Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 12:26
  • Data zakończenia: 17 grudnia 2025 12:46

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego urządzenia należy użyć do określenia natężenia prądu płynącego przez urządzenie bez konieczności przerywania obwodu?

A. Amperomierza cęgowego
B. Amperomierza tablicowego
C. Multimetra analogowego
D. Multimetra uniwersalnego
Amperomierz cęgowy jest narzędziem, które pozwala na pomiar natężenia prądu w obwodzie bez konieczności przerywania go. Działa na zasadzie pomiaru pola magnetycznego generowanego przez przepływający prąd. W praktyce oznacza to, że wystarczy nałożyć cęgowy uchwyt na przewód, przez który płynie prąd, aby uzyskać dokładny odczyt. Takie podejście jest niezwykle przydatne w sytuacjach, gdy wyłączenie obwodu mogłoby spowodować zakłócenia w pracy urządzeń, na przykład w przypadku urządzeń przemysłowych czy elektronicznych. Amperomierze cęgowe są często stosowane w branży elektroenergetycznej oraz przy konserwacji i naprawach sprzętu elektrycznego. Warto również zauważyć, że nowoczesne modele amperomierzy cęgowych mogą mieć dodatkowe funkcje, takie jak pomiar napięcia, rezystancji czy częstotliwości, co czyni je wielofunkcyjnymi narzędziami, które spełniają standardy branżowe dotyczące bezpieczeństwa i wydajności.

Pytanie 2

Jakich środków ochrony indywidualnej należy używać podczas wprasowywania ciasno pasowanych elementów przy użyciu prasy śrubowej przedstawionej na rysunku?

Ilustracja do pytania
A. Stoperów do ochrony słuchu.
B. Butów ochronnych.
C. Rękawic ochronnych i nauszników ochronnych.
D. Kasku ochronnego i okularów ochronnych.
Kask ochronny i okulary ochronne to kluczowe środki ochrony indywidualnej przy pracy z prasą śrubową. Praca z tym narzędziem wiąże się z ryzykiem wystąpienia niebezpiecznych sytuacji, takich jak odpryskiwanie materiałów czy uderzenia. Kask ochronny zapewnia zabezpieczenie głowy przed przypadkowymi uderzeniami, które mogą wystąpić podczas obsługi prasy, a okulary ochronne chronią oczy przed drobnymi odpryskami, które mogą być generowane podczas wprasowywania elementów. Zgodnie z normami BHP, w miejscu pracy, gdzie występuje ryzyko urazów głowy i oczu, konieczne jest stosowanie odpowiednich środków ochrony osobistej. Przykładem standardu, który podkreśla te wymagania, jest norma PN-EN 397 dotycząca kasków ochronnych oraz norma PN-EN 166 dla okularów ochronnych. W praktyce, niezastosowanie tych środków ochrony może prowadzić do poważnych obrażeń, dlatego tak istotne jest ich stosowanie w zgodzie z zasadami bezpieczeństwa.

Pytanie 3

Jaką rolę odgrywają zawory przelewowe w systemach hydraulicznych?

A. Ograniczają ciśnienie do ustalonego poziomu
B. Zapewniają ustawiony, stały spadek ciśnienia
C. Utrzymują ustalony poziom ciśnienia
D. Redukują nagłe skoki ciśnienia
Wybór odpowiedzi, która wskazuje na inne funkcje zaworów przelewowych, może prowadzić do nieporozumień w zakresie ich rzeczywistego zastosowania. Zmniejszanie gwałtownych impulsów ciśnienia nie jest zasadniczą funkcją zaworów przelewowych. Takie zadania często są realizowane przez inne elementy układu, takie jak tłumiki czy akumulatory hydrauliczne, które są zaprojektowane do absorpcji szczytowych wartości ciśnienia. Utrzymywanie zadanego, stałego spadku ciśnienia jest również nieprawidłowym podejściem, ponieważ zawory przelewowe nie są przeznaczone do regulowania różnicy ciśnień, lecz do ochrony przed nadmiernym wzrostem ciśnienia. Innym błędnym przekonaniem jest to, że zawory przelewowe po prostu ograniczają ciśnienie do określonego poziomu; w rzeczywistości ich działanie jest bardziej złożone i polega na zapewnieniu stabilności ciśnienia w układzie poprzez odprowadzanie nadmiaru płynu. Mylne interpretacje dotyczące funkcji zaworów przelewowych mogą skutkować nieprawidłowym doborem komponentów w systemach hydraulicznych, co w konsekwencji prowadzi do awarii i zwiększonych kosztów eksploatacyjnych. Dlatego kluczowe jest zrozumienie ich rzeczywistej roli w utrzymywaniu stabilności ciśnienia, co jest niezbędne dla prawidłowego funkcjonowania całego układu hydraulicznego.

Pytanie 4

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 1000 mm2
B. 3000 mm2
C. 1500 mm2
D. 2000 mm2
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności F<sub>u</sub> = η ∙ S ∙ p. Wstawiając znane wartości: F<sub>u</sub> = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = F<sub>u</sub> / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m<sup>2</sup>, co odpowiada 2000 mm<sup>2</sup>. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 5

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. mikrometru
B. czujnika zegarowego
C. suwmiarki
D. średnicówki mikrometrycznej
Czujnik zegarowy jest narzędziem pomiarowym, które umożliwia precyzyjne określenie nierówności osiowej (bicia) wirujących tarcz. Działa na zasadzie pomiaru odległości, przy czym jego igła stykowa przesuwa się wzdłuż powierzchni obrabianego elementu, rejestrując wszelkie wahania. Dzięki wysokiej dokładności, czujniki zegarowe są standardowo stosowane w inżynierii mechanicznej do oceny i kontrolowania jakości elementów rotacyjnych. W praktyce, czujnik zegarowy jest niezbędny do ustawienia tarczy w maszynach takich jak tokarki czy frezarki. Użytkownik umieszcza czujnik w odpowiedniej pozycji, a następnie obraca tarczę, co pozwala na odczyt bicia. Każde odchylenie od idealnej osi wskazuje na konieczność korekcji ustawienia, co jest kluczowe dla zapewnienia nie tylko precyzyjnego działania maszyny, ale także wydłużenia jej żywotności oraz zapewnienia bezpieczeństwa pracy. Wysoka jakość czujników zegarowych oraz ich precyzyjne kalibracje są zgodne z najlepszymi praktykami w branży mechanicznej.

Pytanie 6

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. zaciskowego
B. skręcanego
C. powierzchniowego
D. przewlekanego
Skrót THT (Through-Hole Technology) odnosi się do technologii montażu komponentów elektronicznych, w której elementy są umieszczane w otworach wykonanych w płytce drukowanej. Ta technika montażu jest szczególnie popularna w przypadku komponentów o większych rozmiarach, takich jak kondensatory elektrolityczne, złącza czy elementy pasywne. Przykładem zastosowania THT są urządzenia elektroniczne, które wymagają wysokiej wytrzymałości mechanicznej, takie jak zasilacze czy moduły czołowe w systemach audio. W praktyce, podczas montażu THT, komponenty są najpierw wstawiane do otworów, a następnie lutowane od spodu płytki, co zapewnia trwałe i solidne połączenie. W branży stosuje się standardy IPC (Institute for Interconnecting and Packaging Electronic Circuits), które określają zasady dotyczące jakości i trwałości takich połączeń. Technologia THT, mimo rosnącej popularności montażu powierzchniowego (SMT), pozostaje kluczowa w wielu aplikacjach, gdzie wymagane są wytrzymałe połączenia oraz łatwość naprawy lub wymiany komponentów.

Pytanie 7

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w odzież ochronną
B. w hełm ochronny
C. w rękawice antywibracyjne
D. w gogle ochronne
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 8

Na rysunku przedstawiono siłownik hydrauliczny

Ilustracja do pytania
A. jednostronnego działania, o mocowaniu gwintowym.
B. dwustronnego działania, o mocowaniu gwintowym.
C. jednostronnego działania, o mocowaniu przegubowym.
D. dwustronnego działania, o mocowaniu przegubowym.
Wybranie innej odpowiedzi może wynikać z kilku powszechnych błędów myślowych. Niektórzy mogą błędnie interpretować przegubowe mocowanie jako jednostronne działanie, nie dostrzegając, że przegubowe mocowanie pozwala na większą elastyczność w ruchu. Może to prowadzić do mylnego wniosku, że siłownik musi działać w obie strony, co jest cechą siłowników dwustronnego działania. Siłowniki tego rodzaju mają przewody hydrauliczne po obu stronach tłoka, co nie jest obecne w analizowanym przypadku. Dodatkowo, jednostronne działanie siłownika oznacza, że siłownik jest aktywowany przez ciśnienie hydrauliczne z jednej strony, co ogranicza jego funkcjonalność. W praktyce, siłowniki jednostronnego działania są używane tam, gdzie nie ma potrzeby powrotu tłoka do pozycji wyjściowej przy użyciu hydrauliki, co podkreśla ich prostotę i efektywność w wielu aplikacjach. Dlatego przy ocenie siłowników hydraulicznych kluczowe jest zwrócenie uwagi na ich konstrukcję oraz sposób działania, co jest zgodne z branżowymi standardami projektowania i eksploatacji urządzeń hydraulicznych.

Pytanie 9

Jakie przyrządy pomiarowe powinno się wykorzystać do określenia mocy konsumowanej przez elektryczną nagrzewnicę z wentylatorem?

A. Amperomierz oraz woltomierz
B. Omomierz i amperomierz
C. Termometr i oscyloskop
D. Mostek RLC oraz termometr
Wybór przyrządów pomiarowych, takich jak mostek RLC i termometr, omomierz i amperomierz, czy termometr i oscyloskop, wskazuje na kilka nieporozumień dotyczących zasad pomiaru mocy elektrycznej. Mostek RLC jest urządzeniem stosowanym głównie do badania obwodów rezonansowych, nie jest zatem odpowiedni do pomiaru mocy. Termometr, mimo że może być użyteczny do oceny temperatury nagrzewnicy, nie ma zastosowania w bezpośrednim pomiarze mocy elektrycznej. Omomierz natomiast służy do pomiaru oporu elektrycznego i nie dostarcza informacji o prądzie ani napięciu, przez co nie można na jego podstawie obliczyć mocy. Oscyloskop z kolei to narzędzie do analizy sygnałów elektrycznych w czasie rzeczywistym, ale nie jest przeznaczony do bezpośredniego pomiaru mocy. Takie nieporozumienia mogą wynikać z braku znajomości podstawowych zasad elektrotechniki. W praktyce do pomiaru mocy zawsze należy używać amperomierza i woltomierza, aby uzyskać dokładne i rzetelne wyniki. Zastosowanie niewłaściwych przyrządów pomiarowych może prowadzić do błędów w ocenie wydajności energetycznej urządzeń, co jest szczególnie istotne w kontekście efektywności energetycznej i bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 10

Praska do zaciskania końcówek tulejkowych może być użyta do montażu końcówki przedstawionej na rysunku

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Praska do zaciskania końcówek tulejkowych to narzędzie kluczowe w procesie montażu połączeń przewodów elektrycznych. Odpowiedź C jest poprawna, ponieważ przedstawiona na rysunku końcówka jest tulejką z izolacją, co czyni ją idealną do użycia z prasą. Tulejki kablowe z izolacją stosuje się, aby zapewnić bezpieczne i trwałe połączenie, a ich zaciskanie przy użyciu pras zapewnia odpowiednią siłę i kontrolę, co jest zgodne z najlepszymi praktykami w elektrotechnice. Dzięki zastosowaniu tego narzędzia, użytkownik minimalizuje ryzyko uszkodzeń przewodów oraz zwiększa jakość połączenia. Ważne jest również, aby stosować odpowiednie tulejki do konkretnego przekroju przewodu, co zapewnia optymalne działanie instalacji. Dodanie smaru izolacyjnego lub zastosowanie komponentów zgodnych z normami IEC 60947-1 i IEC 60364 może dodatkowo poprawić bezpieczeństwo i efektywność elektrycznego połączenia.

Pytanie 11

W przedstawionym na schemacie układzie sterowania siłownikiem jednostronnego działania tłoczysko siłownika powinno się wysuwać przy jednoczesnym naciśnięciu obu przycisków. Który zawór należy zamontować w układzie w miejscu oznaczonym symbolem X?

Ilustracja do pytania
A. Dławiąco-zwrotny.
B. Przełącznik obiegu.
C. Szybkiego spustu.
D. Podwójnego sygnału.
Zawór podwójnego sygnału jest kluczowym elementem w układzie sterowania siłowników jednostronnego działania, gdzie wymagana jest współpraca dwóch sygnałów sterujących. Główną funkcją tego zaworu jest umożliwienie przepływu medium tylko wówczas, gdy oba przyciski są naciśnięte, co jest niezbędne do prawidłowego wysunięcia tłoczyska siłownika. Takie rozwiązanie zapobiega przypadkowemu uruchomieniu siłownika, co mogłoby prowadzić do niebezpiecznych sytuacji. W praktyce zawory podwójnego sygnału są często wykorzystywane w aplikacjach automatyki przemysłowej, takich jak linie montażowe, gdzie zachowanie ścisłej kontroli nad procesem jest kluczowe. Standardy takie jak ISO 4414 dotyczące bezpieczeństwa w układach pneumatycznych podkreślają znaczenie prawidłowego doboru elementów sterujących, co w tym przypadku potwierdza zasadność wyboru zaworu podwójnego sygnału. Dzięki niemu osiągnięcie precyzyjnego i bezpiecznego działania systemu jest możliwe, co jest fundamentem nowoczesnych rozwiązań automatyzacyjnych.

Pytanie 12

Zespół tokarki pociągowej zwany konikiem, jest przedstawiony na rysunku

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór odpowiedzi innej niż D może wynikać z braku zrozumienia roli konika tokarskiego w procesie obróbki skrawaniem. Często w takich przypadkach pojawia się mylne przekonanie, że stabilność obrabianego przedmiotu można osiągnąć jedynie poprzez odpowiednie ustawienie narzędzi skrawających lub za pomocą innych elementów tokarki. To podejście pomija kluczowy aspekt, jakim jest wsparcie mechaniczne przy dłuższych elementach, które są szczególnie podatne na odkształcenia. Bez wsparcia w postaci konika, obrabiany materiał ma tendencję do wyginania się, co prowadzi do nieprecyzyjnych wymiarów i obniżonej jakości wykończenia. W praktyce, zaniechanie użycia konika w takich sytuacjach może skutkować nie tylko straconym czasem na poprawki, ale także zwiększonym zużyciem narzędzi skrawających z powodu ich niewłaściwego działania. Dlatego ważne jest, aby zrozumieć, że konik tokarski nie jest jedynie dodatkiem, ale niezbędnym elementem zapewniającym efektywność i jakość procesu obróbczo-skrawającego, zgodnie z najlepszymi praktykami w branży.

Pytanie 13

Na podstawie tabeli kodów paskowych rezystorów wskaż rezystor o wartości rezystancji 1 kΩ i tolerancji 5%.

Kody paskowe rezystorów

KolorWartośćMnożnikTolerancja
± %
Współczynnik temp.
± ppm/K
1 pasek2 pasek3 pasek4 pasekOstatni pasek
czarny00x 1 Ω20200
brązowy11x 10 Ω1100
czerwony22x 100 Ω250
pomarańczowy33x 1 k315
żółty44x 10 k0 - +10025
zielony55x 100 k0.5
niebieski66x 1 M0.2510
fioletowy77x 10 M0,15
szary880,051
biały99
złoty0,1 Ω5
srebrny0,01 Ω10
brak20
Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór nieprawidłowego rezystora może wynikać z błędnego odczytu kodów paskowych lub ich niewłaściwej interpretacji. Paski na rezystorze, które nie odpowiednio odzwierciedlają wartości 1 kΩ i tolerancji 5%, mogą prowadzić do nieodpowiednich decyzji przy projektowaniu obwodów elektronicznych. Na przykład, jeżeli wybrano rezystor z innym kolorem pasków, łatwo można błędnie zinterpretować jego wartość. Jeżeli zamiast brązowego, czarnego, czerwonego i złotego, na rezystorze znajdują się paski, które wskazują na inną wartość rezystancji, z pewnością będzie to miało negatywne konsekwencje na działanie układów elektronicznych, w których ten komponent jest zainstalowany. Typowym błędem jest również nieznajomość kolorów pasków oraz ich kolejności. Prawidłowe zrozumienie kodu paskowego jest kluczowe dla każdego inżyniera, ponieważ pozwala to na nawiązanie do praktycznych zastosowań i standardów branżowych. Ponadto, znaczenie tolerancji jest często niedoceniane; niektórzy mogą zakładać, że tolerancje nie mają wpływu na działanie obwodu, co jest błędnym założeniem. W rzeczywistości, tolerancja odgrywa kluczową rolę w stabilności i niezawodności obwodów elektronicznych, a dobór odpowiednich komponentów na podstawie dokładnych specyfikacji jest absolutnie niezbędny, aby uniknąć problemów w przyszłości.

Pytanie 14

Przy obróbce metalu z użyciem pilników, jakie środki ochrony osobistej są wymagane?

A. obuwiu z gumową podeszwą oraz fartuchu ochronnym
B. rękawicach skórzanych i fartuchu skórzanym
C. rękawicach i okularach ochronnych
D. kasku ochronnym i rękawicach elektroizolacyjnych
Obrabianie metalu wymaga stosowania odpowiednich środków ochrony osobistej, a rękawice i okulary ochronne są kluczowe dla zapewnienia bezpieczeństwa podczas tego procesu. Rękawice chronią dłonie przed ostrymi krawędziami oraz szkodliwymi substancjami, które mogą wystąpić w wyniku obróbki. Okulary ochronne są niezbędne, aby zabezpieczyć oczy przed odłamkami metalu oraz pyłem, który może być generowany podczas obróbki. W praktyce, np. podczas używania pilników, niewłaściwe zabezpieczenie może prowadzić do poważnych urazów, dlatego stosowanie rękawic i okularów jest zgodne z normami BHP oraz zasadami dobrych praktyk przemysłowych. Dodatkowo, warto zwrócić uwagę na jakość stosowanych środków ochrony; rękawice powinny być wykonane z materiałów odpornych na przekłucia i ścieranie, a okulary muszą spełniać normy EN 166, które określają ich właściwości ochronne. Przestrzeganie tych zasad nie tylko minimalizuje ryzyko urazów, ale także przyczynia się do poprawy komfortu pracy.

Pytanie 15

Układ, którego schemat przedstawiono na rysunku, wymaga zasilania

Ilustracja do pytania
A. sprężonym powietrzem i olejem hydraulicznym.
B. sprężonym powietrzem i energią elektryczną.
C. olejem hydraulicznym i energią elektryczną.
D. wyłącznie sprężonym powietrzem.
Zasilanie układu jedynie sprężonym powietrzem jest niewystarczające w kontekście przedstawionego schematu. Choć sprężone powietrze jest kluczowe dla działania siłowników pneumatycznych, to jednak w układzie tym występują również komponenty elektryczne, takie jak czujniki i elektrozawory, które wymagają energii elektrycznej do prawidłowego funkcjonowania. Ignorowanie tego aspektu prowadzi do niepełnego zrozumienia procesów automatyzacji. Ponadto, stwierdzenie, że układ zasilany jest tylko sprężonym powietrzem, może wynikać z typowego błędu myślowego, polegającego na skupieniu się wyłącznie na jednym aspekcie układu, co w praktyce prowadzi do pominięcia ważnych elementów niezbędnych do jego pełnej operacyjności. W zastosowaniach przemysłowych często zachodzi potrzeba integracji różnych źródeł energii, co pozwala na osiągnięcie większej efektywności i elastyczności w działaniu systemów. Dlatego kluczowe jest zrozumienie, że zarówno zasilanie pneumatyczne, jak i elektryczne są nieodzownymi elementami nowoczesnych systemów automatyki, a ich odpowiednia kombinacja zapewnia optymalne warunki operacyjne.

Pytanie 16

Jaka jest wartość rezystancji rezystora przedstawionego na rysunku?

Ilustracja do pytania
A. 10 Ω
B. 100 Ω
C. 1 kΩ
D. 10 kΩ
Ten rezystor, co go widzisz na rysunku, ma oznaczenie "10kΩ", co oznacza, że jego rezystancja wynosi 10 kiloomów. W elektronice to bardzo ważny element, bo reguluje przepływ prądu w obwodach. Takie rezystory o wartości 10 kΩ często spotyka się w układach analogowych, jak na przykład w filtrach RC. Wiesz, ich wartość wpływa na częstotliwość graniczną obwodu, więc to jest naprawdę istotne. Z doświadczenia wiem, że dobór odpowiedniego rezystora to kluczowy krok, żeby obwód działał jak należy. No i jeszcze warto wiedzieć, że wartości rezystorów są ustandaryzowane według norm E12 lub E24. Dzięki temu łatwiej je dobrać i wykorzystać w praktyce. Dlatego warto znać wartości rezystancji i ich zastosowanie, bo to jest fundamentalne dla każdego inżyniera elektronika.

Pytanie 17

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Lutowanie twarde
B. Spawanie gazowe
C. Spawanie elektryczne
D. Lutowanie miękkie
Lutowanie miękkie jest techniką, która polega na łączeniu materiałów metalowych za pomocą stopów lutowniczych, których temperatura topnienia nie przekracza 450°C. Dzięki temu proces lutowania miękkiego jest idealnym rozwiązaniem w sytuacjach, gdzie ważne jest, aby nie narażać łączonych materiałów na wysokie temperatury, które mogłyby prowadzić do ich deformacji, osłabienia struktury lub innych niepożądanych efektów. Lutowanie miękkie znajduje zastosowanie w elektronice, gdzie łączenie elementów na płytkach drukowanych wymaga precyzyjnego podejścia i ochrony delikatnych komponentów przed ciepłem. Warto również zaznaczyć, że ta metoda jest szeroko stosowana w produkcji biżuterii, gdzie pożądana jest estetyka oraz trwałość połączeń bez ryzyka zagrożenia dla materiałów bazowych. Stosowanie lutowania miękkiego jest zgodne z normami branżowymi, takimi jak ISO 9453, które regulują wymagania dotyczące lutów i procesów lutowania, zapewniając wysoką jakość i bezpieczeństwo połączeń.

Pytanie 18

Jakie jest zastosowanie przedstawionego na ilustracji elementu?

Ilustracja do pytania
A. Zamiana prądu stałego na prąd przemienny.
B. Zamiana prądu przemiennego na prąd stały.
C. Obniżanie napięcia sieciowego.
D. Filtrowanie zakłóceń napięcia sieciowego.
Element przedstawiony na ilustracji to mostek prostowniczy, który odgrywa kluczową rolę w przetwarzaniu energii elektrycznej. Jego głównym zastosowaniem jest zamiana prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod ułożonych w taki sposób, aby umożliwić przepływ prądu w jednym kierunku, co prowadzi do wyprostowania sygnału. W praktyce, mostki prostownicze są szeroko stosowane w zasilaczach, które zasilają różne urządzenia elektroniczne. Na przykład, w komputerach czy telewizorach mostki prostownicze są niezbędne do konwersji napięcia z sieci energetycznej na odpowiednie wartości potrzebne do pracy podzespołów. Dzięki zastosowaniu mostka prostowniczego, można osiągnąć stabilne i niezawodne źródło prądu stałego, co jest zgodne z najlepszymi praktykami projektowania zasilaczy. Warto również wspomnieć, że mostki prostownicze wykorzystuje się w systemach fotowoltaicznych, gdzie energia słoneczna, generująca prąd stały, jest przetwarzana na prąd zmienny do użytku w domach lub wprowadzania do sieci energetycznej.

Pytanie 19

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 40,60 cm3
B. 4,06 cm3
C. 406,00 cm3
D. 4060,00 cm3
Poprawna odpowiedź to 406,00 cm3, co wynika z obliczenia objętości cylindra siłownika hydraulicznego. Wzór na objętość cylindra to V = A * h, gdzie A to powierzchnia podstawy cylindra, a h to jego wysokość lub skok. W tym przypadku powierzchnia wynosi 20,3 cm2, a skok 200 mm, co po przeliczeniu daje 20 cm. Zatem objętość wynosi: V = 20,3 cm2 * 20 cm = 406,00 cm3. Praktyczne zastosowanie tej wiedzy jest nieocenione w hydraulice, gdzie precyzyjne obliczenia objętości pozwalają na właściwe dobranie siłowników do zadań, co wpływa na efektywność systemów mechanicznych. Dobrze dobrany siłownik zapewnia optymalne parametry pracy urządzenia, a także zwiększa trwałość i niezawodność systemów hydraulicznych. W przemyśle, w którym często wykorzystywane są siłowniki, zrozumienie zasad obliczania objętości jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa pracy maszyn.

Pytanie 20

Jakiego rodzaju łożysko zostało przedstawione na rysunku?

Ilustracja do pytania
A. Wałeczkowe.
B. Baryłkowe.
C. Kulkowe.
D. Walcowe.
Odpowiedź "Kulkowe." jest poprawna, ponieważ na przedstawionym rysunku widoczne są kulki jako elementy toczne, co jest charakterystyczne dla łożysk kulkowych. Łożyska kulkowe są powszechnie stosowane w wielu urządzeniach mechanicznych, takich jak silniki, przenośniki czy maszyny przemysłowe, gdzie istotna jest niska odporność na tarcie i wysoka precyzja ruchu. Dzięki zastosowaniu kulek, które toczą się między wewnętrzną a zewnętrzną pierścieniową powierzchnią, możliwe jest uzyskanie wyjątkowo płynnego obrotu, co przekłada się na dłuższą żywotność maszyn i mniejsze zużycie energii. Standardy branżowe, takie jak ISO 281, definiują parametry i metody testowania łożysk kulkowych, co potwierdza ich znaczenie w inżynierii mechanicznej. Dodatkowo, łożyska kulkowe są dostępne w różnych rozmiarach oraz wykonaniach, co pozwala na ich szeroką adaptację do różnych zastosowań, zwiększając ich wszechstronność.

Pytanie 21

Zamiana tranzystorów BC109 na płytce kontrolera PLC może być przeprowadzona poprzez

A. wycięcie tranzystora
B. wylutowanie tranzystora
C. odkręcenie tranzystora
D. wyjęcie tranzystora z gniazda
Wylutowanie tranzystora jest poprawną metodą jego wymiany, ponieważ pozwala na usunięcie uszkodzonego komponentu z płytki PCB w sposób bezpieczny i skuteczny. Proces ten polega na podgrzaniu lutów łączących tranzystor z płytą za pomocą lutownicy lub stacji lutowniczej, co umożliwia jego wydobycie bez uszkodzenia otaczających elementów. Praktyka ta jest zgodna z normami IPC, które definiują wysokie standardy jakości w lutowaniu. W przypadkach, gdy tranzystor jest uszkodzony, wylutowanie jest często jedyną sensowną opcją, aby wymienić go na nowy. Należy również pamiętać o podjęciu odpowiednich środków ostrożności, takich jak użycie odpowiednich narzędzi i okularów ochronnych, aby uniknąć oparzeń czy uszkodzeń komponentów. Ponadto, w przypadku profesjonalnych napraw, warto stosować metody takie jak podgrzewanie całej płytki w piecu lutowniczym, co minimalizuje ryzyko uszkodzenia pozostałych elementów. Oprócz tego, znajomość technik wylutowywania i lutowania jest niezbędna dla osób zajmujących się elektroniką, aby zapewnić trwałość i niezawodność naprawionych urządzeń.

Pytanie 22

Enkoder to urządzenie przetwarzające

A. prędkość obrotową na impulsy elektryczne
B. kąt obrotu na impulsy elektryczne
C. prędkość obrotową na regulowane napięcie stałe
D. kąt obrotu na regulowane napięcie stałe
Wszystkie zaproponowane odpowiedzi, z wyjątkiem poprawnej, zawierają błędne interpretacje funkcji i zastosowania enkoderów. Przede wszystkim, enkodery nie przekształcają prędkości obrotowej na impulsy elektryczne, co sugeruje jedna z błędnych odpowiedzi. W rzeczywistości, enkoder mierzy kąt obrotu, a nie prędkość. Prędkość obrotowa jest pochodną kąta obrotu w czasie, co oznacza, że można ją obliczyć na podstawie danych z enkodera, ale sam enkoder nie dokonuje tego pomiaru bezpośrednio. Drugą nieprawidłową koncepcją jest przekształcanie kąta obrotu na regulowane napięcie stałe. Chociaż niektóre systemy mogą wykorzystywać sygnały analogowe, większość nowoczesnych enkoderów generuje impulsy cyfrowe, a nie sygnały analogowe. Zastosowanie regulowanego napięcia stałego jest typowe dla innych rodzajów czujników, takich jak potencometry, które działają na innej zasadzie. Błędne przekonanie, że enkoder jest odpowiedzialny za przekształcanie sygnału na napięcie stałe, prowadzi do mylnych wniosków o jego funkcjonowaniu. Kluczowym jest zrozumienie, że enkoder jest precyzyjnym urządzeniem do pomiaru ruchu, a nie do generowania sygnałów analogowych, co jest istotnym aspektem przy projektowaniu systemów automatyzacji i robotyki.

Pytanie 23

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Regulatora
B. Chwytaka
C. Sondy
D. Silnika
Chwytak jest kluczowym elementem w systemach manipulacyjnych, odpowiedzialnym za wykonywanie operacji manipulacyjnych. Jego zadaniem jest chwytanie, przenoszenie i wydawanie obiektów w zadanych lokalizacjach, co jest fundamentalne w automatyzacji procesów produkcyjnych i logistycznych. Chwytaki mogą mieć różne formy, takie jak chwytaki pneumatyczne, elektryczne czy hydrauliczne, co pozwala na dostosowanie ich do specyfiki manipulowanych obiektów. Przykładowo, w przemyśle motoryzacyjnym chwytaki są wykorzystywane do montażu komponentów, gdzie precyzyjne i szybkie operacje są kluczowe dla efektywności produkcji. W praktyce, dobór odpowiedniego chwytaka wymaga analizy właściwości manipulowanych przedmiotów, takich jak ich waga, kształt i materiał, co jest zgodne z dobrą praktyką projektowania systemów automatyzacji. Standardy, takie jak ISO 9283, dotyczące oceny wydajności chwytaków, są również istotne, zapewniając ich odpowiednią funkcjonalność w zastosowaniach industrialnych.

Pytanie 24

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. megaomomierzem
B. omomierzem
C. laboratoryjnym mostkiem Thomsona
D. technicznym mostkiem Thomsona
Pomiary rezystancji izolacji instalacji elektrycznej wykonuje się za pomocą megaomomierza, który jest specjalistycznym urządzeniem zaprojektowanym do oceny stanu izolacji. Megaomomierze działają na zasadzie generowania wysokiego napięcia, co pozwala na dokładne zmierzenie rezystancji izolacyjnej. Zgodnie z normami PN-EN 61557, pomiar rezystancji izolacji jest kluczowym elementem w ocenie bezpieczeństwa instalacji elektrycznych. W praktyce, podczas regularnych kontroli, technicy zalecają wykonywanie takich pomiarów co najmniej raz na rok, aby zminimalizować ryzyko awarii spowodowanych uszkodzeniem izolacji. Pomiary te są szczególnie istotne w obiektach przemysłowych, gdzie występują różne czynniki zewnętrzne mogące wpływać na stan izolacji, takie jak wilgoć, zanieczyszczenia czy zmiany temperatury. W przypadku stwierdzenia niskiej rezystancji, może to wskazywać na degradację materiału izolacyjnego, co wymaga podjęcia działań naprawczych.

Pytanie 25

Którego narzędzia trzeba użyć, by zamocować siłownik w sposób przedstawiony na ilustracji?

Ilustracja do pytania
A. Klucza imbusowego.
B. Klucza oczkowego.
C. Wkrętaka krzyżowego.
D. Wkrętaka płaskiego.
Wybór klucza imbusowego jako narzędzia do zamocowania siłownika jest zgodny z najlepszymi praktykami w zakresie montażu elementów mechanicznych. Śruby z łbem sześciokątnym wewnętrznym, znane również jako śruby imbusowe, wymagają do dokręcenia klucza imbusowego, który idealnie dopasowuje się do ich kształtu. Tego typu śruby są powszechnie stosowane w różnych aplikacjach, od mebli po maszyny przemysłowe, ze względu na swoją wytrzymałość oraz estetykę. Użycie klucza imbusowego pozwala na równomierne i precyzyjne dokręcenie, minimalizując ryzyko uszkodzenia główki śruby. Dlatego, stosując klucz imbusowy, zapewniamy sobie nie tylko wygodę, ale również efektywność oraz długotrwałość połączenia. W przypadku, gdy siłownik wymaga późniejszej regulacji, klucz imbusowy umożliwia łatwe dostosowanie, co jest istotne w przypadku aplikacji, gdzie precyzyjne ustawienie jest kluczowe.

Pytanie 26

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Ochronne okulary
B. Fartuch ochronny z bawełny
C. Buty z izolującą podeszwą
D. Opaskę uziemiającą
Wybór bawełnianego fartucha ochronnego, okularów ochronnych lub butów z izolowaną podeszwą do pracy przy wymianie tranzystora CMOS jest niewłaściwy, gdyż te elementy ochrony nie są wystarczające, aby zminimalizować ryzyko związane z uszkodzeniem komponentów przez ładunki elektrostatyczne. Fartuch ochronny, mimo że może chronić przed zanieczyszczeniami, nie zapewnia ochrony przed ESD. Użycie okularów ochronnych jest również nieadekwatne, ponieważ ich główną funkcją jest ochrona oczu przed zanieczyszczeniami mechanicznymi czy chemicznymi, ale nie ma zastosowania w kontekście ochrony przed uszkodzeniami wywołanymi przez elektrostatykę. Co więcej, buty z izolowaną podeszwą mogą prowadzić do zwiększenia ryzyka gromadzenia się ładunków elektrostatycznych, co jest sprzeczne z zasadami ochrony ESD. Często pracownicy nie doceniają znaczenia uziemienia, uważając, że inne formy ochrony są wystarczające, co jest klasycznym błędem myślowym. W przypadku pracy z wrażliwymi komponentami, jak tranzystory CMOS, najważniejsze jest minimalizowanie ryzyka ESD, a do tego niezbędne jest stosowanie opasek uziemiających, które zapewniają bezpieczne odprowadzenie ładunków do ziemi. Bez odpowiedniej ochrony ESD, nawet niewielkie ładunki mogą spowodować nieodwracalne uszkodzenia komponentów, co prowadzi do zwiększonych kosztów napraw oraz strat w produkcji.

Pytanie 27

Po przesunięciu suwaka potencjometru z pozycji "c" do pozycji "a" wartość prądu płynącego w obwodzie

Ilustracja do pytania
A. wzrośnie i będzie równa 6 mA
B. zmaleje i będzie równa 6 mA
C. wzrośnie i będzie równa 4 mA
D. zmaleje i będzie równa 4 mA
Wybierając odpowiedzi, które sugerują spadek prądu lub błędne wartości, można zauważyć typowe błędy w myśleniu o obwodach elektrycznych. Przykładowo, odpowiedzi sugerujące zmniejszenie prądu nie uwzględniają faktu, że mniejsza rezystancja obwodu przy stałym napięciu automatycznie prowadzi do zwiększenia wartości prądu. Zrozumienie relacji między napięciem, prądem i rezystancją jest kluczowe. Zgodnie z prawem Ohma, wzrost rezystancji przy stałym napięciu prowadzi do obniżenia natężenia prądu, jednak w tej konkretnej sytuacji, przesunięcie suwaka powoduje usunięcie dodatkowej rezystancji i tym samym zwiększenie całkowitego prądu płynącego przez obwód. W praktyce, takie błędne rozumienie może prowadzić do niewłaściwego projektowania układów elektronicznych, co może skutkować nieprawidłowym działaniem urządzeń. Kluczowe jest zrozumienie, że zmiany w rezystancji wpływają na prąd w sposób bezpośredni i proporcjonalny, co jest fundamentalnym aspektem zarówno w edukacji, jak i w praktyce inżynieryjnej.

Pytanie 28

W przedstawionym na schemacie układzie pneumatycznym można regulować

Ilustracja do pytania
A. tłumienie końca skoku.
B. skok siłownika.
C. prędkość ruchu tłoka.
D. siłę pchającą tłoka.
Poprawna odpowiedź to "siłę pchającą tłoka", ponieważ w układzie pneumatycznym siła pchająca tłoka jest regulowana poprzez odpowiednie ustawienie zaworu redukcyjnego. Zawór redukcyjny kontroluje ciśnienie w układzie, co bezpośrednio wpływa na siłę, z jaką tłok jest pchany w ruchu. W praktyce, dostosowanie siły pchającej jest kluczowe w wielu zastosowaniach przemysłowych, takich jak automatyzacja produkcji, gdzie precyzyjne sterowanie siłą umożliwia osiągnięcie optymalnych wyników w procesach montażowych czy pakujących. Kontrola ciśnienia zgodnie z normami PN-EN 983:2011, dotyczącymi układów pneumatycznych, zapewnia bezpieczeństwo i efektywność pracy urządzeń. Znajomość tego zagadnienia jest istotna dla inżynierów i techników zajmujących się projektowaniem i obsługą systemów pneumatycznych, ponieważ umożliwia im osiągnięcie odpowiednich parametrów pracy.

Pytanie 29

Jakim skrótem literowym określa się język drabinkowy?

A. STL
B. IL
C. LD
D. FBD
Język drabinkowy, znany jako LD, to jeden z najpopularniejszych języków w automatyce przemysłowej. Używa się go często do programowania sterowników PLC. Struktura tego języka wygląda jak drabinka, gdzie po bokach są zasilania, a w środku masz linie, które pokazują logikę działania. To strasznie ułatwia wszystko, bo dzięki temu operatorzy mogą szybko zrozumieć, co się dzieje w systemie. Przykładowo, jeśli chcemy, żeby silnik ruszał w zależności od czujnika, to właśnie w diagramie drabinkowym można to zobaczyć i łatwo poprawić, gdy coś nie działa. W praktyce LD jest zgodny z normą IEC 61131-3, która ustala zasady dla różnych języków programowania w automatyce, dlatego jest w zasadzie standardem w tej branży. W moim zdaniu to naprawdę dobry wybór do prostszych układów.

Pytanie 30

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 10,0 V
B. 4,5 V
C. 3,0 V
D. 7,5 V
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 31

Maksymalne natężenie przepływu dla pompy hydraulicznej, której dane katalogowe zamieszczono w ramce wynosi

Dane techniczne pompy hydraulicznej
Objętość geometryczna:60 cm3
Maksymalne natężenie przepływu Q:120 dm3/min
Natężenie przepływu przy 1000 obr./min:80 dm3/min
Maksymalna prędkość obrotowa:5000 obr./min
Maksymalne ciśnienie ciągłe:600 bar
Zakres temperatury pracy:-5 ÷ 60°C
Lepkość oleju hydraulicznego:10 ÷ 400 cSt
A. 120 dm3/min
B. 40 dm3/min
C. 200 dm3/min
D. 80 dm3/min
Maksymalne natężenie przepływu dla pompy hydraulicznej, wynoszące 120 dm3/min, zostało jasno określone w danych katalogowych. Ta informacja jest kluczowa dla projektowania systemów hydraulicznych, ponieważ natężenie przepływu wpływa na wydajność i efektywność całego układu. Poprawne dobranie pompy do aplikacji pozwala na optymalizację pracy maszyn, co jest zgodne z zasadami inżynierii hydraulicznej, które zalecają stosowanie urządzeń o parametrach dostosowanych do specyfiki zastosowania. Na przykład, w aplikacjach przemysłowych, gdzie wymagane są duże natężenia przepływu, dobór pompy o takim właśnie maksymalnym natężeniu pozwala na zminimalizowanie strat energii i zwiększenie efektywności procesów. Warto również pamiętać, że zgodność z danymi katalogowymi jest niezbędna do utrzymania systemów w odpowiednim stanie technicznym oraz do zapobiegania ewentualnym awariom, co potwierdzają standardy ISO 9001 dotyczące zarządzania jakością w inżynierii.

Pytanie 32

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Płaskiego
B. Nasadowego
C. Dynamometrycznego
D. Imbusowego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 33

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. uniwersalne
B. zapadkowe
C. płaskie
D. oczko
Stosowanie kluczy uniwersalnych, oczkowych czy płaskich w kontekście zwiększenia wydajności montażu połączeń gwintowych może być mylące, gdyż każdy z tych typów narzędzi ma swoje ograniczenia, które wpływają na efektywność pracy. Klucze uniwersalne, choć oferują wszechstronność, mogą nie zapewniać odpowiedniego momentu obrotowego i precyzji potrzebnej w aplikacjach wymagających dużej siły. Ich konstrukcja nie zawsze pozwala na łatwe dopasowanie do różnych głowic śrubowych, co może prowadzić do uszkodzenia elementów. Klucze oczkowe natomiast są przeznaczone do dokręcania śrub z główkami sześciokątnymi, ale ich użycie może wymagać częstego przestawiania narzędzia do kolejnych ruchów, co znacząco spowalnia proces. Klucze płaskie, choć również powszechnie stosowane, mają ograniczoną możliwość działania w ciasnych przestrzeniach, co może prowadzić do trudności w pracy w niektórych aplikacjach. Warto zauważyć, że błędne przekonania o uniwersalności tych narzędzi mogą prowadzić do nieefektywności i frustracji w pracy, co może z kolei negatywnie wpływać na czas realizacji projektów oraz jakość montażu. Świadomość tych ograniczeń oraz dobór narzędzi zgodnie z zasadami ergonomii i specyfiki zadania są kluczowe w celu optymalizacji procesów montażowych.

Pytanie 34

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
B. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
C. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
D. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
Poprawna odpowiedź odnosi się do kluczowych zasad demontażu skomplikowanych urządzeń, które są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego procesu. Wykonanie planu demontażu jest istotne, ponieważ pozwala na zrozumienie struktury urządzenia, co z kolei umożliwia bezpieczne i uporządkowane rozmontowywanie poszczególnych zespołów. Przy takiej procedurze, każdy zespół jest najpierw demontowany w całości, co minimalizuje ryzyko uszkodzenia podzespołów i ułatwia ich późniejszy montaż lub konserwację. Przykładem zastosowania tej zasady może być demontaż skomplikowanych systemów elektronicznych, takich jak komputery czy maszyny przemysłowe, gdzie precyzyjne rozpoznanie kolejności demontażu, na podstawie schematów, może zapobiec zniszczeniu delikatnych komponentów. Zgodnie z najlepszymi praktykami, taki plan demontażu powinien być udokumentowany oraz regularnie aktualizowany, aby uwzględniał zmiany w konstrukcji urządzeń oraz nowe technologie.

Pytanie 35

Przy pracy z urządzeniami, które są zasilane, należy używać narzędzi izolowanych oznaczonych

A. zielonym kolorem z żółtą obręczą
B. napisem "narzędzie bezpieczne"
C. symbolem kwadratu z określoną wartością napięcia
D. symbolem podwójnego trójkąta z określoną wartością napięcia
Narzędzia izolowane oznaczone znakiem podwójnego trójkąta z podaniem wartości napięcia są kluczowe dla zapewnienia bezpieczeństwa podczas pracy przy urządzeniach pod napięciem. Taki oznaczenie informuje użytkownika, że narzędzie zostało zaprojektowane z myślą o użyciu w określonym zakresie napięcia, co minimalizuje ryzyko porażenia prądem. Na przykład, jeśli narzędzie jest oznaczone dla napięcia 1000V, użytkownik ma pewność, że może je stosować w warunkach, gdzie występują napięcia do 1000V, bez obawy o uszkodzenie narzędzia czy jego izolacji. Stosowanie narzędzi z odpowiednim oznaczeniem jest zgodne z normami bezpieczeństwa, takimi jak EN 60900, które określają standardy dla narzędzi używanych w instalacjach elektrycznych. Dobre praktyki wskazują, że przed rozpoczęciem pracy należy zawsze sprawdzić oznaczenie narzędzi oraz ich stan techniczny, aby zapewnić, że nie doszło do uszkodzenia izolacji, co mogłoby prowadzić do niebezpiecznych sytuacji. Dodatkowo, w środowiskach przemysłowych, gdzie ryzyko kontaktu z napięciem jest wysokie, korzystanie z odpowiednio oznakowanych narzędzi powinno być rutynową procedurą każdej osoby pracującej w branży elektrycznej.

Pytanie 36

Na płytce drukowanej w miejscach oznaczonych cyframi 1, 2, 3 należy zamontować

Ilustracja do pytania
A. 1 - kondensator elektrolityczny, 2 - diodę prostowniczą, 3 - rezystor.
B. 1 - diodę prostowniczą, 2 - kondensator elektrolityczny, 3 - rezystor.
C. 1 - diodę prostowniczą, 2 - rezystor, 3 - kondensator elektrolityczny.
D. 1 - kondensator elektrolityczny, 2 - rezystor, 3 - diodę prostowniczą.
Twoja odpowiedź jest prawidłowa. Miejsce oznaczone cyfrą 1 jest przeznaczone na diodę prostowniczą, co można zidentyfikować po charakterystycznym symbolu diody, który często przedstawia trójkąt i linię. Dioda prostownicza jest kluczowym elementem w obwodach elektronicznych, gdzie pełni funkcję prostowania prądu, co jest istotne w zasilaczach i układach rectifier. Miejsce oznaczone cyfrą 2 jest przeznaczone na kondensator elektrolityczny. Kondensatory te są używane głównie do filtracji w zasilaczach oraz do stabilizacji napięcia, co jest niezbędne dla prawidłowego działania układów elektronicznych. Ostatnie miejsce, oznaczone cyfrą 3, jest przeznaczone na rezystor. Rezystory są powszechnie stosowane do ograniczenia przepływu prądu w obwodach oraz do regulacji napięcia. Zrozumienie funkcji tych komponentów jest kluczowe w projektowaniu i analizie obwodów elektronicznych, a ich prawidłowy montaż na płytce drukowanej zgodnie z oznaczeniami jest niezbędny dla stabilności i bezpieczeństwa całego układu.

Pytanie 37

Podczas użytkowania urządzenia zaobserwowano wzrost hałasu spowodowany przez łożysko toczne. Naprawa sprzętu polega na

A. wymianie całego łożyska
B. redukcji nadmiaru smaru w łożysku
C. wymianie osłony łożyska
D. zmniejszeniu luzów łożyska
Wybór odpowiedzi, takich jak zmniejszenie nadmiaru smaru w łożysku, wymiana osłony łożyska czy zmniejszenie luzów łożyska, nie adresuje źródła problemu. Zmniejszenie nadmiaru smaru może prowadzić do zjawiska zwanego "suchym tarciem", co z kolei może zwiększyć zużycie łożyska i pogłębić hałas. Utrzymanie odpowiedniego poziomu smaru jest kluczowe dla minimalizowania tarcia oraz zjawiska przegrzewania się łożysk, co obniża ich trwałość. Z kolei wymiana osłony łożyska nie rozwiązuje problemu samego łożyska, które wymaga naprawy lub wymiany. Większość łożysk tocznych jest skonstruowana w taki sposób, że ich uszkodzenie wymaga pełnej wymiany, aby przywrócić prawidłowe funkcjonowanie maszyny. Zmniejszenie luzów łożyska również nie jest wystarczającym rozwiązaniem, ponieważ luz powinien być dostosowany zgodnie z wymaganiami producenta i specyfikacjami technicznymi. Nieprawidłowe dostosowanie luzów może prowadzić do zjawiska przegrzewania, wibracji oraz zwiększonego hałasu. Aby zapobiec awariom i zapewnić długotrwałe działanie osprzętu, kluczowe jest przestrzeganie zasad konserwacji i wymiany łożysk zgodnie z ich stanem technicznym oraz specyfikacjami producenta.

Pytanie 38

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika prądu stałego o napięciu 400 V
B. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
C. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
D. Silnika jednofazowego o napięciu 230 V
Odpowiedzi wskazujące na inne urządzenia, takie jak silnik jednofazowy o napięciu 230 V, transformator trójfazowy o napięciu górnym 400 V, czy silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V skojarzonego w Δ, sugerują pewne nieporozumienia dotyczące zasilania elektrycznego i charakterystyki tych urządzeń. Silnik jednofazowy o napięciu 230 V nie może być podłączony do systemu 400 V bez zastosowania transformatora obniżającego napięcie, ponieważ może to prowadzić do uszkodzenia silnika. Transformator trójfazowy, mimo że może być zasilany napięciem 400 V, wymaga poprawnego doboru napięcia, a jego skojarzenie Dy5 oznacza, że napięcie międzyfazowe wynosi 400 V, co czyni go odpowiednim do pracy w tym systemie. Silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V jest zaprojektowany do pracy w systemach trójfazowych i bywa używany w wielu aplikacjach przemysłowych. Niezrozumienie tych podstawowych zasad zasilania prowadzi często do niebezpiecznych sytuacji w praktyce, takich jak niewłaściwe podłączenie urządzeń do źródeł energii, co może skutkować zarówno uszkodzeniem sprzętu, jak i zagrożeniem dla bezpieczeństwa operatorów. Każde urządzenie powinno być zasilane zgodnie z jego specyfikacją techniczną oraz odpowiednimi normami, aby uniknąć problemów eksploatacyjnych.

Pytanie 39

Na rysunku przedstawiono tabliczkę znamionową

Ilustracja do pytania
A. autotransformatora.
B. silnika prądu stałego.
C. silnik indukcyjnego.
D. transformatora.
Wybór odpowiedzi związanej z transformatorem, silnikiem prądu stałego lub autotransformatorem wskazuje na pewne nieporozumienia dotyczące podstawowych właściwości tych urządzeń elektrycznych. Transformator, na przykład, jest urządzeniem, które zmienia poziom napięcia w obwodzie prądu przemiennego, a jego tabliczka znamionowa zawiera zazwyczaj informacje na temat przekładni napięciowej oraz mocy. Jeżeli na tabliczce znajduje się moc w kilowatach oraz prędkość obrotowa, to nie są to dane stosowane do transformatorów. Silniki prądu stałego działają na zasadzie innej niż silniki indukcyjne, wykorzystując różne mechanizmy do przemiany energii elektrycznej w mechaniczną. Typowe oznaczenia dla silników prądu stałego obejmują inne parametry, takie jak wartość napięcia oraz charakterystyki prądu, które nie są widoczne w przedstawionym przypadku. Z kolei autotransformator to rodzaj transformatora, który ma wspólne uzwojenie dla obu poziomów napięcia, co również nie odpowiada charakterystyce silnika indukcyjnego. Zrozumienie podstawowych różnic między tymi urządzeniami jest kluczowe dla ich prawidłowego zastosowania w praktyce. Osoby, które mylą te urządzenia, często nie zdają sobie sprawy z ich unikalnych właściwości i zastosowań, co może prowadzić do niewłaściwego doboru sprzętu oraz problemów w działaniu systemów elektrycznych.

Pytanie 40

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. szerokości silnika oraz średnicy wirnika
B. odległości między osią wału a podstawą uchwytów silnika
C. wysokości silnika
D. średnicy stojana
Wysokość silnika, średnica stojana i szerokość silnika z wirnikiem to takie parametry, które są związane z konstrukcją silnika, ale nie mają nic wspólnego z pomiarem wzniosu. Jasne, że wysokość silnika jest ważna, kiedy chodzi o to, gdzie ten silnik jest wbudowany, ale nie pokazuje, jaka jest właściwa odległość między osią wału a podstawą łap. Średnica stojana dotyczy wymiarów wewnętrznych silnika i ma znaczenie dla jego działania, ale nie ma wpływu na wznios. Szerokość silnika oraz średnica wirnika to też ważne wymiary, ale nie mówią nam, jak silnik jest zamontowany, a to jest kluczowe dla jego prawidłowego działania. Często zdarza się, że ludzie mylą wznios z parametrami konstrukcyjnymi silnika, zamiast skupić się na tej rzeczywistej odległości, która może mieć duży wpływ na wydajność i współpracę z innymi elementami. Zrozumienie, jak te różne parametry się powiązane, może pomóc uniknąć problemów w eksploatacji i dobrze dobrać silnik do konkretnego zastosowania.