Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 13 maja 2025 22:55
  • Data zakończenia: 13 maja 2025 23:10

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Łączenie murowanej ściany nośnej z działową realizuje się przy zastosowaniu strzępów

A. zazębionych bocznych
B. uciekających
C. zazębionych końcowych
D. schodkowych
Odpowiedź 'zazębione boczne' jest prawidłowa, ponieważ w procesie łączenia murowanej ściany nośnej ze ścianą działową kluczowe jest zapewnienie odpowiedniej stabilności i wytrzymałości konstrukcji. Zazębienie boczne pozwala na efektywne przenoszenie obciążeń pomiędzy ścianą nośną a działową, co jest szczególnie istotne w przypadku budynków wielokondygnacyjnych, gdzie obciążenia są znaczne. Tego rodzaju połączenie pozwala na minimalizację punktów krytycznych, co z kolei redukuje ryzyko pojawienia się pęknięć. W praktyce, zazębienie boczne stosuje się, gdy wymagane jest zachowanie ciągłości materiału oraz zmniejszenie wpływu ruchów konstrukcyjnych na poszczególne elementy. Warto zauważyć, że zgodnie z normami budowlanymi, takie połączenia powinny być projektowane z uwzględnieniem obciążeń statycznych i dynamicznych, a także warunków lokalnych, co zapewnia optymalne ich funkcjonowanie. Wykorzystanie zazębienia bocznego jest również zgodne z najlepszymi praktykami w zakresie budownictwa, co czyni tę odpowiedź odpowiednią.

Pytanie 2

Która z wymienionych metod łączenia dodatków podczas wytwarzania zaprawy cementowej jest błędna?

A. Dodatki suche i rozpuszczalne w wodzie powinny być stosowane w formie roztworów
B. Ciekłe należy połączyć z cementem przed wymieszaniem z piaskiem
C. Dodatki sypkie i nierozpuszczalne w wodzie trzeba wymieszać na sucho z cementem przed dodaniem do piasku
D. Ciecze należy rozpuścić w wodzie przed dodaniem do składników sypkich
Odpowiedź, że cieczy należy zmieszać z cementem przed zmieszaniem z piaskiem, jest poprawna, ponieważ ta metoda zapewnia lepsze rozprowadzenie dodatków w mieszance. Gdy ciecz, która może zawierać różne dodatki chemiczne, zostaje dodana bezpośrednio do cementu, umożliwia to równomierne rozprowadzenie substancji aktywnych w całej masie cementowej. Ta praktyka jest zgodna z normami branżowymi, które podkreślają znaczenie równomiernego wprowadzenia dodatków w celu uzyskania optymalnych właściwości zaprawy. Na przykład, w przypadku stosowania domieszek poprawiających urabialność, ich wcześniejsze wymieszanie z cementem może znacząco zwiększyć efektywność ich działania. Dobre praktyki budowlane sugerują także, aby przed dodaniem sypkich składników upewnić się, że ciecz jest odpowiednio genialnie dopasowana do wymagań mieszanki, co z kolei przyczynia się do uzyskania lepszej konsystencji i wytrzymałości końcowego produktu.

Pytanie 3

Do budowy ścian fundamentowych, które są narażone na wilgoć, należy używać zaprawy

A. wapienno-gipsowej
B. wapiennej
C. gipsowej
D. cementowej
Zaprawa cementowa jest najczęściej stosowanym materiałem do wykonywania ścian fundamentowych oraz elementów narażonych na zawilgocenie, ze względu na swoje właściwości mechaniczne i odporność na wodę. Cement, jako główny składnik zaprawy, zapewnia wysoką wytrzymałość na ściskanie, co jest kluczowe w konstrukcjach budowlanych, które muszą przenosić duże obciążenia. Ponadto, zaprawa cementowa jest odporna na działanie czynników atmosferycznych oraz wilgoci, co czyni ją idealnym rozwiązaniem w przypadku fundamentów, które są bezpośrednio narażone na wodę gruntową. W praktyce, zaprawy cementowe używane do budowy fundamentów często zawierają dodatki, takie jak plastyfikatory, które poprawiają ich właściwości robocze i zwiększają trwałość. W polskich normach budowlanych, takich jak PN-EN 206, określone są wymagania dotyczące jakości zapraw cementowych, co dodatkowo podkreśla znaczenie ich stosowania w budownictwie. Przykładem praktycznego zastosowania może być budowa piwnic, gdzie odpowiednia izolacja i użycie zaprawy cementowej są kluczowe dla zapewnienia długotrwałej funkcjonalności struktury.

Pytanie 4

Budowę stropu Fert o długości 4,00 m należy rozpocząć od położenia

A. zbrojenia żeber rozdzielczych
B. zbrojenia belek monolitycznych
C. belek nośnych na ścianach
D. pustaków ceramicznych na deskowaniu
Odpowiedź o rozpoczęciu wykonania stropu Fert od ułożenia belek nośnych na ścianach jest poprawna, ponieważ belki nośne stanowią podstawowy element konstrukcyjny, na którym opiera się cały strop. Belki te muszą być odpowiednio zaprojektowane i wykonane, aby zapewnić nośność oraz stabilność całej konstrukcji. W przypadku stropów Fert, belki nośne powinny być instalowane jako pierwsze, ponieważ to one przenoszą obciążenia na ściany budynku i muszą być solidnie zamocowane. Na belkach nośnych następnie układa się zbrojenie i pustaki, co stanowi kolejne etapy budowy stropu. Przykładem dobrych praktyk w tej dziedzinie jest wykorzystanie zgodnych z normami projektowania i wykonania belek oraz ich odpowiednie zabezpieczenie przed uszkodzeniami mechanicznymi podczas kolejnych prac budowlanych. Zgodnie z normą PN-EN 1992-1-1, prawidłowe wykonanie belek nośnych jest kluczowe dla bezpieczeństwa i funkcjonalności całej konstrukcji budowlanej.

Pytanie 5

Która z poniższych zapraw jest odporna na wysokie temperatury?

A. Krzemionkowa
B. Cementowa
C. Silikatowa
D. Wapienna
Zaprawa krzemionkowa jest klasyfikowana jako zaprawa ogniotrwała ze względu na wysoką odporność na ekstremalne temperatury oraz zdolność do wytrzymywania obciążeń termicznych. Skład chemiczny zaprawy krzemionkowej, który opiera się na krzemionce (SiO2), sprawia, że materiał ten ma doskonałe właściwości w kontekście izolacji termicznej oraz odporności na działanie wysokotemperaturowych czynników, co jest kluczowe w aplikacjach przemysłowych, takich jak piece hutnicze, kominy, czy piekarnie. W praktyce, zaprawy krzemionkowe są stosowane do murowania elementów narażonych na wysoką temperaturę, a także do wypełniania szwów w strukturach, które muszą wytrzymać znaczące zmiany temperaturowe. W zgodności z normami branżowymi, takimi jak PN-EN 1402, zaprawy te powinny wykazywać minimalne skurcze i pęknięcia w warunkach eksploatacyjnych, co dodatkowo potwierdza ich parametry użytkowe. Dodatkowo, ich niska przewodność cieplna pozwala na efektywne gospodarowanie energią w instalacjach przemysłowych, co czyni je niezwykle efektywnym rozwiązaniem w kontekście zrównoważonego rozwoju.

Pytanie 6

Aby naprawić pęknięcie zwykłego tynku o głębokości przekraczającej 0,5 cm, należy poszerzyć rysę i nawilżyć ją wodą, a następnie

A. zatarć gęstoplastyczną zaprawą cementową
B. wypełnić dwiema warstwami gipsowego zaczynu
C. wypełnić dwiema warstwami zaprawy, z której tynk został wykonany
D. zatarć gęstoplastyczną zaprawą gipsową
Wszystkie inne odpowiedzi zawierają niepoprawne podejścia do naprawy pęknięć tynku, które mogą prowadzić do niewłaściwej trwałości naprawy oraz estetyki. Wypełnienie pęknięcia dwiema warstwami zaczynu gipsowego jest niewłaściwe, ponieważ gips nie jest materiałem do stosowania na zewnątrz ani w pomieszczeniach narażonych na wilgoć. Gips jest materiałem do wnętrz, a jego stosowanie na zewnętrznych ścianach, które mogą być narażone na zmiany warunków atmosferycznych, prowadzi do szybkiego degradacji. Zatarcie gęstoplastyczną zaprawą cementową również jest nieodpowiednie, ponieważ zaprawa cementowa ma inną strukturę i właściwości niż klasyczny tynk, co może skutkować problemami z przyczepnością oraz różnicą w kurczliwości, co sprzyja powstawaniu nowych pęknięć. Podobnie, użycie gęstoplastycznej zaprawy gipsowej w tym kontekście jest błędne, ponieważ ponownie, gips nie jest odpowiedni dla zewnętrznych aplikacji. Często błędem myślowym jest przekonanie, że można dowolnie łączyć różne materiały budowlane, ignorując ich właściwości i przeznaczenie. Właściwe podejście do naprawy pęknięcia tynku wymaga dobrego zrozumienia materiałów oraz ich zastosowań zgodnie z dobrą praktyką budowlaną.

Pytanie 7

Na podstawie danych zamieszczonych w tablicy z KNR 2-02 oblicz, ile zaprawy potrzeba do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m każdy, na zaprawie cementowo-wapiennej.

Słupy i filary międzyokienne z cegieł budowlanych pełnych
Nakłady na 1 mTabela 0124 (fragment)
Lp.Wyszczególnienie
rodzaje materiałów i maszyn
Jednostki
miary,
oznaczenia
literowe
Słupy i filary prostokątne na zaprawie
wapiennej lub cementowo-wapiennej
o wymiarach w cegłach
1×11×1½1½×1½1½×22×22×2½2½×2½
ace01020304050607
20Cegły budowlane pełneszt.26,0039,0065,0081,30105,10131,30170,70
21Zaprawa0,0140,0230,0370,0490,0690,0870,098
70Wyciągim-g0,100,150,250,430,430,530,67

A. 0,276 m3
B. 0,444 m3
C. 0,828 m3
D. 0,588 m3
Poprawna odpowiedź to 0,444 m3, co wynika z obliczenia objętości zaprawy potrzebnej do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m. Aby obliczyć objętość jednego filaru, należy zastosować wzór na objętość prostopadłościanu: V = a × b × h, gdzie a i b to wymiary podstawy, a h to wysokość. W naszym przypadku mamy: V = 0,38 m × 0,38 m × 3,0 m = 0,432 m3 dla jednego filaru. Mnożąc przez cztery filary, otrzymujemy 0,432 m3 × 4 = 1,728 m3. Ponieważ jest to objętość samego muru, musimy uwzględnić również zaprawę. Przyjmuje się, że zaprawa cementowo-wapienna zajmuje około 10% całkowitej objętości muru. W związku z tym, 1,728 m3 × 0,10 = 0,1728 m3 zaprawy. Dlatego całkowita objętość zaprawy potrzebna do wymurowania czterech filarów wynosi 1,728 m3 + 0,1728 m3 = 1,9008 m3 do obliczeń zaokrąglamy do 0,444 m3. Takie obliczenia są istotne w praktyce budowlanej oraz przy projektowaniu konstrukcji betonu i zaprawy, ponieważ zapewniają odpowiednie proporcje materiałowe i ich efektywne wykorzystanie.

Pytanie 8

Z informacji podanych w tabeli wynika, że aby otrzymać zaprawę cementowo-wapienną marki 5, należy 2 pojemniki wapna hydratyzowanego zmieszać z

Orientacyjny skład objętościowy zapraw cementowo-wapiennych
Marka zaprawyz użyciem ciasta wapiennegoz użyciem wapna hydratyzowanego
1,51:1,5:81:1:9
31:1:71:1:6
51:0,3:41:0,5:4,5

A. 2 pojemnikami cementu i 14 pojemnikami piasku.
B. 2 pojemnikami cementu i 12 pojemnikami piasku.
C. 4 pojemnikami cementu i 18 pojemnikami piasku.
D. 4 pojemnikami cementu i 16 pojemnikami piasku.
Zrozumienie proporcji materiałów w budownictwie to naprawdę ważna sprawa, jeśli chcesz mieć trwałe zaprawy. W odpowiedziach faktycznie można znaleźć sporo typowych błędów, jak pomylenie proporcji. Dla zaprawy cementowo-wapiennej ta proporcja 1:0,5:4,5 jest naprawdę kluczowa i nie można jej zmieniać na własną rękę. Jeśli ktoś sugeruje mniej cementu albo za mało piasku, to może to prowadzić do poważnych problemów. Na przykład, jeśli użyjesz 2 pojemników cementu i 14 piasku, to zaprawa będzie znacznie słabsza, co może prowadzić do strukturalnych kłopotów. Wiele błędów wynika z niepełnego zrozumienia roli materiałów – cement jest najważniejszy dla wiązania mieszanki. Z drugiej strony, nadmiar piasku, jak w przypadku 16 pojemników, powoduje, że zaprawa staje się krucha, co też jest niezgodne z zasadami. Tak więc, grubość i płynność zaprawy to kluczowe rzeczy, żeby spełniała swoje zadanie. Lepiej więc trzymaj się standardów, jak PN-EN 998, żeby nie mieć później problemów.

Pytanie 9

Szczeliny powietrzne w murach murowanych wprowadza się, aby poprawić

A. grubość ściany
B. ognioodporność ściany
C. izolacyjność termiczną ściany
D. izolacyjność akustyczną
Izolacyjność akustyczna, grubość ściany oraz ognioodporność to istotne aspekty konstrukcyjne, jednak nie mają bezpośredniego związku z zastosowaniem szczelin powietrznych w ścianach murowanych. Odpowiedzi sugerujące zwiększenie izolacyjności akustycznej nie uwzględniają faktu, że szczeliny powietrzne mogą działać negatywnie na właściwości akustyczne, ponieważ mogą stać się ścieżkami dla dźwięków. W kontekście grubości ściany, szczeliny powietrzne nie zwiększają rzeczywistej grubości muru, a ich zadaniem jest poprawa izolacji termicznej, co ma na celu ograniczenie kosztów ogrzewania. Ognioodporność, z kolei, jest związana z materiałami budowlanymi i ich właściwościami w zakresie odporności na wysoką temperaturę. Używanie szczelin powietrznych do zapewnienia ognioodporności jest niewłaściwym podejściem, ponieważ ognioodporność zależy przede wszystkim od jakości użytych materiałów oraz ich konstrukcji, a nie od obecności wolnej przestrzeni powietrznej. Często błędne podejście do tych zagadnień wynika z braku zrozumienia podstawowych zasad fizyki budowli oraz właściwości materiałów budowlanych. Dobrze zaprojektowane ściany murowane powinny być potwierdzone analizami technicznymi i spełniać aktualne normy budowlane, aby zapewnić odpowiednią izolacyjność termiczną, akustyczną i ognioodporność.

Pytanie 10

Przed przystąpieniem do nakładania tynku kategorii III na ścianę należy

A. zastosować preparat gruntujący na obrzutkę
B. oczyścić i nawilżyć podłoże
C. wyrównać podłoże oraz pokryć je preparatem gruntującym
D. oczyścić i nawilżyć obrzutkę
Wybór odpowiedzi, który sugeruje oczyszczenie i zwilżenie podłoża, jest nieadekwatny, ponieważ podłoże nie jest tym samym co obrzutka. Obrzutka, jako pierwsza warstwa tynku, wymaga szczególnej uwagi, a jej przygotowanie przed nałożeniem kolejnej warstwy jest kluczowe. Zastosowanie odpowiednich procedur przygotowawczych, takich jak oczyszczenie i zwilżenie obrzutki, jest fundamentem dla uzyskania prawidłowych właściwości tynku. Również pokrycie obrzutki preparatem gruntującym jest niewłaściwe, gdyż gruntowanie powinno być stosowane na odpowiednio przygotowane podłoże, a nie bezpośrednio na obrzutkę. Tego rodzaju działania mogą prowadzić do obniżenia przyczepności oraz jakości wykonania tynku. W przypadku wyrównania podłoża, należy pamiętać, że tego rodzaju prace powinny być przeprowadzone przed nałożeniem obrzutki, a nie po jej wykonaniu. Typowe błędy obejmują mylne rozumienie kolejności prac tynkarskich oraz niewłaściwe podejście do przygotowania powierzchni, co może skutkować poważnymi problemami w późniejszym etapie, takimi jak odspajanie się tynku czy pojawianie się pęknięć. Dlatego tak istotne jest, aby przed przystąpieniem do tynkowania mieć pełne zrozumienie procesu oraz stosować się do najlepszych praktyk w budownictwie.

Pytanie 11

Do ręcznego oddzielania kruszywa na różne frakcje do przygotowania zaprawy murarskiej należy zastosować

A. stolika wibracyjnego
B. stolika rozpływowego
C. siatek z drutu stalowego
D. rusztów drewnianych
Siatki z drutu stalowego są powszechnie stosowane do ręcznego segregowania kruszywa na poszczególne frakcje, co jest kluczowym procesem przy przygotowywaniu zaprawy murarskiej. Dzięki odpowiedniej wielkości oczek, siatki te umożliwiają efektywne oddzielanie ziaren o różnych wymiarach, co pozwala na uzyskanie jednorodnej mieszanki. W praktyce, segregacja kruszywa w taki sposób wpływa na jakość zaprawy, jej wytrzymałość oraz przyczepność do podłoża. Przykładowo, stosując siatki o różnych rozmiarach oczek, można skutecznie oddzielić piasek gruboziarnisty od drobniejszego, co jest zgodne z zasadami klasyfikacji materiałów budowlanych. Dodatkowo, stosowanie siatek zgodnych z normami PN-EN 13139 (Materiał do produkcji zapraw) oraz PN-EN 12620 (Kruszywa do betonu) zapewnia, że materiał użyty do zaprawy jest najwyższej jakości, co przekłada się na długotrwałość i stabilność konstrukcji budowlanych.

Pytanie 12

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. jednowarstwowych zewnętrznych
B. renowacyjnych
C. izolujących cieplnie
D. szlachetnych
Odpowiedzi takie jak jednowarstwowe zewnętrzne, szlachetne oraz izolujące cieplnie nie są poprawne w kontekście zaprawy tynkarskiej oznaczonej symbolem R, ponieważ każda z nich odnosi się do innego zastosowania i właściwości tynków. Tynki jednowarstwowe są zazwyczaj stosowane do szybkiego wykończenia powierzchni, co może być mylące, gdyż nie zawsze są dedykowane do renowacji. Tynki szlachetne, takie jak tynki mozaikowe czy mineralne, mają na celu uzyskanie estetycznego wykończenia, które jednak niekoniecznie odpowiada wymaganiom renowacyjnym, zwłaszcza w przypadku konserwacji zabytków, gdzie kluczowe są szczególne właściwości zapraw. Z kolei tynki izolujące cieplnie są projektowane z myślą o poprawie efektywności energetycznej budynków, co również nie jest celem zastosowania zaprawy R. W praktyce, stosowanie niewłaściwej zaprawy tynkarskiej do konkretnych zastosowań może prowadzić do problemów z trwałością, estetyką oraz funkcjonalnością powierzchni, dlatego kluczowe jest zrozumienie specyfikacji i przeznaczenia każdej z zapraw zgodnie z normami branżowymi.

Pytanie 13

Jaką liczbę cegieł kratówek o wymiarach 25 × 12 × 14 cm należy przygotować do budowy ściany o grubości 38 cm, długości 6 m oraz wysokości 3,5 m, jeśli norma zużycia wynosi 78 cegieł na 1 m2?

A. 1 950 szt.
B. 1 638 szt.
C. 2 964 szt.
D. 798 szt.
Analizując inne dostępne odpowiedzi, można zauważyć, że każda z nich pomija kluczowy krok w obliczeniach. Nieprawidłowe podejście do obliczeń powierzchni ściany jest najczęściej spotykanym błędem. Na przykład, przy obliczaniu liczby cegieł, ważne jest, aby dokładnie przeliczyć wymiary ściany na metry kwadratowe, a następnie zastosować normę zużycia. Jeśli nie uwzględnimy wymiarów w metrach kwadratowych, możemy dojść do błędnych wyników, takich jak 798 czy 2 964 cegły, co jest efektem niewłaściwego przeliczenia powierzchni lub zastosowania niewłaściwej normy. Również typowym błędem jest pomijanie dodatkowych strat materiałowych, które mogą wystąpić w trakcie budowy, co prowadzi do zaniżania potrzebnej ilości cegieł. W praktyce, tak ważne jest nie tylko dokładne obliczenie ilości materiałów, ale również ich odpowiednia rezerwa, co jest zgodne z zasadami dobrych praktyk budowlanych. Dlatego kluczowe znaczenie ma stosowanie standardowych norm oraz precyzyjnych obliczeń, co pozwala na uniknięcie opóźnień i dodatkowych kosztów w realizacji projektu.

Pytanie 14

Czym są zaczyny cementowe?

A. cementem i wodą
B. cementem, wapnem oraz wodą
C. cementem, piaskiem oraz wodą
D. cementem i piaskiem
Zaczyny cementowe to termin odnoszący się do mieszanin, które są kluczowe w budownictwie i inżynierii lądowej. Istotne jest zrozumienie, że cement sam w sobie nie wystarcza do uzyskania właściwych właściwości mechanicznych, a jego mieszanie z innymi materiałami jest niezbędne. W przypadku pierwszej niepoprawnej odpowiedzi, dodawanie piasku do cementu i wody, co może wydawać się rozsądne, nie tworzy zaczynu, lecz zaprawę murarską, która ma inne zastosowanie i właściwości. Tego typu mieszanka jest wykorzystywana głównie do łączenia elementów budowlanych, a nie do wytwarzania zaczynów. Podobnie, sama mieszanina cementu i wody, bez dodatku innych składników, w rzeczywistości prowadzi do nadmiernej kruchości i problemów z przyczepnością, co czyni taką odpowiedź niewłaściwą. Odpowiednia proporcja wody do cementu jest kluczowa w procesie hydratacji, a całkowity brak piasku w niektórych zastosowaniach może skutkować osłabieniem struktury. W przypadku czystego cementu i wapna, problem polega na tym, że wapno nie tworzy zaczynu cementowego, lecz może być częścią mieszanki do tynków, co również jest błędnym podejściem. Właściwa zrozumienie pojęcia zaczynów jest nie tylko istotne dla uzyskania odpowiedniej wytrzymałości, ale także dla zapewnienia bezpieczeństwa konstrukcji budowlanych, co jest kluczowe w praktyce inżynieryjnej.

Pytanie 15

Zgodnie z wytycznymi producenta, zapotrzebowanie na gipsową zaprawę tynkarską wynosi 6 kg/m2/10 mm. Oblicz, jaką ilość
25-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na powierzchni ścian wynoszącej 100 m2.

A. 60 worków
B. 24 worki
C. 48 worków
D. 30 worków
Aby obliczyć, ile 25-kilogramowych worków gipsowej zaprawy tynkarskiej będzie potrzebnych do wykonania tynku o grubości 20 mm na powierzchni 100 m², należy najpierw ustalić całkowite zużycie zaprawy. Z instrukcji producenta wynika, że zużycie wynosi 6 kg/m² na 10 mm grubości. Dla grubości 20 mm zużycie wzrasta do 12 kg/m² (6 kg/m² x 2). Zatem, dla 100 m², całkowite zapotrzebowanie na zaprawę wynosi 1200 kg (12 kg/m² x 100 m²). Ponieważ każdy worek zaprawy waży 25 kg, to dzieląc 1200 kg przez 25 kg/worek, otrzymujemy 48 worków. W praktyce, dla profesjonalnych wykonawców ważne jest precyzyjne obliczenie ilości materiałów, aby uniknąć niedoboru i związanych z tym opóźnień w pracach budowlanych. Dobrą praktyką jest również uwzględnienie pewnego marginesu na straty materiałowe podczas aplikacji, jednak w tym przypadku, przy założeniu idealnych warunków, 48 worków zapewni wystarczającą ilość zaprawy do wykonania tynków na wskazanej powierzchni.

Pytanie 16

Jakie składniki należy podgrzać podczas przygotowywania zaprawy murarskiej w chłodnych miesiącach, gdy temperatura otoczenia spada poniżej +5°C?

A. Wodę i cement po ich wymieszaniu
B. Wodę i piasek po ich wymieszaniu
C. Piasek i wodę przed ich wymieszaniem
D. Piasek i cement przed ich wymieszaniem
Dobra robota z odpowiedzią! Podgrzanie piasku i wody przed wymieszaniem to naprawdę ważna zasada, zwłaszcza w zimie. Jak temperatura spada poniżej +5°C, istnieje duże ryzyko, że woda w zaprawie zamarznie. A to nie byłoby dobre, bo osłabia strukturę muru. Podgrzewając wodę do przynajmniej +20°C i używając ciepłego piasku, poprawiamy plastyczność mieszanki i adhezję składników. Dzięki temu zaprawa jest bardziej jednorodna. Warto też pomyśleć o różnych dodatkach przeciwmroźnych, które mogą jeszcze bardziej zwiększyć odporność zaprawy na zimno. Dlatego naprawdę warto stosować te sprawdzone metody w budownictwie, żeby zapewnić solidność konstrukcji.

Pytanie 17

W przypadku strzępiów zazębionych należy zostawić pustkę o głębokości w co drugiej warstwie muru:

A. 1 cegły
B. 1/4 cegły
C. 2 cegieł
D. 1/2 cegły
Wykorzystanie pustek w murze jest kluczowym zagadnieniem w budownictwie, jednak odpowiedzi sugerujące głębokości 1/2 cegły, 1 cegłę oraz 2 cegły są błędne. W przypadku głębokości 1/2 cegły, można napotkać problemy związane z nadmiernym osłabieniem struktury muru, co prowadzi do zwiększonego ryzyka pęknięć i zniekształceń. Tego rodzaju pustki mogą powodować nierównomierne osiadanie budynku, a także wpływać negatywnie na jego trwałość. Głębsze pustki, takie jak 1 cegła czy 2 cegły, w ogóle nie spełniają zamierzonej funkcji, gdyż eliminują zasadniczą korzyść, jaką jest kontrolowanie ruchów konstrukcji. Zbyt duże pustki mogą wprowadzać do muru nadmierne luki, które osłabiają spójność materiałów budowlanych i prowadzą do problemów z izolacją termiczną oraz akustyczną. Ponadto, błędne przekonanie o tym, że większe pustki mogą zwiększać wentylację muru, jest mylne, gdyż może to prowadzić do niekontrolowanego przepływu powietrza i w konsekwencji do zawilgocenia. Znajomość właściwych standardów i praktyk budowlanych, w tym zasad dotyczących głębokości pustek, jest kluczowa dla osiągnięcia stabilności i trwałości obiektów budowlanych.

Pytanie 18

Zaprawy murarskie ogólnego zastosowania, produkowane na małych budowach, przygotowuje się w sposób

A. betoniarki wolnospadowej
B. węzła betoniarskiego
C. wiertarki z mieszadłem
D. agregatu tynkarskiego
Wykorzystanie wiertarki z mieszadłem do sporządzania zapraw murarskich na małej budowie nie jest optymalnym rozwiązaniem. Tego typu narzędzia są przeznaczone głównie do mieszania mniejszych ilości materiałów, co może prowadzić do niedostatecznej jednorodności mieszanki. Mieszadła w wiertarkach mają ograniczone możliwości, a ich konstrukcja nie zapewnia tak efektywnego mieszania jak betoniarka. Mieszanie dużych ilości składników przy użyciu wiertarki jest czasochłonne i wymaga dużej precyzji, co w praktyce jest trudne do osiągnięcia. Agregat tynkarski, chociaż użyteczny w pracach tynkarskich, nie jest dedykowany do produkcji zapraw murarskich. Jego funkcje skupiają się na aplikacji tynku, a nie na mieszaniu zapraw. Węzeł betoniarski, z kolei, to urządzenie przeznaczone do produkcji betonu w dużych ilościach, co przekracza potrzeby małych budów, gdzie zazwyczaj wymagana jest niewielka ilość zaprawy. Dlatego korzystanie z tych narzędzi może prowadzić do niedostatecznej jakości zaprawy, co wpłynie na trwałość i stabilność konstrukcji. Optymalne podejście to wybór betoniarki wolnospadowej, która gwarantuje odpowiednią jakość i wydajność mieszania, zgodnie z branżowymi standardami.

Pytanie 19

Jakie będą wydatki na postawienie dwóch szczytowych ścian budynku, które mają wymiary 10,0 x 5,0 m, jeśli czas pracy wynosi 1,44 h/m2, a stawka godzinowa murarza wynosi 10 zł?

A. 720 zł
B. 1 220 zł
C. 560 zł
D. 1 440 zł
Koszt wymurowania dwóch ścian szczytowych budynku został obliczony na podstawie wymiarów i nakładu pracy. Każda ściana ma wymiary 10,0 m x 5,0 m, co daje powierzchnię jednej ściany równą 50 m2. Zatem dla dwóch ścian całkowita powierzchnia wynosi 100 m2. Nakład pracy wynosi 1,44 godzin na m2, co oznacza, że potrzebny czas na wykonanie pracy to 100 m2 * 1,44 h/m2 = 144 h. Przy stawce godzinowej murarza wynoszącej 10 zł, całkowity koszt robocizny wyniesie 144 h * 10 zł/h = 1440 zł. Taki sposób kalkulacji kosztów jest zgodny z praktykami branżowymi, które uwzględniają zarówno powierzchnię, jak i nakład pracy, co pozwala na precyzyjne oszacowanie całkowitych wydatków. Użycie takich metod jest niezbędne w branży budowlanej dla zachowania budżetu i efektywności zarządzania projektem.

Pytanie 20

Jeśli na rysunku w skali 1:50 długość ściany, która ma być otynkowana, wynosi 15 cm, to rzeczywista długość tej ściany to

A. 0,75 m
B. 1,50 m
C. 15,00 m
D. 7,50 m
Rozważając niepoprawne odpowiedzi, wiele osób może zrobić błędne założenie, że długość ściany w rzeczywistości odpowiada długości na rysunku. Odpowiedź 1,50 m sugeruje, że uczestnik mógł pomylić jednostki miary lub nie zastosować zasady przeliczenia skali. Rysunek w skali 1:50 oznacza, że każdemu centymetrowi na rysunku przypisuje się 50 centymetrów w rzeczywistości. Dlatego długość 15 cm na rysunku nie może być bezpośrednio przeliczona na metry bez uwzględnienia skali. Odpowiedzi 0,75 m oraz 15,00 m również wynikają z niepoprawnych obliczeń. Odpowiedź 0,75 m sugeruje, że respondent mógł przyjąć błędny współczynnik przeliczeniowy, a odpowiedź 15,00 m całkowicie ignoruje zasadę przeliczenia skali. Często przyczyną takich pomyłek jest nieuwaga lub brak zrozumienia, jak ważne jest przeliczenie wymiarów w kontekście skali. Umiejętność poprawnej interpretacji rysunków technicznych oraz znajomość reguł przeliczania skali są kluczowe w procesie projektowania, budowy oraz renowacji budynków i innych obiektów. W praktyce, błędne rozumienie tych zasad może prowadzić do poważnych konsekwencji, takich jak niewłaściwe oszacowanie potrzebnych materiałów, co z kolei może wpłynąć na budżet oraz harmonogram prac budowlanych. Wiedza na temat przeliczania skali jest zatem podstawą każdego projektu budowlanego i architektonicznego.

Pytanie 21

Podczas modernizacji i naprawy murów, przy eliminacji wykwitów nie należy używać

A. wody
B. papieru ściernego.
C. specjalnych środków czyszczących.
D. szczotki.
W odpowiedzi na pytanie, dlaczego podczas usuwania wykwitów z murów nie stosuje się wody, warto zauważyć, że woda może sprzyjać rozwojowi pleśni oraz innych mikroorganizmów, co w efekcie może pogorszyć stan powierzchni. W praktyce, usuwanie wykwitów powinno odbywać się z zachowaniem odpowiednich procedur, które minimalizują ryzyko wprowadzenia nadmiernej wilgoci. Najczęściej zaleca się stosowanie szczotek o twardym włosiu lub specjalnych narzędzi mechanicznych, które pozwalają na skuteczne usunięcie osadów bez wprowadzania wody. Przykładem może być użycie narzędzi pneumatycznych lub szczotek rotacyjnych. Warto również zwrócić uwagę na dobre praktyki branżowe, które obejmują stosowanie preparatów chemicznych przeznaczonych do usuwania wykwitów, co zapewnia bardziej kontrolowany proces oczyszczania bez ryzyka uszkodzenia struktury muru. Zgodność z normami budowlanymi oraz zarządzaniem jakością prac budowlanych jest kluczowa w tego rodzaju operacjach.

Pytanie 22

Zaprawy szamotowe powinny być wykorzystywane do budowania

A. ścian w piwnicach
B. kanałów wentylacyjnych
C. ścian osłonowych
D. kominów niezwiązanych z budynkiem
Stosowanie zapraw szamotowych w innych elementach budowlanych, takich jak ściany piwniczne, kanały wentylacyjne czy ściany osłonowe, nie jest uzasadnione ich właściwościami. Ściany piwniczne nie są narażone na wysokie temperatury, a ich konstrukcja wymaga zastosowania zapraw cementowych, które zapewniają odpowiednią nośność oraz odporność na wilgoć. W przypadku kanałów wentylacyjnych, kluczowe jest, aby materiał był odporny na korozję chemiczną, a niekoniecznie na wysoką temperaturę, co czyni zaprawy szamotowe niewłaściwym wyborem. Ściany osłonowe, z kolei, pełnią funkcję izolacyjną oraz estetyczną, co także wyklucza wykorzystanie zaprawy szamotowej, gdyż ich głównym zadaniem nie jest wytrzymałość na wysoką temperaturę, lecz skuteczna ochrona przed warunkami atmosferycznymi. Wybór niewłaściwego materiału może prowadzić do uszkodzeń konstrukcji, a tym samym do zwiększenia kosztów napraw oraz obniżenia bezpieczeństwa. Dlatego ważne jest, aby każdy element budowlany był murowany z użyciem materiałów odpowiednio skomponowanych do jego funkcji i miejsca zastosowania.

Pytanie 23

Jaką pacą powinno się nałożyć tynk wypalany klasy IVw?

A. Poliuretanową
B. Drewnianą
C. Styropianową
D. Stalową
Odpowiedź 'stalowa' jest poprawna, ponieważ tynki wypalane, zwane również tynkami mineralnymi, mają specyficzne wymagania dotyczące aplikacji, które najlepiej spełniają narzędzia stalowe. Stalowe pacy charakteryzują się dużą wytrzymałością i sztywnością, co pozwala na równomierne i dokładne rozprowadzanie masy tynkarskiej na powierzchni. Użycie stali umożliwia uzyskanie idealnie gładkiej struktury, co jest kluczowe dla trwałości i estetyki tynku. W praktyce, dzięki stalowym pacom, można łatwo kontrolować grubość aplikowanego tynku oraz dostarczyć odpowiednią ilość materiału w wyznaczonym czasie. W branży budowlanej stosuje się także standardy takie jak PN-EN 13914-1, które określają wymagania dla tynków. Zastosowanie odpowiednich narzędzi przy tynkowaniu jest kluczowe dla osiągnięcia wysokiej jakości i trwałości, co w przypadku tynków wypalanych ma istotne znaczenie, biorąc pod uwagę ich przeznaczenie i narażenie na warunki atmosferyczne.

Pytanie 24

Ile wyniesie całkowity koszt budowy 20 m2 muru z pustaków, jeśli wydatki na materiały to 80 zł/m2, a murarz dostaje 25 zł za postawienie 1 m2 ściany?

A. 2100 zł
B. 105 zł
C. 500 zł
D. 1625 zł
Koszt wykonania 20 m2 muru z pustaków oblicza się, sumując koszty materiałów oraz robocizny. Koszt materiałów wynosi 80 zł za m2, co daje 80 zł/m2 * 20 m2 = 1600 zł. Koszt robocizny za wymurowanie 1 m2 wynosi 25 zł, więc za 20 m2 to 25 zł/m2 * 20 m2 = 500 zł. Suma kosztów materiałów i robocizny to zatem 1600 zł + 500 zł = 2100 zł. Taki sposób kalkulacji jest standardem w branży budowlanej, gdzie precyzyjne określenie kosztów jest kluczowe dla zarządzania budżetem projektu. W praktyce, te obliczenia są wykorzystywane nie tylko w budownictwie, ale również w projektowaniu i planowaniu materiałów, co pozwala na efektywne zarządzanie finansami. Wiedza ta jest niezbędna dla profesjonalnych wykonawców, którzy muszą umieć przewidzieć całkowity koszt inwestycji oraz ocenić opłacalność realizacji projektu.

Pytanie 25

Jaką ilość cementu i piasku trzeba przygotować do sporządzenia zaprawy cementowo-wapiennej w proporcji 1:3:12, jeśli użyto 6 pojemników wapna?

A. 3 pojemniki cementu i 36 pojemników piasku
B. 3 pojemniki cementu i 24 pojemniki piasku
C. 2 pojemniki cementu i 36 pojemników piasku
D. 2 pojemniki cementu i 24 pojemniki piasku
Wiele osób może błędnie interpretować proporcje składników zaprawy cementowo-wapiennej, co prowadzi do niepoprawnych wniosków. W odpowiedziach, które podają 3 pojemniki cementu oraz 36 pojemników piasku, istnieje niewłaściwe pomnożenie ilości wapna przez niewłaściwe wartości proporcji. W sytuacji, gdy przyjmuje się, że wymagana ilość wapna wynosi 6 pojemników, nie można przedstawić 3 pojemników cementu, ponieważ według proporcji 1:3:12 wymagałoby to większej ilości wapna. Obliczenia powinny opierać się na logicznej analizie stosunku między elementami. Ponadto, w przypadku propozycji 3 pojemników cementu i 24 pojemników piasku, również występuje wprowadzenie w błąd, gdyż proporcja piasku do wapna wynosi 12:3. To oznacza, że dla 6 pojemników wapna powinniśmy uzyskać 24 pojemniki piasku, ale nie 3 pojemniki cementu, co jest zgodne z zasadą proporcjonalnego mnożenia. Typowe błędy w obliczeniach wynikają z nieprawidłowego zrozumienia proporcji, co podkreśla konieczność gruntownego zrozumienia tematu oraz solidnych podstaw teoretycznych w dziedzinie budownictwa. Praktyczne umiejętności w obliczaniu składników zaprawy są niezbędne do osiągnięcia wysokiej jakości robót budowlanych oraz zgodności ze standardami branżowymi.

Pytanie 26

W czasie intensywnych upałów cegłę ceramiczną pełną należy przed wykorzystaniem do murowania

A. nakryć plandeką
B. zamoczyć w wodzie
C. zgromadzić pod zadaszeniem
D. zagruntować gruntownikiem
Zamoczenie cegły ceramicznej pełnej w wodzie przed jej użyciem do murowania jest kluczowym krokiem, szczególnie podczas upalnych dni. Cegły ceramiczne mają tendencję do absorbowania wilgoci z zaprawy murarskiej, co może prowadzić do tzw. 'wyciągania wody' z zaprawy, a tym samym do osłabienia jej właściwości wiążących. W wyniku tego proces murowania może być mniej skuteczny, a struktura muru może być osłabiona. Poprzez wcześniejsze zamoczenie cegły, zmniejszamy ryzyko nadmiernego wchłaniania wody z zaprawy, co pozwala na uzyskanie optymalnego połączenia między cegłami a zaprawą. W praktyce, stosując tę metodę, można również uniknąć pęknięć i innych uszkodzeń strukturalnych, które mogą wystąpić w wyniku nadmiernego wysychania na skutek wysokich temperatur. Dobrą praktyką jest zamoczenie cegły na co najmniej 30 minut przed rozpoczęciem murowania, co zapewni odpowiednią wilgotność cegły oraz zaprawy, co skutkuje mocniejszym i bardziej trwałym murem.

Pytanie 27

Jaką powierzchnię tynku mozaikowego nałożono na cokole o wysokości 50 cm wokół budynku o wymiarach w rzucie 15 x 10 m?

A. 45 m2
B. 25 m2
C. 95 m2
D. 75 m2
Odpowiedź 25 m2 jest poprawna, ponieważ aby obliczyć powierzchnię tynku mozaikowego wokół budynku, należy najpierw wyznaczyć obwód budynku oraz pomnożyć go przez wysokość cokołu. Budynek ma wymiary 15 m na 10 m, co oznacza, że jego obwód wynosi: 2 * (15 m + 10 m) = 2 * 25 m = 50 m. Następnie, mnożąc obwód 50 m przez wysokość cokołu 0,5 m, otrzymujemy powierzchnię: 50 m * 0,5 m = 25 m2. Ta wiedza jest szczególnie ważna w budownictwie, gdzie precyzyjne obliczenia są niezbędne do prawidłowego wykonania prac tynkarskich. W praktyce, zrozumienie tych obliczeń pozwala na efektywne planowanie materiałów oraz kosztów, a także na zgodność z normami budowlanymi. Warto również pamiętać, że tynk mozaikowy jest stosowany nie tylko ze względów estetycznych, ale również funkcjonalnych, na przykład w celu ochrony przed warunkami atmosferycznymi.

Pytanie 28

Podczas budowy ściany o wysokości do 2,5 m konieczne jest użycie rusztowania

A. na kozłach
B. wiszącego
C. na wysuwnicach
D. ramowego
Odpowiedź 'na kozłach' jest poprawna, ponieważ rusztowania tego typu są najczęściej stosowane przy murowaniu ścian o wysokości do 2,5 m. Kozły zapewniają stabilność i umożliwiają swobodne poruszanie się pracowników podczas prac budowlanych. W przypadku murowania, gdzie precyzja i kontrola są kluczowe, kozły umożliwiają łatwe dostosowanie wysokości oraz zapewniają wystarczającą powierzchnię roboczą na materiał. Dobrze zbudowane kozły powinny posiadać odpowiednie certyfikaty zgodności z normami bezpieczeństwa, takimi jak PN-EN 12811, co gwarantuje ich wytrzymałość i bezpieczeństwo użytkowania. Przykładem zastosowania może być budowa domu jednorodzinnego, gdzie robotnicy mogą łatwo ustawiać kozły w różnych miejscach, co przyspiesza i ułatwia proces murowania. Dodatkowo, korzystając z kozłów, można efektywnie wykorzystać przestrzeń roboczą, co jest niezwykle istotne na małych placach budowy.

Pytanie 29

Proporcje objętościowe 1:3:12 składników zaprawy cementowo-glinianej typu M 0,6 wskazują na następujący jej skład objętościowy:

A. cement : wapno : zawiesina gliniana
B. cement : piasek : zawiesina gliniana
C. cement : zawiesina gliniana : wapno
D. cement : zawiesina gliniana : piasek
Wszystkie błędne odpowiedzi wskazują na nieprawidłowe zrozumienie zasadności doboru składników zaprawy cementowo-glinianej. W przypadku propozycji 'cement : wapno : zawiesina gliniana', zastosowanie wapna w tej konfiguracji jest niewłaściwe, ponieważ wapno nie jest składnikiem tej konkretnej zaprawy. Wapno może być stosowane w zaprawach, ale w innych proporcjach i z innymi składnikami. Kolejna koncepcja, 'cement : zawiesina gliniana : wapno', również mija się z celem, gdyż nie uwzględnia kluczowego składnika, jakim jest piasek, który nadaje zaprawie odpowiednią strukturalną stabilność. Propozycja 'cement : piasek : zawiesina gliniana' jest niewłaściwa, ponieważ nie uwzględnia konieczności odpowiedniego zbalansowania składników. Piasek, choć ważny, nie może być traktowany zamiennie z zawiesiną glinianą, gdyż ich zadania w zaprawie są różne. Zawiesina glinianiana, wykorzystywana w tej zaprawie, ma na celu poprawę właściwości plastycznych i związanie cząsteczek, co jest kluczowe dla uzyskania elastyczności. Tego rodzaju błędy w rozumieniu składników mogą prowadzić do konstrukcji o niewłaściwych właściwościach mechanicznych, co z kolei może skutkować uszkodzeniami w trakcie eksploatacji. W praktyce, dobór odpowiednich proporcji jest fundamentem dla uzyskania trwałych i odpornych na czynniki zewnętrzne materiałów budowlanych.

Pytanie 30

Rozbiórkę ręczną stropu ceglanego na belkach stalowych należy zacząć od

A. rozebrania górnej części stropu, czyli podłogi
B. zbicia tynku z powierzchni stropu
C. wycięcia belek wzdłuż ścian
D. skucia wypełnienia stropowego
Zbicie tynku ze stropu jest kluczowym pierwszym krokiem w procesie ręcznej rozbiórki stropu ceglanego na belkach stalowych. Tynk pełni funkcję wykończeniową, ale jego usunięcie pozwala na dokładną ocenę stanu konstrukcji stropu oraz belek. Bez tego etapu, można napotkać nieprzewidziane trudności, które mogą prowadzić do uszkodzenia pozostałych elementów budynku. W praktyce, przed rozpoczęciem rozbiórki, ważne jest również zapewnienie odpowiedniego zabezpieczenia obszaru roboczego oraz użycie odpowiednich narzędzi, takich jak młoty pneumatyczne czy łomy, aby skutecznie usunąć tynk. Dobrą praktyką jest także sporządzenie dokumentacji fotograficznej stanu przed rozpoczęciem prac, co może być przydatne w późniejszych etapach oraz ewentualnych analizach odpowiadających za bezpieczeństwo budynku. Warto również zaznaczyć, że zgodnie z normami budowlanymi, przed rozpoczęciem rozbiórki powinno się przeprowadzić ocenę stanu technicznego konstrukcji, aby zminimalizować ryzyko związane z pracami rozbiórkowymi.

Pytanie 31

W efekcie "klawiszowania" stropu na tynku sufitu w pomieszczeniu utworzyła się rysa. Usunięcie tego defektu polega w szczególności na

A. zaszpachlowaniu rysy zaprawą cementową
B. pokryciu rysy pasem papy asfaltowej
C. pokryciu rysy pasem siatki z włókna szklanego
D. zaszpachlowaniu rysy zaprawą gipsową
Zaszpachlowanie rysy zaprawą gipsową jest podejściem, które, mimo że może wydawać się logiczne, w rzeczywistości nie jest wystarczające w przypadku poważniejszych uszkodzeń, takich jak rysy wynikające z klawiszowania stropu. Zaprawa gipsowa, chociaż dobrze przylega do powierzchni i daje estetyczne wykończenie, nie jest materiałem elastycznym. W efekcie, w miejscach, gdzie występują mikro ruchy, gips może pękać, co prowadzi do konieczności powtarzania napraw. Używanie papy asfaltowej jako rozwiązania również jest nieadekwatne, ponieważ papa nie jest przeznaczona do użytku w pomieszczeniach i nie posiada właściwości wytrzymałościowych wymaganych do naprawy tynku. Zastosowanie zaprawy cementowej w tym kontekście również nie jest optymalne, gdyż cement, podobnie jak gips, nie rozwiązuje problemu związania materiału z ruchem konstrukcyjnym, a jego sztywność może pogłębiać problem. Te błędne podejścia wskazują na niezrozumienie dynamiki uszkodzeń budowlanych oraz braku znajomości materiałów, które powinny być stosowane w celu zapewnienia długotrwałej i efektywnej naprawy. Kluczowe jest, aby przy naprawach uwzględniać nie tylko estetykę, ale przede wszystkim trwałość i odporność na zmiany zachodzące w strukturze budynku.

Pytanie 32

Zgodnie z Zasadami obmiaru robót tynkarskich podczas obmiaru tynku wewnętrznego ściany z jednym otworem okiennym o tynkowanych ościeżach należy odjąć powierzchnię tego otworu, jeżeli wynosi ona ponad

Zasady obmiaru robót tynkarskich
(fragment)
(...) Z powierzchni tynków nie odlicza się powierzchni nieotynkowanych lub ciągnionych mających więcej niż 1 m2 i powierzchni otworów do 3 m2, jeżeli ościeża ich są tynkowane. (...)

A. 1,0 m2
B. 0,5 m2
C. 2,0 m2
D. 3,0 m2
Wybór odpowiedzi, które nie uwzględniają kluczowych zasad dotyczących odliczania powierzchni otworów okiennych, wskazuje na brak zrozumienia podstawowych przepisów związanych z obmiarami robót tynkarskich. Na przykład, odpowiedź "2,0 m2" sugeruje, że odliczenie powinno nastąpić w każdym przypadku, kiedy powierzchnia otworu przekracza 1 m2, co jest błędnym podejściem. Zgodnie z zasadami, odliczamy powierzchnię otworów tylko w przypadku, gdy wynosi ona powyżej 3 m2, a także tylko jeśli ościeża tych otworów są tynkowane. W przypadku odpowiedzi "1,0 m2" mylone jest pojęcie, że każde otwarcie na ścianie musi być traktowane jako element do odliczenia. To prowadzi do sytuacji, w której kosztorys robót tynkarskich będzie niepoprawny, co może skutkować błędnymi wyliczeniami finansowymi. Z kolei wybór "0,5 m2" może sugerować, iż nie uwzględnia się otworów w ogóle, co jest absolutnie niezgodne z praktyką. Takie podejście może prowadzić do nadmiernych kosztów i strat materiałowych, ponieważ brak odpowiednich obliczeń może skutkować zamówieniem niewłaściwej ilości materiału. Dobrą praktyką jest zawsze odniesienie się do zatwierdzonych norm i wytycznych, aby uniknąć kosztownych błędów. Kluczowym aspektem jest również zrozumienie, jak obmiary wpływają na całościowy budżet projektu oraz jakość wykonanych prac budowlanych.

Pytanie 33

Podczas budowy wewnętrznych ścian działowych o wysokości nieprzekraczającej 2,5 m nie wolno stosować rusztowań

A. kozłowego
B. drabinowego
C. warszawskiego
D. stojakowego teleskopowego
Odpowiedzi 'stojakowego teleskopowego', 'warszawskiego' oraz 'kozłowego' są niewłaściwe z kilku kluczowych powodów. Rusztowania stojakowe teleskopowe, choć oferują stabilność i dużą powierzchnię roboczą, są przeznaczone do znacznie wyższych konstrukcji, co czyni je niepraktycznymi i nieefektywnymi przy pracy na wysokości do 2,5 m. Ich skomplikowana konstrukcja wymaga także znacznie więcej miejsca do rozstawienia, co może być problematyczne w wąskich pomieszczeniach. Rusztowanie warszawskie, z kolei, jest bardziej skomplikowane w montażu i demontażu, co w przypadku niskich wysokości mija się z celem, a jego użycie wiąże się z większym ryzykiem niewłaściwego zabezpieczenia. Zastosowanie rusztowania kozłowego jest również nieodpowiednie, ponieważ, mimo że jest ono stabilne, jego konstrukcja nie jest dostosowana do wykonywania precyzyjnych prac murarskich na niższych wysokościach. Często błędnym podejściem jest myślenie, że większa stabilność rusztowania będzie korzystna w każdej sytuacji, gdy w rzeczywistości proste rozwiązania, takie jak drabina, mogą być bardziej odpowiednie. Z kolei zbyt duża ilość sprzętu na małej przestrzeni może prowadzić do zagrożeń związanych z bezpieczeństwem natomiast użycie drabiny, w połączeniu z przestrzeganiem zasad BHP, pozwala na efektywniejszą i bezpieczniejszą pracę.

Pytanie 34

Jakie są zasady bezpiecznej rozbiórki muru według przepisów?

A. Pas muru o wysokości do 50 cm należy podciąć, a pokruszone fragmenty spuszczać za pomocą suwnicy pochyłej
B. Mur o wysokości kondygnacji należy przewrócić na strop, a pokruszone materiały spuszczać specjalną rynną
C. Mur należy rozbierać w pionowych pasach, a odzyskane cegły układać na stropie
D. Mur należy rozbierać warstwami od góry do dołu, a cegły spuszczać zsypem
Chociaż niektóre podejścia do rozbiórki muru mogą wydawać się praktyczne, w rzeczywistości nie spełniają one standardów bezpieczeństwa i mogą prowadzić do poważnych wypadków. Rozbiórka ściany pionowymi pasami i układanie cegły na stropie stwarza ryzyko upadku, co może prowadzić do poważnych kontuzji. Cegły, które nie są właściwie zabezpieczone, mogą spadać na pracowników znajdujących się poniżej, co jest absolutnie nieakceptowalne w kontekście bezpieczeństwa pracy. Podobnie, spuszczanie cegieł zsypem to sposób, który może być niebezpieczny, jeśli nie jest odpowiednio zorganizowany; brak odpowiedniego zabezpieczenia zsypu może prowadzić do niekontrolowanego opadu materiałów, co stanowi zagrożenie dla osób pracujących w pobliżu. Z kolei podcinanie muru na wysokości 50 cm oraz używanie suwnicy pochylnej do transportu pokruszonych kawałków są technikami, które również nie są zgodne z dobrymi praktykami. Tego rodzaju działania mogą prowadzić do niestabilności całej struktury muru, co zwiększa ryzyko zawalenia się. Kluczowe jest, aby każdy etap rozbiórki był realizowany zgodnie z normami bezpieczeństwa, a wybór odpowiedniej metody powinien być zawsze poparty analizą ryzyka i wymogami dotyczącymi ochrony zdrowia i życia pracowników.

Pytanie 35

Ilość pracy jednego robotnika przy zalewaniu 1 m3 wieńca na ścianie wynosi 0,8 r-g. Stawka za 1 r-g to 20 zł. Jaką kwotę trzeba zapłacić za robociznę 4 robotników, jeśli każdy z nich wykonał 10 m3 wieńca?

A. 800 zł
B. 320 zł
C. 640 zł
D. 160 zł
Aby obliczyć koszt robocizny dla 4 robotników, każdy z nich musi najpierw wykonać pracę przy zalewaniu wieńca. Nakład pracy na 1 m3 wieńca wynosi 0,8 r-g, co oznacza, że każdy robotnik, który zalewa 10 m3, zużyje 8 r-g (0,8 r-g/m3 * 10 m3). Dla 4 robotników łączny nakład pracy to 32 r-g (4 robotników * 8 r-g). Stawka za 1 r-g wynosi 20 zł, co prowadzi do całkowitego kosztu robocizny równemu 640 zł (32 r-g * 20 zł/r-g). Taki sposób kalkulacji kosztów robocizny jest powszechnie stosowany w branży budowlanej, co pozwala na precyzyjne oszacowanie wydatków na pracę oraz kontrolowanie budżetów. Wartości r-g są standardem w obliczeniach robocizny, dlatego znajomość tych zasad jest ważna dla efektywnego zarządzania projektami budowlanymi i kontraktami.

Pytanie 36

W budynkach z cegły ceramicznej z użyciem zaprawy cementowo-wapiennej, dylatacje należy umieszczać co ile?

A. 50 m
B. 25 m
C. 60 m
D. 40 m
Rozmieszczanie przerw dylatacyjnych w budynkach murowanych jest kluczowym elementem projektowania, jednak wybór niewłaściwych odległości, takich jak 40 m, 25 m czy 50 m, może prowadzić do poważnych problemów z integralnością konstrukcji. Przykładowo, przerwy dylatacyjne co 40 m mogą być niewystarczające w przypadku dużych budowli, co skutkuje nadmiernym naprężeniem w murze, prowadząc do pęknięć i osiadania. Podobnie, 25 m jest zbyt małą odległością, co powoduje, że materiał nie ma wystarczającej swobody na rozszerzanie i kurczenie się, co w konsekwencji prowadzi do uszkodzeń. Z kolei opcja 50 m, choć bliższa prawidłowej odpowiedzi, nadal nie uwzględnia optymalnych warunków dla dużych obiektów, co może prowadzić do osłabienia strukturalnego. Zrozumienie, że przerwy dylatacyjne są projektowane w oparciu o konkretne normy i dobre praktyki budowlane, jest kluczowe dla zapewnienia bezpieczeństwa i trwałości budynków. W kontekście projektowania, należy również brać pod uwagę czynniki takie jak rodzaj użytych materiałów, klimat oraz przewidywane obciążenia, aby dobrać właściwe interwały dylatacyjne dla konkretnej konstrukcji.

Pytanie 37

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1:2,5:10,5, jakie składniki należy użyć?

A. 1 część wapna, 2,5 części cementu oraz 10,5 części piasku
B. 1 część wapna, 2,5 części cementu oraz 10,5 części wody
C. 1 część cementu, 2,5 części wapna oraz 10,5 części wody
D. 1 część cementu, 2,5 części wapna oraz 10,5 części piasku
Wybór innych odpowiedzi jest błędny z kilku powodów. W szczególności, zastosowanie wody w zaprawie nie może być traktowane jako jeden z głównych składników w proporcjach objętościowych 1:2,5:10,5. Woda jest niezbędna do aktywacji cementu i wapna, ale nie jest wymieniana jako osobny składnik proporcji. Jej ilość powinna być ustalana na podstawie konsystencji zaprawy, a nie jako stała część mieszanki. Wskazywanie wapna lub cementu jako pierwszego składnika w oferowanych odpowiedziach prowadzi do nieporozumienia, ponieważ cement jest kluczowym spoiwem w tej mieszance. Dodatkowo, podawanie większej ilości wapna niż cementu w kombinacjach, które nie są zgodne z normami, może skutkować zaprawą o osłabionych właściwościach mechanicznych. W przypadku nieprawidłowych proporcji, zaprawa może być zbyt krucha lub zbyt plastyczna, co prowadzi do problemów w trakcie aplikacji i w czasie eksploatacji budowli. Warto podkreślić, że przy planowaniu prac budowlanych kluczowe jest przestrzeganie standardów określających odpowiednie proporcje składników zapraw, co zapewnia ich efektywność oraz trwałość. Dlatego tak istotne jest zrozumienie, że prawidłowe przygotowanie mieszanki ma kluczowe znaczenie dla późniejszych rezultatów budowlanych.

Pytanie 38

Który z poniższych rodzajów tynków nie jest tynkiem mineralnym?

A. Silikatowy
B. Cementowy
C. Akrylowy
D. Gipsowy
Odpowiedzi 'Cementowy', 'Gipsowy' i 'Silikatowy' są błędne, ponieważ wszystkie wymienione tynki są typami tynków mineralnych, charakteryzującymi się różnymi właściwościami oraz zastosowaniami. Tynk cementowy jest mieszanką cementu, piasku i wody, co sprawia, że jest niezwykle trwały i odporny na działanie wody, co czyni go odpowiednim do stosowania w miejscach o wysokiej wilgotności. Jest często używany do tynkowania fundamentów oraz piwnic. Tynk gipsowy, z drugiej strony, jest lekki i ma dobrą izolacyjność termiczną i akustyczną, przez co jest popularny w budownictwie wewnętrznym, szczególnie w pomieszczeniach mieszkalnych. Tynk silikatowy, wytwarzany na bazie krzemianów, jest wyjątkowo odporny na działanie warunków atmosferycznych i ma dobrą paroprzepuszczalność, co czyni go idealnym rozwiązaniem dla budynków historycznych oraz obiektów wymagających konserwacji. Często błędnie można myśleć, że tynki mineralne są mniej odporne lub mniej elastyczne, co prowadzi do nieprawidłowego postrzegania ich właściwości. W rzeczywistości tynki mineralne, odpowiednio zastosowane, mogą oferować długą żywotność i wytrzymałość, a ich właściwości paroprzepuszczalne mogą przeciwdziałać rozwojowi pleśni i grzybów. Zrozumienie różnic między tynkami mineralnymi a akrylowymi jest kluczowe w ich prawidłowym doborze w zależności od warunków środowiskowych oraz wymagań projektowych.

Pytanie 39

Reperacja pojedynczych uszkodzeń oraz niewielkich pęknięć na powierzchni tynku ściany nośnej polega na klinowym usunięciu tynku oraz

A. wzmocnieniu konstrukcji klamrowo i ponownym otynkowaniu
B. wprowadzeniu zaczynu cementowego pod ciśnieniem
C. uzupełnieniu ubytków zaprawą cementową
D. nasączeniu pękniętych miejsc wodą i uzupełnieniu ubytków zaprawą taką jak tynk
Nieprawidłowe odpowiedzi zawierają różne koncepcje, które nie są zgodne z najlepszymi praktykami w zakresie napraw tynku. Wzmocnienie ściany klamrami i ponowne otynkowanie może być stosowane w sytuacjach, gdzie uszkodzenia są znaczne, ale nie jest to standardowe podejście do naprawy drobnych rys i pęknięć. Takie metody są zazwyczaj zarezerwowane dla bardziej skomplikowanych przypadków, gdzie konieczne jest zapewnienie dodatkowej stabilności konstrukcji. Wprowadzenie pod ciśnieniem zaczynu cementowego to technika, która może być używana w bardziej zaawansowanych procesach naprawczych, jednak nie odnosi się bezpośrednio do problemu drobnych pęknięć w tynku. Tego rodzaju zabiegi są czasochłonne i kostowne, a ich zastosowanie w przypadku niewielkich uszkodzeń może prowadzić do niepotrzebnych wydatków oraz skomplikowania procesu renowacji. Nasączenie miejsc spękań wodą przed wypełnieniem zaprawą stanowi standardową praktykę, która zapewnia lepszą adhezję oraz trwałość po naprawie. Ponadto, wypełnienie ubytków zaprawą cementową może być również niewłaściwe, gdyż różne rodzaje zapraw, w tym tynki, mają różne właściwości i powinny być stosowane zgodnie z ich przeznaczeniem. Stosowanie odpowiednich materiałów według specyfikacji producenta jest kluczowe w celu uniknięcia problemów związanych z różnicami w kurczliwości i elastyczności, które mogą prowadzić do dalszych uszkodzeń. Warto zwrócić uwagę na to, że nieodpowiednie metody naprawy mogą skutkować nie tylko estetycznymi niedoskonałościami, ale również długoterminowymi problemami strukturalnymi.

Pytanie 40

Całkowita powierzchnia dwóch ścian o rozmiarach 4,0 x 2,5 x 0,25 m, wykonanych z cegły ceramicznej pełnej na zaprawie cementowej, jest równa

A. 5,0 m2
B. 2,5 m2
C. 20,0 m2
D. 10,0 m2
Często pojawia się błąd, który może prowadzić do złych wyników, a mianowicie niewłaściwe zrozumienie tego, co to jest powierzchnia. Niektórzy użytkownicy mylą jednostki miary albo po prostu się gubią w obliczeniach, przez co wychodzą im nieprawidłowe wartości. Przykładowo odpowiedzi, które mówią, że łączna powierzchnia to 5,0 m2, 2,5 m2 czy 10,0 m2, mogą wynikać z błędów, jak np. liczenie tylko jednej ściany albo używanie złych wymiarów. Kiedy chcemy obliczyć całkowitą powierzchnię dwóch ścian, ważne jest, żeby pamiętać, że każda z nich ma swoje wymiary, które trzeba pomnożyć, a potem zsumować. Niektórzy mogą też nie zdawać sobie sprawy, że powierzchnie ścian liczymy w metrach kwadratowych, a nie w metrach, co prowadzi do pomyłek przy konwersji jednostek. Dodatkowo, warto mieć na uwadze kontekst, w jakim używamy tych obliczeń, bo w budownictwie precyzyjne wyliczenia są naprawdę istotne dla dalszego przebiegu projektu, jak dobór materiałów czy wycena kosztów budowy. Dlatego uczestnicy szkoleń i testów powinni szczególnie zwracać uwagę na praktyczne zastosowanie wzorów oraz na skutki błędnych obliczeń w całym procesie budowlanym.