Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 08:28
  • Data zakończenia: 8 grudnia 2025 08:36

Egzamin niezdany

Wynik: 9/40 punktów (22,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

W celu zmniejszenia prędkości wysuwu tłoczyska siłownika pneumatycznego dwustronnego działania należy zastosować zawór

Ilustracja do pytania
A. dławiący.
B. zwrotny.
C. dławiąco-zwrotny.
D. zwrotny sterowany.
Wybór niepoprawnej odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych zaworów w układach pneumatycznych. Zawór zwrotny, na przykład, służy do zezwalania na przepływ medium w jednym kierunku, co oznacza, że nie jest w stanie kontrolować prędkości wysuwu tłoczyska siłownika. W przypadku zastosowania zaworu zwrotnego sterowanego, jego rola polega na umożliwieniu otwierania i zamykania przepływu na podstawie ciśnienia lub innego sygnału, ale również nie oferuje regulacji prędkości samego działania siłownika. Zawór dławiąco-zwrotny, z kolei, łączy funkcje zaworu zwrotnego z regulacją, jednak nie jest to idealne rozwiązanie dla precyzyjnej kontroli prędkości, jaką zapewnia zawór dławiący. Zrozumienie, że regulacja prędkości wymaga ograniczenia przepływu medium, a nie tylko manipulacji kierunkiem jego przepływu, jest kluczowe w prawidłowym doborze komponentów w systemach pneumatycznych. Typowe błędy polegają na myleniu funkcji zaworów oraz przypisywaniu im właściwości, których nie posiadają. Dlatego istotne jest, aby mieć na uwadze, że dla prawidłowego działania siłowników pneumatycznych i zapewnienia ich efektywności, zawór dławiący jest niezbędny, a inne z wymienionych zaworów nie spełniają tej funkcji w taki sam sposób.

Pytanie 3

Jaką metodę nie wykorzystuje się do wykrywania błędów transmisji danych w sieciach komunikacyjnych?

A. Weryfikacja sumy kontrolnej
B. Cykliczna redundancja
C. Pomiar napięcia sygnału przesyłanego
D. Sprawdzanie parzystości
Wszystkie metody wymienione w pytaniu, z wyjątkiem pomiaru poziomu napięcia, mają zastosowanie w detekcji błędów transmisji danych. Kontrola parzystości to jedna z najprostszych technik, gdzie do każdego bajtu danych dodawany jest dodatkowy bit, aby wskazać, czy liczba bitów o wartości 1 jest parzysta czy nieparzysta. Metoda ta może wykrywać błędy pojedynczego bitu, jednak nie jest w stanie zidentyfikować błędów wielu bitów, co stanowi jej główną słabość. Z kolei analiza sumy kontrolnej, opierająca się na zliczaniu wartości bajtów, pozwala na wykrycie błędów w transmisji, ale również nie jest w stanie naprawić uszkodzonych danych. Cykliczna kontrola nadmiarowości (CRC) to bardziej złożona metoda, która wykorzystuje algorytmy matematyczne do generowania kodu kontrolnego, co znacznie zwiększa zdolność detekcji błędów w porównaniu do poprzednich metod. Krytycznym błędem w myśleniu jest założenie, że wszystkie wymienione metody są na równi skuteczne w detekcji błędów. W rzeczywistości skuteczność każdej z nich zależy od kontekstu użycia oraz specyfiki przesyłanych danych. Pomiar poziomu napięcia nie jest metodą detekcji błędów, ponieważ koncentruje się na analizie fizycznych właściwości sygnału, a nie na weryfikacji spójności czy integralności danych. Dlatego ważne jest zrozumienie właściwego zastosowania każdej z tych metod w kontekście transmisji danych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Co oznaczają kolory przewodów w trójprzewodowych czujnikach zbliżeniowych prądu stałego?

A. niebieski - przewód sygnałowy; brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
B. brązowy (czerwony) - minus zasilania; czarny - plus zasilania
C. brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
D. brązowy (czerwony) - plus zasilania; czarny - przewód sygnałowy; niebieski - minus zasilania
Odpowiedź, w której brązowy (czerwony) przewód oznacza plus zasilania, czarny przewód to przewód impulsowy, a niebieski przewód to minus zasilania, jest prawidłowa i zgodna z powszechnie przyjętymi standardami branżowymi. W systemach zbliżeniowych prądu stałego kolorystyka przewodów ma kluczowe znaczenie dla zapewnienia prawidłowego działania urządzeń. Użycie brązowego lub czerwonego przewodu jako przewodu dodatniego (plus) jest normą w wielu krajach, a czarny przewód jest standardowo używany jako przewód sygnałowy lub impulsowy. Niebieski przewód w tym kontekście pełni funkcję przewodu ujemnego (minus). W praktyce, stosowanie się do tych oznaczeń ma kluczowe znaczenie dla prawidłowego podłączenia urządzeń, co zapobiega zwarciom oraz uszkodzeniom komponentów. W przypadku błędnego podłączenia, na przykład zamieniając przewody plus i minus, może dojść do uszkodzenia czujnika lub nieprawidłowego działania systemu. Przykładem zastosowania tej wiedzy może być instalacja systemów automatyki budynkowej, gdzie prawidłowe podłączenie czujników zbliżeniowych jest kluczowe dla ich efektywności.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 0 A
B. 1 A
C. 3 A
D. 2 A
Odpowiedzi 1 A, 2 A i 3 A sugerują istnienie różnicy prądów w obwodzie, co w przypadku prawidłowego działania wyłącznika różnicowoprądowego jest niepoprawne. Wyłącznik ten działa na zasadzie pomiaru różnicy między prądem wpływającym a wypływającym, a w warunkach normalnych te dwa prądy powinny być równe, co prowadzi do zera. W przypadku podania wartości 1 A, 2 A czy 3 A można by błędnie wnioskować, że w obwodzie występuje jakaś forma upływu prądu, co jest mylące. Typowym błędem w myśleniu jest założenie, że każdy prąd płynący przez obwód musi generować różnice natężeń, co nie jest zgodne z zasadami zachowania energii. W praktyce, w instalacjach elektrycznych, sumowanie prądów sinusoidalnych w obwodzie powinno zawsze prowadzić do zera, co jest warunkiem stabilności i bezpieczeństwa systemu. Warto pamiętać, że niewłaściwe zrozumienie działania wyłączników różnicowoprądowych może prowadzić do błędnych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co w skrajnych przypadkach może zagrażać życiu i zdrowiu użytkowników.

Pytanie 8

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. drukarka laserowa
B. silnik indukcyjny klatkowy
C. odtwarzacz płyt CD oraz DVD
D. chłodziarko-zamrażarka z cyfrowym sterowaniem
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 9

Który symbol graficzny oznacza cewkę przekaźnika o opóźnionym załączaniu?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Odpowiedź B jest poprawna, ponieważ znak graficzny cewki przekaźnika o opóźnionym załączaniu jest dobrze zdefiniowany w normach dotyczących symboli elektrycznych. Oznaczenie to zawiera charakterystyczny element w postaci dwóch przekątnych linii, które znajdują się w obrębie prostokąta reprezentującego cewkę. Te linie symbolizują opóźnienie czasowe, co jest istotne w kontekście zastosowania przekaźników w systemach automatyki. Przekaźniki o opóźnionym załączaniu są wykorzystywane w wielu aplikacjach, takich jak systemy zabezpieczeń, gdzie potrzebne jest opóźnienie przed aktywacją alarmu, bądź w układach automatyki domowej, gdzie używa się ich do kontroli oświetlenia lub urządzeń. Zrozumienie tego symbolu jest kluczowe dla inżynierów i techników, którzy zajmują się projektowaniem i wdrażaniem systemów elektrycznych, ponieważ pozwala to na prawidłowe interpretowanie schematów oraz zapewnienie ich zgodności z obowiązującymi standardami, takimi jak IEC 60617, co zwiększa przejrzystość i efektywność projektowania systemów elektronicznych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakiego rodzaju sprzęgła należy użyć do połączenia dwóch wałów przedstawionych na rysunku?

Ilustracja do pytania
A. Tulejowego.
B. Kołnierzowego.
C. Oldhama.
D. Łubkowego.
Sprzęgło Oldhama jest idealnym rozwiązaniem do połączenia wałów, które mogą być przesunięte względem siebie osiowo, co jest kluczowe w wielu zastosowaniach inżynieryjnych i przemysłowych. Jego konstrukcja pozwala na przenoszenie momentu obrotowego przy jednoczesnym zminimalizowaniu skutków przesunięcia osiowego. W praktyce, sprzęgła Oldhama znajdują zastosowanie w napędach, gdzie wały mogą być ustawione w różnych płaszczyznach, na przykład w robotyce czy automatyce. Ponadto, sprzęgła te charakteryzują się niskim zużyciem, co zwiększa ich trwałość oraz redukuje potrzebę konserwacji. Dobre praktyki inżynieryjne zalecają ich użycie w systemach, gdzie występują wibracje lub cykliczne obciążenia, ponieważ ich konstrukcja umożliwia tłumienie drgań. Przykładowo, w systemach napędowych samochodów elektrycznych czy maszyn CNC, sprzęgła Oldhama są powszechnie stosowane, co potwierdza ich wszechstronność i efektywność w różnych aplikacjach przemysłowych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Do sprawdzenia wymiaru ϕ40 należy użyć

Ilustracja do pytania
A. suwmiarki ślusarskiej.
B. liniału krawędziowego.
C. mikrometru zewnętrznego.
D. średnicówki mikrometrycznej.
Wybór średnicówki mikrometrycznej, mikrometru zewnętrznego lub liniału krawędziowego do pomiaru średnicy ϕ40 wykazuje zrozumienie ograniczeń tych narzędzi. Średnicówki mikrometryczne, mimo że są precyzyjne, są bardziej wyspecjalizowane i przeznaczone do pomiarów mniejszych średnic, co czyni je mniej praktycznymi w przypadku wymiaru 40 mm. Zazwyczaj używa się ich do bardziej precyzyjnych analiz, gdzie większa dokładność jest niezbędna, a więc są one zbędne w tym kontekście. Mikrometry zewnętrzne, chociaż oferują wysoką precyzję, mają ograniczenia dotyczące zakresu pomiarowego, co utrudnia ich zastosowanie w przypadku większych średnic, co czyni je niewłaściwym narzędziem do pomiaru średnicy 40 mm. Liniały krawędziowe z kolei nie są przeznaczone do pomiaru średnic, a jedynie do pomiarów długości, co czyni je całkowicie nieadekwatnym wyborem w kontekście tego pytania. Typowe błędy myślowe mogą obejmować założenie, że każde narzędzie pomiarowe wystarczy do każdego wymiaru, co jest błędne. Przy wyborze narzędzi do pomiarów niezbędne jest zrozumienie specyfiki i zakresu możliwości każdego narzędzia, a także jego zastosowania w praktycznych sytuacjach. Niewłaściwy dobór narzędzia może prowadzić do nieprecyzyjnych pomiarów, co w efekcie wpływa na jakość i bezpieczeństwo produkowanych elementów.

Pytanie 15

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy trójpołożeniowy (5/3)
B. trójdrogowy trójpołożeniowy (3/3)
C. trójdrogowy dwupołożeniowy (3/2)
D. pięciodrogowy dwupołożeniowy (5/2)
Wybór zaworu trójdrogowego trójpołożeniowego (3/3) czy dwupołożeniowego (3/2) raczej nie jest dobrym pomysłem. To znaczy, te zawory mają swoje ograniczenia. Zawór trójdrogowy ma tylko trzy porty i nie może jednocześnie zasilać siłownika i go zatrzymać, co nie jest wystarczające w bardziej skomplikowanych układach. A jakbyś wybrał pięciodrogowy dwupołożeniowy (5/2), to też nie będzie ok, bo ma tylko dwa położenia robocze, czyli nie zatrzymasz siłownika w konkretnych punktach. Moim zdaniem, takie wybory mogą prowadzić do problemów w procesach, gdzie ważna jest precyzja. Ważne jest, żeby dobrze rozumieć różnice między różnymi typami zaworów i ich zastosowaniem, żeby nie wprowadzać nieefektywnych rozwiązań i trzymać się norm branżowych.

Pytanie 16

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RRR - trzy osie obrotowe
B. TTT - trzy osie prostoliniowe
C. RTT - jedną oś obrotową i dwie osie prostoliniowe
D. RRT - dwie osie obrotowe i jedną oś prostoliniową
Odpowiedź RRR, która sugeruje manipulatory z kilkoma osiami obrotowymi, nie za bardzo pasuje do kontekstu prostopadłościennej przestrzeni roboczej. Obrotowe ruchy mogą wydawać się elastyczne, ale w praktyce nie dają tej samej precyzji, co ruchy prostoliniowe. Odpowiedzi RRT i RTT, które łączą osie obrotowe i prostoliniowe, też nie spełniają wymagań tej konkretnej przestrzeni. Wiesz, w takich manipulacjach ważne są bezpośrednie ruchy liniowe, które pozwalają na dotarcie do każdego punktu w prostopadłościanie, a z samymi obrotami to nie takie proste. Często błędne myślenie przy takich odpowiedziach wynika z niedostatecznego zrozumienia kinematyki, a niektórzy mylą ruchy manipulatorów z ich geometrią. Dlatego, moim zdaniem, ważne jest, żeby znać różne typy kinematyki, żeby móc dobierać odpowiednie urządzenia do konkretnych zadań.

Pytanie 17

Który z przedstawionych sposobów ułożenia przewodu hydraulicznego jest prawidłowy?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Dobra robota! Odpowiedź D to strzał w dziesiątkę, bo pokazuje, jak powinny być ułożone przewody hydrauliczne, żeby wszystko działało jak należy. Wiesz, jak to jest – jeśli zagięcia są za ostre, to przepływ cieczy się psuje i może być wtedy kłopot z uszkodzeniem przewodu. Z tego, co pamiętam, normy PN-EN mówią, żeby przewody kłaść tak, by ciecz mogła płynąć swobodnie, a to naprawdę wpływa na to, jak działa cały system. Im lepiej ułożone przewody, tym mniejsze ryzyko turbulencji, które mogą zniszczyć przewód i sprawić, że więcej energii będzie trzeba zużyć. W przemyśle maszynowym to mega ważne – tam dokładność w prowadzeniu przewodów ma ogromne znaczenie dla wydajności i bezpieczeństwa. Jak przewody są dobrze ułożone, to dłużej posłużą i rzadziej będą się psuć, a to w końcu pozwala zaoszczędzić kasę na naprawach.

Pytanie 18

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. grupy siłowników z modułem rozszerzającym
B. silnika z pompą hydrauliczną
C. programatora ze sterownikiem
D. programatora z siłownikiem
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Który z elementów mechatronicznego układu napędowego umożliwia zmianę prędkości wysuwania tłoczyska siłownika 1A1?

Ilustracja do pytania
A. Sterownik PLC
B. Zawór 1V2
C. Zawór 1V1
D. Zespół OZ1
Zawór 1V2 to naprawdę ważny element w mechatronicznym układzie napędowym. To dzięki niemu możemy precyzyjnie kontrolować, jak szybko wysuwa się tłok w siłowniku 1A1. Zawór proporcjonalny 1V2 reguluje przepływ medium, co bezpośrednio wpływa na ruch siłownika. W praktyce, kiedy operator zmienia przepływ oleju lub powietrza przez ten zawór, to może dostosować prędkość wysuwania tłoka do konkretnych potrzeb. To bardzo istotne w różnych dziedzinach, jak na przykład automatyka przemysłowa, gdzie precyzyjne sterowanie ruchem wpływa na efektywność produkcji. Według norm ISO oraz wytycznych o systemach hydraulicznych, zawory proporcjonalne dają nam większą precyzję i elastyczność w zarządzaniu napędem. I warto dodać, że dobrze dobrany i skonfigurowany zawór proporcjonalny naprawdę może zmniejszyć zużycie energii w systemie, co jest teraz na czasie, zwłaszcza w kontekście zrównoważonego rozwoju.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. utlenianie
B. smarność
C. lepkość
D. gęstość

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 30

Którymi cyframi oznaczono na rysunku siłownika pneumatycznego beztłoczkowego wózek oraz system amortyzacji?

Ilustracja do pytania
A. wózek – 5, system amortyzacji – 11
B. wózek – 5, system amortyzacji – 7
C. wózek – 6, system amortyzacji – 11
D. wózek – 6, system amortyzacji – 7

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje, że wózek siłownika pneumatycznego beztłoczkowego oznaczony jest cyfrą 6, a system amortyzacji cyfrą 11. Wózek jest kluczową częścią układu, gdyż to na nim montowane są elementy robocze. W praktyce, jego poprawne działanie zapewnia prawidłowe przenoszenie obciążeń i ruch. System amortyzacji z kolei, oznaczony cyfrą 11, odgrywa niezwykle ważną rolę w tłumieniu drgań oraz stabilizacji wózka podczas pracy, co jest istotne dla bezpieczeństwa oraz wydajności operacji. Standardy branżowe, takie jak ISO 6431 dotyczące cylindrów pneumatycznych, uwzględniają zasady dotyczące konstrukcji i działania siłowników, co potwierdza znaczenie tych komponentów. Właściwe zrozumienie ich działania jest fundamentalne dla projektowania i eksploatacji systemów automatyki oraz pneumatyki, co ma praktyczne zastosowanie w wielu branżach, od produkcji po systemy transportowe.

Pytanie 31

Jaki środek smarny powinien być regularnie uzupełniany w smarownicy sprężonego powietrza?

A. Towot
B. Pastę
C. Olej
D. Silikon

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Olej" jest jak najbardziej w porządku, bo smarownice sprężonego powietrza właśnie do olejów są stworzone. Używa się ich, żeby dobrze smarować i chronić różne części układów pneumatycznych. Dzięki olejowi, ruchome elementy współpracują lepiej, a ich żywotność jest dłuższa. Na przykład oleje mineralne i syntetyczne to popularne wybory w urządzeniach pneumatycznych, bo poprawiają działanie narzędzi, takich jak młoty udarowe czy wkrętarki. Zgodnie ze standardem ISO 8573, odpowiednie smarowanie jest kluczowe, żeby sprzęt działał długo i nie generował wysokich kosztów utrzymania. Ważne, żeby regularnie uzupełniać olej w smarownicy, bo jego brak może prowadzić do większego zużycia części i awarii. Dobrze jest sprawdzać poziom oleju i dbać o smarownicę według wskazówek producenta.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Tensomer foliowy powinien być zamocowany do podłoża

A. zszywką
B. śrubą
C. klejem
D. nitem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tensomer foliowy to naprawdę ważny materiał w budownictwie i przemyśle, więc jego mocowanie do podłoża za pomocą kleju ma sens z kilku powodów. Klej tworzy trwałe i elastyczne połączenie, co jest mega istotne, bo folia może się kurczyć lub rozciągać w zależności od temperatury czy wilgotności. Ważne, żeby używać odpowiednich klejów – najlepiej takich, które są dopasowane do folii i podłoża. Na przykład, kleje poliuretanowe czy akrylowe dobrze się sprawdzają, bo mają dobrą przyczepność i są odporne na warunki atmosferyczne. Przy klejeniu trzeba też dobrze przygotować powierzchnię – czyli usunąć kurz i tłuszcz, żeby to wszystko trzymało się jak należy. Generalnie, mocowanie folii klejem to norma w branży, bo to zapewnia długotrwałą stabilność, co się później opłaca, jeżeli chodzi o koszty.

Pytanie 34

Co należy uczynić w przypadku rany z krwotokiem tętniczym?

A. założyć opaskę uciskową powyżej miejsca urazu
B. położyć poszkodowanego w pozycji bocznej ustalonej i czekać na pomoc medyczną
C. nałożyć opatrunek z jałowej gazy bezpośrednio na ranę
D. przemyć ranę wodą utlenioną i oczekiwać na pomoc medyczną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Założenie opaski uciskowej powyżej rany jest kluczowym działaniem w przypadku krwotoku tętniczego. Krwotok tętniczy charakteryzuje się intensywnym krwawieniem, które może prowadzić do szybkiej utraty krwi i wstrząsu hipowolemicznego. Opaska uciskowa działa poprzez wywieranie stałego ucisku na naczynia krwionośne, co ogranicza przepływ krwi do miejsca rany, a tym samym zmniejsza utratę krwi. Ważne jest, aby opaskę założyć powyżej rany, aby skutecznie zablokować krwawienie. Należy również pamiętać, że opaska uciskowa powinna być stosowana tylko w sytuacjach, gdy inne metody, takie jak bezpośredni ucisk na ranę, nie przynoszą efektu. W praktyce, opaskę należy założyć jak najszybciej, a następnie jak najszybciej wezwać pomoc medyczną. W przypadku urazów kończyn, opaska powinna być umieszczona jak najwyżej, aby odpowiednio ograniczyć przepływ krwi. Zachowanie tej procedury jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi standardami w zakresie pierwszej pomocy.

Pytanie 35

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Poliamid
B. Silikon
C. Lateks
D. Poliuretan

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poliamid, znany również jako nylon, jest jednym z najlepszych tworzyw sztucznych do produkcji kół zębatych ze względu na swoje doskonałe właściwości mechaniczne. Ma wysoką wytrzymałość na rozciąganie oraz odporność na ścieranie, co czyni go idealnym materiałem do zastosowań, gdzie występują znaczne obciążenia. Dzięki niskiemu współczynnikowi tarcia, poliamid zmniejsza zużycie energii i przedłuża żywotność elementów mechanicznych. Przykłady zastosowania obejmują przemysł motoryzacyjny, gdzie koła zębate z poliamidu są używane w układach przekładniowych, a także w urządzeniach przemysłowych, takich jak maszyny CNC. Poliamid jest także odporny na działanie olejów i rozpuszczalników, co dodatkowo zwiększa jego wszechstronność. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór poliamidu do produkcji kół zębatych jest zgodny z wieloma normami branżowymi, co potwierdza jego zalety w kontekście efektywności i trwałości w aplikacjach inżynieryjnych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Którą z wymienionych wielkości można zmierzyć za pomocą miernika przedstawionego na zdjęciu?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Napięcie przemienne.
C. Temperaturę.
D. Natężenie prądu przemiennego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar napięcia przemiennego za pomocą miernika uniwersalnego, jak ten przedstawiony na zdjęciu, jest fundamentalną funkcją, która znajduje zastosowanie w wielu dziedzinach inżynierii elektrycznej. Użycie skali oznaczonej "ACV" wskazuje, że urządzenie jest przystosowane do pomiarów napięcia w obwodach prądu zmiennego. Napięcie przemienne jest powszechnie spotykane w instalacjach elektrycznych, gdzie dostarczana energia elektryczna ma formę sinusoidalną. Zrozumienie wartości napięcia jest kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów zasilających. Stosując ten miernik, inżynierowie mogą szybko ocenić, czy napięcie w obwodzie jest zgodne z wymaganiami technicznymi, co jest niezbędne przy projektowaniu i konserwacji instalacji. Standardy takie jak IEC 61010 wskazują na konieczność stosowania odpowiednich narzędzi pomiarowych do pracy w różnych warunkach, co czyni pomiar napięcia przemiennego kluczowym elementem pracy elektryka. Używanie miernika uniwersalnego nie tylko wspiera techniczną dokładność, ale również zmniejsza ryzyko uszkodzeń urządzeń oraz potencjalnych zagrożeń dla użytkownika.

Pytanie 39

Silnik synchroniczny zasilany z przemiennika częstotliwości o ustawieniach przedstawionych na rysunku, będzie pracował z prędkością obrotową

Ilustracja do pytania
A. 1500 obr./min
B. 4,8 obr./min
C. 50 obr./min
D. 400 obr./min

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik synchroniczny zasilany z przemiennika częstotliwości o częstotliwości 50 Hz i czterech parach biegunów będzie kręcił się z prędkością 1500 obrotów na minutę. To wynika z prostego wzoru na prędkość obrotową silnika, który brzmi: n = (120 * f) / p. Tu n to prędkość w obrotach na minutę, f to częstotliwość w Hertzach, a p to liczba par biegunów. W naszym przypadku mamy 120 * 50 / 4, co daje 1500 obr./min. Dobrze jest wiedzieć, że te obliczenia są mega przydatne w praktyce. Dzięki nim można na przykład precyzyjnie ustawić parametry pracy silników w różnych zastosowaniach przemysłowych, jak taśmy transportowe czy wentylacja. Silniki synchroniczne są super popularne w automatyce, bo są dokładne w utrzymywaniu prędkości i oszczędne energetycznie. W dodatku, dzięki przemiennikom częstotliwości możesz płynnie kontrolować prędkość silnika, co jest zgodne z najlepszymi praktykami zarządzania energią.

Pytanie 40

Prawidłowo wykonane połączenie lutowane przedstawiono

Ilustracja do pytania
A. na rysunkach 1 i 2
B. tylko na rysunku 1
C. tylko na rysunku 2
D. na rysunkach 2 i 3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowo wykonane połączenie lutowane jest kluczowym elementem w elektronice, ponieważ zapewnia niezawodność i trwałość połączeń. W przypadku lutowania należy zawsze dążyć do uzyskania połączenia, które charakteryzuje się dobrą przyczepnością, brakiem nadmiaru cyny oraz brakiem zimnych lutów. Na rysunku 1 widoczny jest przewód, który został prawidłowo przylutowany: cyna równomiernie pokrywa miejsce lutowania, co zapewnia doskonałą przewodność. Rysunek 2 również ilustruje poprawne połączenie, gdzie cyna dobrze przylega do przewodu, co jest zgodne z najlepszymi praktykami w lutowaniu, takimi jak zachowanie odpowiednich temperatur i użycie właściwych materiałów. W przeciwieństwie do tego, na rysunku 3 możemy zauważyć nadmiar cyny, co może prowadzić do problemów z przewodnością oraz ryzyka uszkodzenia komponentów. W praktyce, stosowanie odpowiednich technik lutowania wpływa na jakość i niezawodność całego układu elektronicznego, co jest kluczowe w zastosowaniach przemysłowych oraz hobbystycznych.