Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 2 kwietnia 2025 06:28
  • Data zakończenia: 2 kwietnia 2025 07:23

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

W jaki sposób należy połączyć wyjście układu TTL z wejściem układu CMOS, gdy oba układy są zasilane napięciem +5 V?

A. Zastosować diodę separującą
B. Rozdzielić wejście-wyjście kondensatorem
C. Zastosować rezystor podciągający
D. Rozdzielić wejście-wyjście trymerem
Zastosowanie diody separującej w połączeniu wyjścia układu TTL z wejściem układu CMOS nie jest rozwiązaniem optymalnym, ponieważ dioda wprowadza dodatkowe napięcie progowe, które może uniemożliwić poprawne odczytanie sygnałów logicznych. W przypadku, gdy wyjście TTL jest w stanie wysokim, napięcie na wejściu CMOS będzie obniżone o wartość napięcia przewodzenia diody, co może prowadzić do sytuacji, w której napięcie wejściowe nie osiągnie wymaganego progu logicznego, co skutkuje niepewnym działaniem układu CMOS. Ponadto, stosowanie kondensatora jako elementu separującego między wejściem a wyjściem jest również błędne, ponieważ kondensator na dłuższą metę wprowadza opóźnienia w transmisji sygnału oraz może prowadzić do niepożądanych oscylacji w układzie. Z kolei rozdzielenie wejścia i wyjścia trymerem jest koncepcją, która jest mało praktyczna w kontekście cyfrowych układów logicznych i nie ma zastosowania w przypadku standardowych połączeń TTL-CMOS. Właściwa interpretacja zasad działania tych układów oraz ich właściwości elektrycznych jest kluczowa dla unikania typowych błędów projektowych. Błędy te często wynikają z nieznajomości charakterystyki wejść i wyjść, co prowadzi do niewłaściwego doboru komponentów i nieoptymalnych rozwiązań w projektach elektronicznych.

Pytanie 3

Jakiej pamięci usunięcie danych wymaga wykorzystania źródła promieniowania UV?

A. EEPROM
B. FLASH
C. EPROM
D. PROM
Wybór FLASH, EEPROM lub PROM jako odpowiedzi na to pytanie wskazuje na niepełne zrozumienie różnic pomiędzy tymi typami pamięci. FLASH to pamięć, która jest programowalna i kasowalna elektrycznie, co oznacza, że do usunięcia danych nie potrzebuje ona promieniowania ultrafioletowego. FLASH zdobyła popularność dzięki swojej elastyczności i szybkości, a także dzięki możliwości wielokrotnego zapisu bez użycia skomplikowanego procesu kasowania, jak w przypadku EPROM. EEPROM (Electrically Erasable Programmable Read-Only Memory) również pozwala na kasowanie i programowanie elektryczne, co czyni ją bardziej praktyczną w wielu zastosowaniach, gdzie wymagane jest częste aktualizowanie danych. PROM (Programmable Read-Only Memory) to pamięć, która jest jednorazowo programowalna, a po zapisaniu danych nie można ich zmienić ani usunąć. Nieprawidłowy wybór tych opcji może wynikać z mylnego przekonania, że wszystkie typy pamięci wymagają podobnych metod kasowania. Kluczowym błędem jest pomylenie metod kasowania: EPROM wymaga naświetlania, podczas gdy pozostałe typy pamięci wykorzystują procesy elektryczne. Dla inżynierów oraz techników zrozumienie tych różnic jest kluczowe w kontekście projektowania systemów, które wymagają odpowiednich rozwiązań pamięciowych, zgodnych z potrzebami aplikacji.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie wielkości powinny być zmierzone, aby określić zakres liniowości wzmacniacza?

A. Napięcie wyjściowe oraz częstotliwość
B. Napięcie wyjściowe oraz napięcie zasilania
C. Napięcie wejściowe oraz moc wyjściowa
D. Napięcie wejściowe i wyjściowe
Mierzenie napięcia wyjściowego i częstotliwości nie pozwala na dokładną ocenę liniowości wzmacniacza. Napięcie wyjściowe, choć istotne, nie daje pełnego obrazu zachowania wzmacniacza w kontekście jego wejścia. Dodatkowo, częstotliwość sygnału nie jest bezpośrednią miarą liniowości, gdyż nie odnosi się do relacji pomiędzy napięciem wejściowym a wyjściowym. Analogicznie, koncentrowanie się na napięciu wejściowym i mocy wyjściowej również nie jest wystarczające dla oceny liniowości. Moc wyjściowa, chociaż ważna dla określenia wydajności wzmacniacza, nie pokazuje dokładnie, jak sygnał wejściowy przechodzi przez wzmacniacz. W rzeczywistości mogą wystąpić różnice w zachowaniu wzmacniacza w zależności od różnych poziomów mocy, co prowadzi do nieliniowości. Ponadto, badanie napięcia wyjściowego i napięcia zasilania jest nieco mylące, ponieważ napięcie zasilania wpływa na ogólne działanie wzmacniacza, ale nie jest bezpośrednim wskaźnikiem jego liniowości. Kluczowe jest rozumienie, że liniowość to nie tylko wynik, ale również interakcja pomiędzy sygnałami. W związku z tym, podejście polegające na mierzeniu tylko częściowych parametrów prowadzi do niepełnych wniosków i nieodpowiednich aplikacji w praktyce inżynieryjnej. Wzmacniacze powinny być testowane w kontekście realistycznych warunków pracy, co obejmuje szeroki zakres napięć wejściowych i ich odpowiedzi wyjściowych w celu zapewnienia stabilności i jakość sygnału.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie elementy zawiera oznaczenie typu tranzystora?

A. cyfry oraz wielkie litery
B. cyfry i małe litery
C. tylko litery
D. tylko cyfry
Odpowiedzi wyłącznie z cyfr czy liter nie mogą być uznawane za poprawne w kontekście oznaczenia typów tranzystorów. Tranzystory są kluczowymi elementami w elektronice, a ich oznaczenie ma na celu dostarczenie istotnych informacji dotyczących parametrów i zastosowania. Oznaczenia wyłącznie cyframi sugerują prostotę, która nie odzwierciedla złożoności i różnorodności tranzystorów dostępnych na rynku. Z kolei oznaczenia składające się tylko z liter mogą być mylące, ponieważ nie dostarczają wystarczających informacji o specyfikacjach technicznych, takich jak maksymalne napięcie czy prąd. Często zdarza się, że inżynierowie mylnie przyjmują, iż proste oznaczenie wystarczy do identyfikacji tranzystora, co prowadzi do błędów w projektach elektronicznych. W praktyce, ignorując znaczenie cyfr w oznaczeniach tranzystorów, można łatwo wprowadzić się w błąd przy doborze komponentów, co może skutkować nieprawidłowym działaniem układów elektronicznych. Na przykład, użycie tranzystora o niewłaściwych parametrach, wynikające z błędnej interpretacji oznaczeń, może prowadzić do uszkodzenia układów lub ich nieefektywnego działania. Takie pomyłki pokazują, że kluczowe jest zrozumienie struktury oznaczeń, a także znajomość standardów branżowych, które promują stosowanie zarówno cyfr, jak i liter, aby zapewnić jednoznaczność i precyzję w komunikacji technicznej.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Aby określić współczynnik wypełnienia fali prostokątnej, należy użyć

A. woltomierza prądu stałego
B. miernika współczynnika fal stojących
C. oscyloskopu elektronicznego
D. miernika nieliniowych zniekształceń
Oscyloskop to naprawdę super narzędzie, jeśli chodzi o analizowanie sygnałów elektrycznych. Jest szczególnie przydatny, kiedy chcemy sprawdzić współczynnik wypełnienia fali prostokątnej. W skrócie, współczynnik wypełnienia mówi nam, jak długo sygnał jest w stanie wysokim (czyli '1') w stosunku do całego okresu fali. Dzięki oscyloskopom możemy zobaczyć, jak wygląda ta fala, co pozwala nam dokładnie ocenić czas impulsu oraz okres fali. Na przykład w projektach cyfrowych, dobrze ustawiony współczynnik wypełnienia jest mega ważny, by nasze układy działały prawidłowo i były wydajne. Dobrze jest wybierać oscyloskopy, które mają funkcję automatycznego liczenia współczynnika wypełnienia, bo to znacznie ułatwia życie. W branży elektrotechnicznej podkreśla się, jak ważne są oscyloskopy do pomiarów sygnałów, więc to naprawdę kluczowe narzędzie w laboratorium.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Która czynność może zostać pominięta podczas oceny stanu technicznego systemu alarmowego?

A. Ocena działania sygnalizatorów
B. Kontrola montażu czujek PIR
C. Weryfikacja działania czujek PIR
D. Analiza historii alarmów
Sprawdzanie historii alarmów, mimo że jest istotnym elementem zarządzania systemem alarmowym, nie jest bezpośrednio związane z oceną stanu technicznego instalacji. Historia alarmów dostarcza informacji o wcześniejszych zdarzeniach, ale nie wpływa na bieżące funkcjonowanie komponentów systemu. Kluczowe działania w ocenie stanu technicznego to testowanie i sprawdzanie czujników oraz sygnalizatorów, które powinny działać poprawnie, aby zapewnić bezpieczeństwo. Przykładem może być przeprowadzanie regularnych testów samych czujek PIR oraz ich kalibracja, co jest zgodne z normami PN-EN 50131-1. W przypadku usterek, które mogą nie być widoczne w historii alarmów, natychmiastowe testowanie komponentów staje się kluczowe dla zapobiegania fałszywym alarmom i zwiększenia efektywności ochrony. Przegląd instalacji powinien również obejmować kontrolę fizyczną ich zamontowania, co jest istotne dla ich właściwego funkcjonowania.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jaką rolę pełni heterodyna w odbiorniku radiowym?

A. wzmacniacza wstępnego
B. mieszacza
C. generatora lokalnego
D. demodulatora
Odpowiedzi, które wskazują na funkcje demodulatora, mieszacza i wzmacniacza wstępnego, pomijają kluczową rolę, jaką odgrywa heterodyna jako generator lokalny. Demodulator jest urządzeniem, które odzyskuje zmodulowany sygnał, przekształcając go z powrotem do formy pierwotnej. Jego zadaniem jest oddzielenie sygnału informacyjnego od nośnej, co jest procesem, który zachodzi po mieszaniu sygnałów. Z kolei mieszacz, będący elementem układu, służy do mieszania sygnałów o różnych częstotliwościach, co w rzeczywistości również nierozłącznie wiąże się z funkcją heterodyny, ale nie jest to jej główna rola. Wzmacniacz wstępny natomiast jest odpowiedzialny za wzmocnienie słabego sygnału po jego odebraniu, przed dalszym przetwarzaniem, jednak nie zmienia on jego częstotliwości. Wybór błędnych odpowiedzi często wynika z niepełnego zrozumienia architektury odbiornika radiowego i funkcji przypisanych poszczególnym komponentom. Kluczowe jest zrozumienie, że heterodyna jako generator lokalny jest niezbędna do efektywnego przetwarzania sygnału, co wydobywa sygnał informacyjny i umożliwia jego dalszą obróbkę. Należy zawsze pamiętać o tym, że każdy z tych elementów ma swoją specyficzną rolę i nie można ich mylić ani traktować zamiennie.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Port USB stanowi uniwersalną magistralę

A. równoległo-szeregowa
B. równoległa
C. szeregowo-równoległa
D. szeregowa
Odpowiedź 'szeregowa' jest poprawna, ponieważ standard USB (Universal Serial Bus) opiera się na komunikacji szeregowej. W systemach szeregowych dane są przesyłane pojedynczo, co pozwala na mniejsze wymagania dotyczące kabli oraz uproszczoną architekturę połączeń. W praktyce oznacza to, że urządzenia USB są w stanie komunikować się z komputerem, wymieniając dane jeden bit po drugim, co jest bardziej efektywne w kontekście długości kabli oraz kosztów produkcji. Ponadto, architektura szeregowa USB umożliwia złożone operacje, takie jak 'hot swapping', czyli podłączanie i odłączanie urządzeń bez konieczności wyłączania komputera. W branży IT standardy USB są szeroko stosowane w celu zapewnienia interoperacyjności urządzeń, co czyni je kluczowym elementem zarówno w zastosowaniach biurowych, jak i w produkcji. Przykładem zastosowania USB są myszki komputerowe, klawiatury, a także urządzenia peryferyjne, takie jak drukarki i skanery, które korzystają z tej samej magistrali do wymiany danych, co umożliwia ich łatwą integrację z komputerami.

Pytanie 20

W regulatorze PID wystąpiła awaria, która powoduje, że uchyb ustalony nie zmierza do 0. Przyczyną problemu może być uszkodzenie w elemencie

A. inercyjnym
B. całkującym
C. proporcjonalnym
D. różniczkującym
Odpowiedź, że uszkodzenie członu całkującego jest przyczyną uchybu ustalonego, który nie dąży do zera, jest prawidłowa. W regulatorze PID człon całkujący pełni kluczową rolę w eliminacji uchybu ustalonego poprzez akumulację błędów w czasie. Działa na zasadzie sumowania błędów, co powoduje, że jeśli uchyb nie jest zerowy, wartość sygnału wyjściowego reguluje się w kierunku eliminacji tego uchybu. Uszkodzenie tego członu sprawia, że nie dochodzi do akumulacji, co skutkuje stałym uchybem. W praktycznych zastosowaniach, takich jak kontrola temperatury czy ciśnienia, skuteczność regulacji oparta na członie całkującym jest niezbędna dla osiągnięcia stabilności i precyzyjnego utrzymania zadanej wartości. Stosując regulację PID w przemyśle, kluczowe jest regularne monitorowanie pracy członu całkującego oraz diagnostyka systemu, aby zapobiegać sytuacjom, w których uchyb ustalony nie zbiega do zera, co może prowadzić do poważnych problemów w procesach technologicznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

W systemach zabezpieczeń obwodowych wykorzystuje się

A. bariery podczerwieni
B. czujniki dymu i ciepła
C. czujniki zalania
D. czujniki gazów usypiających
Bariery podczerwieni stanowią jeden z kluczowych elementów nowoczesnych systemów ochrony obwodowej. Działają na zasadzie detekcji ruchu poprzez analizowanie zmian w promieniowaniu podczerwonym, które emitują obiekty w ich zasięgu. Dzięki tej technologii możliwe jest szybkie wykrycie nieautoryzowanego dostępu do chronionego obszaru. Bariery podczerwieni są często stosowane w użytku zewnętrznym, gdzie mogą monitorować duże obszary, takie jak ogrody, parkingi czy tereny przemysłowe. Zgodnie z normami EN 50131, detektory te powinny być odpowiednio umieszczone, aby minimalizować ryzyko fałszywych alarmów, co jest kluczowe dla efektywności systemu. W praktyce, bariery podczerwieni są wykorzystywane w połączeniu z innymi systemami zabezpieczeń, takimi jak kamery monitoringu czy alarmy, co zwiększa ich skuteczność. Odpowiednie ich zainstalowanie oraz konfiguracja są zgodne z najlepszymi praktykami w branży ochrony, co zapewnia wysoki poziom bezpieczeństwa.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Który z wymienionych scalonych stabilizatorów napięcia powinien być użyty do zasilania systemów zaprojektowanych w technologii TTL?

A. LM7908
B. LM7915
C. LM7812
D. LM7805
Wybór innych stabilizatorów napięcia, takich jak LM7908, LM7812 czy LM7915, na pewno prowadzi do niewłaściwego zasilania układów TTL, z racji ich nieodpowiednich parametrów. LM7908 jest stabilizatorem, który dostarcza napięcie ujemne (-8V), co jest niezgodne z wymaganiami układów TTL, które wykorzystywane są w obwodach zasilanych dodatnim napięciem. Z kolei LM7812 stabilizuje napięcie na poziomie 12V, co również przekracza wymagane napięcie zasilania dla TTL, mogąc prowadzić do uszkodzenia układów. Natomiast LM7915, podobnie jak LM7908, dostarcza napięcie ujemne (-15V). Użycie tych stabilizatorów mogłoby skutkować nie tylko uszkodzeniem układów, ale także nieprawidłowym działaniem całego systemu. Te błędne koncepcje często wynikają z braku zrozumienia podstawowych zasad działania układów scalonych oraz ich wymagań dotyczących zasilania. W praktyce, stosowanie stabilizatorów o napięciu innym niż 5V dla TTL jest nieopłacalne i stwarza ryzyko, które można łatwo uniknąć, przestrzegając standardów projektowania obwodów elektronicznych. Zrozumienie parametrów komponentów oraz ich zastosowań w kontekście całego systemu to klucz do uniknięcia takich błędów.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. przełącznika.
B. routera.
C. modemu.
D. mostu.
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego różnicy pomiędzy różnymi urządzeniami sieciowymi. Modem, który nie został wybrany, jest urządzeniem, które łączy lokalną sieć domową z internetem, przetwarzając sygnały cyfrowe na analogowe i odwrotnie. Jego symbol graficzny zazwyczaj różni się od symbolu routera, przedstawiając inną funkcję, jaką jest konwersja sygnału. Most, będący kolejnym z możliwych wyborów, służy do łączenia dwóch segmentów sieci w celu zwiększenia wydajności, ale nie kieruje ruchu między sieciami tak jak router. Z kolei przełącznik to urządzenie, które łączy różne urządzenia w ramach tej samej sieci, działając na poziomie warstwy drugiej modelu OSI. Wybór tych odpowiedzi świadczy o myleniu funkcji różnych urządzeń sieciowych, co jest powszechnym błędem w zrozumieniu architektury sieci. Zastosowanie routerów, mostów i przełączników w odpowiednich kontekstach jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi. Warto zatem zapoznać się z ich specyfikacją i rolą, aby uniknąć takich nieporozumień w przyszłości.

Pytanie 31

Ile bitów ma adres IP zapisany w standardzie protokołu IPv4?

A. 32 bity
B. 8 bitów
C. 16 bitów
D. 12 bitów
Adres IP w formacie protokołu IPv4 jest reprezentowany jako 32 bity, co oznacza, że składa się z czterech oktetów, z których każdy ma 8 bitów. To podejście jest zgodne ze standardem określonym w dokumencie RFC 791, który definiuje protokół IPv4. Dzięki 32-bitowej przestrzeni adresowej możliwe jest wygenerowanie 2^32, czyli 4 294 967 296 unikalnych adresów IP. Ta liczba jest kluczowa w kontekście globalnych sieci komputerowych, umożliwiając identyfikację urządzeń podłączonych do Internetu. W praktyce, adresy IPv4 są zwykle zapisywane w postaci dziesiętnej, oddzielonej kropkami, na przykład 192.168.1.1. W obliczeniach oraz projektowaniu sieci, zrozumienie struktury adresacji IPv4 jest niezbędne do efektywnego zarządzania zasobami sieciowymi, a także do implementacji takich technik jak NAT (Network Address Translation), które pozwalają na efektywne wykorzystanie dostępnych adresów IP.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Modyfikacja szerokości kąta widzenia w kamerze CCTV to proces polegający na

A. regulacji ustawień za pomocą pokrętła FOCUS
B. wymianie kopułki kamery
C. regulacji ustawień pokrętłem SCREEN
D. zmianie miejsca umiejscowienia kamery
Regulacja szerokości kąta widzenia kamery CCTV poprzez pokrętło SCREEN jest kluczowym elementem w procesie dostosowywania parametrów obrazu do specyficznych potrzeb monitoringu. Pokrętło to pozwala na modyfikację ustawień obrazu, co może obejmować kontrast, jasność oraz nasycenie barw. Umożliwia to optymalne dostosowanie kamery do zmieniających się warunków oświetleniowych oraz różnych scenariuszy monitoringu. Przykładowo, w trudnych warunkach oświetleniowych, takich jak nocne nagrania lub silne oświetlenie słoneczne, odpowiednie dostosowanie tych parametrów może znacząco poprawić jakość obrazu, co jest niezbędne dla skutecznego monitoringu. Dobrą praktyką jest regularne kalibrowanie kamer i sprawdzanie ustawień, aby zapewnić, że obraz jest zawsze wyraźny i czytelny. W branży zabezpieczeń istnieją standardy, takie jak ONVIF, które podkreślają znaczenie odpowiednich ustawień w celu uzyskania najlepszych wyników z systemu CCTV.

Pytanie 34

Do jakiego celu wykorzystuje się komparator?

A. wzmacniania sygnału
B. sumowania dwóch sygnałów
C. porównania dwóch napięć
D. filtrowania napięć
Komparator to kluczowe urządzenie elektroniczne używane w wielu aplikacjach inżynieryjnych, które pozwala na precyzyjne porównanie dwóch napięć. Działa on na zasadzie analizy napięcia wejściowego względem napięcia odniesienia, co skutkuje generowaniem sygnału wyjściowego, który informuje o tym, które napięcie jest wyższe. Przykładowe zastosowanie komparatorów obejmuje systemy automatyki, gdzie mogą być używane do detekcji poziomu napięcia w różnych układach zasilania. W praktycznych zastosowaniach, takich jak układy alarmowe czy systemy wykrywania, komparatory działają jako czujniki, które aktywują alarm w odpowiedzi na zmiany w napięciu, co zwiększa bezpieczeństwo. Zgodnie z najlepszymi praktykami branżowymi, komparatory powinny być projektowane z uwzględnieniem parametrów takich jak histereza, aby zapobiegać fałszywym sygnałom wyjściowym w przypadku fluktuacji napięcia. Warto również zaznaczyć, że komparatory są szeroko wykorzystywane w układach analogowych oraz cyfrowych, co czyni je fundamentalnym narzędziem w inżynierii elektronicznej.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Liczba 364 w systemie dziesiętnym po przekształceniu na kod BCD (ang. Binary-Coded Decimal) przyjmie formę

A. 16C
B. 0011 0110 0100
C. B3C6D4
D. 1101100
Odpowiedź 0011 0110 0100 jest poprawna, ponieważ reprezentuje liczbę 364 w systemie BCD, znanym jako kod dziesiętny binarny. W BCD każda cyfra liczby dziesiętnej jest kodowana oddzielnie jako czterobitowa wartość binarna. Dla liczby 364, cyfry 3, 6 i 4 są konwertowane na ich odpowiedniki binarne: 3 to 0011, 6 to 0110, a 4 to 0100. Po złączeniu tych wartości otrzymujemy 0011 0110 0100. Stosowanie kodu BCD jest powszechne w systemach cyfrowych, takich jak w zegarach cyfrowych, kalkulatorach i różnych urządzeniach elektronicznych, gdzie istotne jest bezpośrednie wyświetlanie cyfr dziesiętnych. Dzięki BCD możliwe jest łatwe przetwarzanie i reprezentowanie danych numerycznych w formacie zrozumiałym dla użytkowników. Ponadto, z punktu widzenia standardów, BCD jest często stosowany w interfejsach i protokołach komunikacyjnych, gdzie precyzyjne odwzorowanie cyfr dziesiętnych jest kluczowe.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Do skonstruowania głośnika dynamicznego należy zastosować magnes wykonany z

A. materiału paramagnetycznego
B. materiału diamagnetycznego
C. ferromagnetyka miękkiego
D. ferromagnetyka twardego
Wybór magnesów w budowie głośników dynamicznych ma kluczowe znaczenie dla ich funkcjonowania. Materiały paramagnetyczne, ferromagnetyki twarde i diamagnetyki nie są odpowiednie do zastosowań w głośnikach dynamicznych z kilku powodów. Materiały paramagnetyczne, takie jak aluminium czy platyna, mają bardzo słabe właściwości magnetyczne i nie są w stanie stworzyć wystarczająco silnego pola magnetycznego, co skutkuje niewystarczającą mocą akustyczną i niską wydajnością. W zastosowaniach audio najważniejszymi cechami magnesu są jego siła i efektywność w oddziaływaniu na cewkę głośnika. Ferromagnetyki twarde, takie jak stal, mają z kolei wysoką retencję magnetyczną, co oznacza, że po namagnesowaniu pozostają magnesami przez długi czas. To utrudnia ich użycie w głośnikach, gdzie konieczne są szybkie zmiany pola magnetycznego. Ponadto, materiały diamagnetyczne, jak miedź czy bizmut, są w stanie generować pole magnetyczne przeciwnie do zewnętrznego, co również nie wspiera efektywności głośnika. W praktyce, wybór niewłaściwego materiału może prowadzić do zniekształceń dźwięku, obniżenia jakości odtwarzania oraz ograniczenia pasma przenoszenia, co jest sprzeczne z zasadami projektowania głośników. Dlatego istotne jest, aby projektanci głośników kierowali się sprawdzonymi praktykami branżowymi oraz korzystali z ferromagnetyków miękkich, co pozwala na uzyskanie wysokiej jakości dźwięku i lepszej dynamiki.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.