Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 13 maja 2025 21:18
  • Data zakończenia: 13 maja 2025 21:27

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Gdy zauważysz zbyt niską temperaturę pracy silnika (cieczy chłodzącej), w pierwszej kolejności powinieneś skontrolować

A. działanie wentylatora
B. temperaturę zamarzania cieczy chłodzącej
C. funkcjonowanie pompy cieczy
D. sprawność termostatu
Działanie termostatu jest kluczowym elementem zarządzania temperaturą silnika. Termostat reguluje przepływ cieczy chłodzącej w obiegu, co pozwala na szybkie osiągnięcie optymalnej temperatury roboczej silnika. Gdy silnik jest zimny, termostat pozostaje zamknięty, co pozwala na szybkie nagrzanie się jednostki napędowej. W momencie, gdy temperatura osiągnie odpowiedni poziom, termostat otwiera się, umożliwiając przejście cieczy chłodzącej przez chłodnicę. Dzięki temu silnik nie przegrzewa się, a temperatura pozostaje w zalecanym zakresie. Przykładowo, w standardowych silnikach spalinowych temperatura pracy powinna wynosić od 80 do 100 stopni Celsjusza. Niewłaściwe działanie termostatu, tj. jego zablokowanie w pozycji otwartej lub zamkniętej, może prowadzić do zbyt niskiej lub zbyt wysokiej temperatury silnika, co może skutkować poważnymi uszkodzeniami. W praktyce, każda diagnostyka powinna zaczynać się od weryfikacji działania termostatu, co jest zgodne z zaleceniami producentów oraz standardami branżowymi.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Popychacz w systemie rozrządu wpływa bezpośrednio na

A. spalanie paliwa
B. lubrykację silnika
C. chłodzenie silnika
D. otwieranie zaworu
Popychacz w układzie rozrządu pełni kluczową rolę w otwieraniu i zamykaniu zaworów silnika. Jego działanie jest bezpośrednio związane z cyklem pracy silnika, gdzie popychacz przekształca ruch obrotowy wału korbowego na ruch liniowy, co z kolei prowadzi do otwierania zaworów dolotowych lub wylotowych. Przykładem zastosowania popychaczy są silniki typu OHV (Overhead Valve), w których popychacze przekazują ruch z wałka rozrządu na zawory, co zapewnia precyzyjne synchronizowanie otwarcia i zamknięcia zaworów w odpowiednich momentach cyklu pracy silnika. Właściwe działanie popychaczy jest kluczowe dla osiągnięcia optymalnej efektywności silnika, co potwierdzają standardy branżowe przy projektowaniu układów rozrządu. Dobre praktyki w tej dziedzinie obejmują regularne serwisowanie układów rozrządu oraz stosowanie komponentów zgodnych z wytycznymi producentów, co zapewnia niezawodność i wydajność silnika.

Pytanie 5

W trakcie analizy hamulców na stanowisku rolkowym przeprowadza się przede wszystkim pomiar

A. dystansu hamowania
B. siły tarcia
C. siły hamowania
D. opóźnienia przy hamowaniu
Pomiar siły hamowania na stanowisku rolkowym jest kluczowym elementem oceny efektywności systemu hamulcowego pojazdu. Siła hamowania, mierzona w niutonach (N), określa, jaką moc hamulce są w stanie wygenerować w momencie działania, co bezpośrednio wpływa na bezpieczeństwo i skuteczność hamowania. W praktyce, podczas testów na stanowisku rolkowym, pojazd jest umieszczany na rolkach, a następnie przy użyciu pedału hamulca generowana jest siła, która jest następnie rejestrowana. Pomiar ten pozwala na ocenę stanu technicznego hamulców, co jest zgodne z normami, takimi jak UNECE Regulation No. 13, które regulują wymagania dotyczące hamulców pojazdów. Dobre praktyki w zakresie diagnostyki hamulców obejmują regularne kontrole oraz analizę wyników pomiarów, co umożliwia wczesne wykrywanie ewentualnych usterek oraz zapewnia bezpieczeństwo użytkowników dróg. Zrozumienie siły hamowania oraz jej wpływu na drogę hamowania i opóźnienie jest kluczowe dla inżynierów i techników zajmujących się pojazdami.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Przy użyciu areometru dokonuje się pomiaru

A. gęstości elektrolitu.
B. napięcia akumulatora.
C. temperatury elektrolitu.
D. wysokości elektrolitu.
Odpowiedź gęstości elektrolitu jest poprawna, ponieważ areometr jest narzędziem służącym do pomiaru gęstości cieczy. W przypadku elektrolitu akumulatorowego, gęstość jest kluczowym wskaźnikiem stanu naładowania akumulatora. Wartość gęstości elektrolitu zależy od jego stanu naładowania: im wyższa gęstość, tym lepsza kondycja akumulatora. Przykładem zastosowania areometru w praktyce jest okresowe sprawdzanie gęstości elektrolitu w akumulatorach kwasowo-ołowiowych, co pozwala na ocenę ich wydajności oraz żywotności. Standardy branżowe, takie jak SAE J537, zalecają monitorowanie gęstości elektrolitu jako kluczowego parametru podczas konserwacji akumulatorów. Wiedza na temat tego, jak interpretować wyniki pomiarów gęstości, jest niezbędna do prawidłowego zarządzania akumulatorami i zapewnienia ich długotrwałej pracy.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakie materiały stosuje się do produkcji wysoko obciążonych pierścieni tłokowych?

A. z stali żaroodpornej
B. z stali nierdzewnej
C. z stopów aluminium
D. z żeliwa sferoidalnego
Stal nierdzewna, mimo że ma doskonałą odporność na korozję, nie jest odpowiednim materiałem na pierścienie tłokowe w aplikacjach wysokoobciążonych. Jej właściwości mechaniczne, takie jak twardość, mogą prowadzić do szybszego zużycia w skrajnych warunkach pracy silników, gdzie występują ekstremalne temperatury i ciśnienia. Stal żaroodporna również wykazuje pewne ograniczenia, jeśli chodzi o odporność na ścieranie i zmęczenie materiału, ponieważ nie jest w stanie utrzymać optymalnych właściwości w długotrwałym użytkowaniu, co jest kluczowe w kontekście pierścieni tłokowych. Stopy aluminium, choć lekkie i dobrze przystosowane do wielu zastosowań, nie oferują wystarczającej wytrzymałości na ściskanie i mogą być stosowane jedynie w mniej obciążonych układach. Typowe błędy myślowe, które prowadzą do wyboru tych materiałów, wynikają z przekonania, że wszystkie materiały metalowe są odpowiednie do zastosowań mechanicznych. W rzeczywistości, odpowiedni wybór materiałów w inżynierii jest kluczowy dla zapewnienia trwałości i wydajności komponentów, co potwierdzają standardy przemysłowe i dobre praktyki inżynieryjne, które zalecają stosowanie materiałów takich jak żeliwo sferoidalne w kontekście wysokich obciążeń.

Pytanie 11

Po prawidłowej realizacji naprawy związanej z wymianą czujnika prędkości obrotowej koła?

A. należy dziesięciokrotnie uruchomić silnik w celu przeprowadzenia samodiagnozy układu ABS
B. kontrolka ABS wyłączy się automatycznie po osiągnięciu odpowiedniej prędkości jazdy
C. konieczne jest ponowne przeprowadzenie diagnostyki układu oraz usunięcie kodów błędów
D. należy odłączyć klemę masową akumulatora na 15 sekund
Odłączenie klem masowej akumulatora na 15 sekund w celu resetu układów elektronicznych mogłoby rzeczywiście wpływać na stan niektórych systemów w pojeździe, jednak nie jest to standardowe podejście do układów ABS po wymianie czujnika prędkości obrotowej. Tego typu działanie nie zmienia faktu, że kontrolka ABS może pozostać aktywna, a system niekoniecznie przeprowadzi pełną samodiagnozę. W przypadku układów ABS, które są zaawansowane technologicznie, ważne jest, aby po wymianie czujnika przeprowadzić odpowiednie testy diagnostyczne zamiast liczyć na reset systemu przez odłączenie zasilania. Ponadto, samodzielne uruchamianie silnika dziesięciokrotnie w celu „samodiagnozy” nie jest uzasadnione, ponieważ system ABS dokonuje oceny i diagnostyki w trakcie normalnej pracy pojazdu. Co więcej, ponowna diagnostyka układu oraz usunięcie ewentualnych kodów błędów powinny być nieodłącznie związane z każdą interwencją w układach elektronicznych pojazdu. Dlatego ważne jest, aby mechanicy stosowali się do najlepszych praktyk i standardów diagnostycznych, aby uniknąć błędnych wniosków oraz zapewnić pełną funkcjonalność systemów bezpieczeństwa w pojazdach.

Pytanie 12

Regulator odśrodkowy oraz regulator podciśnieniowy stanowią składniki systemu

A. rozrządu
B. zapłonowego
C. zasilania z wtryskiem jednopunktowym
D. zasilania z wtryskiem wielopunktowym
Pojęcia związane z regulatorem odśrodkowym i podciśnieniowym są często mylone z innymi systemami w silnikach spalinowych, co może prowadzić do nieporozumień w zakresie ich zastosowania. W przypadku układu zasilania z wtryskiem jednopunktowym, który charakteryzuje się prostą konstrukcją, nie stosuje się osobnych regulatorów odśrodkowych ani podciśnieniowych. Wtrysk jednopunktowy wykorzystuje zazwyczaj jeden wtryskiwacz, co ogranicza potrzebę zaawansowanej regulacji zapłonu. Podobnie, układ rozrządu, odpowiedzialny za synchronizację ruchu zaworów, nie ma bezpośredniego związku z funkcjonowaniem regulatorów zapłonu. Takie pomylenie wynika często z niepełnego zrozumienia, jakie elementy odpowiadają za różne procesy w silniku. Układ zapłonowy jest odrębnym systemem, który niezależnie reguluje moment zapłonu w odpowiedzi na różne parametry pracy silnika. W przypadku układu zapłonowego, zarówno regulator odśrodkowy, jak i podciśnieniowy, są integralnymi częściami, które zapewniają optymalną pracę silnika w różnych warunkach. Wtryskiwanie paliwa, niezależnie od tego, czy jest jednopunktowe, czy wielopunktowe, również nie wpływa na działanie regulatorów zapłonu, ponieważ ich główną funkcją jest zapewnienie odpowiedniego momentu zapłonu, a nie kontrola procesu wtrysku. To zrozumienie różnic między tymi systemami jest kluczowe dla efektywnej diagnostyki i naprawy silników spalinowych. Wiedza o tym, jakie elementy są odpowiedzialne za konkretne funkcje w silniku, pozwala uniknąć nieporozumień oraz poprawia jakość wykonywanych napraw i usług serwisowych.

Pytanie 13

Z wykorzystaniem popularnego czujnika zegarowego możliwe jest przeprowadzenie pomiaru z precyzją do

A. 0,1 mm
B. 0,01 mm
C. 0,0001 mm
D. 0,001 mm
Czujniki zegarowe, znane również jako mikrometry lub wskaźniki zegarowe, są kluczowymi narzędziami w inżynierii i metrologii, umożliwiającymi precyzyjne pomiary odchyleń w zakresie milimetra. Poprawna odpowiedź na pytanie dotyczące dokładności pomiaru, która wynosi 0,01 mm, jest zgodna z typowymi parametrami technicznymi stosowanych czujników. Te urządzenia często znajdują zastosowanie w przemyśle produkcyjnym, gdzie niezbędne jest kontrolowanie jakości wymiarów elementów mechanicznych. Na przykład, czujniki zegarowe są używane do pomiaru luzów w łożyskach, co pozwala na zapewnienie ich prawidłowego funkcjonowania i żywotności. W przypadku skomplikowanych konstrukcji inżynieryjnych, dokładność 0,01 mm jest wystarczająca do analizy i weryfikacji wymiarów, co jest zgodne z międzynarodowymi normami, takimi jak ISO 9001, które kładą nacisk na jakość procesów produkcyjnych. Użycie czujników zegarowych w połączeniu z innymi technikami pomiarowymi pozwala na uzyskanie rzetelnych danych, które są kluczowe dla optymalizacji procesów. Dodatkowo, znajomość zasad kalibracji tych czujników oraz ich regularne sprawdzanie jest istotne dla utrzymania dokładności pomiarów.

Pytanie 14

Producent wskazuje, że luz zaworowy powinien wynosić:
- zawory dolotowe 0,2á3,25 mm
- zawory wylotowe 0,25á0,3 mm
W trakcie inspekcji układu rozrządu uzyskano następujące wyniki pomiaru luzu zaworowego:
- zawory dolotowe 0,15á0,40 mm
- zawory wylotowe 0,1á0,3 mm

Uzyskane wyniki sugerują, że

A. luz zaworów dolotowych oraz wylotowych jest nieprawidłowy
B. luz zaworów dolotowych oraz wylotowych jest prawidłowy
C. luz jedynie zaworów wylotowych jest prawidłowy
D. luz jedynie zaworów dolotowych jest prawidłowy
Odpowiedź jest prawidłowa, ponieważ luz zaworowy zarówno dla zaworów dolotowych, jak i wylotowych nie mieści się w określonych przez producenta normach. Producent zaleca luz dolotowy w przedziale 0,2-3,25 mm oraz luz wylotowy w zakresie 0,25-0,3 mm. Mierząc luz dolotowy, uzyskano wartości od 0,15 do 0,40 mm, co wskazuje, że w jednym z pomiarów luz jest zbyt niski, a w drugim zbyt wysoki. W przypadku zaworów wylotowych, wartości od 0,1 do 0,3 mm również nie są zgodne z zaleceniem, ponieważ jeden z pomiarów wskazuje na luz poniżej wymaganego minimum. Niewłaściwe wartości luzu mogą prowadzić do problemów z pracą silnika, w tym do spadku mocy, wzrostu zużycia paliwa, a nawet uszkodzenia komponentów układu rozrządu. Dlatego kluczowe jest regularne kontrolowanie luzu zaworowego, aby zapewnić prawidłową pracę silnika oraz jego długowieczność.

Pytanie 15

Czas wymiany rozrządu wynosił 5 godzin. Zakup części do rozrządu kosztował 500 zł netto. Stawka za roboczogodzinę to 100 zł netto. Stawka VAT na towary i usługi wynosi 23%. Jaką kwotę zapłaci klient serwisu za wymianę rozrządu?

A. 1000 zł
B. 1150 zł
C. 1230 zł
D. 1049 zł
Aby obliczyć całkowity koszt wymiany rozrządu, należy uwzględnić zarówno koszt zakupionych części, jak i koszt robocizny. Zakup elementów rozrządu wyniósł 500 zł netto. Koszt roboczogodziny to 100 zł netto, a wymiana trwała 5 godzin, co daje łącznie 500 zł za robociznę (100 zł * 5 godzin). Suma kosztów netto wynosi więc 500 zł (części) + 500 zł (robocizna) = 1000 zł. Następnie, należy obliczyć podatek VAT w wysokości 23% od całkowitego kosztu netto. 23% z 1000 zł to 230 zł. Całkowity koszt z VAT wynosi więc 1000 zł + 230 zł = 1230 zł. Tego rodzaju obliczenia są istotne w branży motoryzacyjnej, ponieważ pozwalają na precyzyjne oszacowanie kosztów napraw i usług. Utrzymanie dokładnych wyliczeń jest kluczowe dla zarządzania finansami warsztatu oraz dla zapewnienia transparentności w relacjach z klientami.

Pytanie 16

Mechanik, który wymienia wahacze przedniej osi, ma możliwość dokręcenia

A. śruby/nakrętki sworznia dopiero po dokonaniu ustawienia zbieżności kół
B. śrub znajdujących się w poziomej płaszczyźnie wyłącznie w normalnej pozycji pracy zawieszenia
C. śrub usytuowanych w pionowej płaszczyźnie tylko w normalnej pozycji pracy zawieszenia
D. wszystkich śrub w dowolnym ustawieniu zawieszenia
Wymiana wahaczy osi przedniej jest kluczowym elementem w utrzymaniu prawidłowego funkcjonowania układu zawieszenia pojazdu. Odpowiedź wskazująca, że śruby umieszczone w płaszczyźnie poziomej mogą być dokręcane tylko w położeniu normalnej pracy zawieszenia jest poprawna, ponieważ zapewnia optymalne warunki do osiągnięcia właściwego momentu dokręcania. W położeniu roboczym zawieszenia, wszystkie elementy są w swojej naturalnej pozycji, co pozwala na precyzyjne i bezpieczne dokręcenie śrub. Niezastosowanie się do tej zasady może prowadzić do niewłaściwego naprężenia śrub, co w konsekwencji może powodować uszkodzenia wahaczy, a także negatywnie wpłynąć na stabilność i bezpieczeństwo jazdy. W praktyce, mechanicy powinni korzystać z odpowiednich narzędzi momentowych, aby zapewnić, że śruby są dokręcane zgodnie z wartościami podanymi przez producenta. Przykładem standardu branżowego jest przestrzeganie zaleceń producenta dotyczących momentów dokręcania, co jest kluczowe dla zachowania integralności układu zawieszenia i bezpieczeństwa pojazdu.

Pytanie 17

Jakim narzędziem dokonuje się pomiaru średnicy cylindrów po zakończonej naprawie silnika?

A. średnicówki mikrometrycznej
B. suwmiarki
C. mikrometra
D. średnicówki zegarowej
Użycie suwmiarki do pomiaru średnicy cylindrów po naprawie silnika może wydawać się logiczne, jednak ten przyrząd nie zapewnia wystarczającej precyzji. Suwmiarki, choć wszechstronne, mają ograniczenia związane z dokładnością pomiaru, co w kontekście wymagań dotyczących cylindrów silnika, które muszą mieścić się w ściśle określonych tolerancjach, może prowadzić do błędnych wyników. Przykładowo, w przypadku pomiaru średnicy cylindrów, nawet niewielkie błędy mogą skutkować niewłaściwym dopasowaniem tłoków, co z kolei wpłynie na wydajność i trwałość silnika. Mikrometr, mimo że jest bardziej precyzyjny niż suwmiarka, nadal nie jest najlepszym wyborem do pomiaru średnic cylindrów, ponieważ nie pozwala na łatwe mierzenie przestrzeni wewnętrznych w cylindrze, co jest niezbędne do uzyskania dokładnych wymiarów. Średnicówka mikrometryczna, chociaż użyteczna do pomiarów zewnętrznych, również nie jest idealna do pomiarów cylindrów silnika, gdyż nie jest przystosowana do pomiarów wewnętrznych o skomplikowanej geometrii. Właściwym podejściem w profesjonalnych warsztatach mechanicznych jest korzystanie z narzędzi, które zostały zaprojektowane specjalnie do tej funkcji, jak średnicówki zegarowe, które dzięki swojej budowie pozwalają na dokładne i szybkie pomiary bez ryzyka wprowadzenia błędów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jaką metodą wykonuje się wały korbowe stosowane w silnikach spalinowych samochodów sportowych?

A. odlewu
B. obróbki skrawaniem
C. kucia
D. łączenia
Wały korbowe w silnikach spalinowych samochodów sportowych są najczęściej wytwarzane metodą kucia ze względu na wysokie wymagania dotyczące wytrzymałości oraz odporności na zmęczenie materiału. Proces kucia pozwala uzyskać jednorodną strukturę materiału, co znacząco zwiększa jego właściwości mechaniczne. Kucie na gorąco, stosowane w produkcji wałów korbowych, umożliwia formowanie skomplikowanych kształtów, które są konieczne do prawidłowego działania silnika. Ponadto, dzięki kuciu, możliwe jest osiągnięcie wysokiej precyzji wymiarowej, co jest kluczowe w zastosowaniach wyścigowych, gdzie nawet najmniejsza różnica w tolerancjach może wpłynąć na osiągi pojazdu. W praktyce, producenci stosują materiały stalowe o dużej wytrzymałości, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, zapewniając jednocześnie długą żywotność i niezawodność komponentów. Dodatkowo, kute wały korbowe są często poddawane obróbce cieplnej w celu dalszej poprawy ich właściwości mechanicznych, co jest standardem w produkcji elementów silników wyczynowych.

Pytanie 20

Wskaźnikiem zdolności akumulatora do magazynowania energii jest

A. maksymalny czas wyładowania
B. szybkość obrotów alternatora
C. pojemność
D. najwyższe napięcie
Pojemność akumulatora to kluczowa miara zdolności do gromadzenia energii, która jest wyrażana w amperogodzinach (Ah). Im większa pojemność, tym więcej energii akumulator jest w stanie zmagazynować i dostarczyć podczas rozładowania. Przykładowo, akumulator o pojemności 100 Ah jest w stanie dostarczać prąd o natężeniu 5 amperów przez 20 godzin, co pokazuje, jak istotna jest ta wartość w praktyce. Pojemność jest również ważna przy doborze akumulatorów do różnych zastosowań, takich jak pojazdy elektryczne, systemy fotowoltaiczne czy zasilanie awaryjne. Dobrze skonstruowany akumulator, zgodny z normami IEC 60896 lub DIN 43539, powinien mieć określoną pojemność, co pozwala na przewidywanie jego wydajności oraz czasu pracy pod różnym obciążeniem. Właściwy dobór pojemności akumulatora zapewnia optymalną wydajność i żywotność systemów energetycznych, w których jest zastosowany.

Pytanie 21

Podczas holowania uszkodzonego samochodu z automatyczną skrzynią biegów należy

A. odłączyć system sterowania skrzynią biegów
B. unosić oś napędzaną pojazdu
C. spuścić olej ze skrzyni biegów
D. ustawić dźwignię zmiany biegów w pozycji D (jazda)
Podczas holowania uszkodzonego pojazdu wyposażonego w automatyczną skrzynię biegów kluczowe jest uniesienie osi napędzanej, co zapobiega uszkodzeniu skrzyni biegów. Automatyczne skrzynie biegów są zaprojektowane do pracy w ruchu i ich elementy, takie jak pompa olejowa, wymagają ruchu, aby prawidłowo smarować wewnętrzne części. Jeśli pojazd jest holowany w sposób, który nie unosi osi napędzanej, istnieje ryzyko, że olej smarujący nie będzie krążył, co może prowadzić do przegrzania lub uszkodzenia skrzyni biegów. Przykładem prawidłowego postępowania jest użycie platformy holowniczej, która unosi cały przód lub tył pojazdu, co zapewnia, że skrzynia biegów pozostaje w bezpiecznej i odpowiedniej pozycji. W branży motoryzacyjnej standardowym podejściem jest unikanie holowania pojazdów z automatycznymi skrzyniami biegów na kołach napędzanych, co może być zgodne z wytycznymi producentów pojazdów. Warto także zapoznać się z instrukcją obsługi pojazdu, gdzie często znajdziemy informacje dotyczące holowania.

Pytanie 22

Jaką precyzję pomiarową uzyskuje mikrometr, w którym zastosowano bęben z 50 podziałkami, a skok współpracującej śruby mikrometrycznej wynosi 0,5 mm?

A. 0,5 mm
B. 0,05 mm
C. 0,01 mm
D. 0,1 mm
Mikrometr z bębnem pomiarowym wyposażonym w 50 nacięć oraz śrubą mikro metryczną o skoku 0,5 mm charakteryzuje się dokładnością pomiarową wynoszącą 0,01 mm. Oblicza się to, dzieląc skok śruby przez liczbę nacięć na bębnie pomiarowym. W tym przypadku: 0,5 mm / 50 = 0,01 mm. Tego rodzaju narzędzie pomiarowe jest powszechnie używane w precyzyjnych pomiarach, gdzie wymagana jest wysoka dokładność, na przykład w obróbce metali czy inżynierii mechanicznej. Mikrometry służą do pomiaru grubości, średnicy oraz wymiarów detali, co jest kluczowe dla zapewnienia zgodności z normami jakości. W praktyce, precyzyjny pomiar o takiej dokładności pozwala na wyeliminowanie błędów w procesach produkcyjnych, co przekłada się na lepszą jakość wyrobów i mniejsze straty materiałowe. Warto również wspomnieć, że mikrometry są często kalibrowane zgodnie z normami, aby zapewnić ich niezawodność i precyzję w długim okresie użytkowania.

Pytanie 23

Mechanizm różnicowy w tylnym moście napędowym pojazdu umożliwia podział napędu na

A. przód i tył, w przypadku pojazdu z napędem na cztery koła
B. koła napędowe, przy jednoczesnej możliwości obracania się kół z różnymi prędkościami obrotowymi
C. koła napędowe, przy jednoczesnym braku możliwości obracania się kół z różnymi prędkościami obrotowymi
D. tył i przód z pominięciem przekładni głównej mostu napędowego
Mechanizm różnicowy w tylnym moście napędowym jest kluczowym elementem, który odpowiada za rozdział napędu na koła napędowe, pozwalając im na toczenie się z różnymi prędkościami obrotowymi. W praktyce oznacza to, że podczas skręcania samochodu wewnętrzne koło pokonuje krótszą odległość niż zewnętrzne, co powoduje różnice w prędkościach obrotowych. Mechanizm różnicowy umożliwia kompensację tych różnic, co jest niezwykle istotne dla stabilności i przyczepności pojazdu. Przykładem zastosowania tego rozwiązania są samochody osobowe, które podczas jazdy w zakręcie zyskują na manewrowości oraz minimalizują zużycie opon, a także poprawiają komfort jazdy. Zgodnie z praktykami inżynieryjnymi, mechanizmy różnicowe są projektowane w oparciu o normy dotyczące bezpieczeństwa i wydajności, co zapewnia ich niezawodność w różnych warunkach drogowych. Warto dodać, że nowoczesne technologie, takie jak elektroniczne mechanizmy różnicowe, jeszcze bardziej zwiększają możliwości dostosowania napędu do warunków panujących na drodze, poprawiając dynamikę jazdy i efektywność.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Przejazd autem przez płytę kontrolną w stacji diagnostycznej pozwala na dokonanie pomiaru

A. zbieżności całkowitej
B. kąta wyprzedzenia sworznia zwrotnicy
C. kąta pochylenia sworznia zwrotnicy
D. pochylenia koła jezdnego
Zauważyłem, że wspomniałeś o różnych parametrach związanych z układem jezdnym, ale nie wszystkie one są powiązane z tym, co mierzymy na płycie pomiarowej. Pochylenie koła to coś innego, chodzi głównie o kąt w stosunku do pionu, ale to nie to, co bezpośrednio sprawdzamy na płycie. Tak samo kąt wyprzedzenia czy kąt pochylenia sworznia zwrotnicy to ważne rzeczy, ale wymagają innych metod pomiarowych. Często ludzie mylą te różne parametry i potem mogą źle interpretować wyniki. Dobrze jest zrozumieć, czym różnią się te pojęcia, bo to pomoże lepiej zadbać o auto.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Stan naładowania akumulatora ustalamy za pomocą pomiaru

A. gęstości elektrolitu
B. objętości elektrolitu
C. masy elektrolitu
D. lepkości elektrolitu
Gęstość elektrolitu jest kluczowym wskaźnikiem stanu naładowania akumulatora, ponieważ zmienia się w zależności od stężenia kwasu siarkowego w roztworze. W miarę naładowania akumulatora gęstość elektrolitu wzrasta, co można zmierzyć za pomocą areometru. Przykładem praktycznego zastosowania tej metody jest regularne sprawdzanie stanu naładowania w akumulatorach kwasowo-ołowiowych, które są powszechnie stosowane w pojazdach. Zgodnie z normami branżowymi, takich jak SAE J537, pomiar gęstości elektrolitu powinien być przeprowadzany, aby zapewnić odpowiednią konserwację i zapobiec uszkodzeniom akumulatora. Wartości gęstości elektrolitu mogą również różnić się w zależności od temperatury, dlatego istotne jest, aby pomiary były wykonywane w warunkach znormalizowanej temperatury, co pozwala na dokładniejszą ocenę stanu naładowania. Znajomość i umiejętność interpretacji gęstości elektrolitu są niezbędne dla każdej osoby zajmującej się obsługą techniczną akumulatorów.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

W jakiej sekwencji powinno się dokręcać śruby trzymające głowicę silnika?

A. Od lewej do prawej
B. Zgodnie z instrukcjami producenta silnika
C. W dowolnej sekwencji
D. Kolejno, zaczynając od strony rozrządu
Dokręcanie śrub mocujących głowicę silnika zgodnie z zaleceniami producenta jest kluczowe dla zapewnienia odpowiedniej szczelności i stabilności jednostki napędowej. Każdy silnik może mieć specyficzne wymagania dotyczące momentu obrotowego oraz kolejności dokręcania, co jest zazwyczaj określone w dokumentacji technicznej. Zastosowanie się do tych zaleceń pozwala na równomierne rozłożenie naprężeń na śrubach, co zminimalizuje ryzyko ich uszkodzenia oraz ewentualnych nieszczelności. Przykładowo, w silnikach z głowicą aluminiową często stosuje się sekwencyjne dokręcanie, aby uniknąć odkształceń materiału. Ignorowanie tych zasad może prowadzić do poważnych awarii, takich jak uszkodzenie uszczelki pod głowicą, co z kolei generuje wysokie koszty naprawy. Dlatego zawsze należy konsultować się z instrukcją serwisową i stosować odpowiednie narzędzia, aby zapewnić, że śruby są dokręcone zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 32

Po wymianie klocków hamulcowych z przodu pojazdu przeprowadzono jazdę testową, której celem jest ustalenie

A. rozkładu siły hamowanej na każde z kół
B. skuteczności hamulców
C. siły hamowania
D. rodzaju użytego płynu hamulcowego
Ocena siły hamowania po wymianie klocków hamulcowych wydaje się być logicznym podejściem, ale nie jest to kluczowy czynnik, który należy zbadać w trakcie jazdy próbnej. Siła hamowania odnosi się do rzeczywistej mocy, jaką generują hamulce, lecz sama w sobie nie dostarcza informacji o ich skuteczności. W praktyce, siła hamowania nie jest wystarczająca do oceny, ponieważ może być zaniżona przez inne czynniki, takie jak zużycie tarcz hamulcowych czy stan płynu hamulcowego. Z kolei określenie rodzaju zastosowanego płynu hamulcowego również nie ma bezpośredniego wpływu na skuteczność hamulców w kontekście jazdy próbnej, ponieważ nie zmienia to fizycznych właściwości klocków ani ich efektywności. Warto pamiętać, że płyn hamulcowy ma swoje specyfikacje, ale zmiana płynu nie jest celem jazdy próbnej po wymianie klocków. Kolejną kwestią jest rozkład siły hamowania na poszczególne koła, co również nie jest bezpośrednio związane z oceną efektów wymiany klocków. Nierównomierny rozkład siły hamowania może wskazywać na inne problemy, takie jak zużycie hamulców lub niesprawność układu, ale sama jazda próbna w kontekście nowych klocków nie zaadresuje tego problemu. Właściwym podejściem jest ocena skuteczności hamulców jako całości, co uwzględnia wszystkie te aspekty i pozwala na właściwą diagnostykę ich stanu i wydajności.

Pytanie 33

Podczas jazdy samochód osiągnął temperaturę 110 °C (czerwone pole na wskaźniku temperatury) w obiegu płynu chłodzącego. Jakie mogą być tego przyczyny?

A. usterka systemu chłodzenia
B. przeciążenie alternatora
C. usterka klimatyzacji
D. zatarcie silnika
Odpowiedź 'awaria układu chłodzenia' jest poprawna, ponieważ wysoka temperatura płynu chłodzącego, mierząca 110 °C, wskazuje na problemy z efektywnością systemu chłodzenia silnika. Układ chłodzenia ma za zadanie odprowadzać ciepło generowane przez silnik, aby utrzymać jego optymalną temperaturę pracy. Awaria może wystąpić na skutek różnych przyczyn, takich jak uszkodzenie pompy wodnej, zapchanie chłodnicy, wyciek płynu chłodzącego lub uszkodzenie termostatu. W praktyce, problemy te mogą prowadzić do przegrzania silnika, co z kolei może skutkować poważnymi uszkodzeniami, jak zatarcie silnika czy pęknięcie głowicy cylindrów. Dlatego ważne jest regularne serwisowanie układu chłodzenia, w tym wymiana płynu chłodzącego zgodnie z zaleceniami producenta oraz kontrola stanu chłodnicy i innych komponentów układu. Dobre praktyki obejmują także monitorowanie wskaźników temperatury podczas jazdy oraz szybkie reagowanie na wszelkie nieprawidłowości, aby uniknąć kosztownych napraw.

Pytanie 34

Aby zweryfikować bicia czopów głównych wału korbowego, należy zastosować

A. mikrometru
B. średnicówki czujnikowej
C. średnicówki mikrometrycznej
D. czujnika zegarowego
Czujnik zegarowy jest narzędziem pomiarowym, które jest powszechnie stosowane w mechanice do precyzyjnego pomiaru luzu i bicia czopów głównych wału korbowego. Jego działanie opiera się na zjawisku wskazywania upływu czasu na zegarze, co pozwala na dokładne odczytywanie niewielkich przemieszczeń. W przypadku wału korbowego, ważne jest, aby sprawdzić, czy czopy są odpowiednio osadzone w łożyskach, co ma kluczowe znaczenie dla prawidłowego funkcjonowania silnika. Pomiar bicia czopów za pomocą czujnika zegarowego daje możliwość zmierzenia odchylenia od idealnej osi, co jest niezbędne dla zapewnienia długotrwałej i niezawodnej pracy silnika. W praktyce, czujnik zegarowy ustawia się na powierzchni czopu, a następnie obraca wał, co pozwala na obserwację wahań wskazówki czujnika, które odzwierciedlają ewentualne niedoskonałości w osadzeniu wału. Zgodnie z normami branżowymi, akceptowalne wartości bicia nie powinny przekraczać określonych limitów, co również potwierdza zastosowanie czujnika zegarowego jako standardowego narzędzia w warsztatach mechanicznych i zakładach produkcyjnych.

Pytanie 35

Równomierność funkcjonowania amortyzatorów w kołach jednej osi określa różnica wskaźnika EUSAMA. Maksymalna wartość tej różnicy nie powinna przekraczać

A. 10%
B. 20%
C. 30%
D. 25%
Wybór wartości 25%, 10% lub 30% jako granic dla różnicy wskaźnika EUSAMA jest nieprawidłowy ze względu na brak zgodności z ustalonymi normami branżowymi. Ustalenie granicy 25% może wynikać z mylnego założenia, że bardziej liberalne podejście do tolerancji jest akceptowalne. Jednakże, zbyt dużą różnicą wskaźnika można zasygnalizować problemy z równomiernością działania amortyzatorów, co przyczynia się do pogorszenia stabilności pojazdu. Z kolei odpowiedzi 10% i 30% wskazują na błędną interpretację danych. Przyjęcie 10% jako maksymalnej różnicy może być zbyt restrykcyjne, co w wielu przypadkach nie odpowiada rzeczywistości technicznej, a stosowanie tak rygorystycznych standardów może prowadzić do niepotrzebnych kosztów związanych z wymianą sprawnych amortyzatorów. Odpowiedź 30% jest natomiast rażącą przesadą, sugerującą, że problemy z amortyzatorami są mniej istotne, co jest szkodliwe dla bezpieczeństwa. Kluczowe jest zrozumienie, że tolerancje w działaniu amortyzatorów powinny być oparte na standardach, które uwzględniają zarówno bezpieczeństwo, jak i komfort jazdy, co podkreśla znaczenie wskaźnika EUSAMA na poziomie 20%.

Pytanie 36

Potrzeba regularnej wymiany płynu hamulcowego wynika głównie

A. z zanieczyszczenia płynu cząstkami i osadami
B. ze zmiany składu chemicznego płynu
C. ze zwiększenia zawartości wody w płynie
D. z zapowietrzenia układu hamulcowego
Zwiększenie zawartości wody w płynie hamulcowym jest kluczowym powodem, dla którego konieczna jest jego okresowa wymiana. Płyn hamulcowy, szczególnie ten na bazie glikolu, ma zdolność absorpcji wilgoci z otoczenia. W miarę upływu czasu, woda, która dostaje się do układu, obniża temperaturę wrzenia płynu. To zjawisko może prowadzić do wystąpienia zjawiska 'wodnego wrzenia', co jest niebezpieczne, ponieważ podczas hamowania płyn może osiągnąć temperaturę wrzenia, co skutkuje utratą ciśnienia w układzie hamulcowym, a tym samym zmniejszeniem skuteczności hamowania. W praktyce, normy bezpieczeństwa, takie jak te określone przez DOT (Department of Transportation), zalecają sprawdzanie zawartości wody w płynie hamulcowym co dwa lata lub po przejechaniu określonego przebiegu. Regularna wymiana płynu hamulcowego pomaga utrzymać optymalną wydajność hamulców i zapewnia bezpieczeństwo na drodze. Dbanie o układ hamulcowy jest zatem fundamentalnym aspektem utrzymania pojazdu, który wpływa na bezpieczeństwo kierowcy oraz pasażerów.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Kolumna McPhersona stanowi część zawieszenia pojazdu

A. skrętny
B. tłumiący
C. elastyczny
D. sztywny
Kolumna McPhersona to kluczowy element zawieszenia pojazdu, który pełni funkcję tłumiącą. Działa na zasadzie połączenia sprężyny i amortyzatora w jednym module, co pozwala na efektywne zarządzanie siłami działającymi na zawieszenie. Główna rola tłumiąca polega na minimalizowaniu drgań i wstrząsów, które pojazd doświadcza podczas jazdy po nierównych nawierzchniach. Dzięki zastosowaniu kolumny McPhersona, możliwe jest osiągnięcie lepszej stabilności, komfortu jazdy oraz poprawy przyczepności opon do podłoża. W praktyce, kolumny McPhersona są powszechnie stosowane w wielu samochodach osobowych, co obrazuje ich znaczenie w projektowaniu nowoczesnych układów zawieszenia. Wiele europejskich standardów dotyczących konstrukcji pojazdów, takich jak normy ECE, podkreśla znaczenie odpowiedniego tłumienia drgań, co czyni kolumnę McPhersona istotnym elementem w kontekście bezpieczeństwa i komfortu jazdy.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Typowy układ napędowy samochodu składa się

A. z silnika umiejscowionego z przodu pojazdu, napędzane są koła tylne
B. z silnika umiejscowionego z tyłu pojazdu, napędzane są koła tylne
C. z silnika umiejscowionego z tyłu pojazdu, napędzane są koła przednie
D. z silnika umiejscowionego z przodu pojazdu, napędzane są koła przednie
Klasyczny układ napędowy, w którym silnik jest umieszczony z przodu pojazdu, a napędzane są koła tylne, jest najbardziej powszechnym rozwiązaniem w motoryzacji. Tego typu układ, często określany jako RWD (Rear Wheel Drive), zapewnia lepszą równowagę masy pojazdu, co przekłada się na lepsze właściwości jezdne, zwłaszcza podczas dynamicznej jazdy. W sytuacjach, gdy pojazd jest obciążony, silnik umieszczony z przodu generuje dodatkową masę nad tylnymi kołami, co zwiększa przyczepność. Przykłady pojazdów z takim układem to wiele modeli sportowych i luksusowych, takich jak BMW serii 3 czy Mercedes-Benz klasy C. Tego rodzaju układ jest również preferowany w pojazdach terenowych, gdzie napęd na tylną oś zapewnia lepszą kontrolę w trudnym terenie. W praktyce, układ RWD umożliwia bardziej efektywne przekazywanie mocy na drodze i lepszą stabilność podczas zakrętów, co jest istotne w kontekście bezpieczeństwa i komfortu jazdy.