Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 19 listopada 2025 22:32
  • Data zakończenia: 19 listopada 2025 22:52

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką rolę pełni heterodyna w radiu?

A. Filtra aktywnego środkowo przepustowego
B. Generatora sygnału o określonej częstotliwości
C. Wzmacniacza pośredniej częstotliwości
D. Układu zmiany zakresów w obwodach wielkiej częstotliwości
Heterodyna w odbiorniku radiowym pełni kluczową rolę jako generator sygnału o określonej częstotliwości, który jest niezbędny do demodulacji sygnałów radiowych. Proces ten polega na wytworzeniu częstotliwości pośredniej, co umożliwia łatwiejsze przetwarzanie sygnału. Heterodyna działa poprzez sumowanie i różnicowanie częstotliwości sygnału odbieranego i sygnału generowanego przez oscylator lokalny. Dzięki temu możliwe jest uzyskanie stabilnej i przystosowanej do dalszego przetwarzania częstotliwości, co jest kluczowe w systemach radiowych, szczególnie w odbiornikach superheterodynowych. W praktyce, zastosowanie heterodyny przyczynia się do zwiększenia selektywności i czułości odbiornika, pozwalając na lepszą separację i identyfikację poszczególnych stacji radiowych. Standardy branżowe, takie jak IEEE 802.11 dla komunikacji bezprzewodowej, również korzystają z podobnych zasad, gdzie heterodyna odgrywa rolę w konwersji częstotliwości, co wpływa na jakość sygnału i zasięg transmisji. Warto dodać, że technologia ta jest szeroko stosowana w różnych dziedzinach, od telekomunikacji po radioastronomię, co potwierdza jej uniwersalność i znaczenie.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Zawarte w tabeli dane techniczne dotyczą czujki

Typ czujkiNC
Dwa tory detekcjiPIR+MW
Wymiary obudowy65 x 138 x 58 mm
Zakres temperatur pracy-40°C...+55°C
Zalecana wysokość montażu2,4 m
Maksymalny pobór prądu20 mA
Zasięg działania15 m
A. ruchu.
B. akustycznej.
C. czadu.
D. zalania.
Czujki ruchu są kluczowymi elementami nowoczesnych systemów zabezpieczeń, a ich działanie opiera się na technologii detekcji PIR (pasywnej podczerwieni) oraz MW (mikrofali). W przedstawionej tabeli, informacja o "dwóch torach detekcji PIR+MW" jasno wskazuje, że czujka jest zaprojektowana do wykrywania ruchu. Technologia PIR jest odpowiedzialna za detekcję zmian w promieniowaniu podczerwonym, co jest skuteczne w monitorowaniu obiektów emitujących ciepło, takich jak ludzie. Z kolei technologia mikrofalowa pozwala na wykrywanie ruchu w większym zakresie, co zwiększa niezawodność czujnika. Praktyczne zastosowanie czujek ruchu znajduje się w systemach alarmowych, automatyce budynkowej oraz inteligentnych domach, gdzie mogą służyć do automatycznego włączenia oświetlenia lub alarmu, gdy wykryją obecność. Zastosowanie takich czujników jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i komfortu użytkowania, co czyni je niezbędnymi w nowoczesnych instalacjach.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Podane w tabeli parametry techniczne charakteryzują

Dane techniczne
Zaawansowany Dekoder MPEG H.264
Obsługa Full HD 1920x1089i, 1920x720p, 720x576p
Odtwarzanie MKV H.264 HD
Wejścia: RF In, USB
Wyjścia: HDMI, SCART, Coaxial, RF Out
Obsługa dysków twardych
Funkcja nagrywania z TV
Zakres częstotliwości VHF – H 174-230 MHz, UHF 470- 866 MHz
Poziom sygnału 78 dBM-20 dBm
Modulacja: QPSK, 16 QAM, 64 QAM
Obsługiwane formaty plików:
   ·   graficzne: BMP, JPG,
   ·   muzyczne: MP3, WMA, WAV,
   ·   video: MPEG1/2/4/ HD, XVID HD, AVI, VOB.
A. projektor DLP
B. tuner DVB-T
C. tuner DVB-S
D. odtwarzacz DVD
Poprawna odpowiedź to tuner DVB-T, ponieważ parametry techniczne przedstawione w tabeli wskazują na urządzenie zdolne do odbioru sygnału telewizyjnego w standardzie DVB-T, co jest naziemnym standardem transmisji telewizji cyfrowej. Tuner DVB-T obsługuje różne rozdzielczości obrazu oraz kodeki, takie jak MPEG H.264, co pozwala na wysoką jakość obrazu i dźwięku. Dodatkowo, funkcja nagrywania TV jest często wbudowana w nowoczesne tunery, co umożliwia użytkownikom nagrywanie programów telewizyjnych na zewnętrzne nośniki. Warto zaznaczyć, że zakres częstotliwości VH i UHF oraz zastosowanie modulacji QPSK i 16 QAM, 64 QAM są charakterystyczne dla technologii DVB-T. Tuner DVB-T jest również zgodny z europejskimi standardami nadawania, co zapewnia jego powszechne zastosowanie w krajach Unii Europejskiej. Takie urządzenie jest idealne dla osób korzystających z naziemnej telewizji cyfrowej, oferując dostęp do szerokiej gamy kanałów telewizyjnych bez potrzeby wykupu subskrypcji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Aby przeprowadzić ocenę jakości sygnału cyfrowej telewizji satelitarnej, wymagane jest użycie miernika

A. DVB-S
B. DVB-T
C. DVB-C
D. DVB-H
Odpowiedź DVB-S jest prawidłowa, ponieważ jest to standard telewizji satelitarnej, który jest wykorzystywany do przesyłania sygnałów cyfrowych przez satelity. Mierniki DVB-S są zaprojektowane specjalnie do analizy sygnałów satelitarnych, co obejmuje pomiar jakości sygnału, siły sygnału oraz innych parametrów, takich jak BER (Bit Error Rate) i MER (Modulation Error Ratio). Zastosowanie takiego miernika jest kluczowe dla instalacji anten satelitarnych i optymalizacji ich ustawienia, co może znacząco wpłynąć na jakość odbioru. Na przykład, w przypadku ustawiania anteny, ważne jest, aby uzyskać jak najwyższą jakość sygnału, aby zminimalizować utratę pakietów danych i zniekształcenia obrazu. Standard DVB-S jest powszechnie stosowany w Europie i wielu innych regionach, co czyni go najlepszym wyborem dla profesjonalistów w dziedzinie telekomunikacji satelitarnej. Warto pamiętać, że podczas pomiarów należy także zwrócić uwagę na warunki atmosferyczne, które mogą wpływać na jakość sygnału.

Pytanie 8

Liczba 3,5 w naturalnym systemie binarnym będzie zapisana jako

A. 11,0
B. 11,1
C. 10,1
D. 01,1
Liczba 3,5 w naturalnym kodzie binarnym przyjmuje postać '11,1', co można rozłożyć na dwie części: część całkowitą i część ułamkową. Część całkowita liczby 3 w systemie binarnym to '11', ponieważ 3 to suma 2^1 oraz 2^0. Część ułamkowa 0,5 reprezentowana jest w systemie binarnym jako ',1', ponieważ 0,5 to 1/2, co odpowiada 2^-1. W naturalnym kodzie binarnym łączymy obie części, uzyskując '11,1'. Zrozumienie konwersji liczb z systemu dziesiętnego na binarny jest kluczowe w informatyce, szczególnie w kontekście programowania oraz obliczeń w systemach komputerowych. W praktyce, znajomość tych konwersji jest niezbędna przy tworzeniu algorytmów operujących na liczbach zmiennoprzecinkowych oraz przy pracy z systemami obliczeń numerycznych, gdzie precyzja i dokładność zapisu wartości są kluczowe. Wiedza ta jest również istotna przy projektowaniu systemów cyfrowych, takich jak mikroprocesory, które operują na danych zapisanych w formacie binarnym.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Ile wejść adresowych posiada multiplekser 8-wejściowy?

A. 2 wejścia adresowe
B. 3 wejścia adresowe
C. 5 wejść adresowych
D. 4 wejścia adresowe
Multiplekser 8-wejściowy wymaga 3 wejść adresowych, aby skutecznie zidentyfikować jeden z ośmiu dostępnych sygnałów wejściowych. Każde wejście adresowe może przyjąć wartość binarną 0 lub 1, co oznacza, że 3 bity adresowe mogą reprezentować 2^3 = 8 kombinacji, co idealnie odpowiada liczbie sygnałów wejściowych w tym przypadku. Przykładem zastosowania multipleksera 8-wejściowego jest w systemach cyfrowych, gdzie może on być używany do wyboru jednego z wielu sygnałów w systemach telekomunikacyjnych lub w obwodach logicznych. Standardy takie jak IEEE 802.3 dla Ethernetu wykorzystują podobne mechanizmy do zarządzania ruchem danych. Dobre praktyki w projektowaniu systemów cyfrowych sugerują stosowanie multiplekserów w celu uproszczenia architektury i minimalizacji ilości wymaganych połączeń, co zapewnia większą elastyczność i łatwiejsze zarządzanie komponentami systemu.

Pytanie 11

W dokumentacji serwisowej kamery znajduje się informacja: "kamerę zasilać napięciem stałym U = 12 V /15 W". Który zasilacz pozwoli na jednoczesne działanie czterech takich kamer?

A. 12 V DC/ 6 A
B. 12 V AC/ 6 A
C. 12 V DC/ 4 A
D. 12 V AC/ 4 A
Zasilacz 12 V DC/ 6 A jest odpowiedni, ponieważ kamera wymaga napięcia 12 V i mocy 15 W. Aby obliczyć, ile prądu potrzebuje jedna kamera, można użyć wzoru: moc (W) = napięcie (V) x prąd (A). Przekształcając wzór, otrzymujemy prąd = moc / napięcie, co daje 15 W / 12 V = 1,25 A na kamerę. W przypadku czterech kamer, potrzebujemy 4 x 1,25 A = 5 A. Zasilacz 12 V DC/ 6 A dostarcza wystarczającą moc, ponieważ jego wydajność przewyższa wymogi energetyczne kamer. Dobrą praktyką jest zawsze wybierać zasilacz o nieco większej wydajności, aby zapewnić stabilną pracę urządzeń. Takie zasilacze są powszechnie stosowane w systemach monitoringu, gdzie wiele urządzeń wymaga zasilania z jednego źródła. Wybór odpowiedniego zasilacza jest kluczowy dla niezawodności i bezpieczeństwa systemu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Wzmacniacz mocy dysponuje wyjściami głośnikowymi o impedancji 8 Ω. Jaka konfiguracja połączenia dwóch głośników będzie właściwa dla tego wzmacniacza?

A. Dwa głośniki 16 Ω połączone równolegle
B. Głośnik 8 Ω i 4 Ω połączone szeregowo
C. Dwa głośniki 8 Ω połączone równolegle
D. Głośnik 4 Ω i 2 Ω połączone szeregowo
Odpowiedź dotycząca połączenia dwóch głośników 16 Ω połączonych równolegle jest prawidłowa. Wzmacniacz mocy o wyjściu 8 Ω jest zaprojektowany do pracy z obciążeniem wynoszącym 8 Ω. Kiedy dwa głośniki 16 Ω są połączone równolegle, ich impedancja całkowita obliczana jest według wzoru: 1/Z = 1/Z1 + 1/Z2, co w tym przypadku daje 1/Z = 1/16 + 1/16, co prowadzi do Z = 8 Ω. Dzięki temu wzmacniacz będzie poprawnie zasilany, a obie jednostki będą pracować w optymalnych warunkach, co zapewni odpowiednią jakość dźwięku i uniknie przeciążenia wzmacniacza. W praktyce, takim rozwiązaniem może być wykorzystanie dwóch głośników w systemach audio, gdzie potrzeba większej mocy, ale przy jednoczesnym przestrzeganiu zalecanej impedancji. Dobrą praktyką przy projektowaniu systemów audio jest zapewnienie, aby całkowita impedancja obciążenia nie odbiegała od specyfikacji wzmacniacza, co zapobiega przegrzewaniu się i uszkodzeniom.

Pytanie 14

Podczas konserwacji systemu telewizyjnego trzeba zweryfikować jakość sygnału w gniazdkach abonenckich. W związku z tym, w gniazdku abonenckim należy przeprowadzić pomiar

A. współczynnika błędnych bitów (BER)
B. natężenia prądu (I)
C. mocy czynnej (P)
D. współczynnika zawartości harmonicznych (THD)
Współczynnik błędnych bitów (BER) jest kluczowym wskaźnikiem jakości sygnału w instalacjach telewizyjnych. Pomiar BER pozwala na ocenę, jak wiele danych jest przesyłanych z błędami, co jest niezbędne do zapewnienia wysokiej jakości odbioru sygnału telewizyjnego. W praktyce, dla uzyskania odpowiednich wartości BER, technicy muszą monitorować sygnał i dostosowywać instalację, aby minimalizować zakłócenia. Dobrym standardem jest dążenie do uzyskania wartości BER poniżej 1% w przypadku sygnału cyfrowego, co przekłada się na stabilny i wyraźny obraz. Regularne pomiary BER w gniazdkach abonenckich są również zgodne z najlepszymi praktykami branżowymi, co pozwala na wczesne wykrywanie problemów w instalacji, takich jak uszkodzone kable lub złącza. Analizując wyniki pomiarów, technicy mogą podejmować odpowiednie kroki naprawcze, co wpływa na poprawę jakości usług dostarczanych abonentom.

Pytanie 15

Jakie parametry zasilacza są wymagane do zasilenia 3 metrów taśmy LED, jeżeli moc jednego metra taśmy wynosi 4,8 W, a napięcie zasilania taśmy LED to 12 V?

A. 12 V/1,2 A 9 W
B. 12 V/1,5 A 12 W
C. 12 V/1,2 A 6 W
D. 12 V/1,5 A 15 W
Aby prawidłowo zasilić 3 metry taśmy LED o mocy 4,8 W na metr i napięciu 12 V, konieczne jest dokładne obliczenie sumarycznej mocy oraz prądu, jaki będzie potrzebny. Całkowita moc taśmy wynosi 3 m x 4,8 W/m = 14,4 W. Zasilacz powinien mieć zapas mocy, aby zapewnić jego stabilne działanie, dlatego zaleca się wybór zasilacza o mocy minimum 15 W. Ponadto, prąd potrzebny do zasilenia taśmy LED można obliczyć korzystając ze wzoru: P = U * I, gdzie P to moc, U to napięcie, a I to prąd. W naszym przypadku, I = P/U = 14,4 W / 12 V = 1,2 A. Jednak ze względu na dodatkowe obciążenia oraz zabezpieczenie przed przeciążeniem, zasilacz powinien mieć wartość prądu wyższą, co czyni 1,5 A odpowiednim wyborem. Dlatego poprawna odpowiedź to 12 V/1,5 A 15 W. Stosowanie zasilaczy z nadmiarem mocy jest standardową praktyką w branży, co zapewnia dłuższą żywotność urządzeń oraz ich niezawodność.

Pytanie 16

Urządzenie, które sumuje sygnały o odmiennych częstotliwościach (pochodzące z różnych MUX’ów) z dwóch lub więcej anten odbiorczych, aby przesłać je do odbiornika przy pomocy jednego przewodu, to

A. konwerter
B. głowica antenowa
C. multiswitch
D. zwrotnica antenowa
Zwrotnica antenowa jest kluczowym urządzeniem w systemach telewizyjnych oraz radiowych, które umożliwia integrację sygnałów z wielu anten. Jej zastosowanie pozwala na efektywne przesyłanie różnorodnych sygnałów, pochodzących z różnych multipleksów (MUX’ów), jednym przewodem do odbiornika. W praktyce, zwrotnice antenowe są wykorzystywane w instalacjach domowych oraz większych systemach telewizyjnych, gdzie wymagane jest połączenie sygnałów z kilku źródeł, co znacząco redukuje liczbę potrzebnych kabli i ułatwia instalację. Z punktu widzenia branżowych standardów, zwrotnice antenowe muszą spełniać określone parametry dotyczące tłumienia sygnału, izolacji oraz pasma przenoszenia, aby zapewnić jak najwyższą jakość odbieranego sygnału. Dzięki zastosowaniu zwrotnic antenowych, możliwe jest również unikanie zakłóceń, co jest kluczowe w kontekście jakości odbioru sygnału. W związku z tym, są one szeroko rekomendowane w dokumentacji dotyczącej projektowania systemów antenowych.

Pytanie 17

Jaką wartość ma liczba poziomów w dwunastobitowym przetworniku C/A?

A. (2-1)12
B. 212-1
C. 212
D. 212-1
Odpowiedź 212 jest poprawna, ponieważ liczba poziomów przetwornika C/A (cyfrowo-analogowego) jest obliczana na podstawie liczby bitów, które ten przetwornik obsługuje. W przypadku dwunastobitowego przetwornika, liczba poziomów wynosi 2^12, co daje 4096 różnych poziomów sygnału analogowego. Taki przetwornik może więc generować 4096 różnych wartości napięcia, co jest istotne w wielu zastosowaniach elektronicznych, takich jak audio, wideo oraz w systemach kontrolnych. W praktyce, wyższa liczba poziomów pozwala na dokładniejsze odwzorowanie sygnału analogowego, co zwiększa jakość dźwięku i obrazu. W kontekście standardów, przetworniki C/A o wysokiej rozdzielczości są często stosowane w urządzeniach audio wysokiej jakości, gdzie precyzja sygnału jest kluczowa. Dlatego zrozumienie, jak oblicza się liczbę poziomów w przetwornikach, jest kluczowe dla inżynierów zajmujących się projektowaniem takich systemów.

Pytanie 18

Tranzystor NPN, którego współczynnik wzmocnienia prądowego P = 50, pracuje w układzie pokazanym na rysunku. Jaka jest wartość napięcia kolektor-emiter tego tranzystora?

Ilustracja do pytania
A. UCE=0 V
B. UCE=5 V
C. UCE=2,5 V
D. UCE=9,5 V
Odpowiedzi UCE=5 V, UCE=2,5 V oraz UCE=0 V wynikają z błędnych założeń dotyczących zachowania tranzystora NPN i jego charakterystyki. W przypadku napięcia UCE=5 V, można błędnie sądzić, że spadek napięcia na rezystorze R jest zbyt mały, co nie odzwierciedla prawidłowych warunków pracy tranzystora w tym układzie. Przy napięciu kolektor-emiter równym 2,5 V można pomyśleć, że tranzystor wchodzi w stan nasycenia, co jest sprzeczne z założeniami o wysokim wzmocnieniu prądowym P=50. Takie założenie prowadzi do nieprawidłowego oszacowania działania układu. Odpowiedź UCE=0 V sugeruje, że tranzystor nie przewodzi prądu, co jest niemożliwe przy założeniu, że układ jest zasilany i prąd bazy jest odpowiednio dobrany. W rzeczywistości, UCE=0 V oznaczałoby, że tranzystor jest w stanie nasycenia, co jest niezgodne z danymi o wzmocnieniu prądowym. Typowe błędy myślowe obejmują także nieprawidłowe zrozumienie relacji między prądem bazy a prądem kolektora, co prowadzi do nieodpowiednich obliczeń. Kluczowe jest zrozumienie, że wzmocnienie prądowe β umożliwia odpowiednie oszacowanie wartości prądów i napięć w obwodzie, a także ich wpływu na działanie całego układu. W praktyce, prawidłowe obliczenia oparte na zrozumieniu zasad działania tranzystorów są niezbędne do zapewnienia stabilności i efektywności obwodów elektronicznych.

Pytanie 19

Na podstawie przedstawionych pomiarów stanów logicznych można stwierdzić, że uszkodzeniu uległa bramka oznaczona cyfrą

Ilustracja do pytania
A. 2
B. 3
C. 4
D. 1
Bramka oznaczona cyfrą 3 jest uszkodzona, ponieważ jej wyjście nie zgadza się z oczekiwanym stanem logicznym dla bramki NOT. Bramka NOT powinna zwracać stan przeciwny do stanu wejścia, co oznacza, że jeśli na wejściu jest '1', na wyjściu powinno być '0', a jeśli na wejściu jest '0', na wyjściu powinno być '1'. W przypadku widocznych pomiarów stanu logicznego, jeśli zidentyfikowano, że wyjście bramki 3 nie spełnia tej reguły, można stwierdzić, że bramka ta jest uszkodzona. W praktyce, podczas diagnozy układów cyfrowych, korzysta się z narzędzi takich jak analizatory stanów logicznych, które pozwalają na dokładną obserwację stanów na wejściach i wyjściach bramek. Standardy branżowe, takie jak IEEE 914, podkreślają znaczenie poprawnego działania bramek logicznych w aplikacjach elektronicznych, gdyż ich uszkodzenie może prowadzić do błędnych wyników w obliczeniach cyfrowych. W przypadku układów złożonych, takich jak procesory czy systemy wbudowane, identyfikacja uszkodzeń jest kluczowa dla zapewnienia niezawodności systemu.

Pytanie 20

Podczas podłączania czujki do rozbicia szyby do systemu alarmowego, konieczne jest użycie kabla

A. YTDY 2x0,5 mm2
B. YTDY 8x0,5 mm2
C. RG-6
D. RG-59
Jeżeli wybierzesz zły przewód do czujki zbicia szyby, to może to naprawdę namieszać w działaniu alarmu. Przewód RG-59, mimo że jest popularny w systemach telewizyjnych, nie nadaje się do alarmów. Dlaczego? Bo jest koncentryczny i nie jest zbudowany do przesyłania sygnałów z czujek, które potrzebują czegoś bardziej elastycznego. A do tego nie ma wystarczającej liczby żył, żeby zasilać czujkę i przesyłać do niej sygnał. Z kolei RG-6 też nie sprawdzi się w alarmach, jego parametry elektryczne są za słabe. Dobre dobranie przewodu to kluczowa sprawa, bo inaczej mogą się zdarzać fałszywe alarmy albo brak reakcji w momencie, gdy coś się dzieje. Przewód YTDY 2x0,5 mm2, chociaż może wydawać się odpowiedni, także nie ma tyle żył, ile potrzeba dla bardziej skomplikowanych systemów alarmowych. Te błędy w wyborze wynikają często z braku znajomości specyfiki zabezpieczeń i standardów, z którymi warto się zapoznać przed podjęciem decyzji o instalacji. Każdy szczegół w systemie alarmowym, w tym przewody, powinien być dobrze przemyślany, żeby wszystko działało jak należy.

Pytanie 21

Jakiego modułu dotyczy usterka w telewizorze, jeśli nie odbiera on sygnału z zewnętrznej anteny w transmisji naziemnej, a jednocześnie prawidłowo wyświetla obraz z podłączonego tunera satelitarnego przez przewód EUROSCART oraz z kamery VHS-C za pomocą przewodu S-Video?

A. Synchronizacji i odchylania
B. Wielkiej i pośredniej częstotliwości
C. Wzmacniacza wizji
D. Selektora i separatora
Odpowiedź "Wielkiej i pośredniej częstotliwości" jest poprawna, ponieważ to właśnie te moduły odpowiadają za odbiór sygnałów z anteny telewizyjnej. Moduł wielkiej częstotliwości (VHF/UHF) odbiera sygnały z anteny, a moduł pośredniej częstotliwości (IF) przetwarza te sygnały na format, który może być dalej przetwarzany przez telewizor. Kiedy telewizor nie odbiera sygnału z anteny, ale potrafi odtwarzać obraz z innych źródeł, jak tuner satelitarny czy kamera VHS-C, wskazuje to na problem z obiegiem sygnału w przedwzmacniaczu lub innym elemencie toru sygnałowego odbiornika. W praktyce, w takich sytuacjach, często zaleca się sprawdzenie zarówno anteny, jak i stanu technicznego modułów wielkiej i pośredniej częstotliwości, co jest zgodne z metodami diagnostyki stosowanymi w serwisach elektronicznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

W specyfikacji technicznej zasilacza podano, że współczynnik tętnień kt < 2%. Współczynnik tętnień zdefiniowano jako stosunek wartości skutecznej składowej zmiennej do wartości średniej przebiegu. Jaką wartość ma ten współczynnik i czy spełnia on normy techniczne zasilacza, jeżeli przebieg wyjściowy zasilacza można przedstawić równaniem uwyj(t) = 1 0 + 0,1√2sin(628t) ?

A. 3%, nie
B. 1%, nie
C. 1%, tak
D. 3%, tak
Prawidłowa odpowiedź wynika z analizy wzoru przebiegu wyjściowego zasilacza: u<sub>wyj</sub>(t) = 1 0 + 0,1√2sin(628t). Aby obliczyć współczynnik tętnień (kt), musimy najpierw określić wartość skuteczną składowej zmiennej oraz wartość średnią. Wartość skuteczna składowej zmiennej sinusoidalnej, w tym przypadku, wynosi 0,1√2, co odpowiada 0,1414. Wartość średnia tej samej składowej sinusoidalnej wynosi 0, ponieważ dla sinusoidy, średnia z jednego pełnego okresu równoważy się do zera. Z tego powodu współczynnik tętnień obliczamy jako: kt = (0,1414 / 1) * 100% = 14,14%. W praktyce dla zasilaczy wymagany współczynnik tętnień powinien być mniejszy niż 2%, co oznacza, że nasz wynik 1% jest znacznie poniżej tego progu, a zatem spełnia wymagania techniczne. Takie zasilacze są odpowiednie do zasilania wrażliwych urządzeń elektronicznych, gdzie stabilność napięcia jest kluczowa dla ich prawidłowego działania. Przykładem mogą być systemy audio czy urządzenia pomiarowe, które wymagają wysokiej jakości zasilania.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Diody LED w kolorze niebieskim z wartością katalogową napięcia przewodzenia UD= 2 V oraz maksymalnym prądem przewodzenia ID= 15 mA powinny być podłączone do zasilacza o napięciu stałym Uz = 24 V. Jakie wartości powinien mieć dodatkowy rezystor Rz, który będzie współpracował z diodą w układzie szeregowym, aby nie przekroczyć dopuszczalnej wartości prądu diody oraz maksymalnej mocy P, wydzielającej się na rezystorze Rz?

A. Rz=150 Ω, P=1W
B. Rz=150 Ω, P=1W
C. Rz=1,5 kΩ, P=0,25 W
D. Rz=1,5 kΩ, P=0,5 W
Wybór wartości rezystora Rz na poziomie 1,5 kΩ oraz mocy 0,5 W jest poprawny, ponieważ zapewnia on odpowiednie warunki do pracy diody LED. Przy napięciu zasilania Uz = 24 V oraz napięciu przewodzenia diody UD = 2 V, różnica napięcia, która musi być wydana na rezystorze wynosi 24 V - 2 V = 22 V. Korzystając z prawa Ohma, możemy obliczyć wartość prądu I przez diodę, przyjmując maksymalną wartość prądu przewodzenia diody I_D = 15 mA. Zatem rezystor Rz obliczamy z wzoru: Rz = U/R = 22 V / 0,015 A = 1466,67 Ω, co zaokrąglamy do standardowej wartości 1,5 kΩ. Ponadto, moc wydzielająca się na rezystorze Rz można obliczyć jako P = I² * Rz = (0,015 A)² * 1500 Ω = 0,3375 W, co jest poniżej 0,5 W, co oznacza, że zastosowany rezystor o mocy 0,5 W wystarczy. Takie podejście pozwala na bezpieczne działanie diody LED oraz rezystora, co jest zgodne z dobrą praktyką projektowania obwodów elektronicznych, gdzie zawsze powinno się uwzględniać marginesy bezpieczeństwa.

Pytanie 28

Opisz konstrukcję czujki

OPIS KONSTRUKCJI

Podstawowym elementem czujki jest układ detekcyjny, który składa się z: diody emitującej podczerwień oraz diody odbierającej. Oba te elementy są zamontowane w uchwycie w taki sposób, by promieniowanie ze diody nadawczej nie docierało bezpośrednio do diody odbierającej. Układ detekcyjny (uchwyt z diodami) jest przymocowywany bezpośrednio do płytki drukowanej, która zawiera elektronikę z procesorem kontrolującym działanie czujki. Labirynt chroni przed przedostawaniem się zewnętrznego światła do układu detekcyjnego. Metalowa siatka zabezpiecza układ detekcyjny przed niewielkimi owadami oraz większymi zanieczyszczeniami. Całość jest zainstalowana w obudowie wykonanej z białego tworzywa, składającej się z koszyczka, osłony czujki oraz ekranu.

A. ruchu
B. dymu
C. zalania
D. stłuczenia
Wybór odpowiedzi dotyczącej czujek ruchu, zalania lub stłuczenia wskazuje na nieporozumienie dotyczące funkcji i zastosowania czujki opisanej w pytaniu. Czujki ruchu są skonstruowane w celu wykrywania ruchu obiektów w danym obszarze, najczęściej na podstawie zmian pola elektromagnetycznego lub ciepła, co jest zupełnie inną technologią niż ta stosowana w czujkach dymu. Z kolei czujki zalania wykrywają obecność wody, zazwyczaj w systemach zabezpieczeń budynków przed wodami gruntowymi lub wyciekami, a ich zasada działania opiera się na detekcji przewodności elektrycznej. Dlatego też są one niezdolne do wykrywania dymu, co czyni je niewłaściwym wyborem w kontekście tego pytania. W odniesieniu do stłuczenia, urządzenia te mogą być używane do detekcji szkód fizycznych w obiektach, ale nie mają nic wspólnego z procesem wykrywania dymu. Przy podejmowaniu decyzji o tym, jakie urządzenie dobrane jest do konkretnej aplikacji, ważne jest zrozumienie specyficznych właściwości i przeznaczenia czujników, a także świadomość, że różne czujki operują na odmiennych zasadach. Coraz częściej w obiektach komercyjnych oraz mieszkalnych stosuje się systemy alarmowe, które integrują różne typy czujników, ale kluczowe jest, aby każda z tych technologii była używana zgodnie z jej właściwym przeznaczeniem.

Pytanie 29

W jaki sposób należy połączyć wyjście układu TTL z wejściem układu CMOS, gdy oba układy są zasilane napięciem +5 V?

A. Rozdzielić wejście-wyjście trymerem
B. Rozdzielić wejście-wyjście kondensatorem
C. Zastosować diodę separującą
D. Zastosować rezystor podciągający
Zastosowanie diody separującej w połączeniu wyjścia układu TTL z wejściem układu CMOS nie jest rozwiązaniem optymalnym, ponieważ dioda wprowadza dodatkowe napięcie progowe, które może uniemożliwić poprawne odczytanie sygnałów logicznych. W przypadku, gdy wyjście TTL jest w stanie wysokim, napięcie na wejściu CMOS będzie obniżone o wartość napięcia przewodzenia diody, co może prowadzić do sytuacji, w której napięcie wejściowe nie osiągnie wymaganego progu logicznego, co skutkuje niepewnym działaniem układu CMOS. Ponadto, stosowanie kondensatora jako elementu separującego między wejściem a wyjściem jest również błędne, ponieważ kondensator na dłuższą metę wprowadza opóźnienia w transmisji sygnału oraz może prowadzić do niepożądanych oscylacji w układzie. Z kolei rozdzielenie wejścia i wyjścia trymerem jest koncepcją, która jest mało praktyczna w kontekście cyfrowych układów logicznych i nie ma zastosowania w przypadku standardowych połączeń TTL-CMOS. Właściwa interpretacja zasad działania tych układów oraz ich właściwości elektrycznych jest kluczowa dla unikania typowych błędów projektowych. Błędy te często wynikają z nieznajomości charakterystyki wejść i wyjść, co prowadzi do niewłaściwego doboru komponentów i nieoptymalnych rozwiązań w projektach elektronicznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Ile wynosi moc czynna wytwarzana w złączu elementu elektronicznego, jeżeli jego temperatura wynosi Tj=120°C, a otoczenia Tamb=20°C? Całkowita rezystancja termiczna od złącza poprzez obudowę do otoczenia jest równa ΣRt=50°C/W.

Ilustracja do pytania
A. 0,5 W
B. 10 W
C. 1 W
D. 2 W
Moc czynna wytwarzana w złączu elementu elektronicznego wynosi 2 W, co można obliczyć na podstawie różnicy temperatur złącza i otoczenia oraz całkowitej rezystancji termicznej. Różnica temperatur wynosi Tj - Tamb = 120°C - 20°C = 100°C. Całkowita rezystancja termiczna ΣRt = 50°C/W, co pozwala na obliczenie mocy: P = ΔT / ΣRt = 100°C / 50°C/W = 2 W. Zrozumienie tego procesu jest kluczowe w projektowaniu systemów elektronicznych, gdzie zarządzanie ciepłem jest niezbędne do zapewnienia stabilności i wydajności urządzeń. W praktyce, wiedza ta znajduje zastosowanie w chłodzeniu komponentów w takich dziedzinach jak telekomunikacja czy elektronika użytkowa, gdzie przegrzewanie się elementów może prowadzić do ich uszkodzenia lub obniżenia wydajności. Przykładem może być zastosowanie radiatorów czy wentylatorów w układach, które skutecznie odprowadzają ciepło, zapewniając długotrwałe i bezpieczne działanie urządzeń. Takie podejście jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie efektywnego zarządzania ciepłem w projektowaniu systemów elektronicznych.

Pytanie 32

Transformator, którego uzwojenie pierwotne składa się z 500 zwojów, jest zasilany z sieci o napięciu 230 V. Urządzenie to ma dwa uzwojenia wtórne. Ile zwojów musi mieć każde z tych uzwojeń, aby osiągnąć napięcie 2 x 23 V na zaciskach wtórnych transformatora?

A. 100
B. 50
C. 25
D. 250
Odpowiedź 50 zwojów uzwojenia wtórnego jest poprawna, ponieważ transformator działa na zasadzie proporcjonalności między liczbą zwojów w uzwojeniu pierwotnym a napięciem na uzwojeniu wtórnym. Zastosowanie wzoru: U1/U2 = N1/N2, gdzie U1 to napięcie pierwotne, U2 to napięcie wtórne, N1 to liczba zwojów w uzwojeniu pierwotnym, a N2 to liczba zwojów w uzwojeniu wtórnym, pozwala nam obliczyć, ile zwojów potrzeba, aby uzyskać pożądane napięcie. W tym przypadku mamy U1 = 230 V, a ponieważ chcemy uzyskać 23 V na każdym z uzwojeń wtórnych, U2 = 23 V. Zatem, stosując wzór: 230 V / 23 V = 500 zwojów / N2, otrzymujemy N2 = 50. W praktyce, takie transformatory są używane w zasilaczach niskonapięciowych, gdzie wymagane jest obniżenie napięcia do wartości bezpiecznych dla urządzeń elektronicznych. Dzięki zrozumieniu tej zasady, inżynierowie mogą projektować układy zasilające z odpowiednimi parametrami elektrycznymi, co jest kluczowe dla zapewnienia efektywności i bezpieczeństwa w aplikacjach przemysłowych oraz domowych.

Pytanie 33

Który człon nie występuje w strukturze idealnego regulatora PID?

Ilustracja do pytania
A. Różniczkujący.
B. Całkujący.
C. Proporcjonalny.
D. Pamiętający.
Regulator PID (Proporcjonalno-Integralno-Różniczkujący) jest fundamentalnym narzędziem w automatyce i regulacji procesów. Składa się z trzech kluczowych członów: proporcjonalnego, całkującego oraz różniczkującego. Człon proporcjonalny odpowiada za reakcję regulatora na bieżący błąd, całkujący kumuluje błąd w czasie, co pozwala na eliminację błędów ustalonych, a różniczkujący przewiduje przyszłe zachowanie błędu na podstawie jego zmian. W kontekście idealnego regulatora PID, człon "pamiętający" nie występuje, co jest zgodne z definicją i standardami regulacji. Przykładowo, w zastosowaniach przemysłowych, takich jak sterowanie temperaturą w piecach czy ciśnieniem w zbiornikach, precyzyjna regulacja za pomocą PID jest kluczowa dla stabilności procesów. Ostatecznie, znajomość i zrozumienie tych podstawowych członów regulatora PID pozwala na ich skuteczne zastosowanie w praktycznych sytuacjach, co jest fundamentalnym aspektem dla inżynierów automatyki.

Pytanie 34

Zakład elektroniczny otrzymał zamówienie na rozbudowę istniejącego domowego systemu alarmowego. Usługa obejmuje zamontowanie 3 czujników ruchu i włączenie ich do systemu. Na podstawie danych zamieszczonych w tabeli określ, jaki będzie koszt planowanych prac, jeżeli materiały objęte są 23%, a usługa 8% podatkiem VAT. W obliczeniach należy uwzględnić zryczałtowany koszt dojazdu do domu klienta w wysokości 45,00 zł.

Element/usługaCena jednostkowa netto
Czujnik50,00 zł
Montaż 1 czujnika30,00 zł
Przeprogramowanie i sprawdzenie systemu60,00 zł
A. 395,10 zł
B. 345,00 zł
C. 312,00 zł
D. 391,50 zł
Poprawna odpowiedź to 391,50 zł, co wynika z dokładnych obliczeń uwzględniających wszystkie koszty oraz podatki VAT. W procesie obliczeń należy najpierw wyodrębnić koszty netto materiałów oraz usług. Materiały objęte są 23% podatkiem VAT, co oznacza, że do podstawy netto dodajemy ten podatek, a następnie sumujemy te koszty z kosztem usług, które są objęte 8% VAT. Kolejnym krokiem jest doliczenie zryczałtowanego kosztu dojazdu, który wynosi 45,00 zł. Poprawne obliczenie kosztów to istotna umiejętność w branży elektroinstalacyjnej, szczególnie w kontekście zarządzania projektami i budżetami. Warto także pamiętać, że stosowanie poprawnych stawek VAT jest obowiązkowe według aktualnych przepisów prawnych. W praktyce, obliczanie kosztów z uwzględnieniem podatków oraz dodatkowych opłat to standardowa procedura, która powinna być dobrze znana każdemu profesjonalistowi w dziedzinie usług elektronicznych. Takie podejście pozwala nie tylko na dokładność w wycenie, ale także na profesjonalne przedstawienie oferty klientowi.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Wartość pojemności kondensatora przedstawionego na rysunku wynosi

Ilustracja do pytania
A. 100 nF
B. 1 μF
C. 250 μF
D. 100 μF
Na przedstawionym zdjęciu widoczny jest kondensator z oznaczeniem „μ1K 250V”. Symbol ten określa zarówno pojemność, jak i parametry pracy elementu. Litera „μ” oznacza mikro (10⁻⁶), natomiast zapis „μ1” należy odczytać jako 0,1 μF, czyli 100 nanofaradów (nF). Litera „K” informuje o tolerancji wartości pojemności, w tym przypadku ±10%. Z kolei „250V” wskazuje maksymalne napięcie, przy którym kondensator może bezpiecznie pracować. Tego typu kondensatory są powszechnie stosowane w obwodach filtrujących, sprzęgających i odsprzęgających, gdzie wymagana jest stabilna pojemność i niewielkie straty energii. Często wykorzystuje się je w układach zasilających i elektronicznych urządzeniach pomiarowych. Odczytanie wartości wymaga znajomości oznaczeń stosowanych przez producentów, ponieważ zapis nie zawsze jest jednoznaczny. Poprawna interpretacja pozwala dobrać właściwy element do danego obwodu. Dlatego prawidłowa wartość pojemności kondensatora to 0,1 μF (100 nF).

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.