Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 5 grudnia 2025 22:16
  • Data zakończenia: 5 grudnia 2025 22:46

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z poniższych dokumentów nie wchodzi w skład dokumentacji powykonawczej lokalnej sieci komputerowej?

A. Dokumentacja techniczna kluczowych elementów systemu
B. Plan rozmieszczenia sieci LAN
C. Dokumentacja materiałowa
D. Lista użytych nazw użytkowników oraz haseł
Dokumentacja powykonawcza lokalnej sieci komputerowej powinna obejmować wszystkie istotne aspekty zrealizowanej instalacji, a jej kluczowym celem jest zapewnienie przyszłych referencji oraz ułatwienie zarządzania infrastrukturą. Niektóre elementy, które mogą wydawać się istotne, jednak nie pasują do tej klasyfikacji, to specyfikacja techniczna głównych elementów systemu oraz specyfikacja materiałowa. Specyfikacja techniczna dostarcza szczegółowego opisu urządzeń, takich jak routery, przełączniki, serwery, a także ich parametrów technicznych oraz interakcji w sieci. Tego typu dokumenty są zgodne z dobrą praktyką projektowania systemów i są kluczowe dla administratorów sieci, którzy mogą potrzebować zrozumieć, jak poszczególne elementy współpracują w celu zapewnienia efektywności i wydajności całego systemu. Z kolei specyfikacja materiałowa określa szczegółowo, jakie komponenty zostały wykorzystane w budowie sieci, co jest niezwykle ważne w kontekście przyszłych aktualizacji czy konserwacji. Użytkownicy często mylą te pojęcia z wykazem nazw użytkowników i haseł, sądząc, że są one równie istotne dla dokumentacji powykonawczej, co dokumenty techniczne. Jednakże, nazwy użytkowników i hasła to dane wrażliwe, które powinny być zarządzane zgodnie z politykami bezpieczeństwa, a ich uwzględnienie w dokumentacji powykonawczej mogłoby prowadzić do nieautoryzowanego dostępu do sieci. Z tego powodu nie są one uwzględniane w dokumentacji powykonawczej, a ich przechowywanie powinno odbywać się w bezpiecznych lokalizacjach, aby zminimalizować ryzyko wycieku informacji.

Pytanie 2

Jaki jest prefiks lokalnego adresu dla łącza (Link-Local Address) w IPv6?

A. fec0/10
B. fc00/7
C. fe80/10
D. ff00/8
Odpowiedzi 'fec0/10', 'ff00/8' i 'fc00/7' są niepoprawne z kilku powodów, które związane są z ich przeznaczeniem oraz zakresem zastosowania w architekturze IPv6. Prefiks 'fec0/10' odnosi się do adresów w przestrzeni adresowej zarezerwowanej dla lokalnych sieci, jednak nie jest to prefiks dla adresów lokalnych łącza, lecz dla adresów, które mogą być wykorzystywane w sieciach ograniczonych. Prefiks 'ff00/8' dotyczy adresów multicast, co oznacza, że jest przeznaczony do przesyłania danych do grupy odbiorców, a nie do bezpośredniej komunikacji między urządzeniami w obrębie lokalnej sieci. Natomiast prefiks 'fc00/7' jest przeznaczony dla adresów unicast, które są wykorzystywane w sieciach lokalnych, ale nie są automatycznie przypisywane do interfejsów i wymagają manualnej konfiguracji. Typowe błędy myślowe, które mogą prowadzić do błędnych odpowiedzi, to mylenie różnych typów adresów IPv6 oraz nieznajomość ich specyficznych zastosowań. W celu prawidłowego wykorzystania adresacji IPv6, ważne jest zrozumienie, jakie prefiksy są przypisane do których typów adresów, co jest kluczowe w kontekście projektowania i zarządzania sieciami.

Pytanie 3

W systemie Linux BIND funkcjonuje jako serwer

A. FTP
B. http
C. DNS
D. DHCP
BIND (Berkeley Internet Name Domain) jest jednym z najpopularniejszych serwerów DNS (Domain Name System) w systemach Linux oraz innych systemach operacyjnych. Jego głównym zadaniem jest tłumaczenie nazw domenowych na adresy IP, co pozwala na prawidłowe łączenie urządzeń w sieci. Dzięki BIND administratorzy mogą zarządzać strefami DNS, co oznacza kontrolowanie rekordów, takich jak A, AAAA, CNAME czy MX, które są kluczowe dla funkcjonowania usług internetowych. Przykładem praktycznego zastosowania BIND jest możliwość konfiguracji lokalnego serwera DNS, co przyspiesza rozwiązywanie nazw w sieci lokalnej oraz zwiększa bezpieczeństwo, ograniczając zapytania do zewnętrznych serwerów. Dobrą praktyką jest także regularne aktualizowanie rekordów DNS oraz monitorowanie ich poprawności, aby zapewnić dostępność i niezawodność usług. Korzystanie z BIND jest zgodne z zaleceniami IETF (Internet Engineering Task Force), co sprawia, że jest to rozwiązanie solidne i profesjonalne.

Pytanie 4

Błąd 404, który wyświetla się w przeglądarce internetowej, oznacza

A. niewłaściwe uprawnienia do dostępu do żądanego dokumentu
B. przekroczony czas oczekiwania na połączenie z serwerem
C. nieobecność żądanego dokumentu na serwerze
D. błąd w autoryzacji użytkownika
Błąd 404, znany jako "Not Found", oznacza, że serwer nie może odnaleźć żądanego zasobu, co w praktyce oznacza, że dokument, do którego próbuje uzyskać dostęp użytkownik, nie istnieje na serwerze. Może to być spowodowane wieloma czynnikami, takimi jak zmiana lokalizacji pliku, usunięcie go, bądź błędnie wprowadzony adres URL. W przypadku, gdy użytkownik napotyka błąd 404, powinien sprawdzić, czy adres strony został poprawnie wpisany, a także czy nie zawiera literówek lub zbędnych znaków. W kontekście dobrych praktyk, administratorzy stron internetowych powinni wdrażać osobne strony błędu 404, które informują użytkowników o zaistniałym problemie i oferują alternatywne linki do innych części witryny, co poprawia doświadczenie użytkownika. Ponadto, monitorowanie występowania błędów 404 w narzędziach do analizy ruchu, takich jak Google Analytics, może pomóc w identyfikacji usuniętych lub przeniesionych treści, co jest kluczowe dla utrzymania integralności witryny.

Pytanie 5

Który standard protokołu IEEE 802.3 powinien być użyty w środowisku z zakłóceniami elektromagnetycznymi, gdy dystans między punktem dystrybucji a punktem abonenckim wynosi 200 m?

A. 10Base2
B. 1000Base–TX
C. 100Base–FX
D. 100Base–T
Wybór 1000Base-TX, 100Base-T oraz 10Base2 jako standardów do zastosowania w środowisku z silnymi zakłóceniami elektromagnetycznymi jest niewłaściwy z kilku kluczowych powodów. 1000Base-TX, mimo że obsługuje prędkości do 1 Gb/s, korzysta z miedzi, co czyni go podatnym na zakłócenia elektromagnetyczne, szczególnie na dłuższych dystansach. W przypadku instalacji na 200 m w otoczeniu o dużych zakłóceniach, jakość sygnału może ulec pogorszeniu, co prowadzi do problemów z niezawodnością połączenia. 100Base-T również oparty jest na skrętce miedzianej i oferuje jedynie prędkość do 100 Mb/s, co w obliczu zakłóceń nie jest wystarczające do efektywnego przesyłania danych. 10Base2, z kolei, jest technologią opartą na koncentrycznej, cienkiej miedzi, która ma ograniczony zasięg do 200 m i nie jest w stanie wykrywać i eliminować zakłóceń, co czyni ją nieodpowiednią dla nowoczesnych aplikacji sieciowych. Warto zauważyć, że wybierając standardy sieciowe, należy kierować się nie tylko prędkością, ale także odpornością na zakłócenia oraz możliwościami transmisyjnymi, co pojawia się w przypadku światłowodów. Niezrozumienie tych zasad może prowadzić do wyboru niewłaściwych technologii, a tym samym do nieefektywnego funkcjonowania sieci.

Pytanie 6

Poniżej przedstawiono wynik działania polecenia

Interface Statistics

                         Received              Sent
Bytes                  3828957336        3249252169
Unicast packets          35839063         146809272
Non-unicast packets          5406             25642
Discards                       50                 0
Errors                          0                 0
Unknown protocols               0
A. dnslookup -e
B. ipconfig -e
C. netstat -e
D. tracert -e
Odpowiedź 'netstat -e' jest poprawna, ponieważ to polecenie w systemach operacyjnych Windows służy do wyświetlania szczegółowych informacji na temat statystyk interfejsu sieciowego. W szczególności, 'netstat -e' prezentuje dane dotyczące przesyłania pakietów i bajtów, co jest szczególnie przydatne w troubleshootingu i monitorowaniu wydajności sieci. Umożliwia administratorom systemów i sieci analizę błędów, odrzuconych pakietów oraz identyfikację nieznanych protokołów, co może wskazywać na potencjalne problemy z konfiguracją bądź bezpieczeństwem. W praktyce, korzystając z 'netstat -e', można szybko ocenić, czy interfejs sieciowy działa zgodnie z oczekiwaniami, co jest kluczowe w zarządzaniu infrastrukturą sieciową. Dobrym przykładem zastosowania jest sytuacja, gdy administrator zauważa spowolnienie działania aplikacji sieciowych i za pomocą tego polecenia może stwierdzić, czy interfejs jest w stanie przetwarzać odpowiednią ilość danych.

Pytanie 7

Który komponent serwera w formacie rack można wymienić bez potrzeby demontażu górnej pokrywy?

A. Karta sieciowa
B. Moduł RAM
C. Chip procesora
D. Dysk twardy
Wybór procesora jako elementu do wymiany bez demontażu obudowy to nie najlepszy pomysł. Procesor to serce serwera i jego wymiana wymaga dostęp do płyty głównej, a to często wiąże się z koniecznością ściągnięcia obudowy. Dodatkowo, wymiana procesora to nie tylko fizyczna robota, ale też trzeba pamiętać o różnych sprawach, jak zworki, pasty termoprzewodzącej oraz dopasowaniu do płyty głównej. Jest to dużo bardziej skomplikowane niż przy wydaniu dysku twardego. Co do pamięci RAM, choć czasem wymienia się ją łatwiej, to też często wymaga dostępu do wnętrza serwera. A karta sieciowa, nawet jeśli teoretycznie da się ją wymienić bez wyłączania serwera, w praktyce w wielu przypadkach też wymaga częściowego dostępu do środka. Warto zrozumieć, które komponenty można wymieniać na gorąco, a które wymagają pełnej interwencji, bo w środowisku produkcyjnym, gdzie każdy przestój kosztuje, to naprawdę istotne.

Pytanie 8

Przechwycone przez program Wireshark komunikaty, które zostały przedstawione na rysunku należą do protokołu

Queries
> www.cke.edu.pl: type A, class IN
Answers
> www.cke.edu.pl: type A, class IN, addr 194.54.27.143
A. DHCP
B. HTTP
C. DNS
D. FTP
Z tego, co widzę, wybrałeś odpowiedzi, które nie mają za dużo wspólnego z DNS, a to może prowadzić do zamieszania. Na przykład FTP, czyli Protokół Transferu Plików, służy do przesyłania plików, co jest kompletnie inną sprawą niż zamiana nazw domen na adresy. Z kolei HTTP to protokół używany głównie do przesyłania danych w sieci, a DHCP zajmuje się przypisywaniem adresów IP. Te pomyłki się zdarzają, bo czasem ludzie mylą działanie tych protokołów. Ważne, żeby każdy wiedział, że każdy z tych protokołów ma swoje unikalne zadania. Kiedy analizujesz ruch w Wireshark, rozpoznanie DNS jest kluczowe dla wykrywania problemów z nazwami domen, ale FTP czy HTTP odnoszą się do zupełnie innych rzeczy. Tak że warto nie tylko zapamiętywać, co każdy z tych protokołów robi, ale też w jakim kontekście się je stosuje.

Pytanie 9

Moduł SFP, który jest wymienny i zgodny z normami, odgrywa jaką rolę w urządzeniach sieciowych?

A. konwertera mediów
B. zasilania rezerwowego
C. interfejsu do diagnostyki
D. dodatkowej pamięci operacyjnej
Moduł SFP (Small Form-factor Pluggable) to coś, co naprawdę ułatwia życie w sieciach. Jego główną rolą jest przełączanie sygnałów z jednego medium na inne, co sprawia, że jest niby takim konwerterem. Dzięki SFP sieci mogą być bardziej elastyczne, bo można je dopasować do różnych kabli i technologii, jak światłowody czy kable miedziane. Na przykład, jeśli trzeba połączyć urządzenia na sporej odległości, można użyć modułu SFP, który działa ze światłowodami. To daje większą przepustowość i lepsze sygnały niż w przypadku miedzi. Co ciekawe, te moduły są zgodne z różnymi standardami, takimi jak SFF-8431 czy SFF-8432. To sprawia, że są kompatybilne z różnymi urządzeniami w sieci. Dzięki temu administratorzy sieci mogą szybko dostosowywać infrastrukturę do potrzeb, a jak coś się popsuje, to wymiana modułów jest szybka i prosta. To wszystko wpływa na lepszą dostępność i elastyczność sieci.

Pytanie 10

Standard Transport Layer Security (TLS) stanowi rozwinięcie protokołu

A. Network Terminal Protocol (telnet)
B. Security Shell (SSH)
C. Secure Socket Layer (SSL)
D. Session Initiation Protocol (SIP)
Standard Transport Layer Security (TLS) jest protokołem kryptograficznym, który zapewnia bezpieczeństwo komunikacji w sieci. TLS jest rozwinięciem protokołu Secure Socket Layer (SSL) i został zaprojektowany, aby zwiększyć wydajność oraz bezpieczeństwo transmisji danych. Podstawowym celem TLS jest zapewnienie poufności, integralności oraz autoryzacji danych przesyłanych pomiędzy klientem a serwerem. Praktyczne zastosowanie TLS znajduje się w wielu aspektach codziennego korzystania z internetu, w tym w zabezpieczaniu połączeń HTTPS, co chroni wrażliwe dane, takie jak hasła, numery kart kredytowych czy inne informacje osobiste. Standardy branżowe, takie jak RFC 5246, określają zasady i protokoły stosowane w TLS, co czyni go kluczowym elementem nowoczesnej architektury internetowej. Warto również zauważyć, że TLS stale ewoluuje, a jego najnowsze wersje, takie jak TLS 1.3, oferują jeszcze lepsze zabezpieczenia oraz wydajność w porównaniu do poprzednich wersji. Z tego powodu, znajomość i stosowanie protokołu TLS jest niezbędne dla każdego, kto zajmuje się bezpieczeństwem danych w sieci.

Pytanie 11

Liczba 22 w adresie http://www.adres_serwera.pL:22 wskazuje na numer

A. aplikacji, do której skierowane jest zapytanie
B. sekwencyjny pakietu przesyłającego dane
C. PID procesu działającego na serwerze
D. portu, inny od standardowego numeru dla danej usługi
To, co napisałeś, trochę nie trzyma się kupy. Mówienie o aplikacjach czy PID w kontekście portów w adresie URL jest mylące. Port to nie lokalizacja aplikacji, ale narzędzie, dzięki któremu różne urządzenia mogą ze sobą rozmawiać. Zrozumienie, że porty to po prostu punkty końcowe dla przepływu danych, jest kluczowe. A PID? To zupełnie inna sprawa – to identyfikator procesu na serwerze, więc nie ma związku z portami. Podobnie sekwencyjne pakiety danych odnoszą się do tego, jak dane są przesyłane, a nie do portów. Warto, byś rozróżniał te pojęcia, bo to naprawdę ma wpływ na to, jak rozumiesz działanie całej sieci.

Pytanie 12

Jakie numery portów są domyślnie wykorzystywane przez protokół poczty elektronicznej POP3?

A. 80 albo 8080
B. 143 albo 993
C. 587 albo 465
D. 110 albo 995
Porty 80 i 8080 są standardowymi portami używanymi do komunikacji HTTP i HTTPS, co oznacza, że są stosowane głównie w kontekście przeglądania stron internetowych. Wybór tych portów w kontekście POP3 jest nieuzasadniony, ponieważ protokoły te służą do różnych celów; HTTP do transferu stron oraz danych w sieci, a POP3 do zarządzania pocztą elektroniczną. Porty 143 i 993 są z kolei wykorzystywane przez protokół IMAP (Internet Message Access Protocol), który pozwala na zdalny dostęp do wiadomości e-mail z serwera i oferuje bardziej zaawansowane funkcje zarządzania pocztą w porównaniu do POP3. Użycie portów 587 i 465 odnosi się do protokołów SMTP (Simple Mail Transfer Protocol), które są wykorzystywane do wysyłania wiadomości e-mail. Zrozumienie różnic między tymi protokołami oraz ich portami jest kluczowe dla prawidłowej konfiguracji systemów pocztowych. Typowe błędy myślowe, które mogą prowadzić do tych błędnych odpowiedzi, obejmują mylenie funkcji protokołów oraz ich zastosowania w różnych kontekstach. W praktyce, wybór niewłaściwego protokołu lub portu może skutkować problemami z dostępem do poczty e-mail oraz obniżeniem poziomu bezpieczeństwa przesyłanych danych.

Pytanie 13

Funkcja roli Serwera Windows 2012, która umożliwia obsługę ruterów NAT oraz ruterów BGP w sieciach lokalnych, to

A. przekierowanie HTTP
B. routing
C. Direct Access oraz VPN (RAS)
D. serwer proxy aplikacji sieci Web
Rozważając dostępne odpowiedzi, warto zauważyć, że Direct Access i VPN (RAS) dotyczą zdalnego dostępu do sieci, a nie zarządzania ruchem między różnymi sieciami. Usługi te są używane do zapewnienia zdalnym użytkownikom bezpiecznego połączenia z siecią lokalną, ale nie obejmują zarządzania trasami czy translacją adresów, które są kluczowe dla routingu. Przekierowanie HTTP to technika stosowana w kontekście sieci web, która dotyczy przesyłania ruchu webowego na inny adres URL, co nie ma związku z routingiem ani z funkcjami NAT. Z kolei serwer proxy aplikacji sieci Web działa jako pośrednik w komunikacji między klientem a serwisem internetowym, jednak nie jest to równoznaczne z routowaniem czy obsługą sieci lokalnych. W przypadku błędnych odpowiedzi często pojawia się nieporozumienie dotyczące podstawowych funkcji i zastosowań różnych technologii sieciowych, co może prowadzić do mylnych wniosków. Kluczowe jest zrozumienie, że routing to nie tylko dążenie do połączenia sieci, ale także zarządzanie tym połączeniem w sposób, który zapewnia efektywność i bezpieczeństwo, co jest fundamentalne w projektowaniu sieci.

Pytanie 14

Jakiego protokołu dotyczy port 443 TCP, który został otwarty w zaporze sieciowej?

A. NNTP
B. HTTPS
C. DNS
D. SMTP
Odpowiedź 'HTTPS' jest poprawna, ponieważ port 443 jest standardowym portem używanym przez protokół HTTPS (Hypertext Transfer Protocol Secure). HTTPS jest rozszerzeniem protokołu HTTP, które wykorzystuje SSL/TLS do szyfrowania danych przesyłanych pomiędzy serwerem a klientem. Dzięki temu, komunikacja jest zabezpieczona przed podsłuchiwaniem i manipulacją. W praktyce, gdy przeglądasz strony internetowe, które zaczynają się od 'https://', twoje połączenie wykorzystuje port 443. Ponadto, w kontekście dobrych praktyk branżowych, stosowanie HTTPS stało się standardem, zwłaszcza w przypadku stron wymagających przesyłania poufnych informacji, takich jak dane logowania czy dane osobowe. Warto także zauważyć, że wyszukiwarki internetowe, takie jak Google, preferują strony zabezpieczone HTTPS, co wpływa na pozycjonowanie w wynikach wyszukiwania.

Pytanie 15

Domyślnie dostęp anonimowy do zasobów serwera FTP pozwala na

A. wyłącznie prawo do zapisu
B. wyłącznie prawo do odczytu
C. prawa zarówno do odczytu, jak i zapisu
D. kompletne prawa dostępu
Odpowiedź 'tylko prawo do odczytu' jest prawidłowa, ponieważ domyślnie anonimowy dostęp do serwera FTP zazwyczaj ogranicza użytkowników jedynie do możliwości przeglądania i pobierania plików. W praktyce oznacza to, że użytkownik może uzyskać dostęp do plików na serwerze, ale nie ma możliwości ich modyfikacji ani dodawania nowych. Tego rodzaju ograniczenia są zgodne z najlepszymi praktykami bezpieczeństwa, które zalecają minimalizowanie ryzyka związanego z nieautoryzowanymi zmianami w danych. Ograniczenie dostępu tylko do odczytu jest szczególnie istotne w kontekście serwerów publicznych, gdzie zasoby mogą być dostępne dla szerokiej gamy użytkowników. W wielu przypadkach, aby uzyskać dostęp do pełnych praw, użytkownik musi zarejestrować się i otrzymać odpowiednie uprawnienia. Warto również wspomnieć, że zgodnie z protokołem FTP, dostęp do zasobów może być konfigurowany przez administratorów w celu dalszego zwiększenia bezpieczeństwa oraz kontroli dostępu.

Pytanie 16

Który z poniższych adresów jest adresem IP typu prywatnego?

A. 220.192.164.10
B. 172.30.10.10
C. 198.192.15.10
D. 80.80.10.10
Adres 172.30.10.10 to adres prywatny IP. Oznacza to, że nie jest używany w Internecie, tylko w sieciach lokalnych, jak te, które mamy w domach czy biurach. Adresy prywatne są ustalone w standardzie RFC 1918 i obejmują różne przedziały, jak 10.0.0.0 do 10.255.255.255, 172.16.0.0 do 172.31.255.255 i 192.168.0.0 do 192.168.255.255. Twój adres, czyli 172.30.10.10, mieści się w tym drugim przedziale, więc można go śmiało używać w sieciach lokalnych. Dzięki temu, że korzystamy z prywatnych adresów, oszczędzamy publiczne IP i zwiększamy bezpieczeństwo, bo urządzenia w naszej sieci są mniej narażone na ataki z zewnątrz. Dobrze jest też używać NAT, czyli translacji adresów, żeby jeden publiczny adres IP mógł być używany przez wiele urządzeń w sieci. W praktyce wiele routerów działa właśnie w ten sposób, co daje nam większą wygodę w korzystaniu z Internetu.

Pytanie 17

Aplikacja systemowa Linux, której celem jest kontrolowanie ruchu sieciowego zarówno przychodzącego, jak i wychodzącego z określonego urządzenia, to

A. chkconfig
B. mtr
C. iptables
D. ifconfig
Iptables to narzędzie w systemach Linux, które służy do zarządzania regułami filtrowania ruchu sieciowego. Umożliwia administratorom definiowanie, które pakiety danych mają być akceptowane, a które odrzucane, co jest kluczowe dla zapewnienia bezpieczeństwa i kontroli nad ruchem sieciowym. Iptables działa na poziomie jądra systemu, co pozwala na efektywne przetwarzanie pakietów przed dotarciem do aplikacji. Przykładowo, można użyć iptables do zablokowania dostępu do określonych portów, co uniemożliwi nieautoryzowanym użytkownikom komunikację z serwerem. W praktyce, dobra konfiguracja iptables jest podstawą zabezpieczeń systemów Linux i zgodności z normami bezpieczeństwa, takimi jak ISO 27001. Należy pamiętać, że iptables obsługuje różne tabele i łańcuchy, co pozwala na zaawansowane manipulacje ruchem, takie jak NAT (Network Address Translation) czy filtracja w zależności od stanu połączenia.

Pytanie 18

Które urządzenie jest stosowane do mocowania kabla w module Keystone?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Urządzenie oznaczone literą D to narzędzie do zaciskania, które jest niezbędne w procesie mocowania kabli w modułach Keystone. Dzięki zastosowaniu tego narzędzia, możliwe jest pewne i trwałe połączenie kabla z modułem, co jest kluczowe dla zapewnienia stabilności i jakości sygnału w systemach teleinformatycznych. W praktyce, narzędzie to pozwala na precyzyjne wprowadzenie żył kabla do złącza, a następnie ich zaciśnięcie, co zapewnia dobre przewodnictwo oraz minimalizuje ryzyko awarii. Użycie narzędzia do zaciskania zgodnie z normami EIA/TIA-568 umożliwia osiągnięcie wysokiej jakości połączeń w sieciach lokalnych. Dobrą praktyką jest również stosowanie narzędzi, które umożliwiają testowanie poprawności wykonania połączenia, co pozwala na wczesne wykrycie ewentualnych błędów. W efekcie, stosowanie odpowiednich narzędzi do mocowania kabli w modułach Keystone przyczynia się do zwiększenia efektywności i niezawodności całej infrastruktury sieciowej.

Pytanie 19

Norma PN-EN 50174 nie obejmuje wytycznych odnoszących się do

A. zapewnienia jakości instalacji kablowych
B. realizacji instalacji w obrębie budynków
C. montażu instalacji na zewnątrz budynków
D. uziemień systemów przetwarzania danych
Norma PN-EN 50174 rzeczywiście nie zawiera wytycznych dotyczących uziemień instalacji urządzeń przetwarzania danych, co czyni tę odpowiedź poprawną. Uziemienie jest kluczowym elementem bezpieczeństwa w instalacjach elektrycznych, szczególnie w kontekście urządzeń przetwarzania danych, które są narażone na różne zakłócenia elektromagnetyczne oraz mogą generować potencjalnie niebezpieczne napięcia. W praktyce, dla prawidłowego zabezpieczenia tych instalacji, często stosuje się normy takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące uziemień. Użycie odpowiednich systemów uziemiających minimalizuje ryzyko uszkodzeń sprzętu oraz zapewnia bezpieczeństwo użytkowników. Warto zaznaczyć, że uziemienie powinno być projektowane z uwzględnieniem specyfiki budynku oraz urządzeń, co w praktyce oznacza, że każdy przypadek powinien być analizowany indywidualnie przez specjalistów. Zrozumienie tych kwestii jest niezbędne dla skutecznego projektowania i utrzymania systemów IT.

Pytanie 20

Jakie medium transmisyjne w sieciach LAN wskazane jest do używania w obiektach historycznych?

A. Kabel koncentryczny
B. Fale radiowe
C. Światłowód
D. Kabel typu "skrętka"
Wybór medium transmisyjnego w zabytkowych budynkach wymaga szczególnej uwagi, ponieważ wiele opcji może przynieść więcej problemów niż korzyści. Światłowód, mimo swojej wysokiej wydajności i dużej prędkości transmisji, wiąże się z koniecznością wykonywania skomplikowanych prac instalacyjnych, które mogą zagrażać integralności budynku. Instalacja światłowodu często wymaga prowadzenia kabli przez ściany i podłogi, co może naruszyć strukturalne i estetyczne aspekty zabytkowego obiektu, a także pociągać za sobą kosztowne prace renowacyjne. Także, kabel koncentryczny, mimo iż zapewnia przyzwoitą transmisję danych, jest przestarzałą technologią, która nie oferuje wystarczających prędkości w porównaniu do nowszych rozwiązań i może być trudna do zainstalowania w zabytkowych wnętrzach. Kabel typu „skrętka” jest popularnym rozwiązaniem w sieciach lokalnych, jednak również wymaga czasami kładzenia kabli, co w przypadku zabytków może nie być wykonalne. Wybór niewłaściwego medium transmisyjnego, które wymaga ingerencji w konstrukcję budynku, może prowadzić do zniszczeń i problemów z utrzymaniem jakości zabytków, co jest niezgodne z najlepszymi praktykami konserwatorskimi. Dlatego w takich warunkach zastosowanie fal radiowych staje się najlepszym rozwiązaniem, unikającym wszelkich negatywnych skutków związanych z tradycyjnymi kablami.

Pytanie 21

Najbardziej efektywnym sposobem dodania skrótu do danego programu na pulpitach wszystkich użytkowników w domenie jest

A. użycie zasad grupy
B. mapowanie dysku
C. ponowna instalacja programu
D. pobranie aktualizacji Windows
Użycie zasad grupy, czyli Group Policy, to świetna metoda na dodanie skrótu do programu na pulpitach wszystkich użytkowników w domenie. Dzięki narzędziu GPO, administratorzy mogą w łatwy sposób zarządzać ustawieniami komputerów i użytkowników w sieci. Na przykład, można stworzyć GPO, które automatycznie doda skrót do aplikacji na pulpicie dla wszystkich w danej jednostce organizacyjnej. To naprawdę ułatwia życie, bo zautomatyzowanie tego procesu zmniejsza ryzyko błędów i sprawia, że wszyscy mają spójne środowisko pracy. No i warto zauważyć, że zasady grupy są zgodne z tym, co najlepiej się praktykuje w zarządzaniu IT, bo pozwalają efektywnie wdrażać polityki bezpieczeństwa i standaryzować konfiguracje w organizacji. A to wszystko jest kluczowe, żeby utrzymać porządek w infrastrukturze IT i zadbać o bezpieczeństwo.

Pytanie 22

Jakie jest standardowe port do przesyłania poleceń (command) serwera FTP?

A. 20
B. 110
C. 21
D. 25
Port 21 to ten standardowy port, z którego korzysta FTP, czyli protokół do przesyłania plików. Służy on do nawiązywania połączeń oraz wymiany poleceń między klientem a serwerem. FTP jest super popularny, czy to przy małych transferach między znajomymi, czy w dużych firmach. Według dokumentacji, port 21 jest określony w dokumencie RFC 959 jako port, na którym wszystko się zaczyna. Żeby przesyłać pliki, musisz najpierw połączyć się z serwerem na tym porcie, żeby się autoryzować i uzyskać dostęp do plików. Gdy już połączenie jest nawiązane przez port 21, prawdziwe dane lecą na innym porcie, zazwyczaj 20, bo to port do przesyłania danych. Dobrze jest to wiedzieć, bo to pomaga przy ustawianiu zapór ogniowych i serwerów FTP, co jest ważne dla bezpieczeństwa transferów.

Pytanie 23

Aby uzyskać spis wszystkich dostępnych urządzeń w sieci lokalnej, należy użyć aplikacji typu

A. spoofer
B. sniffer
C. port scanner
D. IP scanner
Port scanner to narzędzie służące do skanowania otwartych portów na danym hoście, a nie do identyfikacji urządzeń w sieci. Choć skanowanie portów jest ważnym elementem analizy bezpieczeństwa, nie dostarcza informacji o wszystkich dostępnych urządzeniach w lokalnej sieci. Z kolei sniffer to program do przechwytywania i analizy ruchu sieciowego, który umożliwia monitorowanie pakietów przesyłanych w sieci, ale również nie identyfikuje urządzeń. Użycie sniffera wymaga zaawansowanej wiedzy z zakresu analizy ruchu sieciowego, a także może wiązać się z kwestiami prawnymi, jeśli jest używany bez zgody. Spoofer natomiast jest narzędziem do fałszowania adresów IP, co może być wykorzystywane w atakach na sieci, lecz nie ma zastosowania w kontekście identyfikacji urządzeń w sieci lokalnej. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują mylenie funkcji poszczególnych narzędzi oraz niewłaściwe zrozumienie ich zastosowań w kontekście zarządzania siecią. Użycie niewłaściwego narzędzia może prowadzić do nieefektywnego zarządzania oraz potencjalnych problemów z bezpieczeństwem.

Pytanie 24

Symbol graficzny przedstawiony na rysunku oznacza

Ilustracja do pytania
A. główny punkt dystrybucyjny.
B. zamknięty kanał kablowy.
C. gniazdo telekomunikacyjne.
D. otwarty kanał kablowy.
Wybór zamkniętego kanału kablowego czy głównego punktu dystrybucyjnego jako odpowiedzi w tym pytaniu może być nieco mylący, bo te elementy są różne. Zamknięty kanał kablowy służy głównie do ochrony kabli, a nie do podłączania urządzeń. Otwarte kanały też mają swoje zastosowanie, ale nie podłączysz tam nic na stałe. Główny punkt dystrybucyjny to ważny element, ale jeszcze bardziej związany z zarządzaniem sygnałem niż z gniazdami. Często ludzie mylą te funkcje i przez to mogą popełnić błędy w dokumentacji. Dobrze jest rozumieć różnice, żeby uniknąć problemów z komunikacją w projekcie. Takie niewłaściwe symbole mogą prowadzić do sporych kłopotów przy instalacjach telekomunikacyjnych.

Pytanie 25

Najefektywniejszym sposobem na zabezpieczenie prywatnej sieci Wi-Fi jest

A. stosowanie szyfrowania WPA-PSK
B. zmiana adresu MAC routera
C. stosowanie szyfrowania WEP
D. zmiana nazwy SSID
Zmiana adresu MAC routera, zmiana identyfikatora SSID oraz stosowanie szyfrowania WEP to podejścia, które nie zapewniają wystarczającego poziomu bezpieczeństwa. Zmiana adresu MAC, czyli fizycznego adresu sprzętowego urządzenia, może wprowadzać pewne trudności dla potencjalnych intruzów, ale nie jest to skuteczna metoda zabezpieczenia. Adres MAC można łatwo sfałszować, a ponadto nie chroni on danych przesyłanych w sieci. Zmiana identyfikatora SSID, chociaż może ukryć sieć przed podstawowym skanowaniem, nie oferuje żadnej ochrony przed atakami i nie szyfruje danych. Osoby z odpowiednią wiedzą i narzędziami będą w stanie z łatwością zidentyfikować ukryte sieci. Szyfrowanie WEP, pomimo że było kiedyś standardem, jest obecnie uznawane za przestarzałe i niebezpieczne. WEP można złamać w zastraszająco krótkim czasie, co czyni go nieskutecznym zabezpieczeniem. W praktyce wiele osób może błędnie sądzić, że zmiana adresu MAC lub SSID wystarcza do zabezpieczenia sieci, co prowadzi do fałszywego poczucia bezpieczeństwa. Kluczowym błędem w myśleniu jest założenie, że jedynie obfite zmiany wizualne w konfiguracji routera mogą zapewnić ochronę, podczas gdy najważniejsze jest stosowanie aktualnych standardów zabezpieczeń, takich jak WPA-PSK.

Pytanie 26

Który z dostępnych standardów szyfrowania najlepiej ochroni sieć bezprzewodową?

A. WEP 64
B. WPA-PSK(TKIP)
C. WEP 128
D. WPA2-PSK(AES)
Zastosowanie standardów WEP, zarówno w wersji 64-bitowej, jak i 128-bitowej, oraz WPA-PSK z TKIP, okazuje się niewystarczające w kontekście współczesnych zagrożeń bezpieczeństwa. WEP, mimo iż był jednym z pierwszych standardów ochrony sieci bezprzewodowych, jest obecnie uważany za przestarzały i niemożliwy do skutecznej implementacji w dzisiejszych czasach. Problemy z WEP wynikają przede wszystkim z jego słabej konstrukcji, która umożliwia przeprowadzenie ataków takich jak atak IV (Initialization Vector) oraz atak na klucz szyfrowania, co pozwala na łatwe odszyfrowanie danych. WEP 64 i WEP 128 różnią się jedynie długością klucza, a ich bezpieczeństwo stoi na tym samym, niskim poziomie. Z kolei WPA-PSK używający TKIP, choć stanowi poprawę w stosunku do WEP, wciąż ma swoje ograniczenia; TKIP jest podatny na różne formy ataków, w tym ataki związane z przechwytywaniem pakietów. Dlatego ważne jest, aby nie opierać się na przestarzałych standardach, ale korzystać z najnowszych technologii, które gwarantują lepszą ochronę, takich jak WPA2-PSK(AES) lub WPA3. Ignorowanie aktualnych standardów i korzystanie z przestarzałych protokołów może prowadzić do poważnych luk w zabezpieczeniach, narażając użytkowników na utratę danych oraz nieautoryzowany dostęp do sieci.

Pytanie 27

Aby chronić lokalną sieć komputerową przed atakami typu Smurf pochodzącymi z Internetu, należy zainstalować oraz właściwie skonfigurować

A. zapory ogniowej
B. oprogramowanie antyspamowe
C. skaner antywirusowy
D. bezpieczną przeglądarkę internetową
Wybór oprogramowania antyspamowego, skanera antywirusowego lub bezpiecznej przeglądarki nie jest adekwatnym rozwiązaniem w kontekście ochrony lokalnej sieci przed atakami typu Smurf. Oprogramowanie antyspamowe jest skoncentrowane na blokowaniu niechcianej korespondencji e-mailowej i nie ma wpływu na ruch sieciowy, który jest kluczowy w atakach DDoS, do których należy Smurf. Skanery antywirusowe są skuteczne w wykrywaniu i usuwaniu złośliwego oprogramowania, ale nie zabezpieczają infrastruktury sieciowej przed nadmiernym ruchem. Atak Smurf polega na rozsyłaniu dużej ilości zapytań ping, które mogą prowadzić do przeciążenia sieci, co oznacza, że ochrona przed takim atakiem wymaga odpowiednich mechanizmów kontroli ruchu, które nie są związane z funkcjonalnościami skanera antywirusowego. Bezpieczna przeglądarka stron WWW ma na celu ochronę użytkowników podczas przeglądania internetu, ale nie ma żadnego wpływu na ruch sieciowy wewnętrzny, ani na zabezpieczenie przed atakami, które mogą wykorzystać luki w konfiguracji sieci. Właściwym rozwiązaniem jest wdrożenie zapory ogniowej, która będzie w stanie adekwatnie monitorować i kontrolować ruch w sieci, a także blokować niebezpieczne pakiety, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieciowego.

Pytanie 28

Planowanie wykorzystania przestrzeni dyskowej komputera do przechowywania i udostępniania informacji, takich jak pliki i aplikacje dostępne w sieci oraz ich zarządzanie, wymaga skonfigurowania komputera jako

A. serwer DHCP
B. serwer plików
C. serwer aplikacji
D. serwer terminali
Serwer plików jest dedykowanym systemem, którego główną rolą jest przechowywanie, udostępnianie oraz zarządzanie plikami w sieci. Umożliwia on użytkownikom dostęp do plików z różnych lokalizacji, co jest istotne w środowiskach biurowych oraz edukacyjnych, gdzie wiele osób współdzieli dokumenty i zasoby. Przykłady zastosowania serwera plików obejmują firmy, które chcą centralizować swoje zasoby, umożliwiając pracownikom łatwy dostęp do dokumentów oraz aplikacji. Serwery plików mogą być konfigurowane z wykorzystaniem różnych protokołów, takich jak SMB (Server Message Block) dla systemów Windows czy NFS (Network File System) dla systemów Unix/Linux, co pozwala na interoperacyjność w zróżnicowanych środowiskach operacyjnych. Warto także wspomnieć o znaczeniu bezpieczeństwa i praw dostępu, co jest kluczowe w zarządzaniu danymi, aby zapewnić, że tylko uprawnione osoby mają dostęp do wrażliwych informacji. Dobrą praktyką jest również regularne wykonywanie kopii zapasowych danych znajdujących się na serwerze plików, co chroni przed ich utratą.

Pytanie 29

Protokół stworzony do nadzorowania oraz zarządzania urządzeniami w sieci, oparty na architekturze klient-serwer, w którym jeden menedżer kontroluje od kilku do kilkuset agentów to

A. SNMP (Simple Network Management Protocol)
B. SMTP (Simple Mail Transfer Protocol)
C. HTTP (Hypertext Transfer Protocol)
D. FTP (File Transfer Protocol)
SNMP, czyli Simple Network Management Protocol, to standardowy protokół sieciowy, który umożliwia monitorowanie i zarządzanie urządzeniami w sieci IP. Opiera się na architekturze klient-serwer, gdzie agent (urządzenie zarządzane) przekazuje dane do menedżera (systemu zarządzającego). Dzięki SNMP administratorzy sieci mogą zbierać dane o stanie urządzeń, takich jak routery, przełączniki czy serwery, co pozwala na szybką identyfikację problemów, optymalizację wydajności oraz planowanie zasobów. Protokół SNMP jest szeroko stosowany w branży IT, będąc częścią standardów IETF. Przykładem zastosowania może być monitorowanie obciążenia serwera w czasie rzeczywistym, co pozwala na podejmowanie decyzji na podstawie zebranych danych. Ponadto, SNMP wspiera różne poziomy bezpieczeństwa i wersje, co pozwala na dostosowanie go do specyficznych potrzeb organizacji. Standardy SNMP są zgodne z najlepszymi praktykami, co daje pewność, że system zarządzania siecią będzie działał w sposób efektywny i bezpieczny.

Pytanie 30

Kontrola pasma (ang. bandwidth control) w przełączniku to funkcjonalność

A. umożliwiająca jednoczesne łączenie przełączników przy użyciu wielu łącz
B. pozwalająca ograniczyć przepustowość na wyznaczonym porcie
C. pozwalająca na równoczesne przesyłanie danych z wybranego portu do innego portu
D. umożliwiająca zdalne połączenie z urządzeniem
Zarządzanie pasmem (bandwidth control) w przełączniku jest kluczowym elementem w kontekście efektywnego zarządzania siecią. Odpowiedź, która wskazuje na możliwość ograniczenia przepustowości na wybranym porcie, jest poprawna, ponieważ ta funkcjonalność pozwala administratorom sieci na precyzyjne dostosowanie dostępnych zasobów do konkretnych wymagań. Przykładowo, w sytuacji, gdy na jednym porcie podłączone są urządzenia o różnym zapotrzebowaniu na pasmo, zarządzanie pasmem pozwala na priorytetyzację ruchu i ograniczenie prędkości transferu dla mniej krytycznych aplikacji. W praktyce, techniki takie jak Quality of Service (QoS) są często wykorzystywane, aby zapewnić, że aplikacje o wysokim priorytecie, takie jak VoIP czy transmisje wideo, mają zapewnioną odpowiednią przepustowość, podczas gdy inne, mniej istotne usługi mogą być throttlowane. Standardy branżowe, takie jak IEEE 802.1Q, wskazują na znaczenie zarządzania pasmem w kontekście rozwoju sieci VLAN, co dodatkowo podkreśla jego istotność w nowoczesnych architekturach sieciowych.

Pytanie 31

Podczas analizy ruchu sieciowego z użyciem sniffera zaobserwowano, że urządzenia komunikują się za pośrednictwem portów
20 oraz 21. Można stwierdzić, przy założeniu standardowej konfiguracji, że monitorowanym protokołem jest protokół

A. DHCP
B. SSH
C. SMTP
D. FTP
Odpowiedź FTP (File Transfer Protocol) jest prawidłowa, ponieważ porty 20 i 21 są standardowo przypisane do tego protokołu. Port 21 jest używany do inicjowania połączeń, podczas gdy port 20 jest wykorzystywany do przesyłania danych w trybie aktywnym. FTP jest szeroko stosowany do transferu plików między komputerami w sieci, co czyni go kluczowym narzędziem w administracji systemami oraz na serwerach. Z perspektywy praktycznej, FTP znajduje zastosowanie w zarządzaniu plikami na serwerach, takich jak przesyłanie aktualizacji stron internetowych, pobieranie plików z serwerów FTP oraz synchronizacja plików między różnymi urządzeniami. Warto również zwrócić uwagę, że istnieją różne warianty FTP, takie jak FTPS (FTP Secure) oraz SFTP (SSH File Transfer Protocol), które oferują dodatkowe funkcje zabezpieczeń, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa informacji.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

W topologii fizycznej gwiazdy wszystkie urządzenia działające w sieci są

A. podłączone do jednej magistrali
B. podłączone do węzła sieci
C. połączone pomiędzy sobą odcinkami kabla tworząc zamknięty pierścień
D. połączone z dwoma sąsiadującymi komputerami
W przypadku połączeń w sieci, które są zorganizowane w inny sposób, jak np. w przypadku podłączenia do magistrali, mamy do czynienia z topologią magistrali. W tej konfiguracji wszystkie urządzenia dzielą wspólne medium transmisyjne, co może prowadzić do kolizji danych oraz zmniejszenia wydajności w miarę wzrostu liczby podłączonych komputerów. Podobnie połączenia w pierścień, gdzie każde urządzenie jest podłączone do dwóch innych, tworząc zamknięty cykl, mogą wiązać się z problemami, takimi jak trudności w diagnostyce oraz potencjalne punkty awarii, które mogą zakłócić funkcjonowanie całej sieci. W praktyce, takie topologie nie zapewniają takiej elastyczności i odporności na awarie jak topologia gwiazdy. Liczne organizacje i standardy branżowe, takie jak IEEE 802.3, promują stosowanie topologii gwiazdy ze względu na jej zalety w zakresie zarządzania ruchem i zwiększonej niezawodności. Warto zauważyć, że nieprawidłowe interpretacje dotyczące struktury sieci mogą prowadzić do błędnych decyzji w projektowaniu, co z kolei może generować dodatkowe koszty oraz problemy z utrzymaniem sieci. Dlatego kluczowe jest zrozumienie podstawowych różnic pomiędzy tymi topologiami oraz ich praktycznych implikacji.

Pytanie 34

Adres MAC (Medium Access Control Address) stanowi sprzętowy identyfikator karty sieciowej Ethernet w warstwie modelu OSI

A. trzeciej o długości 32 bitów
B. drugiej o długości 48 bitów
C. drugiej o długości 32 bitów
D. trzeciej o długości 48 bitów
System modelu OSI dzieli architekturę komunikacyjną na siedem warstw, a adres MAC jest ściśle związany z warstwą drugą, czyli warstwą łącza danych. Odpowiedzi wskazujące, że adres MAC ma długość 32 bitów, są błędne, ponieważ standardowy format adresu MAC wynosi 48 bitów. Przyczyną tego błędu może być mylenie adresu MAC z innymi identyfikatorami w sieci, takimi jak adresy IP, które w wersji IPv4 mają długość 32 bitów. Warto zauważyć, że adresy MAC są konstrukcją sprzętową, co oznacza, że są przypisywane przez producentów urządzeń i są unikalne dla każdego interfejsu sieciowego. Oprócz tego, niepoprawne odpowiedzi mogą wynikać z braku znajomości standardów IEEE, które określają format i zasady przydzielania adresów MAC. Ważne jest, aby zrozumieć rolę adresów MAC w kontekście bezpieczeństwa sieci, ponieważ nieautoryzowane urządzenia mogą próbować podszywać się pod legalne, wykorzystując fałszywe adresy. Dlatego znajomość właściwego formatu adresu MAC oraz jego zastosowania w praktyce jest kluczowa dla każdej osoby zajmującej się administracją sieci.

Pytanie 35

Komputery K1 i K2 nie mogą się komunikować. Adresacja urządzeń jest podana w tabeli. Co należy zmienić, aby przywrócić komunikację w sieci?

UrządzenieAdresMaskaBrama
K110.0.0.2255.255.255.12810.0.0.1
K210.0.0.102255.255.255.19210.0.0.1
R1 (F1)10.0.0.1255.255.255.128
R1 (F2)10.0.0.101255.255.255.192
Ilustracja do pytania
A. Maskę w adresie dla K2.
B. Adres bramy dla K1.
C. Maskę w adresie dla K1.
D. Adres bramy dla K2.
Adres bramy dla K2 jest kluczowym elementem w zapewnieniu, że urządzenia K1 i K2 mogą się komunikować. K1, posiadający adres 10.0.0.2 z maską 255.255.255.128, znajduje się w podsieci 10.0.0.0/25, co oznacza, że jego adresy IP w tej podsieci mieszczą się w zakresie od 10.0.0.1 do 10.0.0.126. Z kolei K2 ma adres 10.0.0.102 z maską 255.255.255.192, co wskazuje na podsieć 10.0.0.64/26, obejmującą adresy od 10.0.0.65 do 10.0.0.126. Aby zapewnić komunikację między tymi urządzeniami, muszą one być w tej samej podsieci lub muszą mieć odpowiednio skonfigurowane bramy. W przypadku K2, adres bramy 10.0.0.1 nie jest poprawny, ponieważ znajduje się w innej podsieci. K2 powinno mieć bramę w swojej podsieci, na przykład 10.0.0.65. Takie podejście jest zgodne z dobrymi praktykami projektowania sieci, które zalecają, aby urządzenia komunikujące się ze sobą miały wspólny adres bramy lub znajdowały się w tej samej podsieci. W praktyce, niewłaściwa konfiguracja adresów bramy i submask często prowadzi do problemów z komunikacją w sieciach, co podkreśla znaczenie dokładnej analizy adresacji IP.

Pytanie 36

Jaką rolę pełni serwer Windows Server, która pozwala na centralne zarządzanie i ustawianie tymczasowych adresów IP oraz związanych z nimi danych dla komputerów klienckich?

A. Usługi udostępniania plików
B. Serwer DHCP
C. Usługi pulpitu zdalnego
D. Serwer telnet
Serwer DHCP (Dynamic Host Configuration Protocol) jest kluczowym elementem infrastruktury sieciowej, który odpowiada za automatyczne przydzielanie adresów IP komputerom klienckim w sieci. Ta rola serwera umożliwia centralizację zarządzania adresami IP, co przekłada się na uproszczenie konfiguracji i administracji sieci. Przykładowo, w dużych organizacjach, gdzie liczba urządzeń oraz użytkowników jest znaczna, ręczne przypisywanie adresów IP byłoby niepraktyczne i podatne na błędy. Dzięki serwerowi DHCP, adresy IP są przydzielane dynamicznie, co oznacza, że urządzenia mogą uzyskiwać nowe adresy przy każdym ponownym uruchomieniu, co znacznie ułatwia zarządzanie zasobami sieciowymi. Dodatkowo, serwer DHCP może również dostarczać inne istotne informacje konfiguracyjne, takie jak maska podsieci, brama domyślna czy serwery DNS, co jest zgodne z najlepszymi praktykami w zakresie zarządzania sieciami. W kontekście wdrożeń opartych na standardach branżowych, takich jak ITIL, wykorzystanie serwera DHCP przyczynia się do poprawy efektywności operacyjnej oraz zwiększenia bezpieczeństwa poprzez ograniczenie ryzyka konfliktów adresów IP.

Pytanie 37

Przynależność komputera do danej sieci wirtualnej nie może być ustalana na podstawie

A. znacznika ramki Ethernet 802.1Q
B. nazwa komputera w sieci lokalnej
C. numeru portu przełącznika
D. adresu MAC karty sieciowej komputera
Nazwa komputera w sieci lokalnej, znana również jako hostname, jest używana głównie do identyfikacji urządzenia w bardziej przyjazny sposób dla użytkowników. Jednakże, nie ma wpływu na przypisanie komputera do konkretnej sieci wirtualnej, ponieważ przynależność ta opiera się na technicznych aspektach działania sieci, takich jak adresacja i mechanizmy VLAN. Wirtualne sieci lokalne (VLAN) są definiowane na poziomie przełączników sieciowych, które wykorzystują znaczniki ramki Ethernet 802.1Q do identyfikacji i segregacji ruchu. Dlatego, aby przypisać komputer do konkretnej VLAN, kluczowe jest wykorzystanie adresów MAC i numerów portów przełącznika, które są bezpośrednio związane z fizycznym połączeniem urządzenia w sieci. Zastosowanie VLAN-ów pozwala na efektywne zarządzanie ruchem sieciowym oraz zwiększenie bezpieczeństwa i organizacji w dużych środowiskach sieciowych. Zrozumienie tej kwestii jest niezbędne dla skutecznego projektowania i zarządzania infrastrukturą sieciową.

Pytanie 38

Aby podłączyć drukarkę, która nie posiada karty sieciowej, do przewodowej sieci komputerowej, konieczne jest zainstalowanie serwera wydruku z odpowiednimi interfejsami

A. Centronics i RJ11
B. Centronics i USB
C. USB i RS232
D. USB i RJ45
Odpowiedź 'USB i RJ45' jest prawidłowa, ponieważ obydwa interfejsy są powszechnie stosowane do podłączenia drukarek do sieci komputerowych. Interfejs USB umożliwia szybkie przesyłanie danych między urządzeniem a komputerem, co jest kluczowe w przypadku drukarek, które wymagają efektywnej komunikacji. Z kolei interfejs RJ45 jest standardem w sieciach Ethernet, co pozwala na podłączenie drukarki do lokalnej sieci komputerowej bez potrzeby posiadania wbudowanej karty sieciowej. W przypadku serwera wydruku, urządzenie takie działa jako mostek pomiędzy drukarką a komputerami w sieci, co umożliwia wielu użytkownikom dostęp do tej samej drukarki. Przykłady zastosowania obejmują podłączenie drukarki biurowej do serwera, co pozwala na zdalne drukowanie dokumentów przez pracowników z różnych stanowisk. Zgodność z tymi standardami w znaczący sposób zwiększa elastyczność i użyteczność urządzeń w środowisku pracy, co jest zgodne z najlepszymi praktykami w branży IT.

Pytanie 39

Administrator systemu Windows Server zamierza zorganizować użytkowników sieci w różnorodne grupy, które będą miały zróżnicowane uprawnienia do zasobów w sieci oraz na serwerze. Najlepiej osiągnie to poprzez zainstalowanie roli

A. serwera DHCP
B. usługi wdrażania systemu Windows
C. serwera DNS
D. usługi domenowe AD
Usługi domenowe Active Directory (AD) to kluczowy element infrastruktury zarządzania użytkownikami i zasobami w systemie Windows Server. Dzięki tej roli administratorzy mogą tworzyć i zarządzać różnymi grupami użytkowników, co pozwala na efektywne przydzielanie uprawnień do zasobów w sieci. Przykładowo, można skonfigurować grupy dla różnych działów w firmie, takich jak sprzedaż, marketing czy IT, co umożliwia wdrażanie polityk bezpieczeństwa oraz kontroli dostępu do plików i aplikacji. Standardy branżowe, takie jak model RBAC (Role-Based Access Control), opierają się na zasadzie, że użytkownicy powinni mieć dostęp tylko do zasobów, które są im niezbędne do wykonywania swoich zadań. Implementacja AD wspiera ten model, co jest zgodne z praktykami zarządzania bezpieczeństwem w organizacjach. Ponadto, AD pozwala na scentralizowane zarządzanie użytkownikami, co upraszcza procesy administracyjne i zwiększa bezpieczeństwo systemu.

Pytanie 40

W celu zwiększenia bezpieczeństwa sieci firmowej administrator wdrożył protokół 802.1X. Do czego służy ten protokół?

A. Monitoruje i analizuje przepustowość łącza internetowego w firmie.
B. Zapewnia szyfrowanie transmisji danych wyłącznie w warstwie aplikacji.
C. Realizuje dynamiczne przydzielanie adresów IP w sieci lokalnej.
D. Służy do kontroli dostępu do sieci na poziomie portów przełącznika, umożliwiając uwierzytelnianie urządzeń przed przyznaniem im dostępu do sieci.
<strong>Protokół 802.1X</strong> to kluczowy element bezpieczeństwa nowoczesnych sieci komputerowych, szczególnie tych wykorzystywanych w środowiskach korporacyjnych i instytucjonalnych. Jego głównym zadaniem jest kontrola dostępu do sieci na najniższym poziomie, czyli na porcie przełącznika (lub punkcie dostępowym w przypadku sieci bezprzewodowych). Mechanizm ten wymaga, aby każde urządzenie próbujące połączyć się z siecią przeszło proces uwierzytelniania, zanim uzyska dostęp do zasobów sieciowych. Najczęściej wykorzystuje się tu serwer RADIUS do weryfikacji tożsamości użytkownika lub urządzenia, co znacząco redukuje ryzyko nieautoryzowanego dostępu. Z mojego doświadczenia wdrożenie 802.1X to nie tylko podstawa zgodności z politykami bezpieczeństwa (np. ISO 27001), ale także skuteczny sposób na ograniczenie tzw. ataków typu „plug and play”, gdzie ktoś podpina nieautoryzowane urządzenie do wolnego portu. W praktyce, np. w dużych biurach czy na uczelniach, 802.1X umożliwia granularne zarządzanie dostępem i szybkie wycofanie uprawnień, jeśli pracownik opuszcza firmę. To rozwiązanie bardzo często łączy się z innymi technologiami, jak VLAN czy NAC (Network Access Control), co pozwala na jeszcze większą kontrolę i automatyzację procesów bezpieczeństwa. Najważniejsze, że 802.1X działa jeszcze zanim system operacyjny uzyska pełny dostęp do sieci, co czyni go wyjątkowo skutecznym narzędziem prewencji.