Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 27 października 2025 20:09
  • Data zakończenia: 27 października 2025 20:13

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakie rozwiązania powinny być wdrożone, aby zapewnić ochronę przed porażeniem elektrycznym w przypadku uszkodzenia pracowników obsługujących maszynę roboczą, która jest napędzana silnikiem trójfazowym o napięciu 230/400 V, podłączonym do sieci TN-S i zabezpieczonym wyłącznikiem różnicowoprądowym?

A. Wykorzystać zasilanie w systemie PELV
B. Wprowadzić zasilanie w systemie SELV
C. Podłączyć obudowę silnika do przewodu PE
D. Podłączyć obudowę silnika do przewodu N
Wybór połączenia korpusu silnika z przewodem N jest nieodpowiedni, ponieważ przewód neutralny nie jest przewodem ochronnym. W systemach TN-S przewód N pełni funkcję przewodu roboczego, a nie ochronnego, co może prowadzić do poważnych zagrożeń. W przypadku uszkodzenia, prąd może przepływać przez korpus maszyny, wprowadzając ryzyko porażenia elektrycznego. Zasada bezpieczeństwa wymaga, aby przewód ochronny PE był stosowany do odprowadzania prądów doziemnych i zapewnienia bezpiecznej drogi dla prądu w przypadku awarii, co nie jest możliwe przy połączeniu z przewodem neutralnym. Zastosowanie zasilania w systemie PELV nie jest odpowiednie w tym przypadku, gdyż system ten ogranicza napięcie do wartości bezpiecznej, ale nie zapewnia pełnej ochrony w kontekście porażenia prądem w systemach trójfazowych. Ponadto, system SELV, chociaż również niesie ze sobą pewne zabezpieczenia, nie jest przystosowany do pracy z urządzeniami o napięciu 230/400 V, co czyni go nieodpowiednim dla omawianej sytuacji. Nieprawidłowe podejścia wskazują na niepełne zrozumienie zasad ochrony przeciwporażeniowej oraz wymagań normatywnych, co może prowadzić do ryzykownych decyzji w zakresie bezpieczeństwa pracy.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. rezystancji przewodu ochronnego
B. prądu stanu jałowego
C. rezystancji uzwojeń stojana
D. prądu upływu
Pomiary prądu stanu jałowego, rezystancji przewodu ochronnego oraz rezystancji uzwojeń stojana nie są odpowiednie do skutecznego wykrywania przebicia izolacji uzwojeń silnika indukcyjnego względem obudowy. Prąd stanu jałowego odnosi się do prądu, który silnik pobiera, gdy nie jest obciążony, co nie dostarcza informacji o stanie izolacji. Wysoka wartość tego prądu może być spowodowana innymi czynnikami, takimi jak straty w rdzeniu czy niewłaściwe parametry zasilania, co może prowadzić do błędnych wniosków na temat stanu izolacji. Z kolei pomiar rezystancji przewodu ochronnego służy głównie do zapewnienia bezpieczeństwa w systemach uziemienia, ale nie wskazuje bezpośrednio na stan izolacji uzwojeń. Rezystancja uzwojeń stojana z kolei jest istotna przy ocenie sprawności silnika, ale nie jest odpowiednia do wykrywania przebicia izolacji, ponieważ nie uwzględnia wydajności materiałów izolacyjnych. W praktyce, mylenie tych pojęć może prowadzić do fałszywego poczucia bezpieczeństwa, a nieprawidłowe interpretacje wyników pomiarów mogą skutkować poważnymi konsekwencjami w zakresie bezpieczeństwa i niezawodności pracy silników elektrycznych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

W jaki sposób zmieni się spadek napięcia na przewodzie zasilającym przenośny odbiornik, jeśli zamienimy przewód OWY 5×4 mm2 o długości 5 m na przewód OWY 5×6 mm2 o długości 15 m?

A. Zmniejszy się trzykrotnie
B. Zwiększy się dwukrotnie
C. Zwiększy się trzykrotnie
D. Zmniejszy się dwukrotnie
Wybór odpowiedzi sugerujących, że spadek napięcia zwiększy się trzykrotnie lub zmniejszy się trzykrotnie, opiera się na błędnym rozumieniu zasad obliczania spadku napięcia i wpływu długości oraz przekroju przewodu na ten parametr. Niektórzy mogą myśleć, że zwiększenie długości przewodu automatycznie prowadzi do proporcjonalnego wzrostu spadku napięcia, jednak to nie jest jedyny czynnik. Oporność przewodu zależy od jego długości oraz przekroju. Chociaż długość przewodu wzrasta, co sprzyja wzrostowi oporności, również zmienia się pole przekroju, które wpływa na opór. W przypadku zamiany przewodu o mniejszym przekroju na większy przy jednoczesnym wydłużeniu, wynikowy efekt na spadek napięcia nie jest prostą proporcją, ale wymaga złożonych obliczeń. Odpowiedzi sugerujące, że spadek napięcia zmniejszy się, pomijają aspekt, że większa długość przewodu, mimo lepszego przekroju, może generować większą oporność, co prowadzi do wyższego spadku napięcia. W praktyce, montując długie przewody, należy zawsze brać pod uwagę zarówno długość, jak i rozmiar przekroju, aby uzyskać optymalne parametry elektryczne. Użycie algorytmów obliczeniowych oraz norm branżowych, jak PN-IEC 60364, powinno zawsze towarzyszyć tym decyzjom. Błędne podejście do oceny wpływu długości i przekroju na spadek napięcia może prowadzić do poważnych problemów z jakością zasilania i naruszeniem zasad bezpieczeństwa.

Pytanie 8

Jakie będą konsekwencje uszkodzenia izolacji podstawowej silnika indukcyjnego, gdy przewód PE zostanie odłączony od jego obudowy?

A. uruchomienie ochronnika przeciwprzepięciowego
B. pojawienie się napięcia na obudowie silnika
C. wzrost prędkości obrotowej wirnika
D. obniżenie prędkości obrotowej wirnika
Pojawienie się napięcia na obudowie silnika indukcyjnego w przypadku uszkodzenia izolacji podstawowej, zwłaszcza po odłączeniu przewodu PE, jest zjawiskiem niezwykle niebezpiecznym i stanowi poważne zagrożenie dla bezpieczeństwa ludzi oraz sprzętu. Izolacja podstawowa ma za zadanie oddzielić elementy energii elektrycznej od obudowy, aby zapobiec porażeniom prądem. W momencie, gdy izolacja zostaje uszkodzona, a przewód PE, który pełni rolę ochronną, zostaje odłączony, obudowa silnika może stać się naładowana elektrycznie, co może prowadzić do porażenia prądem osoby znajdującej się blisko urządzenia. Przykładem zastosowania wiedzy w tej kwestii jest konieczność regularnego przeglądania i testowania urządzeń elektrycznych w celu zapewnienia, że wszystkie elementy ochronne, w tym przewód PE, są w dobrym stanie i działają prawidłowo, co jest zgodne z normami takimi jak PN-EN 60204-1. Dobre praktyki branżowe obejmują również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które mogą wykryć nieprawidłowości w obwodzie i automatycznie odłączyć zasilanie.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W jakim schemacie sieciowym nie można używać wyłączników różnicowoprądowych jako zabezpieczeń przed porażeniem w przypadku uszkodzenia?

A. W systemie TN-C
B. W systemie TN-S
C. W systemie IT
D. W systemie TT
Układy sieciowe TT i TN-S są zaprojektowane z myślą o bezpieczeństwie użytkowników i skutecznej ochronie przeciwporażeniowej. W układzie TT, przewód neutralny (N) jest uziemiony lokalnie, co pozwala na stosowanie wyłączników różnicowoprądowych. Ochrona opiera się na różnicy prądów między przewodami, co umożliwia szybkie wyłączenie zasilania w przypadku wykrycia uszkodzenia. Z kolei układ TN-S, w którym przewody N i PE są oddzielone, również wspiera użycie RCD, zapewniając efektywną detekcję prądów różnicowych. W przypadku układu IT, którego celem jest zminimalizowanie ryzyka porażenia poprzez zastosowanie izolacji oraz lokowanie uziemienia, wyłączniki różnicowoprądowe również mogą być stosowane, jednak ich użycie jest bardziej ograniczone w porównaniu do układów TN i TT. W szczególności, w układach TN-C, połączenie przewodów neutralnych i ochronnych w jeden przewód prowadzi do poważnych problemów związanych z bezpieczeństwem, takich jak niemożność skutecznego wyłączenia obwodu w przypadku uszkodzenia. Dla projektantów instalacji elektrycznych kluczowe jest zrozumienie, że dobór odpowiednich elementów ochronnych powinien być zgodny z zasadami bezpieczeństwa i standardami, aby zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 11

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 4 lata
B. 2 lata
C. 5 lat
D. 3 lata
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 12

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H03V2V2-F 3G2,5
B. H07VV-U 5G2,5
C. H03V2V2H2-F 2X2,5
D. H07RR-F 5G2,5
Odpowiedzi H07VV-U 5G2,5, H03V2V2-F 3G2,5 oraz H03V2V2H2-F 2X2,5 nie są odpowiednie do zastąpienia uszkodzonego przewodu OW 4×2,5 mm² w przypadku silnika indukcyjnego trójfazowego. Przewód H07VV-U 5G2,5 jest przewodem typu płaskiego, przeznaczonym głównie do instalacji stałych, co nie jest idealnym rozwiązaniem w warunkach warsztatowych, gdzie elastyczność przewodu jest kluczowa. Zastosowanie przewodu, który nie jest odporny na uszkodzenia mechaniczne, może prowadzić do jego uszkodzenia, a w konsekwencji do awarii silnika. Z kolei przewody H03V2V2-F 3G2,5 oraz H03V2V2H2-F 2X2,5 charakteryzują się mniejszą liczbą żył oraz niższymi parametrami elektrycznymi, co czyni je niewystarczającymi do zasilania silników o większej mocy, które wymagają solidnych połączeń trójfazowych. Wybierając przewody, istotne jest, aby zwracać uwagę na ich klasyfikację zgodnie z europejskimi normami, a także na zastosowanie w konkretnych warunkach. Ignorowanie tych aspektów prowadzi do niewłaściwego doboru materiałów oraz potencjalnych zagrożeń dla zdrowia i bezpieczeństwa w miejscu pracy.

Pytanie 13

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Megaomomierz
B. Waromierz
C. Sonometr
D. Pirometr
Pirometr nie jest odpowiednim narzędziem do pomiaru rezystancji izolacji. Jego głównym zastosowaniem jest pomiar temperatury, a nie parametrów elektrycznych. Użytkownicy mogą mylić pirometr z innymi instrumentami pomiarowymi, jednak kluczowym jest zrozumienie, że temperatura nie ma bezpośredniego związku z rezystancją izolacji. Sonometr również nie jest właściwym urządzeniem do tego celu; jest to przyrząd służący do pomiaru poziomu dźwięku. Pomiar rezystancji wymaga specjalistycznych narzędzi, które potrafią generować odpowiednie napięcia oraz analizować wyniki w kontekście izolacji elektrycznej. Waromierz, z kolei, jest wykorzystywany do pomiaru ciśnienia, co również odbiega od tematyki pomiaru rezystancji. Błędem jest mylenie różnych typów przyrządów pomiarowych, co może prowadzić do niewłaściwego doboru narzędzi w sytuacjach, które mogą być niebezpieczne. Zrozumienie podstawowych funkcji każdego z tych urządzeń oraz ich zastosowań w praktyce jest kluczowe dla właściwego podejścia do pomiarów elektrycznych. Dlatego też, korzystając z niewłaściwego narzędzia, można nie tylko nie uzyskać potrzebnych informacji, ale także narażać siebie i innych na ryzyko związane z nieprawidłowym działaniem instalacji elektrycznych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jaką minimalną wartość rezystancji powinna mieć podłoga i ściany w izolowanym miejscu pracy z urządzeniami pracującymi na napięciu 400 V, aby zapewnić efektywną ochronę przeciwporażeniową przed dotykiem pośrednim?

A. 10kΩ
B. 75kΩ
C. 25kΩ
D. 50kΩ
Odpowiedzi, które sugerują wartości rezystancji niższe niż 50 kΩ, mogą wprowadzać w błąd, prowadząc do niewłaściwych wniosków na temat bezpieczeństwa elektrycznego. Na przykład, wartość 25 kΩ może wydawać się wystarczająca, ale w rzeczywistości jest znacznie poniżej zalecanych standardów, co oznacza, że w przypadku wystąpienia problemów z izolacją, prąd może swobodnie przepływać przez ciało osoby pracującej w tym środowisku. Podobnie, wartości takie jak 10 kΩ czy 75 kΩ również nie spełniają kryteriów bezpieczeństwa. W przypadku 10 kΩ, ryzyko porażenia prądem jest znacząco wyższe, a przy 75 kΩ, chociaż jest to lepsza wartość, nadal nie zapewnia wystarczającej ochrony, zwłaszcza przy wyższych napięciach. Podstawowym błędem jest niewłaściwe rozumienie znaczenia rezystancji ochronnej w kontekście dotyku pośredniego oraz nieświadomość konsekwencji związanych z niewłaściwym doborze wartości rezystancji. Każdy instalator lub inżynier powinien dążyć do rozumienia i stosowania norm oraz zaleceń dotyczących bezpieczeństwa, aby zminimalizować ryzyko związane z pracą w potencjalnie niebezpiecznych warunkach.

Pytanie 16

Podczas pracy silnika indukcyjnego cewki uzwojeń stojana zostały przełączone, co miało na celu zwiększenie liczby par biegunów wirującego pola magnetycznego. Jakie skutki to wywołało?

A. zwiększenie prędkości obrotowej
B. zmianę kierunku obrotu
C. zmniejszenie prędkości obrotowej
D. zatrzymanie wirnika
Zmiana liczby par biegunów wirującego pola magnetycznego w silniku indukcyjnym prowadzi do zmiany jego prędkości obrotowej. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa wirnika jest determinowana przez częstotliwość zasilania oraz liczbę par biegunów. Wzór na prędkość synchroniczną (Ns) wyrażany jest jako Ns = 120*f/p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. Zwiększenie liczby par biegunów (p) przy stałej częstotliwości zasilania (f) skutkuje zmniejszeniem prędkości obrotowej wirnika. Praktycznie, taka zmiana jest wykorzystywana w aplikacjach, gdzie potrzebne jest uzyskanie większego momentu obrotowego przy niższej prędkości, na przykład w napędach maszyn przemysłowych. Dobrą praktyką jest także uwzględnienie w projektowaniu silników odpowiednich parametrów, takich jak obciążenie i wymagania aplikacyjne, aby zapewnić optymalne działanie silnika w danym zakresie prędkości.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Czas pomiędzy kolejnymi kontrolami oraz próbami instalacji elektrycznych w budynkach mieszkalnych zbiorowego użytku nie powinien przekraczać okresu

A. 1 rok
B. 3 lata
C. 5 lat
D. 2 lata
Odpowiedź '5 lat' jest jak najbardziej zgodna z przepisami prawa i normami bezpieczeństwa, które dotyczą elektryki w budynkach. Ustalono ten okres, żeby zapewnić bezpieczeństwo dla użytkowników i zmniejszyć ryzyko awarii. Regularne przeglądy co pięć lat pomagają dostrzegać ewentualne usterki, zużycie materiałów albo niezgodności ze standardami. W budynkach wielorodzinnych, gdzie mieszka dużo ludzi, ważne jest, żeby instalacje były nie tylko sprawne, ale też bezpieczne. Jakby przeglądy były robione rzadziej, mogłoby to spowodować poważne zagrożenia, jak pożar czy porażenie prądem. W praktyce dobrze jest nie tylko trzymać się tej pięcioletniej zasady, ale i wprowadzać częstsze przeglądy, jeśli widzisz, że instalacja ma jakieś oznaki zużycia albo w przypadku obiektów, które są w większym ryzyku.

Pytanie 21

Przygotowując miejsce do przeprowadzania badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz wizualnej inspekcji i analizy stanu izolacji uzwojeń, uwzględnić między innymi realizację pomiarów

A. charakterystyki stanu jałowego
B. izolacji łożysk
C. rezystancji uzwojeń
D. drgań
Pomiar drgań, pomiar izolacji łożysk oraz charakterystyka stanu jałowego silnika indukcyjnego, choć są istotnymi aspektami diagnostyki maszyn, nie są kluczowymi krokami w ocenie stanu uzwojeń, które są centralnym elementem silnika. Pomiar drgań, który ma na celu ocenę stanu mechanicznego silnika, może wskazywać na niewyważenie lub uszkodzenia łożysk, ale nie dostarcza bezpośrednich informacji o stanie uzwojeń. Z kolei pomiar izolacji łożysk również nie odnosi się do stanu uzwojeń, a jedynie do ich izolacji elektrycznej. Charakterystyka stanu jałowego silnika, polegająca na analizie parametrów silnika przy braku obciążenia, dostarcza informacji o wydajności zespołu, ale również nie ocenia stanu uzwojeń. W związku z tym, koncentrowanie się na tych pomiarach w miejsce pomiaru rezystancji uzwojeń może prowadzić do błędnych wniosków dotyczących stanu technicznego silnika i potencjalnych zagrożeń, co jest sprzeczne z zasadami skutecznej diagnostyki i konserwacji maszyn elektrycznych. Zrozumienie, które parametry są kluczowe dla oceny stanu uzwojeń, jest istotne dla zapewnienia niezawodności pracy silnika oraz uniknięcia kosztownych awarii.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jaką wartość powinno mieć napięcie testowe podczas pomiaru rezystancji izolacyjnej uzwojenia wtórnego transformatora ochronnego?

A. 250 V
B. 1 000 V
C. 2 000 V
D. 500 V
Wybór wartości napięcia probierczego spośród 1000 V, 500 V oraz 2000 V może być wynikiem niepełnego zrozumienia specyfiki pomiarów rezystancji izolacji uzwojeń wtórnych transformatorów bezpieczeństwa. Przy pomiarze rezystancji izolacji kluczowe jest zrozumienie, że transformator bezpieczeństwa jest przeznaczony do pracy w niskonapięciowych systemach elektrycznych, co wymaga zastosowania odpowiednich wartości napięcia probierczego. Napięcia na poziomie 1000 V i 2000 V są zbyt wysokie i mogą prowadzić do uszkodzenia izolacji oraz wrażliwych komponentów elektrycznych, co w konsekwencji zagraża bezpieczeństwu użytkowników. Napięcie 500 V, choć niższe od 1000 V, nadal jest zbyt wysokie dla niektórych zastosowań, szczególnie w kontekście transformatorów bezpieczeństwa, gdzie obowiązują normy ograniczające stosowane napięcia probiercze. Wybierając niewłaściwe napięcie, można również pominąć kluczowe testy, które powinny być przeprowadzane zgodnie z najlepszymi praktykami branżowymi. Dlatego istotne jest, aby podczas określania wartości napięcia probierczego kierować się zaleceniami takich norm jak IEC 61557, które wyraźnie wskazują na 250 V jako optymalną wartość dla takich pomiarów. Niezrozumienie tej kwestii może prowadzić do nieodpowiednich wniosków oraz potencjalnych zagrożeń, co podkreśla wagę znajomości i przestrzegania obowiązujących standardów w branży.

Pytanie 25

Jakie rozwiązania powinny być wdrożone w celu kompensacji mocy biernej w zakładzie przemysłowym, w którym znajdują się liczne silniki indukcyjne?

A. Podłączyć dławiki indukcyjne równolegle do silników
B. Podłączyć kondensatory równolegle do silników
C. Podłączyć dławiki indukcyjne szeregowo do silników
D. Podłączyć kondensatory szeregowo do silników
Włączenie kondensatorów równolegle do silników indukcyjnych jest skuteczną metodą kompensacji mocy biernej, ponieważ kondensatory te generują moc bierną pojemnościową, co pomaga zrównoważyć moc bierną indukcyjną pobieraną przez silniki. Silniki indukcyjne, zwłaszcza te pracujące w zakładach przemysłowych, mają tendencję do pobierania znacznych ilości mocy biernej, co może prowadzić do obciążenia sieci zasilającej oraz zwiększenia kosztów energii elektrycznej. Zastosowanie kondensatorów w konfiguracji równoległej pozwala na efektywne zredukowanie współczynnika mocy, co jest zgodne z normami branżowymi takimi jak IEC 61000-3-2 dotyczące jakości energii elektrycznej. Ponadto, kondensatory mogą być stosowane w systemach automatycznego sterowania, co umożliwia dynamiczną kompensację mocy biernej, zapewniając oszczędności operacyjne i zwiększając niezawodność systemu. Przykłady zastosowań obejmują przemysłowe instalacje zasilające, gdzie pojemnościowe kompensatory są zintegrowane z systemami zarządzania energią, co prowadzi do optymalizacji efektywności energetycznej.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie styczniki z podanych kategorii powinny być użyte podczas modernizacji szafy sterowniczej z szyną TH 35, zasilającej urządzenie napędzane silnikami indukcyjnymi klatkowym?

A. DC-2
B. DC-4
C. AC-3
D. AC-1
Wybór stycznika DC-2 oraz DC-4 jest nieodpowiedni w kontekście modernizacji szafy sterowniczej z silnikami indukcyjnymi klatkowym. Styki oznaczone jako DC-2 są przeznaczone głównie do obwodów prądowych o charakterze niewielkich obciążeń i nie są przystosowane do rozruchu silników asynchronicznych, które wymagają znacznie większej mocy i wytrzymałości mechanicznej. Z kolei styczniki DC-4, które są przeznaczone do zastosowań z silnikami prądu stałego, nie mogą efektywnie obsługiwać prądów rozruchowych silników indukcyjnych. Styki w tych stycznikach nie są przystosowane do radzenia sobie z dużymi skokami prądu, które występują w momentach załączania silników indukcyjnych, co może prowadzić do ich uszkodzenia oraz zmniejszenia efektywności całego systemu. Błędem jest również założenie, że silniki indukcyjne mogą być kontrolowane przez styczniki DC bez uwzględnienia ich charakterystyki pracy. W rzeczywistości zastosowanie niewłaściwego typu stycznika grozi nie tylko awarią sprzętu, ale również stwarza poważne zagrożenie dla bezpieczeństwa operacji. W takich przypadkach, kluczowe jest, aby zrozumieć różnice między stycznikami przeznaczonymi do prądu zmiennego a tymi dla prądu stałego, a także konsekwencje niewłaściwego doboru komponentów w systemach automatyki.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Watomierza
B. Fazomierza
C. Waromierza
D. Częstościomierza
Waromierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy biernej w obwodach prądu zmiennego. Działa na zasadzie pomiaru wartości mocy w układzie, w którym występuje przesunięcie fazowe między napięciem a prądem. Odpowiednią wartość mocy biernej można określić, wykorzystując wzór P = V * I * cos(ϕ), gdzie P to moc pozorna, a ϕ to kąt przesunięcia fazowego. Waromierz jest szczególnie przydatny w zastosowaniach przemysłowych, gdzie występują silniki elektryczne i inne urządzenia indukcyjne, które generują moc bierną. W praktyce, pomiar mocy biernej jest kluczowy dla optymalizacji efektywności energetycznej oraz dla zapobiegania nadmiernym kosztom związanym z opłatami za moc bierną. Przykładem zastosowania waromierza może być analiza obciążeń w zakładzie produkcyjnym, gdzie identyfikacja mocy biernej pozwala na odpowiednie dostosowanie charakterystyk urządzeń do potrzeb sieci energetycznej.

Pytanie 30

Korzystając z przedstawionej tabeli obciążalności długotrwałej dobierz minimalny przekrój przewodów dla instalacji trójfazowej ułożonej przewodami YDY w rurze instalacyjnej na ścianie drewnianej (sposób B2).
Wartość przewidywanego prądu obciążenia instalacji wynosi 36 A.

Obciążalność prądowa długotrwała przewodów miedzianych, w amperach
Izolacja PVC, trzy żyły obciążone
Temperatura żyły: 70°C. Temperatura otoczenia: 30°C w powietrzu, 20°C w ziemi
ułożenieA1A2B1B2CD
Przekrój
żyły
4 mm2242328273231
6 mm2312936344139
10 mm2423950465752
16 mm2565268627667
A. 4 mm2
B. 16 mm2
C. 6 mm2
D. 10 mm2
Wybór niewłaściwego przekroju przewodów dla instalacji trójfazowej może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i efektywności energetycznej. W przypadku odpowiedzi 6 mm2, chociaż teoretycznie zbliżone do wartości 36 A, przekrój ten jest na granicy obciążalności, co w praktyce może powodować ryzyko przegrzewania się przewodów, a w konsekwencji ich uszkodzenia. Przekrój 4 mm2 jest zdecydowanie niewystarczający, ponieważ jego obciążalność wynosi tylko 25 A, co stanowi poważne zagrożenie dla instalacji, a w skrajnych przypadkach może prowadzić do pożaru. Wybór przekroju 16 mm2, mimo iż wydaje się bezpieczny, jest nieekonomiczny i niepraktyczny dla danego obciążenia, co skutkuje niepotrzebnymi kosztami materiałowymi. Wszystkie te błędy są wynikiem braku zrozumienia podstawowych zasad dotyczących doboru przekrojów przewodów, które powinny bazować na przewidywanych obciążeniach oraz specyfice instalacji. Zgodnie z wytycznymi norm, takich jak PN-IEC 60364, powinno się stosować przekroje adekwatne do warunków pracy, aby zapewnić bezpieczeństwo i efektywność energetyczną systemu. Odpowiednie podejście do doboru przekrojów jest kluczem do minimalizacji ryzyka awarii oraz zwiększenia trwałości systemu elektrycznego.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Podczas wykonywania pomiarów okresowych na kablowej linii zasilającej 110 kV będzie mierzona rezystancja izolacji jednego z żył kabla w stosunku do pozostałych uziemionych żył. Jaki zakres pomiarowy powinien być ustawiony na urządzeniu pomiarowym, aby dokonany pomiar był poprawny?

A. 200 MΩ, 2500 V
B. 2000 MΩ, 2500 V
C. 200 MΩ, 1000 V
D. 2000 MΩ, 1000 V
Wybór zakresu 200 MΩ oraz 1000 V nie jest odpowiedni do pomiaru rezystancji izolacji wysokiego napięcia, jak w przypadku kabli 110 kV. Ustawienie na 200 MΩ ogranicza maksymalną rezystancję, jaką można zmierzyć, co może prowadzić do niedoszacowania stanu izolacji, szczególnie w przypadku kabli o wysokiej rezystancji, które mogą osiągać wartości znacznie przekraczające ten próg. Z kolei, wybór 1000 V jako napięcia pomiarowego nie jest wystarczający do przeprowadzenia wiarygodnych testów na kablach 110 kV. Przemysł elektroenergetyczny zaleca stosowanie wyższych napięć, takich jak 2500 V, aby uzyskać adekwatne wyniki, które odzwierciedlają rzeczywistą jakość izolacji. Przy pomiarach rezystancji izolacji istotna jest nie tylko sama wartość rezystancji, ale również odpowiednie napięcie, które pozwala na zdiagnozowanie potencjalnych defektów, takich jak mikropęknięcia czy degradacja materiałów izolacyjnych. Zbyt niskie napięcie i zakres mogą prowadzić do błędnych wniosków, co w dłuższej perspektywie może skutkować poważnymi awariami, zagrażającymi bezpieczeństwu instalacji oraz osób z nią związanych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Którego z wymienionych pomiarów eksploatacyjnych w instalacji oświetleniowej nie można zrealizować standardowym miernikiem uniwersalnym?

A. Napięć w poszczególnych fazach
B. Rezystancji izolacji przewodów
C. Prądu pobieranego przez odbiornik
D. Ciągłości przewodów ochronnych
Pomiar napięcia w poszczególnych fazach jest jednym z podstawowych zadań każdego pomiaru elektrycznego. Miernik uniwersalny doskonale nadaje się do tego celu, ponieważ potrafi zmierzyć wartości napięcia AC i DC, co jest kluczowe w instalacjach oświetleniowych, gdzie często występują różne fazy zasilania. Podobnie, pomiar ciągłości przewodów ochronnych również można przeprowadzić za pomocą miernika uniwersalnego, który posiada funkcję testowania ciągłości, zwykle sygnalizując dźwiękowo, gdy rezystancja jest na poziomie poniżej określonego progu, co jest istotne dla bezpieczeństwa użytkowania instalacji. Z kolei pomiar prądu pobieranego przez odbiornik jest kolejnym standardowym zastosowaniem miernika uniwersalnego, który, dzięki odpowiednim ustawieniom, może zmierzyć natężenie prądu w obwodzie. Używając funkcji pomiaru prądu, można ocenić, czy odbiorniki działają w granicach parametrów znamionowych, co zapobiega ich przeciążeniu. Wydaje się zatem, że wybór odpowiednich narzędzi do pomiarów technicznych wymaga zrozumienia, jakie pomiary można wykonać z użyciem mierników uniwersalnych, a które wymagają bardziej specjalistycznych narzędzi, takich jak megomierze.

Pytanie 35

Jakie dodatkowe urządzenie jest wymagane do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f = 50 Hz?

A. Bezpiecznik silnikowy
B. Opornik
C. Kondensator
D. Wyłącznik różnicowoprądowy
Rezystor w kontekście silników indukcyjnych trójfazowych zasilanych napięciem jednofazowym nie jest odpowiednim rozwiązaniem, ponieważ jego funkcja ogranicza prąd w obwodzie, co prowadzi do spadku momentu obrotowego i efektywności pracy silnika. Rezystory mogą być stosowane w układach do regulacji prędkości obrotowej, ale nie rozwiązują problemu fazowości, co jest kluczowe dla silników indukcyjnych. Wyłącznik silnikowy, mimo że jest ważnym elementem zabezpieczającym silnik przed przeciążeniem i zwarciem, nie jest rozwiązaniem pozwalającym na zasilanie silnika trójfazowego z jednofazowego źródła. Jego zadaniem jest przede wszystkim ochrona urządzenia, a nie zapewnienie odpowiednich warunków do jego pracy. Podobnie, wyłącznik różnicowoprądowy jest elementem ochronnym, który wykrywa różnicę prądów między przewodami fazowymi a neutralnym, co jest istotne dla bezpieczeństwa użytkowania, ale nie wpływa w żaden sposób na utworzenie niezbędnej trzeciej fazy. Często pojawia się nieporozumienie związane z rolą tych urządzeń w kontekście zasilania silników trójfazowych, co prowadzi do błędnych wniosków. Zrozumienie specyfiki działania silników oraz ich zastosowania wymaga dokładnej analizy funkcji poszczególnych komponentów i ich wpływu na parametry pracy, co jest kluczowe dla efektywności oraz bezpieczeństwa systemów zasilania.

Pytanie 36

Który z poniższych wyłączników nadprądowych powinien być zastosowany do zabezpieczenia obwodu zasilającego trójfazowy silnik klatkowy o następujących parametrach znamionowych: P = 11 kW, U = 400 V, cos φ = 0,73, η = 80%?

A. S303 C25
B. S303 C40
C. S303 C20
D. S303 C32
Wybór niewłaściwego wyłącznika nadprądowego może prowadzić do poważnych konsekwencji, zarówno dla samego silnika, jak i dla całego układu zasilania. W przypadku wyłączników S303 C25 i S303 C20, ich prąd znamionowy jest zbyt niski w stosunku do obliczonego prądu silnika, który wynosi około 18,5 A. Użycie wyłącznika C25, który ma prąd znamionowy 25 A, może prowadzić do częstych wyłączeń podczas normalnej pracy silnika, co w dłuższej perspektywie może prowadzić do niepotrzebnego stresu mechanicznego oraz uszkodzenia silnika. Podobnie, wybór C20 jest jeszcze bardziej ryzykowny, ponieważ jego prąd znamionowy nie tylko nie zapewnia odpowiedniego marginesu bezpieczeństwa, ale także zwiększa ryzyko wyłączeń przy normalnych obciążeniach. Ponadto, wyłącznik C40, mimo że posiada większy prąd znamionowy niż potrzebny, również nie jest odpowiedni, ponieważ jego wartość może prowadzić do zbyt późnych reakcji w przypadku przeciążenia, co zwiększa ryzyko uszkodzeń. W praktyce, dobór wyłączników nadprądowych powinien zawsze brać pod uwagę zarówno prąd znamionowy urządzenia, jak i charakterystykę pracy obwodu, aby zapewnić nie tylko ochronę, ale również optymalną wydajność systemu. Zgodnie z normami IEC 60947-2, istotne jest, aby wyłącznik był dostosowany do rzeczywistych warunków pracy, co w tym przypadku oznacza konieczność wyboru wyłącznika, który ma odpowiednio wyższy prąd znamionowy niż obliczony prąd silnika.

Pytanie 37

Który z podanych przewodów powinien zostać wybrany w celu zastąpienia uszkodzonego przewodu zasilającego silnik trójfazowy zainstalowany w odbiorniku ruchomym?

A. SM3x2,5 mm2
B. YLY 3x2,5 mm2
C. YDY 4x2,5 mm2
D. OP4x2,5 mm2
Wybór innego przewodu z listy, jak SM3x2,5 mm2, YDY 4x2,5 mm2 czy YLY 3x2,5 mm2, może prowadzić do nieodpowiednich warunków w instalacji elektrycznej. Przewód SM (silikonowy) jest typowo stosowany w aplikacjach o wysokiej elastyczności i odporności na wysokie temperatury, ale nie jest dedykowany do użytku w zasilaniu silników trójfazowych, co ogranicza jego zastosowanie w tym kontekście. YDY, jako przewód z izolacją PVC, ma swoje ograniczenia w zakresie odporności na substancje chemiczne, co czyni go niewłaściwym wyborem w warunkach przemysłowych, gdzie eksploatacja przewodu może wiązać się z narażeniem na oleje czy chemikalia. Natomiast YLY jest przewodem typu linkowego, który jest mniej odporny na uszkodzenia mechaniczne, co czyni go nieodpowiednim do zastosowań w ruchomych odbiornikach, gdzie przewody są narażone na ciągłe zginanie i naprężenia. Wybierając niewłaściwy typ przewodu, można nie tylko narazić instalację na awarię, ale również stworzyć ryzyko dla bezpieczeństwa użytkowników. Właściwy dobór przewodów powinien opierać się na analizie warunków pracy, rodzaju medium, w którym będą one eksploatowane, oraz ich odporności na różne czynniki zewnętrzne.

Pytanie 38

W silniku odkurzacza po wyjęciu z obudowy i załączeniu pełnego napięcia w serwisie zauważono zmniejszone obroty i iskrzenie na komutatorze. Na podstawie zamieszczonej tabeli wskaż, prawidłową kolejność czynności przy wykrywaniu i naprawie uszkodzenia w silniku odkurzacza.

Czynność
1demontaż elementów silnika
2próbne uruchomienie silnika przy zmniejszonym napięciu i doszlifowanie szczotek
3sprawdzenie długości szczotek i ich prawidłowego docisku do komutatora
4wykonanie badania na obecność zwarć w wirniku
5wymiana uszkodzonych podzespołów
6montaż podzespołów silnika
A. 3, 1, 4, 5, 6, 2
B. 1, 4, 3, 5, 2, 6
C. 4, 1, 5, 3, 6, 2
D. 3, 4, 2, 1, 5, 6
W przypadku niepoprawnych odpowiedzi pojawiają się typowe błędy myślowe związane z kolejnością działań diagnostycznych. Zaczynanie od demontażu elementów silnika bez wcześniejszej weryfikacji stanu szczotek prowadzi do nieefektywnej pracy oraz zwiększonego ryzyka uszkodzenia innych podzespołów. Diagnostyka powinna zawsze zaczynać się od najprostszych do najtrudniejszych problemów; w tym przypadku sprawdzenie szczotek jest kluczowe. Idąc dalej, pominiecie etapu badania wirnika na obecność zwarć może skutkować dalszymi uszkodzeniami, które nie będą widoczne gołym okiem. Wymiana uszkodzonych elementów przed dokładnym zrozumieniem przyczyny awarii prowadzi do marnotrawstwa czasu i zasobów. Ostatecznie, przeprowadzanie próbnego uruchomienia silnika przed całkowitym złożeniem i wykonaniem wszystkich niezbędnych napraw jest także niewłaściwą praktyką, która może prowadzić do dalszych awarii. W kontekście standardów branżowych, zawsze należy przestrzegać metodologii diagnostycznej, która zakłada systematyczne podejście i eliminację potencjalnych źródeł problemów, zaczynając od najprostszych rozwiązań. Dobre praktyki wskazują na znaczenie odpowiedniego przygotowania przed przystąpieniem do skomplikowanych operacji serwisowych, co pozwala na minimalizowanie ryzyka i zwiększenie efektywności napraw.

Pytanie 39

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 0,71 Ω
B. 4,79 Ω
C. 1,43 Ω
D. 2,87 Ω
Maksymalna dopuszczalna impedancja pętli zwarcia dla instalacji z wyłącznikiem nadprądowym C16 w sieci TN-S wynosi 1,43 Ω, co zapewnia odpowiednie warunki do samoczynnego wyłączenia zasilania w przypadku uszkodzenia. Taki wyłącznik nadprądowy zadziała, gdy prąd zwarciowy osiągnie wartość wystarczającą do jego uruchomienia, co w przypadku C16 wynosi 16 A. Aby zapewnić skuteczną ochronę, impedancja pętli zwarcia powinna być tak dobrana, aby prąd zwarciowy przekraczał wartość zadziałania wyłącznika. Przy napięciu 230 V, zgodnie z zasadą Ohma (U = I * R), maksymalna impedancja wynosi: Z = U / I = 230 V / 16 A = 14,375 Ω, co daje duży margines, ale w praktyce akceptowana wartość dla bezpiecznego działania to 1,43 Ω. Przykłady praktycznych zastosowań obejmują instalacje w budynkach mieszkalnych, gdzie ważne jest zapewnienie szybkiego odłączenia prądu w przypadku awarii. Standardy PN-IEC 60364-4-41 oraz PN-EN 61140 określają wymagania dotyczące ochrony przeciwporażeniowej, a także metodyka obliczania impedancji pętli zwarcia, co pozwala na właściwe zabezpieczenie przed porażeniem elektrycznym.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.