Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 18 listopada 2025 23:04
  • Data zakończenia: 18 listopada 2025 23:14

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Aby zmierzyć zużycie gładzi cylindrowej w silniku spalinowym, powinno się zastosować

A. średnicówkę czujnikową
B. suwmiarkę
C. szczelinomierz
D. mikroskop warsztatowy
Średnicówka czujnikowa jest narzędziem pomiarowym, które zapewnia wysoką precyzję w pomiarach średnicy otworów oraz gładzi cylindrowej w silnikach spalinowych. Jest to kluczowe, gdyż precyzyjne określenie wymiarów gładzi cylindrowej ma bezpośredni wpływ na efektywność silnika oraz jego żywotność. Gładź cylindrowa musi być idealnie gładka i o odpowiednich wymiarach, aby zapewnić prawidłową współpracę z tłokiem oraz optymalne smarowanie. Użycie średnicówki czujnikowej pozwala na dokładne pomiary, które są istotne w kontekście diagnostyki oraz remontów silników. W praktyce, przy pomocy tego narzędzia można z łatwością określić, czy gładź cylindrowa wymaga regeneracji, czy też można pozostawić ją w jej obecnym stanie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach produkcyjnych i serwisowych, a średnicówki czujnikowe są doskonałym przykładem narzędzi, które spełniają te wymagania.

Pytanie 3

Aby zdemontować łożyska z piast kół samochodu, jakie narzędzie powinno być wykorzystane?

A. rozpieraka
B. szczypiec uniwersalnych
C. prasy hydraulicznej
D. zbieraka
Użycie prasy hydraulicznej do demontażu łożysk z piast kół pojazdów jest najskuteczniejszą oraz najbezpieczniejszą metodą, która zapewnia odpowiednią siłę nacisku niezbędną do skutecznego usunięcia łożyska. Prasy hydrauliczne działają na zasadzie różnicy ciśnień, co pozwala na łatwe i precyzyjne wyciąganie łożysk bez ryzyka uszkodzenia piasty. Przykładowo, w warsztatach mechanicznych, zwłaszcza tych zajmujących się naprawą pojazdów ciężarowych lub sportowych, prasy te są standardowym wyposażeniem, umożliwiającym szybkie i efektywne wykonywanie usług. Zgodnie z normami branżowymi, stosowanie prasy hydraulicznej jest zgodne z zasadami bezpiecznej i ergonomicznej pracy, co zmniejsza ryzyko kontuzji dla mechanika. Warto zaznaczyć, że nieodpowiednie metody, takie jak użycie szczypiec uniwersalnych, mogą prowadzić do uszkodzenia łożysk oraz innych elementów układu, co z kolei wydłuża czas naprawy i generuje dodatkowe koszty.

Pytanie 4

Z zamieszczonego obok wydruku z analizy spalin pojazdu wynika, że stężenie tlenu w spalinach wynosi

RODZAJ PALIWA: Benzyna
POMIAR CIĄGŁY:
SILNIK T= 0°C ZA ZIMNY
obj< 20
CO = 0.76 % obj
CO2=12.68 % obj
O2 = 3.21 % obj
HC = 508 ppm obj
λ =1.141
NOx= 120 ppm obj
A. 1.141
B. 508 ppm.
C. 3,21 %.
D. 12,60 %.
Stężenie tlenu (O2) w spalinach, które wynosi 3,21% objętościowych, jest naprawdę istotnym wskaźnikiem, jeśli chodzi o efektywność spalania w silniku. Mówiąc prosto, pokazuje nam, ile tlenu zostało niezużyte podczas spalania paliwa, a to może znacząco wpłynąć na emisję spalin i wydajność całego silnika. W praktyce zbyt wysoka ilość tlenu może świadczyć o tym, że mieszanka paliwowo-powietrzna jest źle ustawiona albo że coś jest nie tak z układem wtryskowym. A to z kolei może prowadzić do większego zużycia paliwa oraz wyższej emisji zanieczyszczeń. W motoryzacji monitorowanie stężenia tlenu w spalinach to standard, który pozwala lepiej dostosować parametry pracy silnika i spełniać normy emisji. Przykładowo, w autach z systemami kontroli emisji, jak katalizatory czy układy recyrkulacji spalin, odpowiednie stężenie tlenu jest kluczowe, żeby wszystko działało jak należy.

Pytanie 5

Ciśnienie podciśnienia to ciśnienie, które jest

A. równe ciśnieniu atmosferycznemu na poziomie morza
B. wyższe od ciśnienia atmosferycznego
C. równe ciśnieniu atmosferycznemu
D. niższe od ciśnienia atmosferycznego
Zrozumienie podciśnienia wymaga przemyślenia, jak ciśnienie działa w różnych kontekstach. Odpowiedzi sugerujące, że podciśnienie jest większe lub równe ciśnieniu atmosferycznemu są nieprawidłowe z kilku powodów. Po pierwsze, podciśnienie definiuje się jako sytuację, w której ciśnienie jest niższe niż ciśnienie otoczenia. Mogłoby to prowadzić do mylnych przekonań, że w warunkach podciśnienia ciśnienie wewnętrzne jakiegoś systemu, np. zbiornika, jest wyższe od atmosferycznego, co jest fizycznie niemożliwe. Ciśnienie atmosferyczne na poziomie morza wynosi około 1013 hPa. Mówiąc o podciśnieniu, mówimy o wartościach ciśnienia, które są znacznie niższe, co prowadzi do różnych zjawisk fizycznych, takich jak wytwarzanie próżni. W praktyce, gdy ciśnienie jest równe ciśnieniu atmosferycznemu, nie mamy do czynienia z podciśnieniem, lecz z równowagą ciśnień, co nie wpływa na żadne procesy, które mogłyby wykorzystywać podciśnienie. Stąd pomylenie podciśnienia z odpowiadającym mu ciśnieniem atmosferycznym może prowadzić do błędnych decyzji w projektowaniu systemów, które wymagają precyzyjnego zarządzania ciśnieniem, jak np. w systemach wentylacyjnych czy eksperymentach laboratoryjnych. Kluczowe jest zrozumienie, że podciśnienie ma charakter niszczący dla niektórych substancji, a jego kontrola jest niezbędna w wielu procesach przemysłowych i laboratoryjnych. Wiedza o tym, jak podciśnienie wpływa na materiały i procesy, jest niezbędna dla inżynierów i technologów.

Pytanie 6

Aby zmierzyć napięcie ładowania akumulatora w instalacji elektrycznej samochodu z alternatorem, konieczne jest skorzystanie z woltomierza o zakresie pomiarowym przynajmniej

A. 6 V
B. 2 V
C. 9 V
D. 20 V
Pomiar napięcia ładowania akumulatora w instalacji elektrycznej pojazdu z alternatorem wymaga użycia woltomierza o zakresie co najmniej 20 V. Standardowe napięcie ładowania akumulatorów w pojazdach osobowych wynosi od 13,8 V do 14,4 V, w zależności od stanu naładowania oraz temperatury. W przypadku awarii alternatora, napięcie może jednak wzrosnąć, osiągając wartości niebezpieczne dla systemu elektrycznego pojazdu. Użycie woltomierza o zakresie minimum 20 V zapewnia nie tylko bezpieczeństwo pomiaru, ale również pozwala na dokładne monitorowanie zachowań układu ładowania. Przykładowo, w przypadku stosowania woltomierza o niższym zakresie, istnieje ryzyko spalenia przyrządu pomiarowego przy wystąpieniu zbyt wysokiego napięcia. Ponadto, w branży motoryzacyjnej, zgodnie z normami SAE (Society of Automotive Engineers), zaleca się korzystanie z urządzeń pomiarowych, które mogą obsługiwać wyższe napięcia, aby uniknąć potencjalnych uszkodzeń sprzętu oraz zapewnić wiarygodność pomiarów.

Pytanie 7

EGR to skrót oznaczający system

A. zmiennych faz rozrządu
B. recyrkulacji spalin
C. wspomagania układu kierowniczego
D. wspomagania układu hamulcowego
EGR, czyli układ recyrkulacji spalin, odgrywa kluczową rolę w redukcji emisji szkodliwych gazów w silnikach spalinowych. Działa na zasadzie wprowadzania części spalin z powrotem do komory spalania, co obniża temperaturę spalania i zmniejsza powstawanie tlenków azotu (NOx). Zastosowanie EGR jest zgodne z normami emisji, takimi jak Euro 6, które wymagają od producentów samochodów wdrażania technologii redukujących emisję zanieczyszczeń. Przykładowo, w silnikach diesel'owych, efektywność układu EGR może zmniejszyć emisję NOx nawet o 30-50%, co znacząco wpływa na jakość powietrza. W praktyce, system EGR może być realizowany na różne sposoby, w tym poprzez EGR chłodzony, który dodatkowo obniża temperaturę spalin przed ich ponownym wprowadzeniem do silnika, co zwiększa wydajność. Z tego względu, zrozumienie działania EGR jest niezbędne dla inżynierów zajmujących się projektowaniem i optymalizacją silników spalinowych oraz w kontekście przepisów dotyczących ochrony środowiska.

Pytanie 8

Ile czasu zajmie całkowite odpowietrzenie hamulców w samochodzie osobowym wyposażonym w hydrauliczny układ hamulcowy, jeżeli czas potrzebny na odpowietrzenie każdego koła wynosi 15 minut?

A. 1,5 godz
B. 0,5 godz
C. 2,0 godz
D. 1,0 godz
Odpowiedź 1,0 godz. jest prawidłowa, ponieważ całkowity czas odpowietrzenia hamulców w samochodzie osobowym z hydraulicznym układem hamulcowym obliczamy, mnożąc czas pracy na jedno koło przez liczbę kół. W standardowych samochodach osobowych mamy cztery koła, a czas odpowietrzenia dla każdego z nich wynosi 15 minut. Stąd całkowity czas odpowietrzenia wynosi 15 minut x 4 = 60 minut, co przekłada się na 1,0 godz. W praktyce, procedura odpowietrzania hamulców jest kluczowa dla zapewnienia ich prawidłowego działania, eliminacji powietrza z układu oraz utrzymania odpowiedniego ciśnienia hydraulicznego. Wiele warsztatów stosuje technikę odpowietrzania w oparciu o standardy, takie jak SAE J1401, które określają procedury i narzędzia potrzebne do prawidłowego przeprowadzenia tej operacji. Zrozumienie tego procesu jest niezbędne dla mechaników oraz właścicieli pojazdów, aby zapewnić bezpieczeństwo i efektywność układu hamulcowego.

Pytanie 9

Przyczyną dźwięków pojawiających się w systemie napędowym pojazdu, które nasilają się podczas skrętów lub zawracania, jest uszkodzenie

A. przekładni kierowniczej
B. skrzyni biegów
C. przegubu napędowego
D. sprzęgła
Przegub napędowy jest kluczowym elementem układu napędowego pojazdu, który umożliwia przenoszenie momentu obrotowego z silnika na koła, zwłaszcza podczas skręcania. Stuki, które mogą występować podczas manewrów skrętnych, często są wynikiem uszkodzenia przegubów, które nie są w stanie skutecznie absorbować ruchów zawieszenia. W przypadku przegubów, ich uszkodzenie objawia się charakterystycznym dźwiękiem, który jest słyszalny podczas zmiany kierunku jazdy. Użytkownicy powinni być świadomi, że regularne sprawdzanie stanu przegubów napędowych oraz ich odpowiednia konserwacja mogą znacząco zmniejszyć ryzyko awarii. W dobrych praktykach branżowych zaleca się wymianę przegubów w momencie stwierdzenia ich zużycia lub pojawienia się jakichkolwiek niepokojących dźwięków, aby uniknąć kosztownych napraw związanych z uszkodzeniem innych komponentów układu napędowego. Pamiętajmy również, że przeguby napędowe podlegają różnym obciążeniom, co sprawia, że ich wytrzymałość i sprawność są kluczowe dla bezpieczeństwa i komfortu jazdy.

Pytanie 10

Podczas inspekcji układu zawieszenia zauważono odkształcenie wahacza koła. W tej sytuacji mechanik powinien

A. wygięty wahacz naprawić na gorąco
B. wygięty wahacz naprawić na zimno
C. wykonać kompleksową regulację geometrii zawieszenia
D. uszkodzony wahacz wymienić na nowy
W przypadku stwierdzenia skrzywienia wahacza koła, najlepszym rozwiązaniem jest jego wymiana na nowy. Wahacz jest kluczowym elementem układu zawieszenia, który odpowiada za stabilność pojazdu, a także zapewnia odpowiednią geometrię kół. Skrzywienie wahacza może prowadzić do nieprawidłowego ustawienia kół, co z kolei wpływa na bezpieczeństwo jazdy, zużycie opon oraz komfort podróżowania. Wymiana wahacza jest zgodna z zasadami dobrych praktyk w branży motoryzacyjnej, które zalecają stosowanie nowych, oryginalnych lub wysokiej jakości zamienników, aby zapewnić pełną funkcjonalność i bezpieczeństwo. W sytuacjach, gdy wahacz uległ uszkodzeniu, jego regeneracja poprzez prostowanie może wprowadzić dodatkowe ryzyko, gdyż nie gwarantuje to przywrócenia pierwotnych właściwości mechanicznych materiału. Przykładem może być sytuacja, w której po prostowaniu wahacza następuje jego dalsza deformacja podczas eksploatacji pojazdu. Dlatego zaleca się wymianę uszkodzonego wahacza na nowy, co zapewnia długoterminowe bezpieczeństwo oraz niezawodność układu zawieszenia.

Pytanie 11

Który płyn eksploatacyjny oznaczany jest symbolem 10W/40?

A. Płyn do hamulców
B. Płyn do spryskiwaczy
C. Olej silnikowy
D. Płyn chłodzący do silnika
Odpowiedź, że płyn eksploatacyjny oznaczany symbolem 10W/40 to olej silnikowy, jest poprawna. Symbol 10W/40 odnosi się do klasy lepkości oleju silnikowego, podlegającej normom SAE (Society of Automotive Engineers). Liczba '10W' wskazuje na lepkość oleju w niskich temperaturach (W oznacza 'winter'), co oznacza, że olej zachowuje odpowiednią płynność w zimnych warunkach, co jest kluczowe przy uruchamianiu silnika w niskich temperaturach. Druga liczba '40' odnosi się do lepkości w wysokich temperaturach, co czyni olej odpowiednim do użycia w wyższych temperaturach roboczych silnika. Dzięki tym właściwościom, olej 10W/40 zapewnia odpowiednią ochronę silnika, zmniejsza tarcie i zużycie komponentów, a także minimalizuje ryzyko przegrzania. Jest to jeden z najczęściej stosowanych rodzajów olejów silnikowych, szczególnie w pojazdach osobowych oraz dostawczych, co wynika z ich uniwersalności i efektywności w szerokim zakresie warunków eksploatacyjnych.

Pytanie 12

Masa własna pojazdu obejmuje

A. masę pojazdu oraz normalnego wyposażenia, a także kierowcy i pasażera
B. masę pojazdu oraz standardowego wyposażenia z płynami eksploatacyjnymi, lecz bez kierowcy
C. masę standardowego wyposażenia pojazdu, jednak bez kierowcy
D. masę pojazdu oraz wyposażenia, bez płynów eksploatacyjnych i bez kierowcy
Masa własna pojazdu odnosi się do całkowitej masy pojazdu, która obejmuje masę samego pojazdu, jego standardowego wyposażenia oraz wszelkich płynów eksploatacyjnych, takich jak olej silnikowy, płyn chłodzący czy paliwo. Kluczowym aspektem jest to, że masa własna nie uwzględnia kierowcy ani pasażerów. W praktyce, znajomość masy własnej pojazdu jest istotna dla określenia jego osiągów, takich jak przyspieszenie, zużycie paliwa oraz bezpieczeństwo. Normy branżowe, takie jak ISO 612, definiują metody pomiaru masy pojazdów, co pozwala na porównywanie różnych modeli pod kątem ich masy oraz efektywności. Ponadto, producenci pojazdów często podają masę własną w dokumentacji technicznej, co jest istotne dla użytkowników planujących przewóz towarów czy osób, a także dla osób zajmujących się tuningiem pojazdów. Ich świadomość odnośnie do masy własnej jest kluczowa dla zapewnienia bezpieczeństwa i legalności eksploatacji pojazdów na drogach publicznych.

Pytanie 13

Na rysunku przedstawiono pomiar bicia

Ilustracja do pytania
A. osiowego piasty koła.
B. promieniowego piasty koła.
C. osiowego tarczy hamulcowej.
D. promieniowego tarczy hamulcowej.
Poprawna odpowiedź dotyczy pomiaru bicia promieniowego piasty koła, co jest kluczowym aspektem w diagnostyce i ocenie stanu układu jezdnego pojazdu. Ustawienie zegara pomiarowego w ten sposób, aby mierzył on odchyłki w kierunku promieniowym, pozwala na dokładne określenie, czy piasta koła obraca się w sposób prawidłowy. W praktyce, zbyt duże odchylenia mogą prowadzić do nieprawidłowego zużycia łożysk, drgań oraz hałasu, co w dłuższej perspektywie może wpłynąć na bezpieczeństwo jazdy. W standardach branżowych, takich jak ISO 9001 dotyczących systemów zarządzania jakością, precyzyjność pomiarów mechanicznych odgrywa kluczową rolę w zapewnieniu wysokiej jakości produktów i usług. Dlatego też, właściwe ustawienie narzędzi pomiarowych oraz ich interpretacja mają fundamentalne znaczenie dla utrzymania standardów jakości i wydajności pojazdów. Przykładem zastosowania tej wiedzy jest regularna konserwacja pojazdów oraz kontrola stanu układów jezdnych, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności eksploatacji.

Pytanie 14

Podczas diagnostyki układu chłodzenia zaobserwowano ciągły wzrost temperatury silnika. Jaka może być tego przyczyna?

A. Niedziałający wentylator chłodnicy
B. Uszkodzony alternator
C. Niski poziom oleju w silniku
D. Zbyt wysokie ciśnienie w oponach
Niedziałający wentylator chłodnicy to jedna z najbardziej oczywistych przyczyn ciągłego wzrostu temperatury silnika. Układ chłodzenia w pojazdach ma za zadanie utrzymanie optymalnej temperatury pracy silnika, co jest kluczowe dla jego efektywności i trwałości. Wentylator chłodnicy wspomaga przepływ powietrza przez chłodnicę, szczególnie podczas postoju lub jazdy w niskiej prędkości, kiedy naturalny nawiew powietrza jest niewystarczający. Jeśli wentylator nie działa, chłodnica nie jest w stanie skutecznie obniżać temperatury płynu chłodzącego, co prowadzi do przegrzewania się silnika. Z mojego doświadczenia, regularne sprawdzanie stanu wentylatora oraz jego układu sterowania jest niezbędne w ramach konserwacji pojazdu. Często problem leży w zepsutym przekaźniku, bezpieczniku lub uszkodzonym silniku wentylatora. Warto również dodać, że nadmierna temperatura silnika może prowadzić do poważnych uszkodzeń, takich jak pęknięcie głowicy lub uszczelki pod głowicą, co wiąże się z kosztownymi naprawami. Dlatego szybka i trafna diagnoza problemu z wentylatorem jest kluczowa.

Pytanie 15

Aby przeprowadzić pomiar podciśnienia w kolektorze ssącym silnika spalinowego, należy użyć

A. barometru
B. manometru
C. sonometru
D. wakuometru
Wakuometr to urządzenie specjalnie zaprojektowane do pomiaru ciśnienia atmosferycznego oraz podciśnienia, co czyni go idealnym narzędziem do analizy warunków w kolektorze dolotowym silnika spalinowego. Działa na zasadzie różnicy ciśnień, umożliwiając precyzyjny odczyt wartości podciśnienia, co jest istotne dla efektywności pracy silnika. W praktyce, monitorowanie podciśnienia w kolektorze dolotowym pozwala na optymalizację mieszanki paliwowo-powietrznej, co z kolei wpływa na osiągi silnika oraz redukcję emisji spalin. Dobre praktyki w branży motoryzacyjnej wskazują, że regularne pomiary podciśnienia powinny być częścią diagnostyki silnika, zwłaszcza w kontekście kontrolowania stanu układów dolotowych i zaworowych. Warto także wspomnieć, że wakuometry są dostępne w różnych formach i dokładności, a ich zastosowanie jest normowane przez odpowiednie standardy branżowe, co zapewnia rzetelność pomiarów.

Pytanie 16

Luz na pedale sprzęgła wymaga systematycznej weryfikacji oraz regulacji z uwagi na jego zużycie

A. koła zamachowego
B. łożyska wałka sprzęgłowego
C. wałka sprzęgłowego
D. tarczy sprzęgłowej
Poprawna odpowiedź to tarcza sprzęgłowa, ponieważ to właśnie ona jest elementem, który zużywa się w trakcie eksploatacji pojazdu. Tarcza sprzęgłowa jest kluczowym komponentem układu sprzęgłowego, który umożliwia przeniesienie momentu obrotowego z silnika na skrzynię biegów. Z czasem, na skutek tarcia i wysokich temperatur, materiał tarczy może ulegać degradacji, co prowadzi do zmniejszenia skuteczności sprzęgła oraz zwiększenia luzu na pedale. Regularna kontrola i regulacja luzu na pedale sprzęgła są ważne dla zapewnienia prawidłowego działania układu oraz komfortu podczas jazdy. W przypadku stwierdzenia nadmiernego luzu, konieczne jest sprawdzenie stanu tarczy sprzęgłowej oraz innych elementów, takich jak docisk. W dobrych praktykach zaleca się wymianę tarczy sprzęgłowej co około 100 000 kilometrów, jednak zależy to również od stylu jazdy oraz warunków eksploatacyjnych. Dobrze przeprowadzone regulacje mogą znacząco wydłużyć żywotność sprzęgła oraz poprawić bezpieczeństwo jazdy.

Pytanie 17

Wniknięcie cieczy chłodzącej do komory spalania silnika objawia się wydobywaniem spalin w kolorze

A. czarnym
B. białym
C. niebieskim
D. szarym
Odpowiedź biała jest prawidłowa, ponieważ przedostanie się cieczy chłodzącej do komory spalania silnika skutkuje emisją spalin o jasnym, mlecznym zabarwieniu. Taki stan rzeczy wskazuje na obecność wody lub płynu chłodzącego, który ulega spaleniu w wysokotemperaturowych warunkach komory cylindrów. W praktyce obserwowanie białego dymu z rury wydechowej jest istotnym sygnałem, że należy zbadać układ chłodzenia oraz uszczelki głowicy silnika. W przypadku wystąpienia tego objawu, zaleca się natychmiastowe zatrzymanie pojazdu w celu zapobiegnięcia dalszym uszkodzeniom silnika. Właściwa diagnostyka, często z wykorzystaniem analizy spalin oraz kontroli poziomu płynu chłodzącego, jest kluczowa dla zachowania sprawności silnika i uniknięcia kosztownych napraw. Wiedza o tym zjawisku jest szczególnie istotna dla mechaników oraz właścicieli pojazdów, gdyż pozwala na wczesne wykrycie problemu i jego skuteczne rozwiązanie, co jest zgodne z zasadami utrzymania i eksploatacji pojazdów zgodnie z normami przemysłowymi.

Pytanie 18

W przypadku, gdy zużycie gładzi tulei cylindrowej jest mniejsze od następnego wymiaru naprawczego, należy ją poddać regeneracji poprzez

A. roztaczanie
B. azotowanie
C. hartowanie
D. nawęglanie
Roztaczanie jest procesem mechanicznym, który polega na usuwaniu materiału z gładzi tulei cylindrowej w celu przywrócenia jej wymiarów roboczych. W przypadku gdy zużycie gładzi nie przekracza kolejnego wymiaru naprawczego, roztaczanie staje się idealnym rozwiązaniem, ponieważ pozwala na uzyskanie precyzyjnego wymiaru i poprawę jakości powierzchni. Proces ten jest szeroko stosowany w przemyśle motoryzacyjnym oraz maszynowym, gdzie konieczne jest zachowanie wysokich tolerancji wymiarowych i jakości powierzchni. Dzięki roztaczaniu można wydłużyć żywotność tulei cylindrowej, minimalizując konieczność jej całkowitej wymiany. W praktyce często stosuje się narzędzia skrawające, które są dostosowane do konkretnego materiału tulei, co zapewnia efektywność procesu oraz redukcję odpadów. Standardy branżowe, takie jak ISO 2768, wskazują na wymagania dotyczące tolerancji wymiarowych, co dodatkowo podkreśla znaczenie precyzyjnych metod naprawy, jaką jest roztaczanie. Cały proces powinien być przeprowadzany przez wykwalifikowanych specjalistów przy użyciu odpowiednich technologii, co gwarantuje bezpieczeństwo i niezawodność elementów po regeneracji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakie urządzenie powinno być zastosowane do pomiaru siły hamowania w serwisie samochodowym?

A. manometru
B. opóźnieniomierza
C. urządzenia rolkowego
D. wakuometru
Urządzenie rolkowe jest kluczowym narzędziem stosowanym do pomiaru siły hamowania w pojazdach. Działa na zasadzie symulacji warunków rzeczywistych, co pozwala na ocenę skuteczności układów hamulcowych w warunkach testowych. Zastosowanie takiego urządzenia pozwala na dokładne pomiary siły, jakie są generowane podczas hamowania, co jest niezbędne do oceny bezpieczeństwa i wydajności pojazdu. W praktyce, urządzenia rolkowe są wykorzystywane w warsztatach do przeprowadzania testów przed i po serwisie, co pozwala na weryfikację poprawności działania układu hamulcowego. Standardy branżowe, takie jak normy ISO, podkreślają znaczenie testowania hamulców w rzeczywistych warunkach, co potwierdza, że urządzenia rolkowe są niezbędnym elementem wyposażenia warsztatowego. Umożliwiają one również porównanie wyników pomiarów siły hamowania z wartościami określonymi przez producentów pojazdów, co ma kluczowe znaczenie dla zapewnienia bezpieczeństwa na drodze.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Rzetelną ocenę gładzi cylindrów wykonuje się na podstawie

A. pomiarów średnic cylindrów przy użyciu suwmiarki
B. badania dotykowego
C. oględzin wizualnych
D. pomiarów średnic cylindrów przy użyciu średnicówki
Pomiar średnic cylindrów przy użyciu średnicówki jest uznawany za najbardziej miarodajny sposób weryfikacji ich gładzi. Średnicówka, jako specjalistyczne narzędzie pomiarowe, pozwala na dokładne określenie średnicy otworów cylindrycznych z wysoką precyzją. W praktyce, pomiar ten jest kluczowy dla oceny stanu technicznego silników spalinowych – zarówno w kontekście diagnostyki, jak i podczas odbudowy jednostek napędowych. Regularne pomiary średnic cylindrów są istotne, ponieważ z czasem mogą występować zużycia mechaniczne, które obniżają jakość pracy silnika. Ponadto, zgodnie z normami branżowymi, takich jak ISO 2768, ocena jakości cylindrów wymaga precyzyjnych pomiarów, aby zapewnić ich odpowiednie dopasowanie do tłoków. Użycie średnicówki umożliwia zbadanie nie tylko średnicy, ale również ewentualnych odchyleń od wymiarów nominalnych, co jest niezbędne do dalszych działań. Warto zatem podkreślić, że wykorzystanie średnicówki w praktyce warsztatowej przyczynia się do zwiększenia żywotności silnika oraz poprawy jego wydajności.

Pytanie 23

Producent wskazuje, że luz zaworowy powinien wynosić:
- zawory dolotowe 0,2á3,25 mm
- zawory wylotowe 0,25á0,3 mm
W trakcie inspekcji układu rozrządu uzyskano następujące wyniki pomiaru luzu zaworowego:
- zawory dolotowe 0,15á0,40 mm
- zawory wylotowe 0,1á0,3 mm

Uzyskane wyniki sugerują, że

A. luz zaworów dolotowych oraz wylotowych jest nieprawidłowy
B. luz jedynie zaworów dolotowych jest prawidłowy
C. luz zaworów dolotowych oraz wylotowych jest prawidłowy
D. luz jedynie zaworów wylotowych jest prawidłowy
Odpowiedź jest prawidłowa, ponieważ luz zaworowy zarówno dla zaworów dolotowych, jak i wylotowych nie mieści się w określonych przez producenta normach. Producent zaleca luz dolotowy w przedziale 0,2-3,25 mm oraz luz wylotowy w zakresie 0,25-0,3 mm. Mierząc luz dolotowy, uzyskano wartości od 0,15 do 0,40 mm, co wskazuje, że w jednym z pomiarów luz jest zbyt niski, a w drugim zbyt wysoki. W przypadku zaworów wylotowych, wartości od 0,1 do 0,3 mm również nie są zgodne z zaleceniem, ponieważ jeden z pomiarów wskazuje na luz poniżej wymaganego minimum. Niewłaściwe wartości luzu mogą prowadzić do problemów z pracą silnika, w tym do spadku mocy, wzrostu zużycia paliwa, a nawet uszkodzenia komponentów układu rozrządu. Dlatego kluczowe jest regularne kontrolowanie luzu zaworowego, aby zapewnić prawidłową pracę silnika oraz jego długowieczność.

Pytanie 24

Po wykonaniu próby olejowej i ponownym zmierzeniu ciśnienia sprężania zauważono, że ciśnienie w jednym z cylindrów pozostało bez zmian. Co najprawdopodobniej jest uszkodzone w tym cylindrze?

A. Uszczelka głowicy.
B. Gniazdo zaworowe.
C. Pierścień tłokowy.
D. Gładź cylindra.
W przypadku braku zmiany ciśnienia w cylindrze, wielu mechaników może pomyśleć, że problem leży w uszczelce głowicy, pierścieniach tłokowych lub gładzi cylindra. Jednakże, uszczelka głowicy jest odpowiedzialna za uszczelnienie pomiędzy głowicą a blokiem silnika, a jej uszkodzenie prowadzi do wycieku płynów chłodzących lub oleju, co w praktyce zazwyczaj wiąże się z zauważalnym spadkiem ciśnienia, a nie jego brakiem. Podobnie, pierścienie tłokowe pełnią kluczową rolę w utrzymywaniu ciśnienia w cylindrze, a ich uszkodzenie prowadzi do spadku ciśnienia sprężania i widocznego dymu z układu wydechowego, co również nie znajduje odzwierciedlenia w zjawisku braku zmian ciśnienia. Gładź cylindra, z kolei, odpowiada za właściwe prowadzenie tłoka, a jej zużycie również objawia się spadkiem ciśnienia sprężania. W związku z tym, koncentrowanie się na tych elementach może prowadzić do błędnych diagnoz i niepotrzebnych napraw, a kluczowe jest zrozumienie, że w przypadku braku zmiany ciśnienia w cylindrze, najprawdopodobniejszym problemem są właśnie nieszczelności w gniazdach zaworowych. Wiedza na temat prawidłowego funkcjonowania tych komponentów oraz ich wzajemnych relacji jest niezbędna dla skutecznej diagnostyki i naprawy silnika.

Pytanie 25

Jakim typem połączenia łączy się przegub napędowy z piastą koła?

A. Wpustowe
B. Klinowe
C. Kołkowe
D. Wielowypustowe
Odpowiedzi "kołkowe", "klinowe" oraz "wpustowe" są nieprawidłowe z kilku powodów. Połączenia kołkowe, polegające na użyciu cylindrycznych kołków, nie są idealne do przenoszenia momentów obrotowych w układach, które wymagają elastyczności i dużych sił. Kołki mogą ulegać luzom i deformacjom, co prowadzi do osłabienia połączenia w długim okresie eksploatacji. Z kolei połączenia klinowe, które opierają się na wsuwaniu klinów między elementy, również nie są odpowiednie w tym kontekście, ponieważ często są stosowane w mechanizmach, gdzie potrzeba jedynie tymczasowego zablokowania dwóch części. Takie rozwiązanie nie zapewnia jednak wystarczającej stabilności i wytrzymałości dla połączeń wymagających codziennego użycia, jak w przypadku przegubów napędowych. Połączenia wpustowe, opierające się na geometrii prostokątnej, mają swoje zastosowanie w innych obszarach mechaniki, ale nie w kontekście przegubów napędowych, gdzie kluczowe jest zminimalizowanie luzów i przemieszczeń. W praktyce, wybór odpowiedniego typu połączenia jest kluczowy dla zapewnienia efektywności i bezpieczeństwa działania pojazdów, a nieprawidłowe wybory mogą prowadzić do poważnych awarii mechanicznych, które mogą skutkować kosztownymi naprawami oraz zagrożeniem dla użytkowników.

Pytanie 26

Częścią układu hamulcowego nie jest

A. korektor siły hamowania
B. pompa ABS
C. hamulec ręczny
D. wysprzęglik
Wysprzęglik nie jest elementem układu hamulcowego, ponieważ jego główną funkcją jest wspomaganie działania sprzęgła w pojazdach mechanicznych. To urządzenie, znane również jako wysprzęglik hydrauliczny, odpowiada za odłączenie napędu silnika od skrzyni biegów, umożliwiając płynne zmiany biegów. W kontekście układu hamulcowego, do jego głównych elementów należą m.in. pompa ABS, hamulec ręczny oraz korektor siły hamowania, które wspólnie pracują nad bezpieczeństwem i efektywnością hamowania. Wysprzęglik nie wpływa na proces hamowania, lecz na działanie sprzęgła, co jest kluczowe dla prawidłowego funkcjonowania przekładni w pojazdach. Wiedza o tym, jakie komponenty są odpowiedzialne za dane funkcje w pojeździe, jest istotna dla mechaników i inżynierów, gdyż pozwala na skuteczniejszą diagnostykę oraz serwis pojazdów.

Pytanie 27

Korzystając z tabeli, określ zakres wymiaru grubości półpanewki dla drugiego wymiaru naprawczego

Oznaczenie wymiaruNr katalogowy półpanewki (górnej lub dolnej)Grubość ścianki półpanewki (mm)Średnica wewnętrzna panewki po zamontowaniu (mm)
N000Produkcyjny0050/50-312/02.000+0.020-0.03060.00+0.079-0.040
N0251 naprawa0050/50-349/02.125+0.020-0.03059.75+0.079-0.040
N0502 naprawa0050/50-393/02.250+0.020-0.03059.50+0.079-0.040
N0753 naprawa0050/50-392/02.375+0.020-0.03059.25+0.079-0.040
N1004 naprawa0050/50-385/02.500+0.020-0.03059.00+0.079-0.040
N1255 naprawa0050/50-386/02.625+0.020-0.03058.75+0.079-0.040
A. 2,105-2,155 mm
B. 2,020-2,030 mm
C. 2,355-2,405 mm
D. 2,220-2,230 mm
Błędne odpowiedzi wskazują na nieprawidłowe zrozumienie zasad obliczania wymiarów dla półpanewki. W przypadku odpowiedzi, które mieszczą się w zakresie 2,020-2,030 mm oraz 2,105-2,155 mm, można zauważyć, że są one oparte na zbyt dużych odchyłkach od wartości nominalnej, co prowadzi do nieprawidłowego wyznaczenia granic. W inżynierii mechanicznej kluczowe jest, aby wszelkie obliczenia oparte były na solidnych fundamentach teoretycznych oraz aktualnych normach. Przykładowo, nieodpowiednie zrozumienie, jak odchyłki wpływają na finalne wymiary, może prowadzić do produkcji podzespołów o niedostatecznej precyzji. W tym kontekście, błędne odpowiedzi mogą wynikać z typowych pomyłek, takich jak pomijanie odchyłek ujemnych, które odgrywają kluczową rolę w ustalaniu minimalnych granic wymiarów. Ponadto, niewłaściwe interpretowanie norm dotyczących tolerancji może prowadzić do poważnych konsekwencji, takich jak obniżona jakość produktów lub ich niewłaściwe dopasowanie w mechanizmach. W związku z tym, tak ważne jest, aby podczas obliczeń nie tylko stosować się do standardów, ale również dokładnie analizować, jakie wartości odchyłek są dopuszczalne w danym przypadku.

Pytanie 28

W oznaczeniu opony 205/55 R15 82 T symbol T wskazuje na

A. oponę bezdętkową
B. indeks prędkości
C. wysokość bieżnika
D. indeks nośności
Symbol T w oznaczeniu opony 205/55 R15 82 T odnosi się do indeksu prędkości, co oznacza maksymalną prędkość, z jaką dana opona może być użytkowana. W przypadku symbolu T, maksymalna prędkość wynosi 190 km/h. Właściwy dobór indeksu prędkości jest kluczowy dla bezpieczeństwa i wydajności jazdy. Używając opon z odpowiednim indeksem prędkości, zapewniasz sobie stabilność i kontrolę pojazdu, szczególnie w warunkach wysokich prędkości. W praktyce, jeżeli zamierzasz używać pojazdu do jazdy szybko, ważne jest, aby opony miały odpowiedni indeks prędkości, dostosowany do stylu jazdy oraz przepisów ruchu drogowego. Przykładem zastosowania wiedzy o indeksach prędkości może być sytuacja, gdy planujesz dłuższą trasę autostradową; wybór opon z niższym indeksem prędkości może prowadzić do niebezpieczeństwa ich uszkodzenia oraz pogorszenia komfortu jazdy. Zgodnie z normami europejskimi, każdy producent opon jest zobowiązany do oznaczania indeksu prędkości na etykietach, co ułatwia konsumentom podejmowanie świadomych decyzji zakupowych.

Pytanie 29

Aby wykryć luzy w układzie zawieszenia pojazdu, konieczne jest wykonanie kontroli na stanowisku

A. szarpakowym
B. do badań metodą EUSAMA
C. rolkowym
D. do geometrii kół
Odpowiedź "szarpakowym" jest poprawna, ponieważ badanie luzów w zawieszeniu pojazdu za pomocą szarpaka jest standardową metodą diagnostyczną stosowaną w warsztatach samochodowych. Szarpak pozwala na symulację warunków drogowych, co umożliwia ocenić zachowanie zawieszenia i zidentyfikować ewentualne luzy. Podczas testu, pojazd jest poddawany dynamicznym obciążeniom, co umożliwia wykrycie nawet niewielkich luzów, które mogą prowadzić do nieprawidłowej pracy zawieszenia oraz zwiększonego zużycia opon i innych komponentów. Przykłady zastosowania tej metody można zobaczyć w badaniach diagnostycznych w serwisach zajmujących się naprawą układów jezdnych, gdzie precyzyjna ocena stanu technicznego pojazdu jest niezbędna do zapewnienia bezpieczeństwa i komfortu jazdy. Warto również zaznaczyć, że zgodnie z obowiązującymi normami, regularne sprawdzanie luzów w zawieszeniu jest kluczowym elementem utrzymania pojazdu w dobrym stanie technicznym.

Pytanie 30

Przedstawiona na rysunku kontrolka umieszczana na desce rozdzielczej pojazdu

Ilustracja do pytania
A. oznacza awarię układu ładowania.
B. informuje o przegrzaniu silnika.
C. jest stosowana tylko w pojazdach z silnikiem Diesla.
D. dotyczy wyłącznie samochodów z napędem elektrycznym.
Kontrolka przedstawiona na rysunku to symbol świec żarowych, które rzeczywiście są używane wyłącznie w silnikach Diesla. Świece te odgrywają kluczową rolę w procesie rozruchu silnika, zwłaszcza w warunkach niskotemperaturowych, gdzie podgrzewają mieszankę paliwową w komorze spalania, co umożliwia łatwiejszy i bardziej niezawodny rozruch. W samochodach z silnikiem Diesla, kontrolka ta zapala się na desce rozdzielczej, informując kierowcę, że świece są aktywne. Gdy osiągną odpowiednią temperaturę, kontrolka gaśnie, co oznacza, że silnik może być uruchomiony. Zgodnie z branżowymi standardami, takie symbole informacyjne są niezbędne dla bezpieczeństwa i funkcjonalności pojazdów. Właściwe zrozumienie działania świec żarowych oraz ich oznaczenia na desce rozdzielczej jest istotne zarówno dla mechaników, jak i dla użytkowników pojazdów, aby mogli oni prawidłowo reagować na sytuacje związane z uruchamianiem silnika.

Pytanie 31

W jakiej sekwencji powinno się dokręcać śruby trzymające głowicę silnika?

A. W dowolnej sekwencji
B. Kolejno, zaczynając od strony rozrządu
C. Od lewej do prawej
D. Zgodnie z instrukcjami producenta silnika
Dokręcanie śrub mocujących głowicę silnika zgodnie z zaleceniami producenta jest kluczowe dla zapewnienia odpowiedniej szczelności i stabilności jednostki napędowej. Każdy silnik może mieć specyficzne wymagania dotyczące momentu obrotowego oraz kolejności dokręcania, co jest zazwyczaj określone w dokumentacji technicznej. Zastosowanie się do tych zaleceń pozwala na równomierne rozłożenie naprężeń na śrubach, co zminimalizuje ryzyko ich uszkodzenia oraz ewentualnych nieszczelności. Przykładowo, w silnikach z głowicą aluminiową często stosuje się sekwencyjne dokręcanie, aby uniknąć odkształceń materiału. Ignorowanie tych zasad może prowadzić do poważnych awarii, takich jak uszkodzenie uszczelki pod głowicą, co z kolei generuje wysokie koszty naprawy. Dlatego zawsze należy konsultować się z instrukcją serwisową i stosować odpowiednie narzędzia, aby zapewnić, że śruby są dokręcone zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 32

Na podstawie informacji zawartych w tabeli określ koszt brutto wymiany ogumienia letniego na zimowewykonywane przez jednego pracownika. Stawka VAT wynosi 23%.

Lp.nazwa części/usługicena netto
1opona zimowa 1 szt.250,00 zł
2wymiana opony z wyważeniem 1 szt.25,00 zł
3wyważenie koła 1szt10,00 zł
A. 1 100,00 zł
B. 1 420,20 zł
C. 1 353,00 zł
D. 1 140,00 zł
Poprawna odpowiedź, czyli 1 353,00 zł, została obliczona zgodnie z zasadami rachunkowości dotyczącej kosztów usług związanych z wymianą ogumienia. Aby obliczyć koszt brutto, należy zsumować koszty netto wymiany i wyważenia każdej opony oraz koszt netto zakupu opon zimowych. W tym przypadku koszt netto wymiany i wyważenia jednej opony wynosi 285,00 zł (25,00 zł za wymianę oraz 10,00 zł za wyważenie, do czego należy dodać koszt zakupu opony zimowej, wynoszący 250,00 zł). Zatem koszt netto wymiany czterech opon zimowych to 1 140,00 zł (285,00 zł x 4). Po dodaniu podatku VAT w wysokości 23% otrzymujemy końcowy koszt brutto, który wynosi 1 353,00 zł. Prawidłowe obliczenie kosztów jest kluczowe nie tylko w kontekście zarządzania finansami firmy, lecz także w obliczaniu cen oferowanych usług. Znajomość zasad naliczania VAT oraz umiejętność prawidłowego obliczania kosztów netto i brutto są niezbędne dla każdego specjalisty w branży motoryzacyjnej, a także dla właścicieli warsztatów samochodowych, co pozwala na efektywne zarządzanie budżetem oraz poprawne określenie cen usług.

Pytanie 33

Wskaźnikiem zdolności akumulatora do magazynowania energii jest

A. najwyższe napięcie
B. pojemność
C. szybkość obrotów alternatora
D. maksymalny czas wyładowania
Pojemność akumulatora to kluczowa miara zdolności do gromadzenia energii, która jest wyrażana w amperogodzinach (Ah). Im większa pojemność, tym więcej energii akumulator jest w stanie zmagazynować i dostarczyć podczas rozładowania. Przykładowo, akumulator o pojemności 100 Ah jest w stanie dostarczać prąd o natężeniu 5 amperów przez 20 godzin, co pokazuje, jak istotna jest ta wartość w praktyce. Pojemność jest również ważna przy doborze akumulatorów do różnych zastosowań, takich jak pojazdy elektryczne, systemy fotowoltaiczne czy zasilanie awaryjne. Dobrze skonstruowany akumulator, zgodny z normami IEC 60896 lub DIN 43539, powinien mieć określoną pojemność, co pozwala na przewidywanie jego wydajności oraz czasu pracy pod różnym obciążeniem. Właściwy dobór pojemności akumulatora zapewnia optymalną wydajność i żywotność systemów energetycznych, w których jest zastosowany.

Pytanie 34

W trakcie corocznego przeglądu serwisowego pojazdu należy zawsze przeprowadzić

A. wymianę płynu chłodzącego
B. wymianę piór wycieraczek
C. wymianę płynu hamulcowego
D. wymianę oleju silnikowego i filtra oleju
Wymiana oleju silnikowego i filtra oleju jest jednym z kluczowych elementów corocznego przeglądu serwisowego pojazdu, ponieważ zapewnia optymalne działanie silnika oraz przedłuża jego żywotność. Olej silnikowy odgrywa fundamentalną rolę w smarowaniu ruchomych części silnika, co zapobiega nadmiernemu zużyciu i uszkodzeniom mechanicznym. W miarę eksploatacji pojazdu, olej ulega degradacji z powodu wysokich temperatur oraz powstawania zanieczyszczeń, co wpływa na jego właściwości smarne. Dlatego regularna wymiana oleju oraz filtra oleju, który zatrzymuje zanieczyszczenia, jest niezbędna dla prawidłowego funkcjonowania jednostki napędowej. Przykładowo, zalecenia producentów dotyczące wymiany oleju często określają interwały czasowe lub przebieg, po którym należy wykonać tę czynność, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Ignorowanie tej procedury może prowadzić do poważnych awarii i kosztownych napraw silnika, dlatego kluczowe jest przestrzeganie harmonogramu konserwacji pojazdu, aby zapewnić jego długotrwałe i niezawodne działanie.

Pytanie 35

Energia mechaniczna w silnikach cieplnych nie powstaje w wyniku procesu spalania

A. benzyny
B. oleju silnikowego
C. gazu ziemnego
D. oleju napędowego
Odpowiedź "olej silnikowy" jest poprawna, ponieważ energia mechaniczna w silnikach cieplnych nie jest uzyskiwana bezpośrednio z procesów spalania tego paliwa w silniku. W rzeczywistości olej silnikowy nie jest paliwem, lecz środkiem smarnym, który zmniejsza tarcie pomiędzy ruchomymi częściami silnika, co z kolei wpływa na jego efektywność oraz żywotność. Silniki cieplne wykorzystują różne rodzaje paliw, takich jak olej napędowy, benzyna, czy gaz ziemny, do generowania energii poprzez proces spalania. Przykładem może być silnik diesla, który spala olej napędowy, generując energię mechaniczną do napędu pojazdu. Warto zauważyć, że stosowanie odpowiedniego oleju silnikowego jest kluczowe dla prawidłowego funkcjonowania silnika, a odpowiednie standardy, takie jak API (American Petroleum Institute) oraz ACEA (Association des Constructeurs Européens d'Automobiles), określają wymagania dotyczące jakości olejów silnikowych, co wpływa na wydajność i efektywność silników.

Pytanie 36

Wzmożone zużycie wewnętrznych pasów rzeźby bieżnika jednej z opon, może być wynikiem

A. niewłaściwego ustawienia kąta pochylenia koła
B. zbyt niskiego ciśnienia w ogumieniu
C. nadmiernego luzu w układzie kierowniczym
D. nieprawidłowego ustawienia zbieżności kół
Niewłaściwe ustawienie kąta pochylenia koła, znane jako kąt camber, może prowadzić do nierównomiernego zużycia bieżnika opon, zwłaszcza wewnętrznej części pasów rzeźby. Kąt camber odnosi się do nachylenia koła w stosunku do pionu, a jego niewłaściwe ustawienie może powodować, że opona styka się z nawierzchnią w sposób, który zwiększa tarcie w określonym obszarze. Przykładowo, jeśli kąt camber jest zbyt negatywny, wewnętrzna część opony będzie bardziej obciążona, co przyspiesza jej zużycie. W praktyce, aby zapobiec takim problemom, ważne jest regularne sprawdzanie ustawienia kół oraz ich geometrii, co powinno być zgodne z zaleceniami producenta. Przykładowo, wiele warsztatów samochodowych korzysta z zaawansowanej technologii pomiarowej, która pozwala na precyzyjne dostosowanie kątów w celu zachowania optymalnych parametrów jezdnych. Wiedza na temat kąta pochylenia kół jest kluczowa nie tylko dla bezpieczeństwa, ale także dla efektywności paliwowej pojazdu oraz trwałości opon.

Pytanie 37

Wskaźnik TWI określa minimalną głębokość bieżnika dla opon wielosezonowych, która wynosi

A. 4,6 mm
B. 3,0 mm
C. 1,0 mm
D. 1,6 mm
Wskaźnik TWI (Tread Wear Indicator) to istotny parametr dotyczący głębokości bieżnika opon, który ma kluczowe znaczenie dla bezpieczeństwa jazdy. Minimalna głębokość bieżnika wynosząca 1,6 mm dla opon wielosezonowych jest zgodna z europejskimi standardami, które zostały ustalone w celu zapewnienia odpowiedniej przyczepności pojazdu na różnych nawierzchniach. Opony z bieżnikiem głębszym od 1,6 mm zapewniają lepszą hydroplaningową wydajność, co jest szczególnie istotne podczas jazdy w deszczu. Przykład praktyczny: gdy głębokość bieżnika spadnie poniżej tego wskaźnika, opona nie tylko traci swoje właściwości trakcyjne, ale może także wpływać na wydajność paliwową oraz komfort jazdy. Warto również pamiętać, że regularne sprawdzanie głębokości bieżnika oraz utrzymanie jej na wymaganym poziomie jest częścią dobrych praktyk zarządzania flotą pojazdów, co może znacząco wpłynąć na bezpieczeństwo kierowców oraz pasażerów.

Pytanie 38

Wykorzystując dane zawarte w tabeli, oblicz koszt wymiany dwóch łączników stabilizatora przednie osi pojazdu. Czas wymiany to 60 min. Dolicz wartość podatku VAT 23%.

łącznik stabilizatoraszt.Cena netto
60 zł
roboczogodzina150 zł
A. 120,00 zł
B. 229,20 zł
C. 209,10 zł
D. 170,20 zł
Aby obliczyć całkowity koszt wymiany dwóch łączników stabilizatora, należy uwzględnić kilka kluczowych elementów: koszt części, robociznę oraz podatek VAT. Koszt netto dla dwóch łączników stabilizatora powinien być pomnożony przez ich jednostkową cenę, a następnie dodany do kosztu robocizny, który w tym przypadku wynosi 60 minut. Z reguły w warsztatach samochodowych stawka robocizny jest ustalana na poziomie od 100 zł do 200 zł za godzinę, co daje nam konkretne wartości. Po obliczeniu sumy netto, należy doliczyć 23% VAT, co jest standardową stawką w Polsce. Przykładowo, jeśli koszt części wynosi 150 zł, a robocizna 100 zł, wtedy całkowity koszt bez VAT wyniesie 250 zł. Po doliczeniu VAT, całkowity koszt wyniesie 307,50 zł. Zrozumienie tej procedury jest istotne dla prawidłowego obliczania kosztów naprawy w warsztatach samochodowych oraz dla oceny budżetu na przyszłe wydatki związane z utrzymaniem pojazdu. Dlatego odpowiedź 209,10 zł jest poprawna, ponieważ uwzględnia wszystkie te czynniki zgodnie z obowiązującymi standardami branżowymi.

Pytanie 39

Po pomiarze napięcia w rozładowanym akumulatorze samochodowym (12Y, 40Ah) uzyskano wynik 10,8Y, a gęstość elektrolitu wynosiła 1,18 g/cm3. Jakim prądem powinien być naładowany ten akumulator?

A. 2,5 A
B. 3 A
C. 1,5 A
D. 4 A
Wybór innych wartości prądu ładowania, takich jak 2,5 A, 1,5 A czy 3 A, może wynikać z niepełnego zrozumienia zasad dotyczących ładowania akumulatorów. Niektóre z tych odpowiedzi mogą wydawać się odpowiednie na pierwszy rzut oka, jednak są one niewłaściwe w kontekście naładowania akumulatora o pojemności 40Ah. Prąd ładowania akumulatorów kwasowo-ołowiowych powinien wynosić od 0,1C do 0,3C, co w tym przypadku przekłada się na zakres od 4A do 12A. Napięcie 10,8V oznacza, że akumulator jest rozładowany, a stosowanie zbyt niskiego prądu ładowania, takiego jak 2,5 A, 1,5 A czy 3 A, może prowadzić do wydłużonego czasu ładowania i niepełnego naładowania akumulatora. Ponadto, zbyt niski prąd ładowania może skutkować osadzaniem się siarczanu ołowiu na płytach, co zmniejsza zdolność akumulatora do utrzymywania ładunku i jego żywotność. Ważne jest, aby zrozumieć, że ładowanie akumulatora w zbyt wolnym tempie nie tylko wydłuża czas ładowania, ale również może prowadzić do problemów z jego efektywnością w przyszłości. Dlatego zawsze warto kierować się standardami i zaleceniami producentów dotyczących prądu ładowania, aby utrzymać akumulator w dobrym stanie technicznym.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.