafią a TK czy USG: tu patrzymy przede wszystkim na czynność, a dopiero w drugiej kolejności na kształt. W praktyce klinicznej scyntygrafia nerek służy do oceny przesączania kłębuszkowego, drenażu z miedniczek nerkowych, udziału każdej nerki w całkowitej funkcji (tzw. funkcja rozdzielcza), diagnostyki zwężeń połączenia miedniczkowo‑moczowodowego, kontroli po przeszczepie nerki czy oceny blizn pozapalnych u dzieci. Standardem jest wykonywanie serii dynamicznych obrazów w kolejnych minutach po podaniu radiofarmaceutyku, co dokładnie pasuje do układu kafelków widocznych na ilustracji. Zgodnie z zasadami medycyny nuklearnej zapis taki uzyskuje się w projekcji tylnej lub przedniej, z pacjentem leżącym, a następnie analizuje się krzywe czas–aktywność. Z mojego doświadczenia w nauce do egzaminów warto zapamiętać, że „kolorowe, ziarniste nerki” w układzie dwóch symetrycznych ognisk po bokach kręgosłupa prawie zawsze oznaczają scyntygrafię nerek, a nie TK czy USG.

Pytanie 37

Który załamek odzwierciedla szybką repolaryzację komór w zapisie EKG?

A. S
B. T
C. Q
D. R
Załamek T jest w zapisie EKG bezpośrednio związany z repolaryzacją komór, a więc z procesem powrotu ich błony komórkowej do potencjału spoczynkowego po zakończonej depolaryzacji i skurczu. Błędne jest więc wiązanie szybkiej repolaryzacji komór z załamkami Q, R czy S, ponieważ te elementy EKG tworzą razem zespół QRS, który opisuje coś zupełnie innego – depolaryzację komór. W sensie elektrofizjologicznym zespół QRS odpowiada głównie fazie 0 i częściowo fazie 1 potencjału czynnościowego komórek komorowych, kiedy dochodzi do gwałtownego napływu jonów sodu do wnętrza kardiomiocytów i szybkiego rozprzestrzeniania się fali pobudzenia w mięśniu komór. To jest moment inicjacji skurczu, a nie jego wygaszania. Załamek Q, jeśli występuje, zwykle reprezentuje początkową depolaryzację przegrody międzykomorowej. Załamek R jest główną składową depolaryzacji masy mięśnia komór, szczególnie lewej komory, natomiast załamek S odzwierciedla końcowy etap depolaryzacji podstawnych części komór. Typowym błędem myślowym jest traktowanie całego zespołu QRS jako „aktywności komór w ogóle”, bez rozróżnienia, czy chodzi o depolaryzację, czy repolaryzację. Stąd łatwo o pomylenie pojęć i przypisanie którejś z liter Q, R lub S roli, której one fizjologicznie nie pełnią. Dobra praktyka w diagnostyce elektromedycznej zakłada jasne kojarzenie: P – depolaryzacja przedsionków, QRS – depolaryzacja komór, T – repolaryzacja komór. Dopiero w takim uporządkowaniu można sensownie analizować odchylenia, np. obniżenia lub uniesienia odcinka ST, odwrócone lub spłaszczone załamki T, czy poszerzenie QRS. Mylenie depolaryzacji z repolaryzacją prowadzi potem do złej interpretacji niedokrwienia, zaburzeń przewodzenia albo działania leków antyarytmicznych. Moim zdaniem warto sobie skojarzyć, że wszystko co „wysokie i wąskie” w środku zespołu to depolaryzacja (QRS), a „łagodny, szerszy garb” po nim to właśnie repolaryzacja komór – załamek T.

Pytanie 38

W badaniu EKG elektrodę przedsercową V4 należy umocować

A. w 5-tej przestrzeni międzyżebrowej w linii środkowo-obojczykowej lewej.
B. w 4-tej przestrzeni międzyżebrowej przy prawym brzegu mostka.
C. w 4-tej przestrzeni międzyżebrowej przy lewym brzegu mostka.
D. w 5-tej przestrzeni międzyżebrowej w linii pachowo-przedniej lewej.
W rozmieszczeniu elektrod przedsercowych bardzo łatwo o pomyłkę, bo wszystkie odpowiedzi wyglądają na „podobne”, a jednak drobne różnice w lokalizacji mają ogromne znaczenie dla jakości zapisu EKG. Warianty z 4-tą przestrzenią międzyżebrową odnoszą się do miejsc przeznaczonych dla innych odprowadzeń, a nie dla V4. Po prawej stronie mostka, w 4-tej przestrzeni międzyżebrowej, umieszcza się elektrodę V1. To odprowadzenie patrzy głównie na prawą komorę i przegrodę międzykomorową. Jeśli ktoś wstawiłby w to miejsce V4, zapis wyglądałby zupełnie inaczej, a analiza ściany przedniej lewej komory byłaby w dużej mierze bez sensu. Z kolei 4-ta przestrzeń międzyżebrowa przy lewym brzegu mostka jest miejscem dla V2. To odprowadzenie również ocenia głównie przegrodę i częściowo przednią ścianę. Typowym błędem jest myślenie „V1, V2, V3, V4 idą po kolei w dół”, ale to nie tak działa – zmienia się zarówno wysokość (przestrzeń międzyżebrowa), jak i położenie w poziomie (linie pionowe na klatce). Odpowiedź z linią pachowo-przednią w 5-tej przestrzeni międzyżebrowej opisuje miejsce położenia V5, a nie V4. V5 jest bardziej bocznie, bliżej pachy, i ocenia głównie ścianę boczną lewej komory. W praktyce ustawiamy najpierw V4 w linii środkowo-obojczykowej, a potem V5 trochę w lewo, w tej samej przestrzeni międzyżebrowej, ale już w linii pachowo-przedniej. Jeśli zamienimy te elektrody miejscami, można przeoczyć obraz zawału albo wręcz sztucznie wytworzyć obraz patologii. Z mojego doświadczenia częsty błąd polega na kierowaniu się tylko brodawką sutkową lub „na oko”, bez liczenia przestrzeni międzyżebrowych i bez wyznaczania linii anatomicznych. Dobre praktyki mówią jasno: zawsze odnajdujemy mostek, liczymy przestrzenie, zaznaczamy linie (mostkowe, środkowo-obojczykową, pachowo-przednią, pachowo-środkową) i dopiero wtedy przyklejamy elektrody. To niby żmudne, ale jest podstawą wiarygodnej diagnostyki EKG i uniknięcia fałszywych rozpoznań.

Pytanie 39

Brachyterapia polegająca na wielokrotnym wsuwaniu i wysuwaniu źródła promieniowania do tego samego aplikatora nosi nazwę

A. HDR
B. PDR
C. MDR
D. LDR
W tym pytaniu haczyk polega na tym, żeby nie pomylić rodzaju brachyterapii z samą szybkością dawki. MDR, HDR i LDR opisują głównie tempo podawania dawki (moc dawki), natomiast PDR odnosi się do konkretnego sposobu pracy systemu afterloadingowego: wielokrotne, pulsacyjne wsuwanie i wysuwanie źródła do tego samego aplikatora. To właśnie ten cykliczny charakter ekspozycji definiuje poprawną odpowiedź. Wysokodawkowa brachyterapia HDR kojarzy się wielu osobom z tym, że źródło jest dynamicznie przesuwane między pozycjami, ale zazwyczaj odbywa się to w ramach jednej krótkiej frakcji, a nie w postaci serii powtarzających się impulsów rozłożonych w czasie tak, by imitować LDR. HDR to przede wszystkim bardzo duża moc dawki dostarczona w kilku lub kilkunastu krótkich sesjach, a nie koniecznie „pulsowanie” w sensie radiobiologicznym. Z kolei LDR, czyli Low Dose Rate, to technika, w której źródło ma niską aktywność i pozostaje w tkankach przez dłuższy, praktycznie ciągły czas, bez wielokrotnego wsuwania i wysuwania. W klasycznej LDR źródła są albo tymczasowe, albo stałe (np. implanty nasionkowe), ale nie pracują w trybie pulsacyjnym sterowanym afterloaderem. MDR jest pojęciem używanym rzadziej, historycznie dotyczyło tempa dawki pośredniego między LDR a HDR, jednak samo w sobie nie opisuje mechanizmu wielokrotnego, automatycznego wprowadzania źródła. Typowy błąd myślowy przy tym pytaniu to skupienie się tylko na skrótach i skojarzeniu „wysuwanie/wsuwanie = HDR, bo tam źródło się rusza”. Tymczasem w definicjach klinicznych i w dokumentach zaleceń (np. ICRU, ESTRO) PDR jest jasno określone jako pulsacyjne podawanie dawki z użyciem źródła o aktywności zbliżonej do HDR, ale z powtarzanymi impulsami co określony interwał. W praktyce planistycznej i przy obsłudze afterloadera warto zawsze pamiętać, że nazwa techniki mówi nie tylko o mocy dawki, ale też o sposobie jej dystrybucji w czasie, i właśnie ten aspekt odróżnia PDR od pozostałych skrótów.

Pytanie 40

W obrazowaniu metodą rezonansu magnetycznego T1 oznacza czas

A. inwersji.
B. relaksacji podłużnej.
C. echa.
D. relaksacji poprzecznej.
Prawidłowo: w obrazowaniu metodą rezonansu magnetycznego T1 oznacza czas relaksacji podłużnej (spin–sieć). Chodzi o to, jak szybko namagnesowanie podłużne protonów (w osi głównego pola magnesu) wraca do stanu równowagi po pobudzeniu impulsami RF. W praktyce im krótszy T1, tym dany rodzaj tkanek szybciej „odzyskuje” swoje namagnesowanie podłużne i tym jaśniej świeci na obrazach T1‑zależnych. Dlatego na typowych sekwencjach T1‑zależnych tłuszcz ma krótki T1 i jest jasny, a płyny (np. płyn mózgowo‑rdzeniowy) mają długi T1 i wypadają ciemno. To jest bardzo użyteczne np. w rezonansie głowy: kontrast między istotą białą i szarą mózgu wynika w dużej mierze z różnic w T1. Po podaniu środka kontrastowego gadolinowego też patrzymy głównie na obrazy T1‑zależne, bo skrócenie T1 powoduje wzmocnienie sygnału w miejscach gromadzenia się kontrastu (np. guz, obszar zapalny, zaburzona bariera krew–mózg). Moim zdaniem dobrze jest kojarzyć, że T1 to nie jest żaden „czas echa” ani „czas inwersji”, tylko fizyczny parametr tkanki, który decyduje o kontraście przy odpowiednio dobranych parametrach sekwencji (TR, TE, ewentualnie TI). W codziennej pracy technika czy elektroradiologa rozumienie T1 pomaga świadomie dobierać protokoły, wiedzieć czemu zmiana TR zmienia kontrast i dlaczego w jednych badaniach lekarz chce mocno T1‑zależne obrazy, a w innych bardziej T2‑zależne. To jest taka podstawa fizyki MR, do której ciągle się wraca.