Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 18 grudnia 2025 19:53
  • Data zakończenia: 18 grudnia 2025 19:58

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Element przedstawiony na rysunku to

Ilustracja do pytania
A. czujnik pojemnościowy.
B. pirometr.
C. termometr rtęciowy.
D. czujnik rezystancyjny.
To, co widzimy na rysunku, to czujnik rezystancyjny, znany również jako termometr rezystancyjny (RTD). Jest szeroko stosowany w przemyśle do pomiaru temperatury dzięki swojej precyzji i stabilności. Czujniki rezystancyjne działają na zasadzie zmiany rezystancji metalu pod wpływem temperatury. Najczęściej spotykanymi materiałami są platyna (Pt-100, Pt-500, Pt-1000), ponieważ oferuje liniową charakterystykę i dobrą powtarzalność pomiarów. Przykładowo, Pt-100 oznacza, że rezystancja czujnika wynosi 100 omów przy 0°C. W praktyce, znajdziesz takie czujniki w systemach HVAC, procesach chemicznych czy nawet w sprzęcie laboratoryjnym. Standardy, takie jak DIN EN 60751, określają ich konstrukcję i precyzję. Dzięki swoim właściwościom, czujniki te są preferowane w aplikacjach, gdzie małe błędy pomiarowe są kluczowe. Moim zdaniem, ich popularność wynika również z dostępności precyzyjnych przetworników, które łatwo integrują się z systemami automatyki.

Pytanie 2

Którą cyfrą na prezentowanej płycie oznaczono diodę prostowniczą?

Ilustracja do pytania
A. 4
B. 3
C. 2
D. 1
Dioda prostownicza oznaczona jest na płytce cyfrą 3, co jest kluczowe w kontekście układów elektronicznych. Dioda prostownicza pełni rolę zaworu jednokierunkowego, umożliwiając przepływ prądu tylko w jednym kierunku. W praktyce, wykorzystuje się ją głównie do prostowania prądu zmiennego (AC) na prąd stały (DC). W elektronice jest to niezbędne, na przykład w zasilaczach, które muszą dostarczyć prąd stały do urządzeń. Standardowo, zgodnie z normami branżowymi, oznaczenie na płytce drukowanej (PCB) pozwala na szybkie zidentyfikowanie komponentów, co jest ważne dla serwisu i napraw. Warto zwrócić uwagę, że diody prostownicze mogą różnić się parametrami, takimi jak prąd przewodzenia czy napięcie przebicia, co determinuje ich zastosowanie w różnych układach. Pamiętaj, że dobre praktyki projektowe zalecają stosowanie odpowiednich zabezpieczeń, np. bezpieczników, aby uniknąć uszkodzeń w przypadku awarii diody.

Pytanie 3

Do przykręcania lub odkręcania nakrętki przedstawionej na rysunku przeznaczony jest klucz

Ilustracja do pytania
A. czołowy.
B. hakowy.
C. imbusowy.
D. nasadowy.
Nakrętka przedstawiona na rysunku to nakrętka rowkowa, do której przykręcania lub odkręcania stosuje się klucz hakowy. Ten typ klucza jest specjalnie zaprojektowany, aby pasować do rowków lub otworów w nakrętce, umożliwiając łatwe manewrowanie nawet w trudno dostępnych miejscach. Klucze hakowe są powszechnie używane w przemyśle maszynowym i motoryzacyjnym, gdzie precyzja i siła są kluczowe. Ich konstrukcja umożliwia równomierne rozłożenie siły, co minimalizuje ryzyko uszkodzenia elementów złącznych. Przy pracy z maszynami, nakrętki rowkowe często są stosowane do mocowania łożysk lub elementów obrotowych, a użycie klucza hakowego zapewnia, że proces ten jest bezpieczny i efektywny. Standardy przemysłowe, takie jak DIN 1810, określają wymiary i specyfikacje dla kluczy hakowych, co jest kluczowe dla utrzymania kompatybilności i bezpieczeństwa w pracy. W praktyce, klucz hakowy to niezastąpione narzędzie w warsztatach i fabrykach, a jego użycie jest często preferowane ze względu na wygodę i niezawodność w trudnych warunkach.

Pytanie 4

Na podstawie fragmentu dokumentacji przekaźnika wskaż zaciski, do których należy podłączyć napięcie zasilania 24 V DC.

Ilustracja do pytania
A. Do zacisku 1 podłączyć „+”, a do zacisku 3 „-”
B. Do zacisku 3 podłączyć „+”, a do zacisku 4 „-”
C. Do zacisku 1 podłączyć „-”, a do zacisku 3 „+”
D. Do zacisku 3 podłączyć „-”, a do zacisku 4 „+”
Twoja odpowiedź jest poprawna! Podłączenie napięcia zasilania 24 V DC wymaga dużej uwagi co do prawidłowej polaryzacji. Zaciski 3 i 4 są oznaczone jako miejsca do podłączenia tego rodzaju zasilania. W Twoim przypadku, zacisk 3 jest miejscem, gdzie podłączamy ujemny biegun (-), a na zacisk 4 przypada dodatni biegun (+). Zastosowanie prawidłowej polaryzacji jest kluczowe, szczególnie w przypadku urządzeń elektronicznych, które mogą być wrażliwe na niewłaściwe podłączenie. Dokumentacja techniczna zawsze powinna być Twoim głównym źródłem informacji. Dobrym zwyczajem jest oznaczanie przewodów i zacisków, aby uniknąć pomyłek przy podłączaniu. W praktyce, poprawne podłączenie zasilania 24 V DC jest standardem w wielu aplikacjach przemysłowych, gdzie stabilność i niezawodność zasilania są kluczowe. Warto również pamiętać o zastosowaniu zabezpieczeń przeciwprzepięciowych w takich układach.

Pytanie 5

Którym narzędziem nie można ściągnąć izolacji z przewodów elektrycznych wielożyłowych?

A. Narzędzie 1
Ilustracja do odpowiedzi A
B. Narzędzie 4
Ilustracja do odpowiedzi B
C. Narzędzie 2
Ilustracja do odpowiedzi C
D. Narzędzie 3
Ilustracja do odpowiedzi D
Pierwsze narzędzie widoczne na zdjęciu to obcinak do rur, najczęściej używany przy pracach hydraulicznych – do cięcia rur z tworzyw sztucznych, miedzi lub aluminium. Nie nadaje się do zdejmowania izolacji z przewodów elektrycznych, ponieważ jego ostrze jest zaprojektowane do przecinania grubych, sztywnych materiałów, a nie do precyzyjnego nacinania powłoki przewodów. Gdyby ktoś próbował użyć go do kabli, bardzo łatwo mógłby uszkodzić żyły przewodzące. W przeciwieństwie do niego, pozostałe narzędzia (2, 3 i 4) to ściągacze izolacji, zaprojektowane właśnie do pracy z przewodami jedno- i wielożyłowymi. Mają regulację średnicy, ograniczniki głębokości cięcia i specjalne szczęki zapobiegające przecięciu miedzi. Moim zdaniem to bardzo dobre pytanie praktyczne – w warsztacie czy na budowie zdarza się, że ktoś myli obcinak do rur z ściągaczem, bo oba mają podobny kształt uchwytu. W rzeczywistości jednak to zupełnie inne narzędzia – jedno tnie, drugie tylko usuwa cienką warstwę izolacji, zachowując nienaruszony przewodnik. Profesjonalny elektryk zawsze użyje dedykowanego ściągacza, aby uniknąć ryzyka przegrzania lub zwarcia w przewodzie.

Pytanie 6

Aby sprawdzić ciągłość połączeń elektrycznych, należy podłączyć przewody pomiarowe do zacisków

Ilustracja do pytania
A. VΩ i COM i ustawić pokrętło w pozycji V
B. VΩ i COM i ustawić pokrętło w pozycji Ω
C. 10A i COM i ustawić pokrętło w pozycji Ω
D. mA i COM i ustawić pokrętło w pozycji A
Sprawdzenie ciągłości połączeń elektrycznych za pomocą multimetru to podstawowa umiejętność w elektronice i elektrotechnice. Aby to zrobić poprawnie, musisz podłączyć przewody pomiarowe do zacisków VΩ i COM, a pokrętło ustawić w pozycji Ω. Dlaczego? Ponieważ tryb omomierza (Ω) pozwala na pomiar rezystancji. W trybie ciągłości miernik wysyła niewielki prąd przez obwód i mierzy, czy jest on zamknięty, co oznacza, że rezystancja powinna być bliska zeru. Jest to szczególnie użyteczne przy szukaniu przerw w przewodach, sprawdzaniu bezpieczników czy diagnozowaniu połączeń lutowanych. W praktyce, dobrym zwyczajem jest także upewnienie się, że przewody pomiarowe są nieuszkodzone, a styki czyste, by uzyskać wiarygodny odczyt. Multimetry cyfrowe często emitują sygnał dźwiękowy, gdy połączenie jest ciągłe. Pamiętanie o tych zasadach nie tylko zwiększa bezpieczeństwo, ale także skuteczność pracy z urządzeniami elektronicznymi. Z mojego doświadczenia wynika, że wielu początkujących zapomina o odpowiednim ustawieniu pokrętła, co prowadzi do błędnych odczytów.

Pytanie 7

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 500 Ω
B. 1 000 Ω
C. 0 Ω
D. 100 Ω
Czujnik Pt500 to popularny typ czujnika rezystancyjnego wykonanego z platyny, który ma rezystancję nominalną 500 Ω przy temperaturze 0 °C. Platyna jest stosowana ze względu na jej stabilność chemiczną i liniowy przyrost rezystancji wraz ze wzrostem temperatury, co czyni ją idealnym materiałem do precyzyjnych pomiarów temperatury. W praktyce oznacza to, że czujnik Pt500 będzie miał wartość 500 Ω w temperaturze zera stopni Celsjusza. Dlaczego to takie ważne? W inżynierii i automatyzacji, precyzyjne pomiary temperatury są kluczowe dla utrzymania procesów produkcyjnych w odpowiednich warunkach. Czujniki Pt500 są stosowane w wielu aplikacjach, od kontroli klimatyzacji po zaawansowane procesy przemysłowe, ponieważ oferują wysoką dokładność i stabilność pomiarów. Ich zastosowanie jest szeroko zgodne ze standardami przemysłowymi, gdzie stabilność i niezawodność są priorytetami. Warto pamiętać, że rezystancja czujnika zmienia się zgodnie z wzrostem temperatury, co pozwala na precyzyjne określenie aktualnych warunków termicznych. To sprawia, że są one wyjątkowo przydatne w środowiskach wymagających dokładnego monitorowania temperatury.

Pytanie 8

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. przetwornik PWM.
B. zadajnik cyfrowo-analogowy.
C. analogowo-cyfrowy konwerter USB.
D. przetwornica napięcia.
Zgadza się, przedstawiony przetwornik to analogowo-cyfrowy konwerter USB. Dlaczego? Konwertery tego rodzaju służą do przekształcania sygnałów analogowych na cyfrowe, co jest kluczowe w wielu aplikacjach, gdzie potrzebujemy monitorować i analizować sygnały analogowe za pomocą komputerów. Proces ten odbywa się dzięki przetwornikowi analogowo-cyfrowemu (A/D), który zamienia sygnał analogowy na cyfrowy, a następnie poprzez interfejs USB przekazuje go do komputera. USB zapewnia także zasilanie i komunikację, co czyni te urządzenia bardzo praktycznymi i wszechstronnymi. W praktyce takie konwertery są często używane w laboratoriach, przemyśle oraz w projektach inżynieryjnych, gdzie dokładne pomiary i analiza danych są niezbędne. Z mojego doświadczenia, są one również bardzo wygodne w zastosowaniach edukacyjnych, ponieważ pozwalają na szybkie i bezproblemowe podłączenie urządzeń pomiarowych do PC.

Pytanie 9

Na podstawie danych w tabeli, dobierz średnicę wiertła potrzebnego do wykonania otworu gwintowanego M5 w elemencie wykonanym z mosiądzu.

Średnice wierteł pod gwinty w różnych materiałach
Średnica gwintuŚrednica wiertła w mm
AluminiumŻeliwo, Brąz, MosiądzStal, Żeliwo ciągliwe, Stopy Zn,
32,32,42,5
3,52,72,82,9
43,13,23,3
4,53,53,63,7
54,04,14,2
5,54,34,44,5
64,74,85,0
75,75,86,0
86,46,56,7
108,18,28,4
............
A. 4,4 mm
B. 3,6 mm
C. 4,0 mm
D. 4,1 mm
Wybór średnicy wiertła na poziomie 4,1 mm dla gwintu M5 w mosiądzu jest idealny i zgodny z normami inżynierskimi. Dlaczego? Otóż, mosiądz, jako materiał o średniej twardości, wymaga odpowiedniej obróbki skrawaniem, by zapewnić trwałość i dokładność gwintu. Gwintowanie to proces, który powinien uwzględniać nie tylko średnicę gwintu nominalnego, ale także właściwości materiału, z którego jest wykonany element. Przy gwintowaniu w mosiądzu stosuje się wiertła o średnicy nieco większej niż w bardziej miękkich materiałach, takich jak aluminium. Wiertło 4,1 mm pozwala na uzyskanie odpowiedniego stosunku skrawania, co jest kluczowe, by uniknąć nadmiernego naprężenia gwintu oraz zapewnić płynność jego pracy. W praktyce, przy obróbce mosiądzu, ważne jest także chłodzenie oraz stosowanie odpowiednich płynów chłodzących, aby zminimalizować zużycie narzędzi i poprawić jakość powierzchni gwintu. Moim zdaniem, dobrze dobrane wiertło to podstawa, zarówno w amatorskiej, jak i profesjonalnej obróbce metali. Pamiętajmy, że wybór odpowiedniego narzędzia jest nie tylko kwestią precyzji, ale także efektywności i ekonomii pracy.

Pytanie 10

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. P
B. PID
C. PI
D. PD
Regulator PI jest często stosowany w układach automatyki, gdzie wymagana jest korekcja błędu w sposób ciągły i precyzyjny. Na wykresie widzimy charakterystyczną odpowiedź skokową tego typu regulatora, która wskazuje na sumę proporcjonalnej i całkującej części. Część proporcjonalna, oznaczona jako K_R, odpowiada za szybkie reagowanie na zmiany, zaś część całkująca, charakteryzująca się stałą czasową T_i, wpływa na eliminację błędów ustalonych. Moim zdaniem, takie podejście jest niezwykle przydatne w układach, gdzie precyzja i stabilność są kluczowe, na przykład w systemach grzewczych lub klimatyzacyjnych. Standardy branżowe, takie jak ISA S5.1, zalecają stosowanie regulatorów PI w wielu aplikacjach przemysłowych ze względu na ich zdolność do utrzymania stabilności bez nadmiernego uchybu. W praktyce, znajomość odpowiednich parametrów regulacji umożliwia inżynierom dostosowanie układu do specyficznych wymagań operacyjnych, co jest kluczowe w dynamicznie zmieniających się środowiskach przemysłowych.

Pytanie 11

Wskaż, które przebiegi kombinacyjne odpowiadają realizacji funkcji AND.

A. Przebiegi 3
Ilustracja do odpowiedzi A
B. Przebiegi 2
Ilustracja do odpowiedzi B
C. Przebiegi 1
Ilustracja do odpowiedzi C
D. Przebiegi 4
Ilustracja do odpowiedzi D
Pozostałe przebiegi nie odpowiadają funkcji logicznej AND, ponieważ sposób pojawiania się sygnału wyjściowego nie wynika wyłącznie z jednoczesnego stanu wysokiego na obu wejściach. W przebiegu pierwszym widać, że sygnał %Q0.3 jest aktywny w większym zakresie niż rzeczywiste nakładanie się impulsów %I0.0 i %I0.7 – wygląda to raczej jak realizacja funkcji OR (alternatywy), w której stan wysoki występuje, gdy dowolny z sygnałów wejściowych jest aktywny. Przebieg trzeci natomiast przypomina funkcję XOR (różnicy symetrycznej), gdzie wyjście jest wysokie, gdy tylko jeden z sygnałów jest w stanie 1, a nie oba jednocześnie. Czwarty przykład można z kolei zinterpretować jako funkcję opóźnioną lub z dodatkową pamięcią – wyjście pojawia się później niż faktyczne przecięcie obu sygnałów wejściowych. W praktyce w systemach PLC takie różnice wynikają często z błędnej konfiguracji przekaźników logicznych lub złego taktowania sygnałów wejściowych. Funkcja AND jest bardzo precyzyjna – wyjście pojawia się dokładnie tam, gdzie oba wejścia są równe 1 w tym samym czasie. Dlatego każdy przypadek, w którym %Q0.3 utrzymuje się dłużej, krócej lub w innych momentach niż wspólny fragment 1 na wejściach, nie może być uznany za prawidłową realizację tej funkcji. W automatyce takie pomyłki skutkują np. uruchomieniem urządzenia mimo braku potwierdzenia bezpieczeństwa, co jest niezgodne z zasadami logiki sterowania.

Pytanie 12

Do demontażu przekaźnika z szyny TH35 należy zastosować

Ilustracja do pytania
A. wkrętak płaski.
B. klucz oczkowy.
C. klucz nasadowy.
D. wkrętak krzyżowy.
Przekaźniki montowane na szynie TH35, znane jako szyny DIN, są standardem w instalacjach elektrycznych. Te szyny umożliwiają szybki montaż i demontaż urządzeń takich jak przekaźniki, styczniki czy automatyka przemysłowa. Użycie wkrętaka płaskiego do demontażu takiego przekaźnika to nie tylko wygodne, ale przede wszystkim bezpieczne rozwiązanie. Wynika to z konstrukcji urządzeń montowanych na tych szynach, które często posiadają specjalne zaczepy lub zatrzaski. Wkrętak płaski idealnie nadaje się do delikatnego podważenia tych zaczepów, umożliwiając szybkie i bezproblemowe zdjęcie przekaźnika bez ryzyka uszkodzenia samego urządzenia lub szyny. Moim zdaniem, znajomość tych drobnych, ale istotnych szczegółów montażowych jest kluczowa w pracy każdego elektryka. Właściwe narzędzia to podstawa efektywności i bezpieczeństwa pracy. W praktyce, często zdarza się, że narzędzia takie jak wkrętak płaski są niezastąpione, zwłaszcza gdy pracujemy w ograniczonej przestrzeni rozdzielnicy elektrycznej. Dobre praktyki mówią o stosowaniu narzędzi zgodnie z ich przeznaczeniem, co znacząco zmniejsza ryzyko uszkodzeń i zwiększa trwałość komponentów.

Pytanie 13

Którym kodem oznaczony będzie przekaźnik programowalny dobrany do układu automatycznego sterowania, jeżeli zasilanie układu będzie wynosiło 24 V DC, a maksymalne wartości prądów obciążenia nie będą przekraczały 8 A przy napięciu nie przekraczającym wartości 250 V AC.

Kod przekaźnikaNapięcie zasilaniaWyjściaZnamionowe obciążenie wyjścia
001230 V AC4 wyjścia przekaźnikowe10 A/ 250 V AC
00224 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
00324 V DC4 wyjścia tranzystorowe0,5 A/ 24 V DC
00412 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
005220 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
A. 003
B. 002
C. 004
D. 005
Wybór przekaźnika oznaczonego kodem 002 jest poprawny, ponieważ spełnia on zarówno wymagania dotyczące napięcia zasilania, jak i obciążenia wyjść. Przekaźnik ten pracuje przy zasilaniu 24 V DC, co jest zgodne z wymaganiem dla układu. Ponadto, znamionowe obciążenie wyjścia wynosi 10 A przy napięciu 250 V AC, co bez problemu pokrywa wymagane 8 A przy takim samym napięciu. W praktyce, wybór odpowiedniego przekaźnika programowalnego jest kluczowy, aby zapewnić niezawodność i bezpieczeństwo systemu automatyki. Należy zawsze uwzględniać nie tylko napięcie zasilania, ale także typ i wartość obciążenia. Przekaźniki programowalne są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających elastycznego sterowania procesami. Dobór odpowiednich parametrów technicznych jest zgodny z dobrymi praktykami projektowania systemów automatyki, które zakładają nie tylko spełnienie minimalnych wymagań, ale również uwzględnienie pewnego zapasu bezpieczeństwa. Warto również pamiętać, że przekaźniki programowalne, dzięki swojej elastyczności, mogą być konfigurowane do różnych zadań, co czyni je uniwersalnym narzędziem w wielu zastosowaniach przemysłowych.

Pytanie 14

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. termoelektryczne.
B. rezystancyjne półprzewodnikowe.
C. bimetalowe.
D. rezystancyjne metalowe.
Odpowiedź, że czujniki Pt100 są rezystancyjnymi metalowymi czujnikami, jest całkowicie poprawna. Pt100 to jeden z najpopularniejszych typów czujników temperatury stosowanych w przemyśle, a ich nazwa pochodzi od platyny (Pt) używanej w ich konstrukcji oraz wartości nominalnej oporu 100 omów w temperaturze 0°C. Czujniki rezystancyjne, znane również jako RTD (Resistance Temperature Detector), działają na zasadzie zmiany oporu elektrycznego wraz ze zmianą temperatury. Platyna jest wykorzystywana w tych czujnikach ze względu na jej stabilność chemiczną, liniowość charakterystyki oraz dokładność pomiaru. Przetworniki z sygnałem wyjściowym 4–20 mA są standardem w przemyśle, ponieważ umożliwiają precyzyjne przesyłanie wartości pomiarowej na duże odległości z minimalnymi stratami. Dzięki temu, w systemach automatyki, można dokładnie monitorować i kontrolować procesy technologiczne. Warto też wspomnieć, że dzięki specjalnym wersjom czujników Pt100 można mierzyć temperatury w zakresie od -200°C do 850°C, co czyni je niezwykle wszechstronnymi. Moim zdaniem, pracując w automatyce, warto wiedzieć, jakie czujniki są stosowane w różnych aplikacjach, ponieważ każda sytuacja wymaga innego podejścia i narzędzi, a wiedza o działaniu i specyfikacji czujników Pt100 to podstawa w wielu branżach technologicznych.

Pytanie 15

Które oznaczenie powinien zawierać przewód jeżeli jego płaszcz ochronny jest wykonany z polichlorku winylu odpornego na wysokie temperatury?

Ilustracja do pytania
A. V2
B. N4
C. N2
D. V3
Oznaczenie V2 jest kluczowe, gdy mówimy o przewodach, których płaszcz ochronny wykonany jest z polichlorku winylu odpornego na wysokie temperatury. To oznaczenie wskazuje, że materiał ten jest przygotowany do pracy w trudniejszych warunkach, gdzie temperatura może znacząco wzrosnąć. Polichlorek winylu, popularnie znany jako PVC, jest powszechnie stosowany w przemyśle elektrycznym ze względu na swoje właściwości izolacyjne i odporność chemiczną. Kiedy wybieramy przewód do zastosowań wymagających wyższej odporności termicznej, taki jak w instalacjach przemysłowych lub w miejscach narażonych na działanie promieniowania cieplnego, przewody oznaczone V2 spełniają te wymagania. Często spotyka się je w systemach oświetleniowych, w pobliżu urządzeń grzewczych, czy w instalacjach na dachach budynków. Ważne jest, aby przestrzegać odpowiednich norm i standardów, takich jak PN-EN czy VDE, które szczegółowo opisują wymagania dla materiałów przewodów w różnych zastosowaniach. Dzięki temu możemy zapewnić bezpieczeństwo i niezawodność naszych instalacji. V2 to gwarancja, że instalacja wytrzyma ekstremalne warunki bez ryzyka uszkodzeń.

Pytanie 16

Na schemacie układu sterowania elementy PT1 i PT2 to

Ilustracja do pytania
A. falowniki.
B. prostowniki niesterowane.
C. prostowniki sterowane.
D. przemienniki częstotliwości.
Na schemacie widoczne są dwa elementy oznaczone jako PT1 i PT2, które pełnią funkcję prostowników sterowanych. Charakterystycznym symbolem jest tu dioda z ukośną linią przy bramce – oznacza to tyrystor (SCR), który pozwala regulować moment przewodzenia prądu w każdej połówce sinusoidy napięcia przemiennego. Dzięki temu można sterować napięciem wyjściowym i w efekcie prędkością lub momentem silnika prądu stałego (oznaczonego jako M na rysunku). W praktyce takie rozwiązania stosuje się w układach napędowych, gdzie wymagana jest płynna regulacja obrotów. Sterowanie kątem załączenia tyrystora pozwala zmieniać średnią wartość napięcia zasilającego silnik. Moim zdaniem to bardzo elegancki i klasyczny przykład regulacji mocy w systemach DC, jeszcze zanim falowniki stały się powszechne. W przemyśle taki układ był (i nadal bywa) używany np. w dźwignicach, suwnicach czy walcarkach, gdzie liczy się precyzja i niezawodność. W odróżnieniu od prostowników niesterowanych, tutaj sterowanie odbywa się poprzez impuls bramkowy, co daje znacznie większą kontrolę nad procesem.

Pytanie 17

Przedstawione na ilustracjach narzędzie służy do montażu

Ilustracja do pytania
A. kołków rozprężnych.
B. pierścieni Segera.
C. podkładek dystansowych.
D. zabezpieczeń E-ring.
Narzędzie przedstawione na ilustracjach to specjalna forma szczypiec do montażu zabezpieczeń E-ring. Te niewielkie zabezpieczenia są powszechnie stosowane w mechanice do utrzymywania elementów na osiach lub wałkach. Szczypce mają charakterystyczne końcówki, które umożliwiają zakleszczenie się w otworze E-ring i jego bezpieczne zamontowanie. W praktyce, zabezpieczenia te stosuje się w przekładniach, silnikach oraz innych mechanizmach, gdzie konieczne jest szybkie i bezpieczne mocowanie elementów. Przy stosowaniu tych narzędzi zaleca się przestrzeganie odpowiednich norm, takich jak DIN 471 lub ISO 10642, które definiują wymiary i wymagania dotyczące tego typu zabezpieczeń. Dzięki temu mamy pewność, że montujemy elementy zgodnie z wymogami technicznymi. E-ringi są cenione za prostotę montażu oraz demontażu, co znacząco przyspiesza procesy serwisowe. Często można je spotkać w urządzeniach codziennego użytku, co świadczy o ich uniwersalności i niezawodności. Samo narzędzie jest ergonomicznie zaprojektowane, aby zapewnić komfort pracy i precyzję, co jest kluczowe w zastosowaniach technicznych.

Pytanie 18

Na schemacie przedstawiono

Ilustracja do pytania
A. przetwornik napięcia AC na prąd AC
B. regulowany wzmacniacz napięć lub prądów zmiennych.
C. konwerter łącza szeregowego na łącze światłowodowe.
D. przetwornik pomiarowy prądu lub napięcia AC
Wybrałeś konwerter łącza szeregowego na łącze światłowodowe, co jest trafnym wyborem. Tego typu urządzenia są kluczowe w systemach komunikacji, gdyż pozwalają na przesył danych na duże odległości bez strat sygnału. Konwersja sygnału z RS232 na transmisję światłowodową eliminuje problemy z zakłóceniami elektromagnetycznymi, które są częste w tradycyjnych kablach miedzianych. Z mojego doświadczenia, tego rodzaju konwertery są standardem w przemyśle, gdzie niezawodność i odporność na zakłócenia są kluczowe. Zastosowanie światłowodów również zwiększa bezpieczeństwo transmisji danych, co jest istotne w aplikacjach przemysłowych i wojskowych. Standard RS232, choć stary, nadal jest powszechnie używany ze względu na swoją prostotę i niezawodność, a jego integracja ze światłowodami dodatkowo przedłuża jego użyteczność. Konwertery te są często stosowane w automatyce przemysłowej oraz systemach sterowania, gdzie istotna jest precyzja i stabilność sygnału. Warto także wspomnieć, że światłowody mają o wiele większą przepustowość w porównaniu do tradycyjnych kabli, co w przyszłości może być kluczowe w przypadku rosnącej ilości przesyłanych danych.

Pytanie 19

Do mocowania elementów przy wykorzystaniu wkrętów o wyglądzie przedstawionym na ilustracji trzeba użyć

Ilustracja do pytania
A. wkrętaków krzyżowych.
B. kluczy oczkowych.
C. wkrętaków płaskich.
D. kluczy imbusowych.
Wybór wkrętaka krzyżowego do tego rodzaju wkrętów jest absolutnie właściwy. Wkręty z łbem krzyżowym, często oznaczane jako Phillips, są zaprojektowane tak, by zapewniać pewne mocowanie bez ryzyka wyślizgnięcia się narzędzia. Konstrukcja krzyża w łbie wkrętu umożliwia lepszą dystrybucję siły, co przekłada się na bardziej efektywne wkręcanie. Dzięki temu nie tylko łatwiej jest uzyskać odpowiedni moment dokręcania, ale także zmniejsza się ryzyko uszkodzenia samego wkrętu. W codziennej praktyce, takie wkręty są używane w wielu dziedzinach, od montażu mebli po skomplikowane konstrukcje elektroniczne. Korzystanie z wkrętaka krzyżowego jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie właściwego dopasowania narzędzia do elementu złącznego. Jest to kluczowe nie tylko dla trwałości samego połączenia, ale także dla bezpieczeństwa użytkowania danego produktu. Obecnie, na rynku dostępne są wkrętaki krzyżowe o różnych rozmiarach, co pozwala na precyzyjne dopasowanie narzędzia do konkretnego wkrętu, co jest nieocenione w profesjonalnych zastosowaniach.

Pytanie 20

Na którym rysunku przedstawiono zawór odcinający z pokrętłem?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawnie – przedstawiony zawór z pokrętłem to klasyczny zawór odcinający. Jego zadaniem jest całkowite zatrzymanie lub dopuszczenie przepływu medium, najczęściej powietrza lub cieczy technicznej, w układzie pneumatycznym lub hydraulicznym. Pokrętło umożliwia ręczne sterowanie – dzięki niemu operator może precyzyjnie zamknąć lub otworzyć przepływ. W praktyce przemysłowej takie zawory montuje się np. przy zasilaniu siłowników, przed filtrami, reduktorami czy elementami serwisowymi, aby móc bezpiecznie odciąć część instalacji do konserwacji lub naprawy. W konstrukcji zaworów odcinających istotne są szczelność i trwałość uszczelnień – często stosuje się teflonowe lub gumowe gniazda, które zapewniają pełne uszczelnienie nawet przy niskich ciśnieniach. Moim zdaniem warto zwrócić uwagę, że to jedno z podstawowych urządzeń w każdym układzie pneumatycznym – niby proste, ale bez niego trudno byłoby bezpiecznie serwisować maszynę.

Pytanie 21

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. temperatury.
B. ciśnienia.
C. naprężeń.
D. pola magnetycznego.
Wybrałeś odpowiedź dotyczącą pola magnetycznego, co jest prawidłowe. Przedstawiony czujnik to kontaktron, czyli rodzaj przełącznika sterowanego polem magnetycznym. Działa na zasadzie zamykania lub otwierania obwodu elektrycznego pod wpływem zbliżenia magnesu. Jest to bardzo popularne rozwiązanie w systemach zabezpieczeń, na przykład w alarmach okiennych i drzwiowych, gdzie magnes umieszczony na ruchomej części powoduje zmianę stanu kontaktronu. Kontaktrony są również wykorzystywane w licznikach rowerowych do detekcji obrotu koła. Dzięki swojej prostocie i niezawodności są szeroko stosowane w różnych aplikacjach przemysłowych. Warto pamiętać, że ich działanie opiera się na prostym fizycznym zjawisku reakcji na pole magnetyczne, co czyni je niezawodnymi w wielu zastosowaniach. Standardy branżowe dla takich urządzeń obejmują normy dotyczące ich czułości i trwałości, co zapewnia bezpieczeństwo i długą żywotność. Moim zdaniem, kontaktrony są doskonałym przykładem na to, jak prosta technologia może być niezwykle efektywna w praktyce.

Pytanie 22

W celu zmierzenia mocy czynnej pobieranej z sieci elektrycznej przez klimatyzator, należy użyć

A. woltomierza i miernika natężenia przepływu powietrza.
B. termometru i woltomierza.
C. woltomierza i amperomierza.
D. termometru i miernika natężenia przepływu powietrza.
Moc czynna, zwana też mocą rzeczywistą, jest kluczowa w określaniu, ile energii elektrycznej urządzenie zużywa do wykonywania rzeczywistej pracy, w tym przypadku chłodzenia powietrza przez klimatyzator. Aby ją zmierzyć, niezbędne są dwa podstawowe przyrządy: woltomierz i amperomierz. Woltomierz mierzy napięcie elektryczne, które jest potencjałem, jaki napędza prąd przez urządzenie. Amperomierz z kolei mierzy natężenie prądu, które jest ilością przepływających ładunków elektrycznych. Moc czynna to iloczyn napięcia, natężenia oraz współczynnika mocy. Z tego wynika, że sama znajomość napięcia i natężenia nie wystarcza do pełnego zrozumienia zużycia energii przez urządzenie, ale są to kluczowe składniki. W praktyce, mierząc moc czynną, możemy efektywnie zarządzać zużyciem energii, optymalizować koszty i unikać przeciążeń w instalacji domowej. Standardy międzynarodowe, takie jak te opracowane przez IEC, zalecają regularne monitorowanie mocy czynnej w urządzeniach elektrycznych dla ich bezpiecznej i efektywnej pracy. Klimatyzatory, szczególnie w dużych budynkach, są znaczącymi odbiorcami energii i ich efektywne monitorowanie może przełożyć się na znaczne oszczędności energetyczne. Dlatego znajomość i umiejętność stosowania tych przyrządów pomiarowych to podstawa w zawodzie elektryka.

Pytanie 23

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Temperatury.
B. Natężenia przepływu.
C. Natlenienia.
D. Ciśnienia.
Przetwornik przedstawiony na rysunku to przetwornik ciśnienia, co można rozpoznać po kilku charakterystycznych elementach. Po pierwsze, zakres pomiarowy podany w jednostkach bar (0-10 bar) jednoznacznie wskazuje na pomiar ciśnienia. Przetworniki ciśnienia są powszechnie używane w różnych branżach, od przemysłu chemicznego po systemy HVAC, gdzie monitorowanie ciśnienia jest kluczowe dla bezpieczeństwa i efektywności procesów. Standardowy sygnał wyjściowy 4-20 mA jest szeroko stosowany w automatyce przemysłowej ze względu na swoją odporność na zakłócenia i możliwość przesyłania sygnałów na duże odległości. Przetworniki ciśnienia mogą być stosowane do monitorowania ciśnienia w systemach hydraulicznych, pneumatycznych, a także w aplikacjach związanych z kontrolą procesów. Dodatkowo, przetworniki takie są niezbędne w aplikacjach związanych z bezpieczeństwem, gdzie monitorowanie ciśnienia może zapobiec awariom. Moim zdaniem, znajomość działania i zastosowań przetworników ciśnienia to podstawa dla każdego inżyniera zajmującego się automatyką przemysłową.

Pytanie 24

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 1, I3 = 1.
B. I2 = 1, I3 = 0.
C. I2 = 0, I3 = 0.
D. I2 = 0, I3 = 1.
Odpowiedź, że I2 = 1, I3 = 0, jest prawidłowa z kilku powodów. W układach automatyki pneumatycznej, czujniki takie jak B1 i B2 monitorują położenie elementów wykonawczych, tutaj siłownika. Przy wsuniętym tłoczysku, czujnik B1 powinien być aktywowany, co oznacza, że na wejściu I2 pojawia się stan wysoki (1). Czujnik B2, z kolei, monitoruje położenie wysuniętego tłoczyska, a ponieważ tłoczysko jest wsunięte, B2 pozostaje nieaktywny, co oznacza stan niski (0) na wejściu I3. Praktycznym zastosowaniem takiego układu jest kontrolowanie sekwencji pracy maszyny, gdzie kluczowe jest, aby kolejne kroki były podejmowane tylko wtedy, gdy poprzednie zostały prawidłowo zakończone. Standardy branżowe, takie jak IEC 61131 dotyczące programowania sterowników PLC, zalecają precyzyjne monitorowanie stanów wejść i wyjść, aby zapewnić bezpieczną i efektywną pracę systemu. Moim zdaniem, zrozumienie, jak działa taka logika, jest fundamentem w projektowaniu stabilnych i niezawodnych systemów automatyki. Warto także zwrócić uwagę na to, że stan czujnika B1 jako aktywny przy wsuniętym tłoczysku to dobra praktyka, która pomaga w łatwym diagnozowaniu ewentualnych problemów.

Pytanie 25

Do wykonania połączeń w przedstawionej na rysunku puszce zaciskowej silnika elektrycznego należy wykorzystać

Ilustracja do pytania
A. klucz płaski.
B. wkrętak płaski.
C. wkrętak torx.
D. klucz imbusowy.
Do wykonania połączeń w puszce zaciskowej przedstawionej na zdjęciu należy użyć klucza płaskiego. Widoczne na fotografii śruby z sześciokątnymi łbami to typowe elementy stosowane w połączeniach elektrycznych silników trójfazowych – najczęściej do montażu mostków (zwór) w konfiguracji gwiazdy lub trójkąta. Klucz płaski pozwala na dokładne i równomierne dokręcenie tych połączeń, co jest bardzo istotne, ponieważ zbyt słabe dokręcenie może prowadzić do grzania się styków, a w konsekwencji do uszkodzenia izolacji lub nawet pożaru. Z kolei zbyt mocne dociśnięcie może zniszczyć końcówki oczkowe lub pęknięcie gwintu. W praktyce warto stosować klucz o odpowiednim rozmiarze (najczęściej 8, 10 lub 13 mm w zależności od silnika). Moim zdaniem to jeden z tych przypadków, gdzie precyzja manualna i świadomość techniczna mają ogromne znaczenie – silnik z luźnym połączeniem fazy to gotowy przepis na awarię. Dodatkowo, w profesjonalnym serwisie używa się kluczy dynamometrycznych, by zachować właściwy moment dokręcania zgodny z normami producenta.

Pytanie 26

Na schemacie przedstawiono

Ilustracja do pytania
A. przetwornik pomiarowy prądu lub napięcia AC.
B. konwerter łącza szeregowego na łącze światłowodowe.
C. regulowany wzmacniacz napięć lub prądów zmiennych.
D. przetwornik napięcia AC na prąd AC.
Na schemacie widzimy konwerter, który zamienia klasyczne łącze szeregowe RS-232 na łącze światłowodowe. Po lewej stronie oznaczenia TxD i RxD wskazują na typowy interfejs komunikacji szeregowej, natomiast po prawej znajdują się symbole nadajnika i odbiornika światłowodowego (FO – Fiber Optic). Urządzenie to umożliwia przesyłanie danych w formie impulsów świetlnych, co pozwala na transmisję na duże odległości bez zakłóceń elektromagnetycznych i bez konieczności galwanicznego połączenia między urządzeniami. Zasilanie w szerokim zakresie (24–240 V AC/DC) sugeruje zastosowanie przemysłowe – typowe dla automatyki, sterowników PLC i systemów monitoringu. Moim zdaniem to przykład nowoczesnego podejścia do komunikacji, które łączy prostotę RS-232 z niezawodnością światłowodu. W praktyce takie konwertery montuje się w szafach sterowniczych, by połączyć odległe stanowiska pomiarowe lub serwery. Dzięki nim można znacznie wydłużyć zasięg transmisji (nawet do kilku kilometrów) i uniezależnić się od szumów elektrycznych obecnych w fabrykach.

Pytanie 27

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór odpowiedniego elementu do zastąpienia uszkodzonego S1 jest kluczowy dla prawidłowego działania układu. Na schemacie widzimy elektrozawór sterujący, gdzie S1 pełni funkcję zaworu rozdzielającego. Jego zadaniem jest kontrolowanie przepływu medium, dzięki czemu układ pneumatyczny działa zgodnie z założeniami. W tym kontekście wybór zaworu z odpowiednim typem sterowania, np. mechanicznego czy pneumatycznego, jest istotny. Poprawna odpowiedź wskazuje na element, który może pełnić tę funkcję, zapewniając niezawodność i dokładność działania układu. W branży pneumatycznej dobór elementu zastępczego często opiera się na standardach, takich jak ISO 5599-1, które określają wymiary i sposób montażu. Właściwie dobrany zawór zapewnia minimalizację ryzyka przecieków i optymalne działanie systemu. Praktyczne zastosowanie tego wyboru można zauważyć w automatyzacji procesów, gdzie takie elementy odpowiadają za szybką i precyzyjną kontrolę ruchów mechanicznych.

Pytanie 28

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. bezpieczeństwa.
B. redukujący.
C. zwrotny.
D. dławiący.
Zawór redukujący to kluczowy element w systemach pneumatycznych, gdzie niezbędne jest utrzymanie stałego ciśnienia, niezależnie od wahań w ciśnieniu zasilania. Tego rodzaju zawory działają na zasadzie redukcji ciśnienia wlotowego do określonego poziomu, co jest niezbędne dla bezpieczeństwa i efektywności pracy układu. W praktyce, zawór redukujący można spotkać w różnych aplikacjach przemysłowych, takich jak systemy sterowania maszyn czy linie produkcyjne, gdzie wymagana jest precyzyjna kontrola ciśnienia. Dobre praktyki branżowe sugerują instalowanie zaworów redukujących w miejscach, gdzie ciśnienie zasilania może ulegać znacznym wahaniom, co mogłoby prowadzić do niekontrolowanych zmian w działaniu siłowników lub innych komponentów pneumatycznych. Warto również zauważyć, że zawory te często są wyposażone w manometry do monitorowania ciśnienia po redukcji, co pozwala na precyzyjną kontrolę i ewentualne dostosowanie ustawień. Wybór odpowiedniego zaworu redukującego, spełniającego normy takie jak ISO 4414, jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności całego systemu. Takie rozwiązania są szeroko stosowane w przemyśle motoryzacyjnym, lotniczym i wielu innych sektorach, gdzie precyzyjna kontrola ciśnienia jest krytyczna dla działania urządzeń.

Pytanie 29

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DG-w
B. DY-w
C. DS-w
D. LY-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 30

Do pomiaru ciśnienia cieczy w układach hydraulicznych stosuje się

A. manometry.
B. barometry.
C. areometry.
D. higrometry.
Manometry to podstawowe narzędzia stosowane w hydraulice do pomiaru ciśnienia cieczy. Działają na zasadzie równowagi sił w układzie zamkniętym, co pozwala na dokładne określenie wartości ciśnienia. Są niezwykle powszechne w wielu branżach, od przemysłu petrochemicznego po produkcję maszyn. Praktyczne zastosowania manometrów obejmują monitorowanie ciśnienia w układach chłodniczych, instalacjach wodociągowych czy systemach pneumatycznych. Warto wiedzieć, że manometry są kluczowym elementem bezpieczeństwa w zakładach przemysłowych, ponieważ pozwalają na szybkie wykrycie nieprawidłowości, które mogą prowadzić do awarii lub wypadków. Standardowe praktyki branżowe zalecają regularną kalibrację manometrów, aby zapewnić ich dokładność i niezawodność. Istnieją różne rodzaje manometrów, takie jak manometry mechaniczne czy cyfrowe, które mogą być stosowane w zależności od specyfiki aplikacji. Ważne jest, by wybierać odpowiednie manometry zgodnie z zakresem ciśnienia i medium, z którym będą pracować. Stosowanie manometrów to nie tylko kwestia pomiaru, ale również dbałości o bezpieczeństwo i efektywność procesów.

Pytanie 31

Który zawór rozdzielający należy zamontować w układzie elektropneumatycznym przedstawionym na rysunku?

Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Zawór1234
Ilustracja do pytania
A. 1
B. 2
C. 4
D. 3
Wybór zaworu numer 4 jest właściwy, ponieważ w układzie elektropneumatycznym przedstawionym na schemacie wymagane jest użycie zaworu typu 5/2 z dwiema cewkami. Tego typu zawory pozwalają na precyzyjne sterowanie ruchem siłownika, co jest kluczowe w systemach, które wymagają dwukierunkowego działania. Zawory 5/2 z dwiema cewkami stosuje się w bardziej zaawansowanych aplikacjach, gdzie potrzeba większej kontroli nad siłownikiem. Dwie cewki umożliwiają przełączanie pomiędzy dwoma stanami roboczymi, co jest istotne w kontekście pracy z zaawansowanymi systemami automatyki. Z mojego doświadczenia, takie rozwiązanie jest standardem w branży przemysłowej, szczególnie tam, gdzie liczy się niezawodność i precyzja działania. Dodatkowo, zawory te pozwalają na łatwe przełączanie biegunowości, co zwiększa ich uniwersalność. W praktyce, zastosowanie tego typu zaworu w układach pneumatycznych zwiększa efektywność i bezpieczeństwo pracy, minimalizując jednocześnie ryzyko awarii. To także zgodne z dobrymi praktykami inżynierskimi, które zalecają użycie zaworów 5/2 w systemach wymagających niezawodnego sterowania kierunkiem przepływu powietrza.

Pytanie 32

Do bezpośredniego pomiaru wartości napięcia zasilającego cewkę elektrozaworu należy użyć

A. woltomierza.
B. omomierza.
C. amperomierza.
D. watomierza.
Woltomierz to narzędzie, które jest nieodzowne, jeśli chcemy zmierzyć napięcie elektryczne w obwodzie, jak na przykład napięcie zasilające cewkę elektrozaworu. Działa on na zasadzie pomiaru różnicy potencjałów między dwoma punktami obwodu. To urządzenie jest skonstruowane tak, by miało wysoką rezystancję, co minimalizuje wpływ na mierzony układ. Kiedy przykładasz woltomierz do cewki, mierzysz napięcie, które dostarczane jest do tego elementu, a nie przepływ prądu czy moc. W praktyce, woltomierze są używane w technice elektrycznej i elektronicznej do diagnozowania i monitorowania systemów, co pozwala na szybką identyfikację ewentualnych problemów z zasilaniem. Standardy przemysłowe, takie jak IEC 61010, określają wymagania bezpieczeństwa i dokładności dla takich urządzeń, co jest istotne w pracy profesjonalistów dbających o bezpieczeństwo i efektywność systemów elektrycznych. Moim zdaniem, każdy kto pracuje z elektryką powinien znać podstawy użycia woltomierza, bo to podstawa w diagnozowaniu problemów z zasilaniem.

Pytanie 33

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. smarownicę.
B. filtr.
C. zawór.
D. manometr.
Manometr to urządzenie, które służy do pomiaru ciśnienia gazów lub cieczy. Na schemacie zespołu przygotowania powietrza ten symbol wskazuje na obecność manometru. W praktyce manometry są niezwykle istotne w systemach pneumatycznych, ponieważ pomagają monitorować i utrzymywać odpowiednie ciśnienie robocze. Bez prawidłowego ciśnienia, systemy mogą działać nieefektywnie lub, co gorsza, uszkodzić się. W standardach inżynieryjnych, manometry są zazwyczaj montowane w miejscach łatwo dostępnych, aby umożliwić szybki odczyt i ocenę sytuacji. Ich zastosowanie jest szerokie - od przemysłowych kompresorów, przez systemy grzewcze, aż po instalacje wodociągowe. Dzięki manometrom można szybko zdiagnozować problemy z ciśnieniem, co jest kluczowe w utrzymaniu bezpieczeństwa i efektywności systemów. Moim zdaniem, umiejętność prawidłowego odczytywania i interpretowania wskazań manometrów jest jednym z podstawowych elementów wiedzy każdego technika zajmującego się systemami pneumatycznymi czy hydraulicznymi. To nie tylko teoria, ale praktyka, którą warto znać.

Pytanie 34

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. pojemnościowy.
B. indukcyjny.
C. magnetyczny.
D. ultradźwiękowy.
Zastosowanie czujnika magnetycznego do sygnalizacji położenia tłoka siłownika pneumatycznego to bardzo trafny wybór. W praktyce przemysłowej najczęściej stosuje się siłowniki magnetyczne, gdzie na tłoku zamontowany jest magnes. Czujnik magnetyczny, zamontowany na korpusie siłownika, wykrywa obecność tego magnesu, co pozwala na precyzyjne określenie położenia tłoka. Jest to rozwiązanie powszechnie stosowane w automatyce, ponieważ czujniki magnetyczne są bezkontaktowe i odporne na zużycie mechaniczne, co wydłuża ich żywotność. Warto wspomnieć, że są one także odporne na wpływ zanieczyszczeń i mogą pracować w trudnych warunkach środowiskowych, co czyni je niezwykle wszechstronnymi. Standardy branżowe, takie jak ISO 5599 dotyczące pneumatyki, często wspominają o wykorzystaniu czujników magnetycznych w takich zastosowaniach. Moim zdaniem, takie rozwiązanie jest zarówno ekonomiczne, jak i efektywne, gdyż minimalizuje ryzyko awarii dzięki swojej prostocie i niezawodności. To podejście pozwala również na łatwe zintegrowanie z systemami automatyki, co jest niezwykle istotne w nowoczesnych zakładach produkcyjnych. Dodatkowo, czujniki magnetyczne mogą być wyposażone w różne funkcje, takie jak możliwość programowania punktów przełączania, co zwiększa ich funkcjonalność i elastyczność zastosowań.

Pytanie 35

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. RJ-45
B. HDMI
C. RS-232
D. USB
Złącze przedstawione na ilustracji to klasyczne złącze RS-232, czyli interfejs komunikacji szeregowej używany od wielu lat w technice komputerowej i automatyce. Widoczna na rysunku wtyczka ma 9 pinów (DB-9), które odpowiadają za różne sygnały transmisji danych, m.in. RxD (odbiór danych), TxD (nadawanie danych), GND (masa), RTS/CTS (sterowanie przepływem). Standard RS-232 wykorzystuje napięcia w zakresie od -12 V do +12 V, co odróżnia go od nowszych standardów logicznych TTL (0–5 V). Dawniej był to podstawowy sposób łączenia komputerów z modemami, drukarkami czy sterownikami PLC. Dziś nadal spotykany w serwisie przemysłowym i urządzeniach embedded, gdzie niezawodność i prostota są ważniejsze niż prędkość. Z mojego doświadczenia RS-232 to wciąż nieoceniony interfejs diagnostyczny – łatwy do uruchomienia, odporny na zakłócenia i możliwy do obsługi nawet przez prosty terminal. Współczesne laptopy nie mają już tych portów, ale stosuje się przejściówki USB–RS232, by zachować kompatybilność z klasycznym sprzętem.

Pytanie 36

Na schemacie układu sterowania wskaż, dla którego odcinka przewodu została błędnie wpisana wartość rezystancji.

Ilustracja do pytania
A. S1:4/WE2 ∞
B. S0:2/WE1 0,1
C. WY1/V0:A1 0,1
D. V0:A2/V1:A2 0,1
Wartość rezystancji dla odcinka S1:4/WE2 została wpisana jako nieskończoność (∞), co oznacza, że obwód jest otwarty. W praktyce, taka wartość wskazuje na brak połączenia elektrycznego, czyli że przewód nie przewodzi prądu. W układzie sterowania, szczególnie w przypadku przewodów łączących elementy takie jak przełączniki czy sterowniki PLC, poprawna rezystancja powinna być bardzo niska, zbliżona do zera, aby zapewnić prawidłowe działanie systemu. Otwarty obwód uniemożliwi działanie komponentów, które powinny być zasilane lub kontrolowane przez ten przewód. W praktyce, jeśli napotkasz nieskończoną rezystancję, powinieneś sprawdzić, czy przewód jest poprawnie podłączony lub czy nie został przerwany. Standardy branżowe wymagają od techników, aby regularnie sprawdzali rezystancję w przewodach jako część konserwacji prewencyjnej, co pozwala uniknąć przestojów wynikających z niewłaściwego działania systemu.

Pytanie 37

Mechanizm przedstawiony na rysunku zapewnia członowi napędzanemu (element w kolorze czerwonym)

Ilustracja do pytania
A. multiplikację obrotów.
B. multiplikację przełożenia.
C. ruch ciągły.
D. ruch przerywany.
Mechanizm przedstawiony na rysunku to mechanizm genewski, który zapewnia ruch przerywany. To znany mechanizm w automatyce i mechanice, który przekształca ruch obrotowy w przerywany. Kluczowym elementem jest tutaj krzywka z wycięciami, która okresowo wchodzi w interakcję z czerwonym elementem, nadając mu ruch na krótkie odcinki. Tego rodzaju mechanizmy można znaleźć w zegarach mechanicznych albo maszynach pakujących, gdzie potrzebna jest precyzyjna kontrola czasowa ruchu. Dzięki przerywanemu ruchowi można uzyskać kontrolowane, cykliczne przemieszczenia, co jest kluczowe w wielu zastosowaniach przemysłowych. Mechanizm genewski to doskonały przykład zastosowania prostych zasad mechaniki do rozwiązywania skomplikowanych problemów inżynieryjnych. Z mojego doświadczenia wiem, że jest to też świetne wprowadzenie do nauki o ruchach przerywanych dla studentów technikum.

Pytanie 38

Na ilustracji przedstawiono

Ilustracja do pytania
A. przekaźnik.
B. bezpiecznik.
C. dławik.
D. stycznik.
Stycznik to urządzenie elektryczne, które umożliwia zdalne sterowanie obwodami elektrycznymi. Zasadniczo działa na zasadzie elektromagnesu – po podaniu napięcia na cewkę, styki ruchome są przyciągane do styków stałych, co zamyka obwód. Styczniki są kluczowe w automatyce przemysłowej, służą do załączania i wyłączania obwodów o wysokim napięciu i prądzie. Często stosuje się je w aplikacjach takich jak sterowanie silnikami, gdzie mogą pracować w trudnych warunkach środowiskowych i mechanicznych. Istnieją standardy, jak IEC 60947, które definiują parametry i wymagania dotyczące styczników. Z mojego doświadczenia, to jeden z najczęściej używanych elementów w szafach sterowniczych. Warto zauważyć, że jakość stycznika wpływa na niezawodność całego systemu, dlatego wybór odpowiedniego modelu i producenta jest istotny. Zmiana na stycznik o wyższej mocy może być konieczna, jeśli system zacznie wymagać większych prądów.

Pytanie 39

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
B. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
C. Zasady blokady sygnałów wyjściowych.
D. Zasady blokady programowej sygnałów wejściowych.
Zasady przerwy roboczej, czyli podanie stanu 0 na wejście sterownika, to klasyczne podejście w systemach automatyki przemysłowej. W praktyce oznacza to, że w sytuacji, gdy chcemy zatrzymać działanie systemu, podajemy sygnał niski (0) na określone wejście sterownika PLC, co powoduje jego dezaktywację. Takie rozwiązanie jest zgodne z wieloma normami bezpieczeństwa, jak chociażby EN ISO 13849, które podkreślają znaczenie bezpieczeństwa maszyn. Wyłączenie poprzez przerwanie obwodu to pewna metoda, ponieważ w razie awarii zasilania, system automatycznie przechodzi w stan bezpieczny. Z mojego doświadczenia, jest to niezwykle ważne w kontekście ochrony zarówno sprzętu, jak i ludzi. Często stosuje się to w systemach, gdzie nagłe zatrzymanie jest kluczowe dla bezpieczeństwa. Poza tym, wielu inżynierów automatyki uważa, że to podejście jest najbardziej intuicyjne i najmniej podatne na błędy ludzkie, co jest nieocenione w środowiskach produkcyjnych. Pamiętajmy, że w systemach PLC konsekwencja i logika działania są podstawą efektywnego zarządzania procesami. Zasady przerwy roboczej są więc nie tylko standardem, ale i najlepszą praktyką w branży automatyki.

Pytanie 40

Na rysunku przedstawiono symbol graficzny czujnika

Ilustracja do pytania
A. optycznego.
B. pojemnościowego.
C. indukcyjnego.
D. magnetycznego.
Przedstawiony symbol to czujnik optyczny. Na rysunku widać charakterystyczny symbol diody emitującej światło (LED) oraz odbiornika, najczęściej fototranzystora lub fotodiody. To właśnie ten zestaw elementów odpowiada za działanie czujników optycznych, które wykrywają obiekty poprzez analizę promienia światła – odbitego lub przerwanego. W praktyce czujniki optyczne dzielą się na refleksyjne, bariery i odbiciowe. W automatyce przemysłowej wykorzystuje się je np. do zliczania elementów na taśmie, wykrywania obecności detali, kontroli etykiet lub pomiaru prędkości obrotowej. Ich ogromną zaletą jest bezkontaktowa praca i bardzo szybka reakcja, co pozwala uniknąć zużycia mechanicznego. Moim zdaniem warto zwrócić uwagę na strzałki przy symbolu – pokazują kierunek emisji światła, co pomaga odróżnić czujniki optyczne od innych typów w dokumentacji technicznej.