Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 7 lutego 2026 18:20
  • Data zakończenia: 7 lutego 2026 18:31

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który obszar napromieniania w radioterapii oznacza się skrótem PTV?

A. Zaplanowany obszar napromieniania.
B. Kliniczny obszar napromieniania.
C. Obszar leczony.
D. Obszar guza.
Prawidłowo – PTV to właśnie zaplanowany obszar napromieniania (Planning Target Volume). W radioterapii stosuje się kilka zdefiniowanych objętości: GTV (Gross Tumor Volume – makroskopowy guz), CTV (Clinical Target Volume – kliniczny obszar napromieniania, czyli guz plus strefa możliwego mikroskopowego nacieku) oraz właśnie PTV. PTV powstaje z CTV przez dodanie odpowiednich marginesów bezpieczeństwa, które mają uwzględnić niepewności: ruchy pacjenta, ruchomość narządów (np. oddech, perystaltyka), błędy ustawienia, ograniczenia systemu unieruchomienia czy dokładności aparatu. Moim zdaniem to jedno z kluczowych pojęć w planowaniu, bo decyduje, czy dawka rzeczywiście trafi tam, gdzie trzeba, w każdych typowych warunkach leczenia. W praktyce planowania na systemie TPS (Treatment Planning System) fizyk medyczny i lekarz radioterapeuta wyznaczają najpierw GTV i CTV na obrazach TK (często z fuzją z MR lub PET), a dopiero potem definiują PTV, np. CTV + 5 mm marginesu izotropowego albo bardziej złożone marginesy anisotropowe. W protokołach klinicznych i wytycznych (np. ICRU Report 50/62, nowsze ICRU 83) bardzo mocno podkreśla się, że dawka referencyjna musi pokryć PTV w określonym procencie objętości, np. 95% PTV otrzymuje 95% dawki przepisanej. Dzięki temu można kontrolować, czy napromienianie jest wystarczająco jednorodne i czy nie ma nieakceptowalnych niedowiązań w obrębie celu. W nowoczesnych technikach jak IMRT czy VMAT całe kształtowanie rozkładu dawki, optymalizacja planu, analiza DVH i kontrola jakości są wykonywane właśnie w odniesieniu do PTV. W praktyce klinicznej technik radioterapii, ustawiając pacjenta na aparacie, tak naprawdę pilnuje, aby w każdym dniu leczenia PTV znalazło się w polu wiązek zgodnie z planem, a nie tylko „sam guz”, który i tak jest często niewidoczny w obrazowaniu portalowym lub CBCT.

Pytanie 2

Który obszar napromieniania wskazano na ilustracji strzałką?

Ilustracja do pytania
A. Zaplanowany obszar napromieniania.
B. Obszar leczony.
C. Kliniczny obszar napromieniania.
D. Obszar napromieniany.
Prawidłowo wskazany „kliniczny obszar napromieniania” (CTV – Clinical Target Volume) to w radioterapii pojęcie bardzo konkretne i dobrze zdefiniowane w wytycznych ICRU oraz zaleceń PTRO. Na schemacie żółty środek zwykle odpowiada GTV (Gross Tumor Volume), czyli makroskopowo widoczny guz lub loża po guzie. Niebieski pierścień, na który wskazuje strzałka, obejmuje ten guz razem z mikroskopowym szerzeniem się nowotworu i dlatego nazywamy go właśnie CTV. Moim zdaniem to jedno z kluczowych pojęć w planowaniu radioterapii, bo kliniczny obszar napromieniania definiuje, gdzie musimy dostarczyć skuteczną dawkę, aby leczyć nie tylko to, co widzimy w TK/MR, ale też to, czego jeszcze nie widać, a realnie tam jest. W praktyce planowania: najpierw lekarz na obrazach TK/MR/PET zaznacza GTV, potem zgodnie z wiedzą o biologii guza, drodze szerzenia się, marginesach chirurgicznych i danych z literatury onkologicznej rozszerza ten obszar o kilka, czasem kilkanaście milimetrów, tworząc CTV. Na przykład w raku głowy i szyi CTV obejmuje nie tylko sam guz, ale też okoliczne przestrzenie, gdzie komórki nowotworowe mogą się szerzyć wzdłuż nerwów czy naczyń. W raku prostaty CTV może obejmować samą prostatę, czasem pęcherzyki nasienne czy nawet regionalne węzły chłonne, jeśli ryzyko zajęcia jest wysokie. Dopiero z CTV tworzy się PTV (Planned Target Volume) przez dodanie marginesu na błędy ustawienia pacjenta i ruchy narządów. Stąd bardzo ważne jest, żeby w głowie rozróżniać: GTV = guz makro, CTV = guz + możliwe szerzenie mikro, PTV = CTV + margines techniczny. Dobra praktyka kliniczna wymaga, żeby każda z tych objętości była osobno opisana w dokumentacji i prawidłowo oznaczona w systemie planowania. To pozwala na bezpieczne eskalowanie dawki tam, gdzie trzeba, i jednocześnie ochronę narządów krytycznych (OAR).

Pytanie 3

Jaka jest moc dawki pochłoniętej w brachyterapii HDR?

A. Więcej niż 12 Gy/h
B. W zakresie 6-11 Gy/h
C. Mniej niż 2 Gy/h
D. W zakresie 3-5 Gy/h
Prawidłowo – brachyterapia HDR (High Dose Rate) to technika, w której moc dawki pochłoniętej wynosi powyżej 12 Gy/h. W praktyce klinicznej stosuje się jeszcze wyższe wartości, rzędu kilkudziesięciu, a nawet kilkuset Gy/h w miejscu źródła, ale definicyjnie HDR to właśnie zakres >12 Gy/h. Jest to zgodne z klasycznym podziałem brachyterapii na LDR (low dose rate, zwykle ok. 0,4–2 Gy/h), MDR (medium dose rate), PDR (pulsed dose rate) oraz HDR. Moim zdaniem warto to sobie po prostu skojarzyć: HDR = bardzo krótki czas zabiegu, ale bardzo duża moc dawki w trakcie ekspozycji. W brachyterapii HDR stosuje się najczęściej źródło 192Ir, które jest automatycznie wysuwane z afterloadera do aplikatorów umieszczonych w guzie albo w jego bezpośrednim sąsiedztwie. Dzięki wysokiej mocy dawki można podać zaplanowaną dawkę całkowitą w kilku-kilkunastu frakcjach trwających po kilka minut, zamiast wielu godzin czy dni jak w LDR. Z punktu widzenia organizacji pracy oddziału onkologii to ogromny plus: łatwiej zaplanować harmonogram, skraca się czas zajęcia sali i aparatury, a pacjent często może być leczony ambulatoryjnie. Jednocześnie, przy tak dużej mocy dawki, bardzo ważne jest precyzyjne planowanie leczenia w systemie TPS, dokładne obrazowanie (TK, MR) do wyznaczenia objętości tarczowych i narządów krytycznych oraz rygorystyczne przestrzeganie zasad ochrony radiologicznej. W HDR każdy błąd w pozycjonowaniu aplikatora czy czasie ekspozycji od razu przekłada się na duże odchylenie dawki. Dlatego w dobrych ośrodkach tak duży nacisk kładzie się na procedury QA, weryfikację czasu przebywania źródła w poszczególnych pozycjach (tzw. dwell time) oraz kontrolę geometrii układu. W praktyce technika HDR jest szeroko stosowana np. w nowotworach ginekologicznych, raka prostaty, raka płuca czy przełyku, właśnie dzięki możliwościom konformnego podania wysokiej dawki w krótkim czasie przy stosunkowo szybkim spadku dawki w tkankach otaczających.

Pytanie 4

Dawka graniczna wyrażona jako dawka skuteczna (efektywna), dla osób zawodowo narażonych na działanie promieniowania jonizującego wynosi w ciągu roku kalendarzowego

A. 20 mSv
B. 6 mSv
C. 8 mSv
D. 15 mSv
Prawidłowa wartość dawki granicznej skutecznej dla osób zawodowo narażonych na promieniowanie jonizujące to 20 mSv w ciągu roku kalendarzowego. Wynika to z aktualnych zaleceń ICRP (International Commission on Radiological Protection) oraz wdrożenia tych zaleceń w prawie polskim i unijnym. W praktyce przyjmuje się, że średnia dawka skuteczna nie powinna przekraczać 20 mSv na rok, liczona jako średnia z 5 kolejnych lat, przy czym w żadnym pojedynczym roku nie wolno przekroczyć 50 mSv. Ale w normalnych warunkach pracy planujemy tak, żeby trzymać się właśnie okolic 20 mSv lub niżej. Moim zdaniem najważniejsze jest zrozumienie, że jest to wartość graniczna, a nie „zalecana” – celem ochrony radiologicznej jest trzymanie dawek jak najniżej rozsądnie osiągalnie (zasada ALARA – As Low As Reasonably Achievable). W codziennej pracy technika elektroradiologii czy fizyka medycznego przekłada się to na konkretne działania: stosowanie osłon (fartuchy ołowiane, osłony gonad, parawany), odpowiednie odległości od źródła promieniowania, skracanie czasu ekspozycji, poprawne kolimowanie wiązki, używanie właściwych parametrów ekspozycji (kV, mAs) oraz kontrola jakości aparatów. W diagnostyce obrazowej (RTG, TK, fluoroskopia) i w radioterapii dawki personelu są stale monitorowane za pomocą dozymetrów indywidualnych, które nosi się zwykle na klatce piersiowej, a czasem dodatkowo pod fartuchem. Z mojego doświadczenia dobrze prowadzona pracownia, z rozsądną organizacją pracy i przestrzeganiem procedur, pozwala utrzymywać dawki personelu zdecydowanie poniżej 20 mSv rocznie, często nawet w okolicach kilku mSv lub mniej. Ten limit jest więc bardziej „bezpiecznym sufitem” niż celem, do którego się dąży.

Pytanie 5

Promieniowanie jonizujące pośrednio to

A. promieniowanie γ
B. promieniowanie β⁺
C. promieniowanie β⁻
D. promieniowanie α
Promieniowanie γ zaliczamy do promieniowania jonizującego pośrednio, ponieważ samo w sobie jest strumieniem fotonów, czyli kwantów energii elektromagnetycznej, a nie naładowanych cząstek. Foton γ nie „wyrywa” elektronów z atomów bezpośrednio jak cząstka naładowana, tylko najpierw oddziałuje z materią (np. z elektronem powłokowym lub jądrem), wytwarzając wtórne cząstki naładowane – głównie elektrony wtórne. Dopiero te elektrony powodują zasadniczą część jonizacji w tkankach. Dlatego mówimy, że γ jonizuje pośrednio. W praktyce medycznej ma to ogromne znaczenie. W radioterapii z użyciem przyspieszaczy liniowych albo aparatów Co-60 wiązka promieniowania γ lub wysokoenergetycznego X przenika głębiej w ciało, a maksimum dawki pojawia się na pewnej głębokości, właśnie przez generację wtórnych elektronów. Dzięki temu można lepiej oszczędzić skórę i dostarczyć większą dawkę do guza położonego głębiej, co jest standardem w nowoczesnym planowaniu napromieniania. Podobnie w diagnostyce medycyny nuklearnej – w gammakamerze rejestrujemy fotony γ emitowane przez radioizotop (np. 99mTc), które same są nienaładowane, więc dobrze przechodzą przez tkanki, a ich detekcja wymaga kryształu scyntylacyjnego i fotopowielaczy. Z mojego doświadczenia, zrozumienie, że γ jest promieniowaniem pośrednio jonizującym, pomaga ogarnąć, czemu ochrona radiologiczna opiera się na grubych ekranach z ołowiu czy betonu: ekran nie tyle zatrzymuje ładunek, co pochłania fotony i ogranicza powstawanie wtórnych elektronów w organizmie osoby narażonej. To też tłumaczy, dlaczego normy dawek i zasada ALARA tak mocno podkreślają czas, odległość i osłony – bo pracujemy z promieniowaniem, które ma duży zasięg i jonizuje trochę „okrężną drogą”.

Pytanie 6

Po wykonanej radioterapii do dokumentacji pacjenta należy wpisać dawkę promieniowania w jednostce

A. Kiur (Ci)
B. Siwert (Sv)
C. Bekerel (Bq)
D. Grej (Gy)
Prawidłową jednostką dawki pochłoniętej w radioterapii jest grej (Gy). W dokumentacji po napromienianiu zawsze wpisujemy dawkę w Gy, ponieważ ta jednostka opisuje ile energii promieniowania zostało pochłonięte przez tkankę: 1 Gy = 1 dżul na kilogram. To jest dokładnie to, co nas interesuje przy planowaniu i ocenie skuteczności leczenia onkologicznego – ile energii oddaliśmy do guza i tkanek zdrowych. W praktyce klinicznej zapis wygląda np. tak: „Dawka całkowita: 50 Gy w 25 frakcjach po 2 Gy”, albo przy brachyterapii: „HDR 7 Gy na frakcję do punktu referencyjnego”. Moim zdaniem warto od początku przyzwyczajać się do czytania i pisania takich zapisów, bo to jest codzienny chleb w radioterapii. Grej jest jednostką układu SI i jest standardem w wytycznych międzynarodowych (ICRU, ICRP), w planach leczenia, w systemach TPS i w kartach informacyjnych. Oczywiście w radiologii i ochronie radiologicznej pojawiają się też inne jednostki, jak siwert (Sv) dla dawki równoważnej i skutecznej czy bekerel (Bq) dla aktywności źródła, ale to są inne wielkości fizyczne. W radioterapii, przy opisie konkretnego napromieniania pacjenta, wpisujemy właśnie dawkę pochłoniętą w Gy. W dokumentacji dodatkowo często zaznacza się rozkład dawki (DVH), dawki na narządy krytyczne też w Gy, np. „maks. dawka do rdzenia kręgowego 45 Gy”. To wszystko musi być spójne, dlatego użycie greja nie jest kwestią mody, tylko po prostu standardem i wymogiem poprawnej dokumentacji medycznej.

Pytanie 7

Warstwa półchłonna (WP) jest wyrażona w mm Cu dla

A. medycyny nuklearnej.
B. terapii megawoltowej.
C. diagnostyki radiologicznej.
D. terapii ortowoltowej.
Prawidłowo – warstwa półchłonna (WP, HVL – half value layer) wyrażona w milimetrach miedzi jest klasycznym parametrem opisu jakości wiązki w terapii ortowoltowej, czyli dla promieniowania X w zakresie mniej więcej 100–300 kV. W tym przedziale energii miedź jest standardowym materiałem filtracyjnym i referencyjnym, bo jej liczba atomowa i gęstość dobrze „pasują” do charakteru wiązki ortowoltowej. Dzięki temu łatwo porównać twardość (penetracyjność) różnych aparatów i ustawień napięcia. W praktyce wygląda to tak, że do wiązki terapeutycznej stopniowo wsuwa się kolejne płytki Cu i mierzy spadek dawki lub mocy dawki. Grubość miedzi, przy której dawka spada do 50% wartości początkowej, to właśnie WP w mm Cu. Im większa WP, tym wiązka jest twardsza, bardziej przenikliwa i mniej pochłaniana w tkankach powierzchownych. W ortowolcie używa się tego do kontroli jakości aparatu, do doboru filtracji dodatkowej i do klasyfikacji wiązek zgodnie z rekomendacjami towarzystw fizyki medycznej oraz normami producentów. Moim zdaniem warto zapamiętać, że w ortowolcie „myśli się” w mm Cu, natomiast w diagnostyce klasycznej raczej w mm Al, a w megawolcie operuje się już innymi parametrami (np. PDD, TPR, TMR). W codziennej pracy technika czy fizyka medycznego znajomość WP w mm Cu pomaga szybko ocenić, czy wiązka ma odpowiednie własności do leczenia zmian powierzchownych, np. guzów skóry, bliznowców, zmian w obrębie jamy ustnej.

Pytanie 8

W medycznym przyspieszaczu liniowym jest generowana wiązka fotonów o energii w zakresie

A. 1 ÷ 3 MeV
B. 0,1 ÷ 0,3 MeV
C. 100 ÷ 150 MeV
D. 4 ÷ 25 MeV
Prawidłowo: w medycznym przyspieszaczu liniowym (linaku) do radioterapii terapeutyczna wiązka fotonów ma typowo energię w zakresie około 4–25 MeV. To jest standardowy zakres dla nowoczesnych akceleratorów używanych w teleradioterapii. Niższe energie nie dawałyby odpowiedniej penetracji tkanek głębiej położonych, a wyższe byłyby trudniejsze do bezpiecznego zastosowania klinicznego i ochrony radiologicznej. W praktyce klinicznej najczęściej używa się wiązek 6 MV, 10 MV, czasem 15 MV, a w niektórych ośrodkach także 18–20 MV. Ten zapis „MV” w dokumentacji aparatu oznacza właśnie przybliżoną energię fotonów rzędu kilku–kilkunastu MeV. Moim zdaniem warto zapamiętać, że wszystko co jest w okolicach kilku–kilkudziesięciu MeV, to już typowa radioterapia, a nie diagnostyka. Takie energie pozwalają na tzw. efekt oszczędzania skóry – dawka maksymalna przesuwa się na pewną głębokość pod powierzchnią, co jest korzystne przy leczeniu nowotworów położonych głębiej. Dzięki temu można napromieniać guz w miednicy, śródpiersiu czy w obrębie głowy i szyi, jednocześnie w miarę chroniąc skórę i tkanki zdrowe. W planowaniu leczenia w systemach TPS zawsze wybiera się właśnie jedną z dostępnych energii fotonów linaka (np. 6 MV lub 15 MV) w zależności od głębokości guza, budowy pacjenta i techniki (IMRT, VMAT, 3D-CRT). Z mojego doświadczenia z opisów kart technicznych: zakres 4–25 MeV to taki „branżowy standard” dla teleterapii fotonowej, który dobrze równoważy skuteczność kliniczną, możliwości techniczne przyspieszacza i wymagania ochrony radiologicznej.

Pytanie 9

Co określa M₀ w systemie klasyfikacji nowotworów TNM?

A. Nie stwierdza się przerzutów odległych.
B. Nie można ocenić regionalnych węzłów chłonnych.
C. Nie stwierdza się przerzutów w regionalnych węzłach chłonnych.
D. Nie można ocenić obecności przerzutów odległych.
Prawidłowo – symbol M₀ w klasyfikacji TNM oznacza, że nie stwierdza się przerzutów odległych. W systemie TNM mamy trzy główne składowe: T (tumor) opisuje guz pierwotny, N (nodes) dotyczy zajęcia regionalnych węzłów chłonnych, a M (metastases) odnosi się właśnie do przerzutów odległych, czyli takich, które pojawiają się w narządach odległych od guza pierwotnego, np. w płucach, wątrobie, kościach czy mózgu. M₀ to informacja, że w aktualnej diagnostyce obrazowej i klinicznej nie ma dowodów na obecność takich przerzutów. W praktyce klinicznej oznacza to zwykle wcześniejsze stadium zaawansowania nowotworu i często lepsze rokowanie. Przy planowaniu leczenia onkologicznego, np. radioterapii czy leczenia chirurgicznego, rozróżnienie M₀ i M₁ jest absolutnie kluczowe. Pacjent z M₀ może być kwalifikowany do leczenia radykalnego, czyli z intencją wyleczenia, natomiast przy M₁ najczęściej myślimy o leczeniu paliatywnym lub skojarzonym, bardziej nastawionym na kontrolę choroby i objawów niż na pełne wyleczenie. Z mojego doświadczenia warto zawsze pamiętać, że zapis M₀ nie oznacza, że przerzutów na pewno nie ma, tylko że nie są wykrywalne dostępnymi metodami (TK, MR, PET-CT, scyntygrafia, USG itd.). Dlatego tak ważne są dobrze wykonane badania obrazowe oraz ich prawidłowa interpretacja. W dobrych standardach opisu badań radiologicznych i onkologicznych zawsze jasno podaje się status M, bo od tego zależy nie tylko rodzaj terapii, ale też np. kwalifikacja do badań klinicznych czy decyzje o zakresie napromieniania w radioterapii.

Pytanie 10

Celem radioterapii paliatywnej nie jest

A. przedłużenie życia.
B. trwałe wyleczenie.
C. zmniejszenie dolegliwości bólowych.
D. zahamowanie procesu nowotworowego.
Prawidłowo wskazana odpowiedź „trwałe wyleczenie” dobrze oddaje sens radioterapii paliatywnej. Napromienianie paliatywne stosuje się u chorych, u których nowotwór jest najczęściej uogólniony, nieoperacyjny albo bardzo zaawansowany miejscowo i szanse na całkowite wyleczenie są znikome. Celem takiego leczenia nie jest więc radykalne usunięcie choroby, tylko poprawa jakości życia pacjenta. W praktyce oznacza to głównie zmniejszenie dolegliwości bólowych, redukcję krwawień z guza, zmniejszenie duszności przy naciekach na płuca czy oskrzela, a także zapobieganie powikłaniom, takim jak złamania patologiczne w przerzutach do kości czy ucisk na rdzeń kręgowy. Typowe są krótsze schematy frakcjonowania (np. 8 Gy jednorazowo, 5×4 Gy, 10×3 Gy), bo liczy się szybki efekt objawowy, a nie maksymalne „dobicie” guza. Standardy i wytyczne (np. ESMO, ESTRO) podkreślają, że w paliacji akceptuje się pewien stopień progresji choroby, o ile pacjent ma mniej objawów i funkcjonuje lepiej w życiu codziennym. Dlatego pozostałe odpowiedzi – przedłużenie życia, łagodzenie bólu i częściowe zahamowanie procesu nowotworowego – jak najbardziej mieszczą się w realnych, praktycznych celach radioterapii paliatywnej. Moim zdaniem ważne jest, żeby zawsze pamiętać o rozmowie z pacjentem: jasno tłumaczymy, że nie „wyleczymy” nowotworu, ale możemy sprawić, że będzie mniej boleć, łatwiej będzie się poruszać i ogólnie komfort życia się poprawi, czasem nawet na dłuższy okres niż wszyscy się spodziewają.

Pytanie 11

Skrótem CTV w radioterapii oznacza się

A. obszar leczony.
B. obszar guza.
C. zaplanowany obszar napromieniania.
D. kliniczny obszar napromieniania.
Prawidłowo: CTV, czyli Clinical Target Volume, po polsku tłumaczymy właśnie jako kliniczny obszar napromieniania. To nie jest tylko sam guz, ale cały obszar, w którym z dużym prawdopodobieństwem mogą znajdować się komórki nowotworowe – nawet jeśli ich nie widać dokładnie w badaniach obrazowych. Moim zdaniem to jedno z kluczowych pojęć w radioterapii, bo od dobrego zdefiniowania CTV zależy, czy leczenie będzie skuteczne onkologicznie. W praktyce planowania radioterapii zaczyna się od GTV (Gross Tumor Volume), czyli makroskopowo widocznego guza w TK/MR, a następnie lekarz radioterapeuta powiększa ten obszar o strefę potencjalnego mikroskopowego nacieku – i to jest właśnie CTV. Dobrze to widać np. w napromienianiu raka prostaty: CTV obejmuje nie tylko samą prostatę, ale czasem też pęcherzyki nasienne albo regionalne węzły chłonne, jeśli są wskazania. Dopiero na bazie CTV fizyk medyczny i lekarz definiują PTV (Planned Target Volume), czyli zaplanowany obszar napromieniania, dodając marginesy na błędy ustawienia pacjenta, ruchy oddechowe, zmienność wypełnienia pęcherza czy jelit. W wytycznych ICRU (np. raporty 50, 62) wyraźnie rozróżnia się GTV, CTV i PTV, żeby cały zespół mówił tym samym językiem. W dobrze prowadzonym ośrodku radioterapii zawsze dokumentuje się te objętości w systemie planowania leczenia, co ułatwia kontrolę jakości, porównywanie planów i audyty. Z mojego doświadczenia, kto raz porządnie zrozumie różnicę między CTV a PTV, temu dużo łatwiej ogarnąć resztę planowania napromieniania.

Pytanie 12

Obrazowanie portalowe w radioterapii służy do

A. pozycjonowania pacjenta.
B. zniekształcenia wiązki promieniowania.
C. weryfikacji pola napromienianego.
D. przekazywania danych o pacjencie.
Prawidłowo – obrazowanie portalowe w radioterapii służy przede wszystkim do weryfikacji pola napromienianego, czyli sprawdzenia, czy wiązka promieniowania pada dokładnie tam, gdzie została zaplanowana w systemie planowania leczenia. W praktyce wygląda to tak, że przed lub na początku frakcji wykonuje się obraz portalowy (EPID, portal imaging) przy użyciu tej samej głowicy akceleratora, którą napromienia się pacjenta. Ten obraz porównuje się potem z obrazem referencyjnym z systemu planowania (DRR – digitally reconstructed radiograph) albo z wcześniejszymi obrazami kontrolnymi. Dzięki temu można ocenić, czy pole terapeutyczne pokrywa obszar tarczowy (CTV/PTV), czy nie ma przemieszczenia kości, narządów krytycznych albo rotacji pacjenta. W nowoczesnych ośrodkach stosuje się różne techniki: klasyczne zdjęcia portalowe 2D, kV imaging, a także CBCT (tomografia stożkowa) wykonywana na akceleratorze. Wszystkie one mają ten sam główny cel – kontrola geometrii napromieniania. Z dobrych praktyk wynika, że przed pierwszą frakcją wykonuje się bardzo dokładną weryfikację pola, a potem okresowe kontrole (np. co kilka frakcji) albo nawet codzienne, zwłaszcza przy technikach IMRT/VMAT, gdzie marginesy bezpieczeństwa są mniejsze. Moim zdaniem kluczowe jest zrozumienie, że obrazowanie portalowe nie jest „dla ciekawości”, tylko realnie zmniejsza ryzyko napromienienia zdrowych tkanek i poprawia trafienie w guz. Właśnie dlatego w wytycznych radioterapeutycznych (IGRT – image guided radiotherapy) podkreśla się obowiązkową weryfikację ustawienia pola napromienianego przed podaniem dawki terapeutycznej.

Pytanie 13

Wskazaniem do zastosowania brachyterapii w leczeniu radykalnym jest rak

A. jamy ustnej.
B. jajnika.
C. szyjki macicy.
D. nerki.
Prawidłowo – rak szyjki macicy jest klasycznym i jednym z najważniejszych wskazań do radykalnej brachyterapii. W onkologii radiacyjnej przy raku szyjki macicy standardem jest skojarzenie teleradioterapii (napromienianie z pól zewnętrznych) z brachyterapią wewnątrzjamową, najczęściej z wykorzystaniem aplikatorów typu tandem + ovoidy lub tandem + ring. Dzięki temu można podać bardzo wysoką dawkę promieniowania bezpośrednio do guza i okolicy szyjki przy jednoczesnym oszczędzeniu pęcherza, odbytnicy i jelit. Z mojego doświadczenia to jest jeden z tych nowotworów, gdzie w praktyce klinicznej brachyterapia naprawdę robi ogromną różnicę w kontroli miejscowej choroby. W wytycznych (np. ESTRO, ICRU) podkreśla się, że radykalne leczenie raka szyjki macicy w stopniach od IB2 do IIIB praktycznie zawsze powinno obejmować etap brachyterapii, zwykle po wcześniejszej teleterapii miednicy i często jednoczesnej chemioterapii (cisplatyna). W planowaniu używa się obrazowania TK lub, coraz częściej, MRI do dokładnego wyznaczenia objętości HR-CTV i narządów krytycznych. W praktyce technik czy fizyk medyczny musi dobrze rozumieć geometrię aplikatorów, zasady optymalizacji rozkładu dawki oraz ograniczenia dawek dla pęcherza, odbytnicy i esicy. Brachyterapia w tym wskazaniu jest leczeniem z założenia radykalnym, czyli z intencją wyleczenia, a nie tylko paliatywnym. W odróżnieniu od wielu innych nowotworów miednicy, w raku szyjki udział brachyterapii nie jest „opcją dodatkową”, tylko elementem koniecznym prawidłowego postępowania zgodnie z dobrymi praktykami radioterapii.

Pytanie 14

Wskaż roczną dawkę graniczną dla osób zatrudnionych w warunkach narażenia na promieniowanie jonizujące.

A. 20 mSv
B. 15 mSv
C. 30 mSv
D. 5 mSv
Prawidłowo wskazana roczna dawka graniczna 20 mSv wynika z aktualnych zaleceń międzynarodowych (ICRP – International Commission on Radiological Protection) oraz przepisów prawa krajowego dotyczących osób zawodowo narażonych na promieniowanie jonizujące. Chodzi tu o tzw. efektywną dawkę roczną u pracowników zakwalifikowanych do kategorii A narażenia. W praktyce oznacza to, że planując pracę technika elektroradiologii, fizyka medycznego czy personelu w medycynie nuklearnej, całkowita zsumowana dawka z wszystkich badań i procedur w danym roku kalendarzowym nie powinna przekroczyć właśnie 20 mSv, liczonych jako średnia w okresie 5 lat, przy czym w żadnym pojedynczym roku nie wolno przekroczyć 50 mSv. Moim zdaniem ważne jest, żeby nie traktować tego limitu jako „celu do osiągnięcia”, tylko jako absolutny górny sufit, którego staramy się w ogóle nie dotykać. W dobrze zorganizowanej pracowni dawki osobiste techników zwykle są znacznie niższe, często na poziomie pojedynczych mSv rocznie. W codziennej pracy przekłada się to na obowiązek stosowania osłon stałych (parawany ołowiane, ściany ekranowane), środków ochrony indywidualnej (fartuchy, kołnierze, osłony na gonady), odpowiedniego pozycjonowania się względem źródła promieniowania, korzystania z zdalnego sterowania aparatem oraz rygorystycznego przestrzegania zasady ALARA – As Low As Reasonably Achievable. Dodatkowo każdy pracownik objęty jest dozymetrią indywidualną (dawkomierze osobiste), a wyniki są dokumentowane i okresowo analizowane. Jeśli dawki zbliżają się do poziomów ostrzegawczych, pracodawca ma obowiązek zmodyfikować organizację pracy, np. rotować personel, zmieniać obsadę dyżurów w pracowniach wysokodawkowych (TK, radiologia zabiegowa, medycyna nuklearna, radioterapia). Właśnie takie rozumienie limitu 20 mSv – jako narzędzia do planowania i kontroli narażenia – jest sednem profesjonalnej ochrony radiologicznej.

Pytanie 15

Źródłem promieniowania protonowego stosowanego w radioterapii jest

A. cyberknife.
B. bomba kobaltowa.
C. cyklotron.
D. przyspieszacz liniowy.
Prawidłowo wskazano cyklotron jako źródło promieniowania protonowego w radioterapii. W nowoczesnej terapii protonowej wiązka protonów musi być rozpędzona do bardzo wysokich energii, rzędu 70–250 MeV, tak aby miała odpowiedni zasięg w tkankach pacjenta. Do takiego przyspieszania świetnie nadaje się właśnie cyklotron, czyli akcelerator cykliczny, w którym protony poruszają się po spiralnej trajektorii w silnym polu magnetycznym i są wielokrotnie przyspieszane przez zmienne pole elektryczne. Na wyjściu z cyklotronu otrzymujemy stabilną, praktycznie ciągłą wiązkę protonów o zadanej energii. Dopiero później ta wiązka jest kształtowana przez systemy optyki wiązki, skanery, kolimatory i modulatory zasięgu, żeby precyzyjnie dopasować rozkład dawki do guza. W praktyce klinicznej cyklotron jest sercem całego ośrodka protonoterapii – zwykle znajduje się w osobnym, silnie osłoniętym bunkrze, a do stanowisk terapeutycznych wiązka jest doprowadzana systemem tuneli próżniowych i magnesów odchylających. Dzięki efektowi piku Bragga protony oddają większość energii na końcu swojego toru, co pozwala oszczędzać zdrowe tkanki za guzem; to jedna z głównych zalet protonoterapii w porównaniu z klasyczną fotonową radioterapią z przyspieszacza liniowego. Moim zdaniem warto pamiętać, że inne urządzenia, które często widzi się na oddziale radioterapii, jak linak czy cyberknife, pracują zupełnie inaczej – generują głównie promieniowanie fotonowe (X), a nie wiązkę protonów. W standardach międzynarodowych (np. zalecenia ICRU, IAEA) zawsze podkreśla się, że dla wiązek protonowych stosuje się wyspecjalizowane akceleratory, w tym właśnie cyklotrony lub synchrotrony, a nie klasyczne bomby kobaltowe.

Pytanie 16

Czym charakteryzuje się późny odczyn popromienny?

A. Występuje po 6 miesiącach od zakończenia radioterapii, pojawia się nagle, zwykle jest trwały i może stanowić zagrożenie dla życia pacjenta.
B. Występuje po 6 miesiącach od zakończenia radioterapii, ustępuje samoistnie lub po prostym leczeniu farmakologicznym.
C. Występuje w trakcie lub do 6 miesięcy od zakończenia radioterapii, ustępuje samoistnie lub po prostym leczeniu farmakologicznym.
D. Występuje w trakcie lub do 6 miesięcy od zakończenia radioterapii, zwykle jest trwały i może powodować zagrożenie dla życia pacjenta.
Późny odczyn popromienny to klasyczny temat w radioterapii i warto go mieć naprawdę dobrze poukładany w głowie. Kluczowe są tu trzy elementy: czas, dynamika pojawienia się objawów i ich trwałość. Za późne odczyny uznaje się te, które występują po upływie co najmniej 6 miesięcy od zakończenia napromieniania. W praktyce klinicznej często mówimy wręcz o miesiącach–latach po terapii. To odróżnia je od odczynów wczesnych, które pojawiają się w trakcie lub do 6 miesięcy po radioterapii. Wybrana odpowiedź dobrze podkreśla, że późny odczyn pojawia się nagle – pacjent często przez dłuższy czas czuje się w porządku, a po jakimś czasie dochodzi do gwałtownego ujawnienia się zmian. Moim zdaniem to jest jedna z pułapek radioterapii: pacjent kończy leczenie, wydaje się, że wszystko jest dobrze, a jednak ryzyko uszkodzeń tkanek późno reagujących (np. rdzeń kręgowy, nerki, płuca, serce) nadal istnieje. Co ważne, późne odczyny są zwykle trwałe, bo wiążą się z nieodwracalnym uszkodzeniem struktur o powolnej regeneracji: zwłóknieniem, martwicą, teleangiektazjami, przewlekłym owrzodzeniem. W skrajnych sytuacjach mogą stanowić realne zagrożenie życia – przykłady to popromienne zwłóknienie płuc z niewydolnością oddechową, mielopatia popromienna z porażeniem, ciężkie uszkodzenie serca po napromienianiu śródpiersia czy perforacja jelita po radioterapii miednicy. W dobrych praktykach planowania radioterapii (wg wytycznych np. ESTRO, QUANTEC) bardzo mocno pilnuje się dawek tolerancji dla narządów krytycznych właśnie z powodu ryzyka późnych powikłań. Dlatego tak ważne jest precyzyjne wyznaczanie OAR (organs at risk), stosowanie technik IMRT/VMAT, odpowiednie frakcjonowanie dawki i dokładne unieruchomienie pacjenta. Z mojego doświadczenia patrząc na opisy planów, cała filozofia ograniczania dawki do tkanek zdrowych kręci się głównie wokół zapobiegania późnym odczynom, bo jak już się pojawią, to najczęściej nie da się ich cofnąć, można tylko łagodzić objawy.

Pytanie 17

Jakie wiązki promieniowania emituje medyczny akcelerator liniowy?

A. Fotonowe i protonowe.
B. Protonowe i neutronowe.
C. Elektronowe i neutronowe.
D. Fotonowe i elektronowe.
Medyczny akcelerator liniowy w radioterapii bywa mylony z innymi typami akceleratorów cząstek, co prowadzi do różnych ciekawych, ale jednak błędnych skojarzeń. W odpowiedziach pojawiają się protony i neutrony, bo kojarzą się z nowoczesnymi metodami leczenia onkologicznego. W praktyce klinicznej klasyczny linac, jaki stoi na typowym oddziale radioterapii, generuje wyłącznie elektrony i pośrednio z nich – promieniowanie fotonowe o wysokiej energii. Żadne protony czy neutrony nie są tam terapeutycznie emitowane jako wiązka użytkowa. Protony wykorzystuje się w tzw. protonoterapii, ale do tego służą specjalne instalacje: cyklotrony, synchrotrony, gantry protonowe. To jest osobna gałąź radioterapii, z inną fizyką dawki (pik Bragga), inną infrastrukturą osłonową i zupełnie innym kosztem. Myląc akcelerator liniowy z ośrodkiem protonowym, pomijamy bardzo ważną różnicę techniczną: w linacu tor przyspieszania jest liniowy, a konstrukcja zoptymalizowana jest właśnie pod kątem wiązek fotonowych i elektronowych. Neutrony natomiast nie są w standardzie terapeutycznym w teleterapii megawoltowej. Owszem, przy bardzo wysokich energiach fotonów mogą powstawać tzw. neutrony fotoprodukowane, ale traktuje się je jako niepożądane promieniowanie uboczne, uwzględniane w ochronie radiologicznej, a nie jako wiązkę leczniczą. Dlatego skojarzenie „protonowe i neutronowe” albo „elektronowe i neutronowe” wynika zwykle z mieszania pojęć: ktoś słyszał o terapiach cząstkami naładowanymi albo o promieniowaniu neutronowym w reaktorach, i przenosi to automatycznie na zwykły akcelerator liniowy. Z punktu widzenia poprawnej fizyki medycznej i standardów radioterapii, prawidłowy zestaw wiązek z linaca to: fotony megawoltowe do leczenia głębokich guzów i elektrony o różnych energiach do zmian powierzchownych. To właśnie na tych dwóch typach promieniowania opiera się codzienna praca większości ośrodków radioterapii.

Pytanie 18

Do wczesnych odczynów popromiennych po radioterapii zalicza się

A. martwicę nerwów.
B. świąd skóry.
C. blizny.
D. retinopatię.
Prawidłowo wskazana świąd skóry jako wczesny odczyn popromienny bardzo dobrze pokazuje zrozumienie podstaw radiobiologii klinicznej. W radioterapii wczesne odczyny popromienne to takie, które pojawiają się w trakcie napromieniania albo w ciągu kilku tygodni po jego zakończeniu. Dotyczą one tkanek szybko dzielących się, głównie nabłonka skóry i błon śluzowych. Typowe objawy to rumień, suchość skóry, złuszczanie, uczucie pieczenia, kłucia, no i właśnie świąd. Ten świąd wynika z uszkodzenia komórek naskórka i reakcji zapalnej w skórze, a także z przesuszenia – bariera naskórkowa jest naruszona, więc skóra reaguje podrażnieniem. W praktyce, na oddziale radioterapii, pacjenci bardzo często zgłaszają swędzenie w polu napromieniania już po kilkunastu–kilkudziesięciu Gy, zwłaszcza przy napromienianiu piersi, głowy i szyi czy okolic miednicy. Standardem postępowania jest edukacja pacjenta: delikatna higiena, unikanie drażniących kosmetyków, luźna odzież, zakaz drapania skóry oraz stosowanie zaleconych emolientów czy kremów łagodzących zgodnych z procedurami ośrodka. Dobre praktyki mówią też o regularnej ocenie skóry według skal toksyczności (np. RTOG, CTCAE) i dokumentowaniu nasilenia objawów. Moim zdaniem kluczowe jest, żeby kojarzyć świąd i rumień bardziej z wczesną, odwracalną reakcją, a nie od razu z powikłaniami trwałymi. Wczesne odczyny zazwyczaj ustępują w ciągu kilku tygodni po zakończeniu leczenia, jeśli odpowiednio się o skórę dba i nie przerywa się niepotrzebnie radioterapii. To pozwala utrzymać ciągłość terapii, co ma ogromne znaczenie dla skuteczności onkologicznej.

Pytanie 19

Która metoda leczenia onkologicznego zaliczana jest do leczenia systemowego?

A. Teleradioterapia.
B. Chemioterapia.
C. Chirurgia.
D. Brachyterapia.
Prawidłowo wskazana została chemioterapia, bo jest klasycznym przykładem leczenia systemowego w onkologii. Leczenie systemowe oznacza, że podawany lek działa w całym organizmie – krąży z krwią, dociera zarówno do guza pierwotnego, jak i do mikroprzerzutów, których nie widać w badaniach obrazowych. Chemioterapeutyki, ale też leki celowane czy immunoterapia, są projektowane właśnie po to, żeby „objechać” cały organizm i szukać komórek nowotworowych gdziekolwiek się one ukryły. W praktyce klinicznej chemioterapię stosuje się: przed operacją (neoadiuwantowo), żeby zmniejszyć masę guza, po operacji (adiuwantowo), żeby zniszczyć komórki pozostałe w organizmie, albo w chorobie uogólnionej, kiedy nowotwór już przerzutował. Moim zdaniem warto zapamiętać, że jak słyszysz w opisie „leczenie ogólnoustrojowe” czy „systemowe”, to w onkologii prawie zawsze chodzi o chemioterapię, terapie celowane lub immunoterapię, a nie o promieniowanie czy skalpel. Standardy postępowania (np. wytyczne ESMO, NCCN) bardzo jasno rozróżniają te grupy: chirurgia i radioterapia to leczenie miejscowe, natomiast chemioterapia jest leczeniem systemowym, często łączonym z innymi metodami w ramach tzw. leczenia skojarzonego. W codziennej pracy zespołu onkologicznego decyzja, czy pacjent ma dostać leczenie systemowe, zależy od stopnia zaawansowania klinicznego (TNM), stanu ogólnego pacjenta, biomarkerów nowotworu i celów terapii (radykalne vs paliatywne). Dobrą praktyką jest też monitorowanie działań niepożądanych chemioterapii, bo wpływa ona na cały organizm, a nie tylko na guz – stąd konieczność regularnych badań krwi, oceny nerek, wątroby i wsparcia objawowego.

Pytanie 20

Jakie są wielkości mocy dawki stosowanej w brachyterapii HDR?

A. 0,4 – 2 Gy/godzinę.
B. 3 – 6 Gy/godzinę.
C. ponad 12 Gy/godzinę.
D. 7 – 12 Gy/godzinę.
Poprawna moc dawki dla brachyterapii HDR to wartości powyżej 12 Gy/godzinę i to właśnie odróżnia ten typ brachyterapii od LDR i PDR. W klasycznym podziale przyjmuje się, że brachyterapia niskiej mocy dawki (LDR) to zakres mniej więcej 0,4–2 Gy/godz., brachyterapia pulsacyjna (PDR) imituje LDR, ale podaje dawkę w krótkich impulsach, a HDR (High Dose Rate) to już dawki zdecydowanie wyższe – właśnie >12 Gy/godz. Ten podział nie jest przypadkowy, tylko wynika z radiobiologii tkanek i bezpieczeństwa prowadzenia leczenia. W HDR stosuje się bardzo aktywne źródła, najczęściej Ir-192, które wprowadzane są do aplikatorów na bardzo krótki czas, zwykle kilka–kilkanaście minut na frakcję. Dzięki tak wysokiej mocy dawki można uzyskać duże dawki frakcyjne w guzie przy bardzo precyzyjnym planowaniu, a jednocześnie ograniczyć napromienienie tkanek zdrowych. W praktyce klinicznej HDR wykorzystuje się np. w raku szyjki macicy, raka trzonu macicy, prostaty, nowotworach głowy i szyi czy w leczeniu zmian skórnych. W planowaniu zgodnie z dobrymi praktykami (np. zalecenia ESTRO, ICRU) bardzo ważne jest, żeby rozumieć różnice między mocą dawki a całkowitą dawką i dawką na frakcję – moc dawki >12 Gy/godz. nie oznacza, że pacjent dostaje taką dawkę całkowitą, tylko że tak szybko jest ona podawana. Moim zdaniem to jedno z kluczowych pojęć w brachyterapii: od mocy dawki zależy organizacja leczenia, ochrona radiologiczna, sposób kontroli jakości i wymagania sprzętowe, dlatego warto mieć ten próg 12 Gy/godz. dobrze w głowie.

Pytanie 21

Największa wartość energii promieniowania stosowanego w radioterapii jest generowana przy użyciu

A. aparatu rentgenowskiego.
B. aparatu kobaltowego.
C. radioaktywnego cezu-137.
D. przyspieszacza liniowego.
Prawidłowo wskazany został przyspieszacz liniowy, bo to właśnie linac jest podstawowym źródłem najwyższych energii promieniowania stosowanych we współczesnej teleradioterapii. Typowy aparat kobaltowy (Co‑60) emituje promieniowanie gamma o stałej energii około 1,17–1,33 MeV, natomiast przyspieszacz liniowy generuje wiązki fotonowe o energiach nominalnych 4, 6, 10, 15, a nawet 18 MV, a także wiązki elektronowe o różnych energiach do leczenia zmian powierzchownych. Dzięki temu można dobrać energię do głębokości guza, uzyskać odpowiedni rozkład dawki i lepiej oszczędzić tkanki zdrowe. W praktyce klinicznej, zgodnie ze standardami nowoczesnej radioterapii, większość planów leczenia nowotworów głęboko położonych (np. rak płuca, rak prostaty, guzy głowy i szyi) wykonuje się właśnie na linacach, często w technikach IMRT, VMAT czy stereotaksji. Moim zdaniem kluczowe jest zrozumienie, że wysoka energia wiązki z przyspieszacza liniowego pozwala na tzw. efekt build‑up – maksymalna dawka pojawia się pod powierzchnią skóry, co zmniejsza jej uszkodzenie. Aparat rentgenowski do klasycznych zdjęć RTG pracuje na znacznie niższych napięciach (rzędu 30–150 kV), więc jego promieniowanie ma dużo mniejszą energię fotonów i nie nadaje się do głębokiego leczenia onkologicznego. Cez‑137 i kobalt‑60 są używane głównie w starszych typach teleterapii lub w brachyterapii, ale także nie osiągają tak szerokiego zakresu energii jak linac. W dobrze wyposażonych ośrodkach onkologicznych przyspieszacz liniowy jest dziś złotym standardem, właśnie ze względu na możliwość generowania najwyższych energii promieniowania terapeutycznego oraz precyzyjną modulację dawki w przestrzeni i czasie.

Pytanie 22

Kolimator wielolistkowy w akceleratorze liniowym jest stosowany do

A. generowania czasu napromieniania.
B. wyznaczania pozycji pola napromienianego.
C. formowania kształtu pola napromienianego.
D. modulacji mocy wiązki.
Prawidłowo – kolimator wielolistkowy (MLC, z ang. multileaf collimator) w akceleratorze liniowym służy właśnie do formowania kształtu pola napromieniania. To jest jego podstawowa i najważniejsza rola w radioterapii z wykorzystaniem fotonów megawoltowych. Zamiast prostego, prostokątnego pola ustawianego tylko kolimatorami szczękowymi, MLC pozwala „wyciąć” pole dokładnie pod zarys guza widoczny na planie leczenia. Każdy listek MLC jest wykonany z materiału silnie pochłaniającego promieniowanie (najczęściej wolfram), a ich niezależny ruch powoduje, że można kształtować wiązkę bardzo precyzyjnie, praktycznie jak nożyczkami. W nowoczesnych technikach, takich jak 3D-CRT, IMRT czy VMAT, formowanie pola przez MLC jest standardem i podstawą dobrej praktyki klinicznej. Dzięki temu można lepiej oszczędzać narządy krytyczne (OAR), na przykład rdzeń kręgowy, nerki czy ślinianki, a jednocześnie dostarczać wysoką dawkę do objętości PTV. Moim zdaniem, bez sprawnego MLC trudno dziś mówić o zaawansowanej radioterapii – to jest element kluczowy w każdym nowoczesnym akceleratorze. W technikach dynamicznych listki mogą się poruszać w trakcie napromieniania, ale nadal ich główną funkcją jest zmiana kształtu i rozkładu dawki w polu, a nie samo odmierzanie czasu czy ustawianie środka pola. W praktyce technik radioterapii widzi na panelu sterowania właśnie kontur pola utworzony przez MLC, dopasowany do obrysu guza z obrazu planistycznego CT, co jest zgodne z zaleceniami międzynarodowych towarzystw, takich jak ICRU czy ESTRO.

Pytanie 23

Hiperfrakcjonowanie dawki w teleradioterapii polega na napromienianiu 2 do 3 razy dziennie dawką frakcyjną

A. większą niż 2 Gy i wydłużeniu całkowitego czasu leczenia.
B. mniejszą niż 2 Gy i wydłużeniu całkowitego czasu leczenia.
C. mniejszą niż 2 Gy bez zmiany całkowitego czasu leczenia.
D. większą niż 2 Gy bez zmiany całkowitego czasu leczenia.
W tym pytaniu bardzo łatwo pomylić różne schematy frakcjonowania, bo wszystkie brzmią dość podobnie, a różnice są czysto „liczbowe”, ale za tymi liczbami stoi konkretna radiobiologia. Hiperfrakcjonowanie to nie jest po prostu „więcej razy dziennie” ani „większa dawka”, tylko konkretny sposób podawania promieniowania: dawka na pojedynczą frakcję jest mniejsza niż standardowe 2 Gy, frakcji jest więcej w ciągu dnia, a całkowity czas leczenia pozostaje zbliżony do klasycznego schematu. Błędne skojarzenie, że skoro robimy 2–3 frakcje dziennie, to dawka jednostkowa powinna być większa, wynika często z mylenia hiperfrakcjonowania z hipofrakcjonowaniem. W hipofrakcjonowaniu właśnie podnosi się dawkę frakcyjną (np. 3–8 Gy), zwykle przy mniejszej liczbie frakcji i często skróceniu całkowitego czasu leczenia, co wykorzystuje się np. w radioterapii paliatywnej czy stereotaktycznej (SBRT). Z kolei pomysł wydłużania całkowitego czasu leczenia przy hiperfrakcjonowaniu jest sprzeczny z jego celem. Jeżeli leczenie trwa dłużej, dochodzi do repopulacji komórek nowotworowych, czyli guz ma więcej czasu na „odbudowę”, co obniża skuteczność terapii. Standardy planowania radioterapii jasno mówią, że w schematach hiperfrakcyjnych całkowity czas leczenia powinien być podobny do konwencjonalnego, właśnie po to, żeby nie zwiększać ryzyka odrastania guza. Dodatkowo, zwiększanie dawki frakcyjnej przy dwóch lub trzech frakcjach dziennie mocno podbiłoby ryzyko powikłań późnych w tkankach zdrowych, takich jak zwłóknienia, mielopatie czy uszkodzenia narządów krytycznych. Z mojego doświadczenia w nauczaniu ten błąd bierze się z prostego skojarzenia: „więcej frakcji = więcej dawki na raz”, a tymczasem w radioterapii często jest odwrotnie – im więcej frakcji, tym mniejsza dawka na pojedyncze naświetlanie, przy starannie zaplanowanej dawce całkowitej i czasie leczenia.

Pytanie 24

Elementem pomocniczym w radioterapii, zapewniającym powtarzalność ułożenia w pozycji terapeutycznej, a także unieruchomienie pacjenta, jest

A. bolus.
B. osłona.
C. maska termoplastyczna.
D. filtr kompensacyjny.
Prawidłowo wskazana maska termoplastyczna to w radioterapii klasyczny przykład systemu unieruchomienia i pozycjonowania pacjenta. Jej główna rola nie jest fizyczna modyfikacja wiązki promieniowania, tylko zapewnienie powtarzalnego, stabilnego ułożenia ciała – najczęściej głowy i szyi, czasem także górnej części klatki piersiowej. Maska jest wykonywana indywidualnie: podgrzany materiał termoplastyczny formuje się na twarzy i głowie pacjenta na etapie planowania (TK planistyczna), a po ostygnięciu zachowuje dokładnie ten kształt. Dzięki temu przy każdym kolejnym frakcyjnym napromienianiu pacjent jest układany praktycznie tak samo, w granicach kilku milimetrów, co jest zgodne z wymaganiami dokładności ICRU i standardów ośrodków radioterapii. Z mojego doświadczenia, bez dobrego unieruchomienia nawet najlepszy plan leczenia na akceleratorze traci sens, bo narządy krytyczne mogą dostać wyższą dawkę niż zakładano, a objętość tarczowa będzie napromieniona nierównomiernie. W praktyce klinicznej maski termoplastyczne są obowiązkowym elementem przy nowotworach głowy i szyi, guzach mózgu, czasem przy napromienianiu oczodołu czy podstawy czaszki. Stosuje się je razem z systemami IGRT (obrazowanie przedzabiegowe – np. CBCT), żeby jeszcze dokładniej zweryfikować pozycję. Maska ogranicza też mimowolne ruchy, np. przełykanie czy lekki skręt szyi. Warto zapamiętać, że bolusy, filtry kompensacyjne czy osłony służą głównie do kształtowania rozkładu dawki w objętości, a nie do stabilizacji pacjenta. W dobrych pracowniach zawsze rozróżnia się systemy unieruchomienia (maski, materace próżniowe, podpórki) od elementów modyfikujących wiązkę.

Pytanie 25

Warstwa półchłonna (WP) służy do obliczania

A. bezpiecznej odległości.
B. dawki promieniowania.
C. grubości osłon.
D. czasu napromieniania.
Warstwa półchłonna (WP, ang. HVL – half value layer) to bardzo ważny parametr fizyczny w ochronie radiologicznej. Określa ona, jaka grubość danego materiału (np. ołowiu, betonu, aluminium) powoduje zmniejszenie natężenia wiązki promieniowania jonizującego o 50%. Czyli innymi słowy: ile materiału trzeba „wstawić” pomiędzy źródło a człowieka, żeby przepuścić tylko połowę pierwotnego promieniowania. Dlatego właśnie WP służy bezpośrednio do obliczania grubości osłon. W praktyce, przy projektowaniu pracowni RTG, TK czy bunkra do radioterapii, fizyk medyczny korzysta z tablic HVL dla konkretnych energii promieniowania i konkretnych materiałów budowlanych. Na przykład dla promieniowania X o danym napięciu anodowym można odczytać z norm (np. raporty ICRP, wytyczne PAA, zalecenia IAEA), jaka jest warstwa półchłonna w ołowiu, a potem policzyć, ile takich warstw trzeba, aby obniżyć dawkę za ścianą do poziomu wymaganego przepisami. Często stosuje się też pojęcie wielokrotności WP – każda kolejna warstwa półchłonna zmniejsza wiązkę o połowę, więc kilka WP daje tłumienie o rzędy wielkości. Moim zdaniem, jak ktoś dobrze rozumie ideę WP, to dużo łatwiej ogarnia logikę projektowania osłon, bo nie liczy „na ślepo”, tylko rozumie, jak zmienia się intensywność promieniowania w materiale. W radioterapii i diagnostyce obrazowej to podstawa dobrych praktyk ochrony radiologicznej: najpierw znasz energię wiązki, potem dobierasz materiał i na końcu, właśnie na bazie warstwy półchłonnej, wyznaczasz sensowną, zgodną z normami grubość ścian, drzwi, szyb ochronnych czy fartuchów ołowianych.

Pytanie 26

Jaka jest odległość pomiędzy źródłem promieniowania a powierzchnią ciała pacjenta w technice izocentrycznej radioterapii?

A. Zmienna, zależna od grubości pacjenta i rodzaju akceleratora.
B. Stała i wynosi 100 cm.
C. Stała i wynosi 110 cm.
D. Zmienna, zależna od lokalizacji punktu izocentrycznego w ciele pacjenta.
Prawidłowa odpowiedź wynika bezpośrednio z samej idei techniki izocentrycznej. W radioterapii izocentrycznej kluczowe jest położenie izocentrum, czyli punktu w przestrzeni, w którym przecinają się osie wszystkich wiązek promieniowania i oś obrotu gantry, stołu oraz kolimatora. Ten punkt umieszcza się wewnątrz ciała pacjenta – w obszarze planowanej objętości napromienianej (PTV), a nie na powierzchni skóry. Skoro izocentrum jest „w środku”, to odległość od źródła promieniowania do powierzchni ciała musi się zmieniać w zależności od tego, jak głęboko i w jakim miejscu anatomicznym to izocentrum zostało zaplanowane. W praktyce planowania leczenia (TPS – treatment planning system) ustala się stałą odległość źródło–izocentrum (najczęściej ok. 100 cm dla typowego akceleratora liniowego), natomiast odległość źródło–skóra (SSD) wychodzi zmienna. Jeżeli punkt izocentryczny leży płytko, blisko skóry, SSD będzie stosunkowo duża. Jeśli guz jest głęboko w miednicy lub w śródpiersiu, powierzchnia skóry znajdzie się bliżej głowicy, czyli SSD się zmniejsza. Widać to bardzo dobrze przy rotacyjnych technikach jak VMAT czy klasyczna terapia łukowa: gantry obraca się wokół pacjenta, izocentrum pozostaje nieruchome w ciele, a geometria odległości do skóry zmienia się wraz z kształtem i grubością pacjenta w różnych projekcjach. Moim zdaniem najważniejsze praktyczne skojarzenie jest takie: w technice izocentrycznej „święte” i stałe jest źródło–izocentrum, a nie źródło–skóra. Dlatego radioterapeuci i technicy planując ustawienie pacjenta korzystają z współrzędnych izocentrum (laser, systemy IGRT) i nie próbują na siłę utrzymywać jednej odległości SSD. To podejście ułatwia skomplikowane techniki wielopolowe, IMRT czy stereotaksję, gdzie wiele wiązek musi trafiać w ten sam punkt w przestrzeni bez względu na kształt pacjenta. Z mojego doświadczenia, jeżeli ktoś mechanicznie myśli tylko „100 cm od skóry”, to zwykle ma kłopot ze zrozumieniem geometrii izocentrycznej i potem gorzej ogarnia planowanie bardziej zaawansowanych technik.

Pytanie 27

W pracowni radioterapii wyświetlenie na ekranie monitora aparatu komunikatu „ROTATION” oznacza prowadzoną terapię

A. paliatywną.
B. całego ciała.
C. obrotową.
D. radykalną.
Prawidłowo, komunikat „ROTATION” na konsoli akceleratora liniowego oznacza, że prowadzona jest terapia obrotowa, czyli napromienianie przy ciągłym obrocie głowicy aparatu wokół pacjenta. Chodzi o to, że wiązka promieniowania nie pada z jednego lub kilku statycznych pól, tylko „okrąża” pacjenta po zadanym łuku lub pełnym obrocie 360°. W praktyce klinicznej stosuje się takie techniki głównie w teleterapii, np. przy napromienianiu guzów mózgu, guzów w obrębie miednicy czy klatki piersiowej, gdy zależy nam na jak najlepszym rozkładzie dawki i ochronie tkanek zdrowych. Dzięki terapii obrotowej dawka w guzie sumuje się z wielu kierunków, a narządy krytyczne dostają mniejsze dawki cząstkowe z każdego pojedynczego przejścia wiązki. Moim zdaniem to jeden z fajniejszych przykładów, jak geometria ruchu aparatu realnie wpływa na bezpieczeństwo pacjenta. Współczesne systemy planowania leczenia wykorzystują różne odmiany terapii obrotowej, np. techniki łukowe (arc therapy), VMAT, czy rotacyjne techniki 3D, gdzie ruch gantry jest ściśle zsynchronizowany z kolimatorem i czasem z ruchem stołu. Operator, widząc na monitorze tryb „ROTATION”, powinien zawsze sprawdzić wcześniej w karcie zabiegowej i w systemie planowania, czy zaplanowany jest łuk, ile stopni ma obejmować, w jakim kierunku obraca się gantry i czy parametry dawki zgadzają się z zatwierdzonym planem. To jest standard dobrej praktyki: przed włączeniem napromieniania potwierdzić tryb pracy aparatu (statyczny, rotacyjny, IMRT, itp.), pozycję pacjenta, ustawienie izocentrum i ewentualne akcesoria unieruchamiające. W pracowni radioterapii takie szczegóły decydują o jakości i powtarzalności leczenia, więc rozpoznawanie komunikatów typu „ROTATION” to podstawa codziennej pracy przy akceleratorze.

Pytanie 28

Które urządzenia pomocnicze służą do unieruchomienia pacjenta do zabiegu radioterapii?

A. Maski i podpórki.
B. Filtry klinowe i bolusy.
C. Maski i filtry klinowe.
D. Kliny mechaniczne i maski.
Prawidłowo – w radioterapii do unieruchomienia pacjenta stosuje się przede wszystkim maski i różnego rodzaju podpórki. Maski (najczęściej z termoplastycznego tworzywa) są formowane indywidualnie do kształtu twarzy i czaszki pacjenta, zwłaszcza przy napromienianiu głowy i szyi. Po podgrzaniu materiał staje się plastyczny, nakłada się go na twarz, dopasowuje, a po ostygnięciu tworzy sztywną „skorupę”, która potem jest wielokrotnie używana w trakcie całej serii frakcji. Dzięki temu przy każdym zabiegu pacjent znajduje się praktycznie w tej samej pozycji, co zmniejsza ryzyko przemieszczenia wiązki i poprawia powtarzalność ustawień. Podpórki to cała grupa akcesoriów: podkładki pod głowę, klinowe podpory pod kolana, podnóżki, materace próżniowe, uchwyty na ręce, a także specjalne stoły z oznaczeniami. One nie modelują tak dokładnie kształtu jak maska, ale stabilizują ciało, odciążają mięśnie i redukują niekontrolowane ruchy, np. wynikające z niewygodnej pozycji. W praktyce klinicznej, zgodnie z zasadami planowania radioterapii, pozycja pacjenta musi być nie tylko wygodna, ale przede wszystkim powtarzalna i możliwa do odtworzenia przy każdym frakcjonowaniu. Moim zdaniem to właśnie temat unieruchomienia jest często trochę niedoceniany, a ma ogromny wpływ na dokładność dostarczanej dawki, ochronę narządów krytycznych i bezpieczeństwo całego leczenia. Dobrze dobrana maska i system podpórek to podstawa nowoczesnej teleterapii, szczególnie w radioterapii konformalnej i IMRT/VMAT, gdzie milimetr robi dużą różnicę.

Pytanie 29

Który radioizotop jest stosowany w diagnostyce i terapii raka tarczycy?

A. ¹³¹I
B. ¹⁸⁶Re
C. ²²³Ra
D. ¹³³Xe
Prawidłowo wskazany radioizotop to 131I, czyli jod-131. To jest klasyk w medycynie nuklearnej, szczególnie w diagnostyce i leczeniu chorób tarczycy. Tarczyca fizjologicznie wychwytuje jod z krwi, bo używa go do produkcji hormonów T3 i T4. Dzięki temu, jeśli podamy pacjentowi radioaktywny jod w formie radiofarmaceutyku, gruczoł tarczowy „sam” go zbierze. To bardzo wygodne i jednocześnie dość selektywne narzędzie. W diagnostyce stosuje się mniejsze dawki 131I do scyntygrafii tarczycy – gammakamera rejestruje promieniowanie gamma emitowane przez izotop, co pozwala ocenić rozmieszczenie czynnej tkanki tarczycowej, obecność guzków, pozostałości po tyreoidektomii. W terapii raka zróżnicowanego tarczycy (np. rak brodawkowaty, pęcherzykowy) wykorzystuje się znacznie wyższe dawki, zgodnie z wytycznymi medycyny nuklearnej i onkologii, żeby zniszczyć komórki nowotworowe wychwytujące jod. To tzw. ablacja resztek tarczycy lub leczenie ognisk przerzutowych. Moim zdaniem to bardzo elegancki przykład terapii celowanej: promieniowanie beta z 131I działa lokalnie, uszkadzając DNA komórek tarczycowych, a promieniowanie gamma umożliwia jednocześnie kontrolę rozkładu dawki na obrazach scyntygraficznych. W praktyce technik medycyny nuklearnej musi pamiętać o przygotowaniu pacjenta (dieta ubogojodowa, odstawienie tyreostatyków, czasem rekombinowane TSH), o zasadach ochrony radiologicznej po podaniu izotopu oraz o poprawnej kalibracji dawkomierza i gammakamery. W większości ośrodków jest to procedura bardzo dobrze wystandaryzowana, oparta na rekomendacjach towarzystw medycyny nuklearnej i onkologii endokrynologicznej.

Pytanie 30

Jakie wymagania techniczne muszą spełniać aparaty terapeutyczne stosowane w zakładach brachyterapii, służące bezpośrednio do napromieniania pacjenta metodą zdalnego wprowadzania źródeł promieniotwórczych?

A. Wyłączenie i ponowne włączenie aparatu nie likwiduje sygnalizowanego błędu.
B. Weryfikują ustawione warunki i nie sygnalizują przypadkowych błędów personelu.
C. Wyłączenie i ponowne włączenie aparatu likwiduje sygnalizowany błąd.
D. Posiadają jeden niezależny system odliczający czas i informujący o zakończeniu napromieniania.
Prawidłowa odpowiedź podkreśla bardzo ważną zasadę bezpieczeństwa w brachyterapii HDR: wyłączenie i ponowne włączenie aparatu nie może kasować wcześniej zgłoszonego błędu. W aparatach do zdalnego wprowadzania źródeł (afterloaderach) mamy do czynienia z bardzo silnymi źródłami promieniowania, które są prowadzone do ciała pacjenta systemem prowadnic. Jeśli system raz wykryje sytuację niebezpieczną – np. problem z pozycją źródła, zablokowanie prowadnicy, błąd w układzie bezpieczeństwa, uszkodzenie czujnika – to z punktu widzenia norm ochrony radiologicznej ten stan musi być traktowany jako trwały alarm, dopóki nie zostanie sprawdzony i skasowany w kontrolowany sposób przez uprawnioną osobę, a nie przez zwykły „reset zasilania”. W praktyce klinicznej obowiązuje zasada tzw. fail-safe: jeżeli coś jest nie tak, urządzenie przechodzi w stan bezpieczny (źródło wraca do osłony, napromienianie jest przerwane), a system wymaga świadomej interwencji. Moim zdaniem to jest trochę jak z hamulcem bezpieczeństwa w windzie: samo wyłączenie i włączenie prądu nie może sprawić, że system uzna, iż nagle jest bezpiecznie. W nowoczesnych afterloaderach błędy są zapisywane w logach, trzeba je zdiagnozować, czasem wykonać testy serwisowe, dopiero potem można przywrócić normalną pracę. Takie podejście wynika z zaleceń producentów, wymagań prawa atomowego, rozporządzeń dotyczących urządzeń radioterapeutycznych oraz z ogólnych standardów QA w radioterapii (np. wytyczne IAEA czy ESTRO). Dodatkowo, aparaty te zwykle mają wielopoziomowe systemy nadzoru: niezależne układy kontroli pozycji źródła, monitorowania czasu napromieniania, kontroli ruchu kabla źródła, systemy blokad drzwiowych bunkra. Gdy którykolwiek z krytycznych podsystemów zgłosi błąd, musi to być sygnał do zatrzymania procedury i analizy, a nie coś, co można „przeklikać” restartem. Dzięki temu unika się sytuacji, w której potencjalna usterka techniczna prowadzi do niekontrolowanego narażenia pacjenta lub personelu. To jest dokładnie sens tej odpowiedzi: błąd ma być trwałym ostrzeżeniem, a nie komunikatem, który da się łatwo ukryć prostym trikiem z wyłącznikiem.

Pytanie 31

Wiązka elektronów najczęściej stosowana jest do leczenia zmian nowotworowych w obrębie

A. macicy.
B. prostaty.
C. skóry i płytko pod skórą.
D. płuc.
Prawidłowo wskazana odpowiedź „skóry i płytko pod skórą” idealnie oddaje główne zastosowanie kliniczne wiązki elektronów w radioterapii. Elektrony mają stosunkowo mały zasięg w tkankach – ich dawka rośnie szybko od powierzchni, osiąga maksimum na kilku–kilkunastu milimetrach głębokości, a potem gwałtownie spada. Moim zdaniem to jest właśnie najważniejszy parametr, który trzeba kojarzyć: krótki zasięg i oszczędzanie głębiej położonych narządów. Dlatego w standardach radioterapii (np. zalecenia ESTRO, krajowe rekomendacje) elektrony stosuje się głównie do leczenia zmian powierzchownych: rak skóry, przerzuty skórne, naciekające blizny pooperacyjne, węzły chłonne leżące płytko, blizna po mastektomii, czasem kikut piersi. W praktyce planowania leczenia fizyk medyczny dobiera energię wiązki elektronów (np. 6 MeV, 9 MeV, 12 MeV) tak, żeby maksymalna dawka pokrywała guz, ale nie „przebijała” zbyt głęboko. To jest właśnie przewaga nad fotonami, które penetrują głęboko i oddają istotną dawkę w narządach położonych za guzem. Wiązka elektronowa pozwala np. napromieniać rozległy rak skóry na czaszce, minimalizując dawkę w mózgu, albo zmiany skórne na klatce piersiowej z ograniczeniem dawki w płucach. Dobrą praktyką jest też stosowanie bolusa (materiału dosłownie położonego na skórze), żeby „przesunąć” maksimum dawki bliżej powierzchni, gdy zmiana jest bardzo płytka. Warto zapamiętać: jak widzisz zmianę nowotworową w skórze lub do ok. 3–4 cm pod skórą, w głowie od razu powinna zapalić się lampka – to potencjalne pole do zastosowania elektronów, oczywiście po weryfikacji onkologicznej i fizycznej.

Pytanie 32

Brachyterapia polegająca na wielokrotnym wsuwaniu i wysuwaniu źródła promieniowania do tego samego aplikatora nosi nazwę

A. MDR
B. PDR
C. LDR
D. HDR
Prawidłowa odpowiedź to PDR – czyli Pulsed Dose Rate brachyterapia. W praktyce oznacza to technikę, w której wysokoaktywny radionuklid (najczęściej Ir-192) jest wielokrotnie wsuwany i wysuwany do tego samego aplikatora w krótkich, powtarzających się „pulsach” dawki. Z zewnątrz wygląda to jak seria krótkich frakcji HDR, ale rozkład dawki w czasie ma naśladować efekt biologiczny klasycznej LDR (ciągłego, niskiego tempo dawki). Moim zdaniem to jest fajny przykład, jak fizyka medyczna i radiobiologia łączą się z techniką – mamy źródło HDR, ale sposób jego użycia sprawia, że tkanki widzą coś bardziej zbliżonego do LDR. W PDR źródło jest automatycznie przesuwane przez afterloader do poszczególnych pozycji w aplikatorze, zatrzymuje się tam na określony czas (tzw. dwell time), a potem jest wycofywane do bezpiecznego położenia. Cały cykl powtarza się co określony interwał, np. co godzinę, przez kilkanaście–kilkadziesiąt godzin. W wytycznych wielu ośrodków radioterapii podkreśla się, że PDR jest szczególnie użyteczna tam, gdzie chcemy mieć lepszą kontrolę nad rozkładem dawki niż w LDR, ale jednocześnie zachować korzystny profil powikłań późnych. Stosuje się ją m.in. w guzach ginekologicznych, nowotworach głowy i szyi czy w niektórych nawrotach nowotworów, gdzie precyzyjna rekonstrukcja pozycji aplikatora w TK lub MR i planowanie 3D pozwalają dokładnie zoptymalizować dawkę. W codziennej pracy technika PDR wymaga dobrej koordynacji zespołu: prawidłowego założenia aplikatorów, weryfikacji ich położenia obrazowaniem, rzetelnego planowania w systemie TPS oraz ścisłego przestrzegania procedur ochrony radiologicznej, bo mimo że źródło jest schowane w afterloaderze, jego aktywność jest wysoka i każda ekspozycja musi być pod pełną kontrolą.

Pytanie 33

W brachyterapii MDR stosowane są dawki promieniowania

A. od 2,0 do 12 Gy/h
B. od 0,01 do 0,1 Gy/h
C. od 0,2 do 0,4 Gy/h
D. od 0,5 do 1,0 Gy/h
Poprawnie – w brachyterapii typu MDR (medium dose rate) przyjmuje się, że tempo dawki mieści się w zakresie od ok. 2 do 12 Gy/h i to właśnie odpowiada zaznaczonej odpowiedzi. Ten przedział jest ustalony w oparciu o klasyczne podziały ICRU/ICRP na LDR, MDR, HDR i PDR. W praktyce klinicznej takie dawki uzyskuje się głównie przy użyciu źródeł o średniej aktywności i systemów afterloading, gdzie aplikator jest już założony w ciele pacjenta, a źródło jest wsuwane automatycznie pod kontrolą aparatu. Moim zdaniem warto zapamiętać proste skojarzenie: LDR to dawki rzędu dziesiątych części Gy na godzinę, HDR to kilkanaście Gy na godzinę i więcej, a MDR leży właśnie pomiędzy, czyli te 2–12 Gy/h. W tym zakresie dawki mamy jeszcze relatywnie długi czas ekspozycji, liczony w dziesiątkach minut, czasem w godzinach, ale już zdecydowanie krótszy niż przy klasycznej brachyterapii LDR, gdzie źródła pozostawały w pacjencie nawet kilka dni. Z punktu widzenia planowania leczenia tempo dawki wpływa na biologiczny efekt promieniowania – przy MDR można uzyskać pewien kompromis między wygodą organizacyjną (krótszy pobyt pacjenta w osłoniętej sali, większa przepustowość) a korzyściami radiobiologicznymi podobnymi do LDR, np. lepszą tolerancją tkanek zdrowych dzięki częściowej możliwości naprawy subletalnych uszkodzeń. W standardach radioterapii podkreśla się, że przy planowaniu brachyterapii MDR trzeba bardzo dokładnie określić geometrię aplikatorów, zweryfikować położenie w obrazowaniu (najczęściej TK) i kontrolować czas przebywania źródła w poszczególnych pozycjach (tzw. dwell time), bo przy 2–12 Gy/h nawet niewielkie przesunięcie aplikatora albo błąd w czasie może skutkować istotnym przedawkowaniem w krytycznych narządach, np. pęcherzu czy odbytnicy. W wielu ośrodkach MDR jest stosowana np. w leczeniu nowotworów ginekologicznych czy guzów głowy i szyi, gdzie ważne jest połączenie precyzji przestrzennej z umiarkowanym tempem dawki.

Pytanie 34

Jak oznacza się w radioterapii obszar tkanek zawierający GTV i mikrorozsiewy w fazie niewykrywalnej klinicznie?

A. PTV
B. TV
C. IV
D. CTV
Prawidłowa odpowiedź to CTV, czyli Clinical Target Volume. W radioterapii używa się dość precyzyjnej, międzynarodowej nomenklatury (m.in. wg ICRU – International Commission on Radiation Units and Measurements), żeby cały zespół mówił tym samym językiem. GTV (Gross Tumor Volume) to guz widoczny klinicznie: w badaniu obrazowym, endoskopii, palpacyjnie. Natomiast CTV obejmuje GTV plus obszar potencjalnego mikrorozsiewu nowotworu, który jest jeszcze niewidoczny w badaniach obrazowych, ale wiemy z onkologii, że tam bardzo często siedzą pojedyncze komórki nowotworowe. I właśnie o ten "mikrorozsiew w fazie niewykrywalnej klinicznie" chodzi w pytaniu. CTV planuje się na podstawie badań TK/MR, opisu histopatologicznego, typowego sposobu szerzenia się danego nowotworu (np. wzdłuż naczyń chłonnych, wzdłuż oskrzeli) oraz wytycznych klinicznych, np. zaleceń ESTRO czy ASTRO. W praktyce technik planowania radioterapii widzi to jako kontur zaznaczony przez lekarza na obrazie z tomografii planistycznej: osobno GTV, a szerzej – CTV. Dla przykładu: w raku płuca CTV obejmie guz widoczny w TK oraz margines w obrębie płuca, gdzie mogą być mikroskopowe nacieki, a czasem też regionalne węzły chłonne o wysokim ryzyku zajęcia. Dopiero na CTV nakłada się kolejne marginesy na ruchy oddechowe, ustawienie pacjenta i niepewności geometryczne, tworząc PTV (Planning Target Volume). Moim zdaniem kluczowe jest zapamiętanie: CTV = GTV + mikrorozsiew klinicznie niewidoczny, PTV = CTV + marginesy bezpieczeństwa związane z techniką napromieniania. W codziennej pracy dobrze rozróżnianie tych pojęć pomaga unikać zbyt małego lub zbyt dużego pola napromieniania, co bezpośrednio przekłada się na skuteczność leczenia i toksyczność dla zdrowych tkanek.

Pytanie 35

Do czego służy do symulator rentgenowski wykorzystywany w procesie radioterapii?

A. Do weryfikacji i odwzorowania geometrii pól poszczególnych wiązek terapeutycznych.
B. Do generowania trójwymiarowych informacji o lokalizacji obszaru guza.
C. Do weryfikacji dawki podanej pacjentowi w obszarze PTV.
D. Do określania odległości od wirtualnego źródła promieniowania do skóry pacjenta.
Prawidłowo – symulator rentgenowski w radioterapii służy przede wszystkim do weryfikacji i odwzorowania geometrii pól poszczególnych wiązek terapeutycznych. W praktyce oznacza to, że na symulatorze „na sucho” sprawdza się, czy zaplanowane pola napromieniania, kąty obrotu głowicy, kolimatora, ustawienie stołu i pozycja pacjenta rzeczywiście pokrywają się z obszarem, który ma być napromieniony. Moim zdaniem to jest taki etap próbny przed właściwym leczeniem – bez ryzyka podania dawki terapeutycznej. Symulator ma podobną geometrię jak akcelerator (odległość źródło–skóra, zakres ruchów ramienia, kolimatory), ale zamiast wiązki megawoltowej używa promieniowania diagnostycznego, więc można uzyskać obraz rentgenowski i sprawdzić ułożenie pól względem anatomii pacjenta. W standardach radioterapii podkreśla się, że prawidłowe odwzorowanie geometrii pól jest kluczowe dla bezpieczeństwa: dzięki symulacji można wykryć błędy w pozycjonowaniu, złe kąty projekcji, niewłaściwy margines wokół PTV czy niepotrzebne obciążenie narządów krytycznych (OAR). W codziennej pracy używa się symulatora do zaznaczenia na skórze pacjenta linii referencyjnych, punktów laserowych, czasem znaczników tuszem lub tatuaży, które później są używane przy każdym seansie na akceleratorze. Dobre praktyki mówią, że przed pierwszym napromienianiem plan powinien być zweryfikowany geometrycznie – kiedyś głównie na klasycznym symulatorze RTG, dziś coraz częściej na wirtualnym symulatorze opartym na TK, ale zasada jest ta sama: chodzi o kontrolę geometrii pól, a nie o dokładne mierzenie dawki czy tworzenie nowego obrazu 3D. Dzięki temu cały zespół ma większą pewność, że wiązka trafia dokładnie tam, gdzie zaplanował fizyk i lekarz.

Pytanie 36

Technika stereotaktyczna polega na napromienianiu nowotworu

A. wieloma wiązkami z jednej strony.
B. wieloma wiązkami zbiegającymi się w jednym punkcie.
C. wieloma wiązkami wychodzącymi z jednego punktu.
D. jednym dużym polem.
Technika stereotaktyczna polega właśnie na tym, co jest w treści poprawnej odpowiedzi: wiele wąskich, precyzyjnie zaplanowanych wiązek promieniowania z różnych kierunków zbiera się w jednym, dokładnie wyznaczonym punkcie w ciele pacjenta. Ten punkt to cel – najczęściej guz lub malformacja naczyniowa. Poza tym punktem dawka w każdej pojedynczej wiązce jest stosunkowo mała, ale w miejscu ich zbiegu sumuje się do bardzo wysokiej dawki terapeutycznej. To jest cała „magia” stereotaksji. W praktyce klinicznej mówimy o radiochirurgii stereotaktycznej (SRS) dla mózgu, stereotaktycznej radioterapii frakcjonowanej (FSRT) albo stereotaktycznej radioterapii ciała (SBRT/SABR) dla zmian pozaczaszkowych, np. w płucu czy wątrobie. Moim zdaniem kluczowe jest tu skojarzenie: stereotaksja = precyzyjne unieruchomienie + dokładne obrazowanie (TK, MR, czasem PET) + planowanie 3D/4D + wiele wiązek zbieżnych w jeden punkt. Dzięki temu można podać bardzo dużą dawkę na małą objętość przy jednoczesnej ochronie tkanek zdrowych, zgodnie z zasadami ALARA i wytycznymi ICRU oraz ESTRO. W dobrych ośrodkach dba się o dokładność pozycjonowania rzędu milimetrów, stosuje się maski termoplastyczne, ramy stereotaktyczne, systemy IGRT (obrazowanie w trakcie napromieniania), żeby ten punkt zbiegu wiązek pokrywał się idealnie z położeniem guza. To jest standard dobrej praktyki w nowoczesnej radioterapii: wysoka precyzja geometryczna, małe marginesy bezpieczeństwa i bardzo strome gradienty dawki wokół celu. Stereotaksja jest szczególnie przydatna przy małych guzach, dobrze widocznych w obrazowaniu, gdzie zależy nam na maksymalnej oszczędności otaczających struktur krytycznych, na przykład nerwu wzrokowego, pnia mózgu czy rdzenia kręgowego.

Pytanie 37

W technice napromieniania SSD mierzona jest odległość źródła promieniowania

A. od napromienianego guza.
B. od stołu aparatu terapeutycznego.
C. od punktu zdefiniowanego na skórze pacjenta.
D. od izocentrum aparatu terapeutycznego.
W technice SSD (source–skin distance) kluczowe jest właśnie to, że odległość mierzona jest od źródła promieniowania do punktu zdefiniowanego na skórze pacjenta. Ten punkt na skórze odpowiada zwykle punktowi referencyjnemu pola, np. środkowi wiązki lub miejscu, gdzie chcemy mieć określoną głębokość dawki. Moim zdaniem warto od razu zapamiętać: w SSD zawsze „patrzymy” na skórę, a nie na izocentrum. To odróżnia tę technikę od techniki SAD (source–axis distance), gdzie bazujemy na odległości do izocentrum aparatu terapeutycznego. W praktyce klinicznej technik ustawia pacjenta tak, aby SSD miało konkretną wartość, np. 100 cm, mierzoną do tatuażu, znacznika laserowego albo markera narysowanego na skórze. To ten punkt zdefiniowany na skórze jest geometrycznym punktem odniesienia do obliczeń dawki, tabel PDD (percent depth dose) i parametrów pola. Dzięki stałej SSD możemy korzystać z tablic procentowej dawki w głąb, które zakładają określoną odległość źródło–skóra, co upraszcza planowanie w prostszych technikach 2D albo w niektórych polach dodatkowych. Z mojego doświadczenia w radioterapii dobre ustawienie SSD przekłada się na powtarzalność napromieniania i zgodność rzeczywistej dawki z planem. W standardach i podręcznikach z radioterapii (np. klasyczne opisy teleterapii megawoltowej) technika SSD jest opisana właśnie jako metoda, w której główną kontrolowaną wielkością geometryczną jest odległość do skóry, a skorygowanie tej odległości o grubość tkanek pozwala wyznaczyć głębokość PTV i odpowiednio dobrać dawkę. W nowoczesnych ośrodkach SSD nadal jest używana np. przy polach skóry, piersi czy prostych polach paliatywnych. Dobra praktyka to zawsze oznaczenie na skórze punktu, do którego mierzymy SSD, i sprawdzanie go codziennie, a nie sugerowanie się jedynie pozycją stołu czy odczytem z konsoli.

Pytanie 38

Teleterapia polega na napromienowaniu

A. wyłącznie promieniowaniem fotonowym ze źródeł zewnętrznych.
B. promieniowaniem fotonowym lub cząsteczkowym ze źródeł zewnętrznych.
C. promieniowaniem ze źródła umieszczonego pod skórą pacjenta.
D. promieniowaniem ze źródła umieszczonego w obrębie guza nowotworowego.
W tym pytaniu łatwo się pomylić, bo wszystkie odpowiedzi opisują jakąś formę napromieniania, ale tylko jedna dokładnie pasuje do definicji teleterapii. Podstawowy błąd, który często się pojawia, to mieszanie teleterapii z brachyterapią. Gdy mówimy o źródle promieniowania umieszczonym pod skórą pacjenta albo bezpośrednio w obrębie guza, to tak naprawdę opisujemy brachyterapię, a nie teleterapię. W brachyterapii źródło promieniowania znajduje się bardzo blisko guza albo wręcz w nim, co daje bardzo stromy spadek dawki w tkankach otaczających. Natomiast w teleterapii źródło jest zawsze poza ciałem, w aparacie, i wiązka musi przejść przez tkanki, żeby dotrzeć do celu. Kolejna pułapka to myślenie, że teleterapia to wyłącznie promieniowanie fotonowe. Historycznie kojarzy się ją z promieniowaniem gamma (np. z kobaltu) lub z promieniowaniem X z akceleratora liniowego, więc łatwo przyjąć, że chodzi tylko o fotony. Tymczasem współczesne standardy radioterapii wyraźnie zaliczają do teleterapii także napromienianie wiązkami cząstek, np. elektronami (stosowanymi do zmian powierzchownych) czy protonami i jonami ciężkimi (radioterapia protonowa, hadronowa). Kluczowe są tu dwa elementy: rodzaj promieniowania (fotonowe lub cząsteczkowe) oraz fakt, że pochodzi ono ze źródła zewnętrznego. Mylenie tych pojęć wynika często z uproszczonego skojarzenia: „źródło promieniowania = coś w środku pacjenta”, co jest prawdą tylko przy brachyterapii. W praktyce klinicznej bardzo ważne jest poprawne rozróżnienie tych technik, bo planowanie, ochrona radiologiczna, sposób unieruchomienia pacjenta, a nawet organizacja pracy działu radioterapii są inne dla tele- i brachyterapii. Moim zdaniem warto na spokojnie zapamiętać: teleterapia – źródło na zewnątrz, brachyterapia – źródło w ciele lub tuż przy guzie. To pomaga uniknąć takich nieporozumień w przyszłości i lepiej rozumieć wytyczne oraz opisy procedur w dokumentacji medycznej.

Pytanie 39

Jak konwencjonalnie frakcjonuje się dawkę w teleradioterapii?

A. Dwa razy dziennie, przez siedem dni w tygodniu.
B. Jeden raz dziennie, przez pięć dni w tygodniu.
C. Dwa razy dziennie, przez pięć dni w tygodniu.
D. Jeden raz dziennie, przez siedem dni w tygodniu.
W teleradioterapii bardzo łatwo pomylić różne schematy frakcjonowania, bo w praktyce klinicznej używa się zarówno klasycznego, jak i przyspieszonego czy hipofrakcjonowania. Konwencjonalny schemat to jednak jedna frakcja dziennie, pięć dni w tygodniu, z przerwą w weekend. Propozycja dwóch frakcji dziennie przez pięć dni w tygodniu opisuje tzw. hiperfrakcjonowanie lub przyspieszone schematy leczenia. Takie podejście rzeczywiście jest stosowane, ale tylko w wybranych sytuacjach klinicznych, np. w niektórych nowotworach głowy i szyi, i wymaga bardzo ostrożnego planowania. Zwiększenie liczby frakcji na dobę podnosi ryzyko ostrych odczynów popromiennych, dlatego nie jest uznawane za standardowe, „konwencjonalne” frakcjonowanie, tylko za modyfikację wymagającą specjalnych wskazań i doświadczenia zespołu. Z kolei schematy, w których leczenie trwa siedem dni w tygodniu, bez przerw weekendowych, kłócą się z klasycznymi zasadami radiobiologii i praktyką organizacyjną zakładów radioterapii. Teoretycznie można by w ten sposób skrócić całkowity czas leczenia, ale kosztem znacznie gorszej tolerancji przez zdrowe tkanki. Brak przerwy na regenerację tkanek prawidłowych zwiększa ryzyko ciężkich powikłań późnych, np. martwicy, zwłóknień czy uszkodzeń narządów krytycznych. Dodatkowo trzeba brać pod uwagę, że sprzęt musi być serwisowany, a personel medyczny też ma swoje ograniczenia – to nie jest terapia, którą można bez końca prowadzić „non stop”. Częsty błąd myślowy polega na założeniu, że im więcej frakcji i im częściej podajemy dawkę, tym lepszy efekt onkologiczny. W radioterapii to nie działa tak prosto, bo liczy się równowaga między skutecznością a toksycznością. Zbyt agresywne, codzienne lub dwukrotne dzienne frakcjonowanie bez wyraźnych wskazań może bardziej zaszkodzić niż pomóc. Dlatego, kiedy w pytaniu pojawia się sformułowanie „konwencjonalnie”, trzeba od razu kojarzyć je ze standardem: jedna frakcja dziennie, pięć razy w tygodniu, z zaplanowaną przerwą weekendową.

Pytanie 40

Obrazy DDR są tworzone w trakcie

A. napromieniowania na aparacie terapeutycznym.
B. planowania radioterapii w komputerowym systemie planowania leczenia.
C. weryfikacji geometrii pól terapeutycznych na symulatorze rentgenowskim.
D. wykonywania przekrojów w tomografii komputerowej.
W tym pytaniu łatwo się złapać na skojarzeniach z klasycznym zdjęciem rentgenowskim, bo nazwa DDR brzmi podobnie do terminów używanych w radiologii. Obrazy DDR nie są jednak wykonywane bezpośrednio na aparacie terapeutycznym podczas napromieniania. Na aparacie terapeutycznym wykonuje się obrazy weryfikacyjne, najczęściej za pomocą EPID (Electronic Portal Imaging Device) albo CBCT. Służą one do sprawdzenia ustawienia pacjenta, ale są to rzeczywiste obrazy zarejestrowane detektorem, a nie obrazy rekonstruowane z danych tomograficznych. DDR to coś odwrotnego – to symulacja zdjęcia, wyliczona przez system planowania z objętości TK. Podobne nieporozumienie pojawia się przy kojarzeniu DDR z wykonywaniem przekrojów w tomografii komputerowej. TK dostarcza surowych danych przekrojowych, na podstawie których później system planowania generuje DDR. Sam tomograf nie tworzy DDR, on tylko dostarcza stos warstw, z których zespół fizyków i lekarzy buduje plan leczenia. Mylenie tych etapów to częsty błąd: badanie TK to diagnostyka i przygotowanie danych, a DDR to element planowania radioterapii, już w osobnym oprogramowaniu. Równie zdradliwa jest odpowiedź sugerująca, że DDR powstają podczas weryfikacji geometrii pól na symulatorze rentgenowskim. Klasyczny symulator wykonuje zwykłe zdjęcia RTG lub fluoroskopię w geometrii zbliżonej do aparatu terapeutycznego, ale to dalej są obrazy rentgenowskie, nie cyfrowo rekonstruowane radiogramy. DDR jest przygotowywany wcześniej, w systemie planowania, i dopiero potem może służyć jako wzorzec do porównania z obrazami z symulatora czy z aparatu terapeutycznego. Typowy błąd myślowy polega na tym, że skoro DDR służy do weryfikacji ustawienia, to musi być tworzony właśnie przy weryfikacji. W rzeczywistości proces jest dwustopniowy: najpierw planowanie i generacja DDR, potem ich wykorzystanie przy kontroli jakości ustawienia wiązek. Dlatego poprawne osadzenie DDR wyłącznie w kontekście komputerowego systemu planowania leczenia jest kluczowe z punktu widzenia prawidłowego zrozumienia całego procesu radioterapii.