Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 30 grudnia 2025 05:45
  • Data zakończenia: 30 grudnia 2025 05:54

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który typ głowicy ultrasonograficznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Endokawitarną.
B. Konweksową.
C. Liniową.
D. Sektorową.
Na ilustracji widać głowicę liniową – charakterystyczną po prostokątnym, równym czołie emitera, które tworzy długi, płaski pasek kryształów piezoelektrycznych. W przekroju wiązka ma kształt prostokąta, a obraz powstaje jako równoległe linie skanowania, bez zwężania się w „wachlarz” jak w głowicach sektorowych czy konweksowych. Taka konstrukcja daje szerokie okno akustyczne tuż pod powierzchnią skóry i bardzo dobrą rozdzielczość przestrzenną w badaniu struktur położonych płytko. W praktyce klinicznej głowice liniowe stosuje się głównie do badania tkanek powierzchownych: tarczycy, sutka, moszny, naczyń (USG dopplerowskie tętnic szyjnych, żył kończyn dolnych), narządu ruchu (ścięgna, więzadła, mięśnie) oraz w ultrasonografii przyłóżkowej do oceny ściany brzucha, punkcji naczyniowych czy blokad nerwów. Z mojego doświadczenia w pracowniach diagnostycznych przyjmuje się jako dobrą praktykę, że do struktur powierzchownych wybiera się właśnie głowicę liniową o wysokiej częstotliwości, najczęściej 7,5–15 MHz, bo wyższa częstotliwość oznacza lepszą rozdzielczość kosztem głębokości penetracji, co w tym przypadku jest korzystne. W wytycznych i kursach z ultrasonografii podkreśla się, żeby przy USG naczyniowym zawsze zaczynać od głowicy liniowej, a dopiero przy bardzo głębokim położeniu naczyń rozważać inne typy. Warto też pamiętać, że płaski kształt czoła ułatwia dokładne dociśnięcie do skóry i stabilne prowadzenie głowicy wzdłuż naczyń czy ścięgien, co przekłada się na powtarzalność badania i lepszą jakość dokumentacji obrazowej.

Pytanie 2

Zgodnie z procedurą wzorcową w badaniu MR należy ułożyć pacjenta na brzuchu do diagnostyki

A. stawu barkowego.
B. kręgosłupa szyjnego.
C. gruczołu piersiowego.
D. jamy brzusznej.
Prawidłowo – w standardowej procedurze rezonansu magnetycznego gruczołu piersiowego pacjentkę układa się w pozycji na brzuchu (pozycja pronacyjna). To nie jest przypadek ani wygoda pracowni, tylko wymóg poprawnego pozycjonowania piersi w specjalnej cewce dedykowanej do badania sutka. Cewka piersiowa ma otwory, w które swobodnie „wpadają” piersi, dzięki czemu są odseparowane od klatki piersiowej, mniej się poruszają i można uzyskać wysoką rozdzielczość przestrzenną oraz dobre warunki do podania kontrastu. Moim zdaniem to jedno z badań, gdzie pozycjonowanie robi połowę jakości badania. W pozycji na brzuchu zmniejsza się artefakty od ruchu oddechowego, serca i ściany klatki piersiowej. Piersi zwisają swobodnie, są mniej uciśnięte, a przez to lepiej widoczne są zmiany ogniskowe, architektonika gruczołu, naczynia oraz węzły chłonne w okolicy pachowej. W badaniu MR piersi zgodnie z dobrymi praktykami (ESR, EUSOBI) stosuje się sekwencje dynamiczne po dożylnym podaniu środka kontrastowego, ocenę kinetyki wzmocnienia oraz dokładną analizę tkanek miękkich. Bez prawidłowego ułożenia na brzuchu i użycia odpowiedniej cewki te parametry byłyby dużo gorsze, a samo badanie mogłoby być praktycznie bezużyteczne diagnostycznie, szczególnie przy planowaniu biopsji celowanej czy ocenie odpowiedzi na chemioterapię neoadjuwantową. W praktyce technik zawsze powinien zwrócić uwagę, czy piersi są równo ułożone w otworach cewki, czy nie są skręcone, czy nie ma ucisku kabli, biustonosza, plastrów itp., bo każdy taki drobiazg potem psuje obraz. Dlatego właśnie w procedurach wzorcowych MR piersi pozycja na brzuchu jest standardem, a nie wyjątkiem.

Pytanie 3

Do zdjęcia lewobocznego kręgosłupa lędźwiowo-krzyżowego pacjenta należy ułożyć na boku

A. prawym, promień centralny pada 4 palce powyżej górnego zarysu talerza biodrowego.
B. lewym, promień centralny pada 4 palce powyżej górnego zarysu talerza biodrowego.
C. prawym, promień centralny pada 4 palce poniżej górnego zarysu talerza biodrowego.
D. lewym, promień centralny pada 4 palce poniżej górnego zarysu talerza biodrowego.
Prawidłowa odpowiedź wynika z zasad pozycjonowania pacjenta do projekcji lewobocznej kręgosłupa lędźwiowo‑krzyżowego. Do klasycznego bocznego zdjęcia L‑S pacjenta układamy na lewym boku, tak żeby lewa strona ciała przylegała do detektora. Taka pozycja minimalizuje powiększenie struktur położonych głębiej i zmniejsza zniekształcenia geometryczne, bo kręgosłup lędźwiowy jest wtedy bliżej kasety. W praktyce radiologicznej przyjmuje się, że promień centralny kierujemy na poziom mniej więcej L3–L4, a prostym, „łóżkowym” sposobem wyznaczenia tego poziomu jest właśnie punkt około 4 palce powyżej górnego zarysu talerza biodrowego. Ten talerz biodrowy jest łatwy do wyczucia palpacyjnie, więc technik ma szybki, powtarzalny punkt odniesienia. Moim zdaniem takie proste triki anatomiczne naprawdę ratują w codziennej pracy, zwłaszcza przy dużej liczbie badań. W dobrze wykonanej projekcji lewobocznej L‑S powinny być widoczne trzonów kręgów L1–L5, przestrzenie międzykręgowe, część kości krzyżowej, a wyrostki kolczyste powinny się nakładać w jednej linii (lub prawie jednej), co świadczy o braku rotacji. Często stosuje się też klin pod talię, żeby wyrównać lordozę lędźwiową i uzyskać lepsze odwzorowanie przestrzeni międzykręgowych. W technikach zgodnych z podręcznikami i wytycznymi (różne szkoły trochę się różnią, ale sens jest ten sam) bardzo pilnuje się właśnie: właściwej strony ułożenia (lewy bok), wysokości promienia centralnego (około L3–L4), prostopadłości wiązki do stołu oraz prawidłowego zabezpieczenia pacjenta (podparcie nóg, wałki pod kolana, osłona gonad jeśli możliwe). Warto pamiętać, że przy złym pozycjonowaniu, np. za nisko lub za wysoko, radiolog może nie zobaczyć istotnych zmian w dolnych segmentach lędźwiowych albo w przejściu lędźwiowo‑krzyżowym, co potem przekłada się na gorszą diagnostykę bólu krzyża czy rwy kulszowej. Dlatego to pytanie nie jest tylko „na pamięć”, ale mocno praktyczne, bo odruchowo poprawne ułożenie to podstawa dobrej jakości zdjęcia.

Pytanie 4

Podczas wykonywania zdjęcia rentgenowskiego klatki piersiowej w celu ochrony radiologicznej pacjenta należy zastosować

A. półfartuch ołowiowy założony z tyłu pacjenta.
B. półfartuch ołowiowy założony z przodu pacjenta.
C. fartuch ołowiowy założony z tyłu pacjenta.
D. fartuch ołowiowy założony z przodu pacjenta.
Prawidłowo wskazany został półfartuch ołowiowy założony z tyłu pacjenta. W projekcji PA klatki piersiowej pacjent stoi przodem do detektora, a lampa rentgenowska znajduje się z tyłu. To oznacza, że pierwotna wiązka promieniowania wchodzi od strony pleców, przechodzi przez klatkę piersiową i pada na detektor przed pacjentem. Z punktu widzenia ochrony radiologicznej właśnie od strony źródła promieniowania trzeba zabezpieczyć te okolice, które nie są przedmiotem badania, np. narządy rozrodcze, część jamy brzusznej czy tarczycę w pewnych ustawieniach. Półfartuch ołowiowy zakładany z tyłu osłania obszary znajdujące się bezpośrednio „po drodze” wiązki pierwotnej, a jednocześnie nie przysłania pola obrazowania klatki piersiowej, więc nie psuje zdjęcia. W praktyce klinicznej zgodnie z zasadą ALARA i wytycznymi ochrony radiologicznej unika się osłaniania tych części ciała, które mają być dokładnie zobrazowane, bo ołów powoduje artefakty i może zasłonić istotne struktury, np. fragment płuca czy śródpiersia. Dlatego fartuch z przodu w projekcji PA nie ma sensu – promieniowanie już przeszło przez pacjenta, a dodatkowo istnieje ryzyko, że krawędź fartucha wejdzie w pole obrazowania. Moim zdaniem dobrze jest zapamiętać prostą zasadę praktyczną: w standardowym RTG klatki piersiowej PA – osłona od strony lampy, czyli z tyłu; w innych projekcjach zawsze myślimy, skąd idzie wiązka i co chcemy chronić, żeby z jednej strony nie zwiększać niepotrzebnie dawki, a z drugiej nie utrudniać diagnostyki.

Pytanie 5

Na przekroju poprzecznym TK kręgosłupa szyjnego strzałką wskazano

Ilustracja do pytania
A. otwór kręgu szczytowego.
B. guzek tylny kręgu szczytowego.
C. rdzeń kręgowy.
D. ząb kręgu obrotowego.
Na przedstawionym przekroju poprzecznym TK szyi strzałka wskazuje typową, owalną, kostną strukturę położoną centralnie, nieco ku przodowi w kanale kręgowym – to ząb kręgu obrotowego (dens axis, C2). W tomografii komputerowej w okolicy połączenia czaszkowo‑szyjnego zawsze warto sobie „ułożyć w głowie” układ: z przodu łuk przedni kręgu szczytowego (C1), za nim właśnie ząb kręgu obrotowego, a dopiero dalej ku tyłowi przestrzeń z rdzeniem kręgowym. Ząb ma wysoką gęstość w TK (typowa dla kości zbitej), wyraźne korowe obrysy i jest zrośnięty z trzonem C2. Moim zdaniem, jak się raz dobrze zapamięta ten charakterystyczny obraz „palika” wystającego do góry w obrębie C1, to później rozpoznawanie jest już dużo prostsze. W praktyce klinicznej prawidłowa identyfikacja zęba kręgu obrotowego jest kluczowa przy ocenie urazów odcinka szyjnego, zwłaszcza u pacjentów po wypadkach komunikacyjnych czy upadkach z wysokości. Standardy diagnostyczne (np. zalecenia towarzystw radiologicznych) podkreślają konieczność oceny ciągłości zęba, linii złamania, przemieszczenia względem łuku przedniego C1 oraz szerokości przestrzeni przedzębowej. Właśnie w oparciu o prawidłowe rozpoznanie tej struktury planuje się dalsze postępowanie: od zaopatrzenia ortopedycznego, przez stabilizację operacyjną, aż po ścisłą kontrolę w badaniach kontrolnych TK. Dodatkowo znajomość anatomii dens axis pomaga też przy planowaniu badań czynnościowych (RTG w projekcjach otwartych ust) i przy interpretacji rezonansu magnetycznego, gdzie oceniamy nie tylko samą kość, ale też więzadła stabilizujące ząb oraz ewentualne uciski na rdzeń kręgowy.

Pytanie 6

Na obrazie rentgenowskim strzałką zaznaczono

Ilustracja do pytania
A. rozwarstwienie aorty brzusznej.
B. tętnik aorty piersiowej.
C. tętnik aorty brzusznej.
D. rozwarstwienie aorty piersiowej.
Na przedstawionym obrazie kontrastowej angiografii widoczny jest odcinek aorty przebiegający w jamie brzusznej, czyli aorta brzuszna – i to właśnie ją zaznaczono strzałką. Świadczy o tym kilka elementów: położenie struktur mniej więcej na wysokości trzonów kręgów lędźwiowych, przebieg naczynia w linii pośrodkowej ciała oraz obecność rozdętego workowatego poszerzenia typowego dla tętniaka aorty brzusznej poniżej odejścia tętnic trzewnych. W badaniach obrazowych, zwłaszcza przy klasycznej angiografii czy angio-TK, kluczowe jest zawsze odniesienie się do orientacji anatomicznej: od przepony w dół mówimy o aorcie brzusznej, a powyżej – o piersiowej. W praktyce technika radiologiczna powinna zwracać uwagę na prawidłowe wypełnienie światła naczynia kontrastem, odpowiedni czas ekspozycji i projekcję (najczęściej AP), tak aby wyraźnie uwidocznić aortę i ewentualne patologie, jak tętniaki czy zwężenia. Moim zdaniem warto wyrobić sobie nawyk „czytania” obrazu od góry do dołu: najpierw łuk aorty, potem zstępująca piersiowa, przejście przez rozwór aortowy przepony i dalej aorta brzuszna aż do jej rozdwojenia na tętnice biodrowe wspólne. W codziennej pracy technika i lekarza radiologa poprawne rozpoznanie odcinka aorty ma ogromne znaczenie, bo od tego zależy np. kwalifikacja do zabiegu endowaskularnego (EVAR), dobór długości stent-graftu czy planowanie zakresu skanowania w angio-TK. Dobre praktyki mówią też, żeby zawsze oceniać nie tylko sam tętniak, ale cały przebieg aorty brzusznej – od tętnic nerkowych aż do rozwidlenia – bo zmiany często są wielopoziomowe.

Pytanie 7

Na ilustracji przedstawiono ułożenie pacjenta do zdjęcia rentgenowskiego

Ilustracja do pytania
A. dłoniowo-grzbietowego kciuka.
B. bocznego kości śródręcza.
C. bocznego kciuka.
D. grzbietowo-dłoniowego kości śródręcza.
Prawidłowo rozpoznano ułożenie do projekcji dłoniowo‑grzbietowej kciuka. Na zdjęciu widać, że pacjent ma dłoń ułożoną na detektorze (kaseta / płyta obrazowa) powierzchnią dłoniową do dołu, czyli w stronę lampy rentgenowskiej, a promień centralny pada z kierunku dłoniowego na grzbiet ręki. To właśnie jest klasyczna projekcja dłoniowo‑grzbietowa (PA) dla kciuka. W standardach radiologicznych (również w opisach projekcji wg praktyki szpitalnej i podręczników techniki obrazowania kończyn) przy badaniu kciuka najczęściej wykonuje się dwie podstawowe projekcje: dłoniowo‑grzbietową oraz boczną. Projekcja dłoniowo‑grzbietowa pozwala dobrze ocenić stawy międzypaliczkowe, śródręczno‑paliczkowy, trzeszczki oraz ustawienie kości kciuka względem I kości śródręcza i nadgarstka. Moim zdaniem to jest taka „projekcja wyjściowa” – daje ogólny przegląd osi kciuka i porównywalność badań w czasie. W praktyce technik musi zwrócić uwagę na prawidłową rotację: paznokieć kciuka powinien być w przybliżeniu w płaszczyźnie kasety, bez nadmiernej pronacji czy supinacji, tak żeby nie nakładały się struktury. Częstym patentem jest lekkie odwiedzenie kciuka od pozostałych palców, co też widać na zdjęciu – chodzi o to, żeby wyizolować kości kciuka i uniknąć nałożenia cieni II promienia dłoni. Takie pozycjonowanie stosuje się rutynowo przy urazach (podejrzenie złamania podstawy kciuka, np. Bennetta), przy zmianach zwyrodnieniowych stawu CMC I, a także przy kontroli zrostu po zaopatrzeniu operacyjnym. W dobrze wykonanej projekcji dłoniowo‑grzbietowej możliwa jest też ocena osi obciążenia, co ma znaczenie np. u osób pracujących fizycznie lub sportowców, gdzie biomechanika kciuka jest kluczowa.

Pytanie 8

Promieniowanie rentgenowskie jest

A. falą ultradźwiękową.
B. strumieniem protonów.
C. strumieniem elektronów.
D. falą elektromagnetyczną.
Promieniowanie rentgenowskie należy do fal elektromagnetycznych, tak samo jak światło widzialne, ultrafiolet, podczerwień czy promieniowanie gamma. Różni się od nich głównie długością fali i energią kwantów. Promieniowanie X ma bardzo krótką długość fali i wysoką energię, dzięki czemu ma właściwości jonizujące – potrafi wybijać elektrony z atomów. To właśnie ta cecha pozwala na tworzenie obrazów w radiologii, ale jednocześnie wymaga ścisłego przestrzegania zasad ochrony radiologicznej. W aparacie RTG elektrony są rozpędzane i gwałtownie hamowane na anodzie lampy – w tym procesie powstaje promieniowanie hamowania oraz charakterystyczne, ale końcowy efekt i tak jest taki, że wychodzi z lampy wiązka fali elektromagnetycznej o określonym widmie energii. W praktyce medycznej to promieniowanie przechodzi przez ciało pacjenta i jest różnie pochłaniane przez tkanki: kości absorbują więcej, płuca mniej, dlatego na detektorze lub kliszy powstaje kontrastowy obraz. W tomografii komputerowej, mammografii czy radiografii cyfrowej zasada fizyczna jest ta sama – zawsze pracujemy z falą elektromagnetyczną z zakresu promieniowania X, tylko zmieniają się parametry ekspozycji, geometria wiązki i rodzaj detektora. Warto też pamiętać, że zgodnie z podstawami fizyki medycznej i normami opisującymi pracę z promieniowaniem jonizującym (np. zalecenia ICRP), wszystkie procedury z użyciem RTG traktowane są jako praca z promieniowaniem elektromagnetycznym, a nie z wiązką cząstek materialnych. Moim zdaniem dobrze jest to sobie jasno poukładać, bo potem łatwiej zrozumieć takie pojęcia jak energia fotonu, twardość wiązki, filtracja czy warstwa półchłonna.

Pytanie 9

Na rentgenogramie przedstawione jest złamanie Saltera-Harrisa typu

Ilustracja do pytania
A. I ześlizgnięcie bliższej nasady kości udowej lewej.
B. III nasady dalszej kości piszczelowej.
C. II odcinka bliższego kości piszczelowej.
D. V czwartej kości śródręcza.
Na zdjęciu RTG widoczny jest typowy obraz ześlizgnięcia bliższej nasady kości udowej – klasyczne złamanie Saltera-Harrisa typu I w obrębie głowy i szyjki kości udowej. W tym typie uszkodzenia linia złamania przebiega wyłącznie przez chrząstkę wzrostową (fizę), bez zajęcia przynasady ani nasady. Na obrazie nie zobaczysz typowego „pęknięcia” w kości, tylko przemieszczenie nasady względem przynasady. W praktyce klinicznej u dzieci i młodzieży takie uszkodzenie w okolicy bliższej kości udowej określa się właśnie jako ześlizgnięcie bliższej nasady kości udowej (SCFE – slipped capital femoral epiphysis). Na RTG, szczególnie w projekcji AP i bocznej, ocenia się linię Klein’a, kształt szyjki i położenie głowy kości udowej. W prawidłowych warunkach głowa powinna „zawieszać się” nad linią Klein’a; w ześlizgnięciu jest wyraźnie przesunięta. Z mojego doświadczenia, kluczowe jest też zwrócenie uwagi na rozmycie zarysu przynasady i lekkie poszerzenie szpary fizy – to często pierwszy subtelny sygnał na wczesnym etapie. Dobre praktyki w diagnostyce mówią, żeby zawsze wykonywać RTG obu bioder do porównania, bo asymetria bardzo pomaga w rozpoznaniu. Ważna jest też szybka kwalifikacja do leczenia – zwykle stabilizacja śrubą kaniulowaną przez płytkę wzrostową, tak aby zapobiec dalszemu ześlizgnięciu i powikłaniom, jak martwica głowy kości udowej czy deformacja typu cam w konflikcie udowo-panewkowym. Rozpoznanie Salter-Harris I w tym miejscu wymaga więc połączenia znajomości klasyfikacji, anatomii radiologicznej stawu biodrowego i typowego obrazu klinicznego: ból biodra lub kolana, utykanie, ograniczenie rotacji wewnętrznej. W praktyce technika wykonania badania RTG (prawidłowe ułożenie pacjenta, odpowiednie projekcje – AP miednicy, oś osiowa szyjki) ma ogromne znaczenie, bo złe ustawienie może zamaskować ześlizgnięcie i zmylić nawet doświadczonego opisywacza.

Pytanie 10

W obrazowaniu metodą rezonansu magnetycznego T1 oznacza czas

A. echa.
B. relaksacji poprzecznej.
C. relaksacji podłużnej.
D. inwersji.
Prawidłowo: w obrazowaniu metodą rezonansu magnetycznego T1 oznacza czas relaksacji podłużnej (spin–sieć). Chodzi o to, jak szybko namagnesowanie podłużne protonów (w osi głównego pola magnesu) wraca do stanu równowagi po pobudzeniu impulsami RF. W praktyce im krótszy T1, tym dany rodzaj tkanek szybciej „odzyskuje” swoje namagnesowanie podłużne i tym jaśniej świeci na obrazach T1‑zależnych. Dlatego na typowych sekwencjach T1‑zależnych tłuszcz ma krótki T1 i jest jasny, a płyny (np. płyn mózgowo‑rdzeniowy) mają długi T1 i wypadają ciemno. To jest bardzo użyteczne np. w rezonansie głowy: kontrast między istotą białą i szarą mózgu wynika w dużej mierze z różnic w T1. Po podaniu środka kontrastowego gadolinowego też patrzymy głównie na obrazy T1‑zależne, bo skrócenie T1 powoduje wzmocnienie sygnału w miejscach gromadzenia się kontrastu (np. guz, obszar zapalny, zaburzona bariera krew–mózg). Moim zdaniem dobrze jest kojarzyć, że T1 to nie jest żaden „czas echa” ani „czas inwersji”, tylko fizyczny parametr tkanki, który decyduje o kontraście przy odpowiednio dobranych parametrach sekwencji (TR, TE, ewentualnie TI). W codziennej pracy technika czy elektroradiologa rozumienie T1 pomaga świadomie dobierać protokoły, wiedzieć czemu zmiana TR zmienia kontrast i dlaczego w jednych badaniach lekarz chce mocno T1‑zależne obrazy, a w innych bardziej T2‑zależne. To jest taka podstawa fizyki MR, do której ciągle się wraca.

Pytanie 11

Na radiogramie uwidoczniono złamanie nasady

Ilustracja do pytania
A. dalszej kości promieniowej.
B. bliższej kości promieniowej.
C. bliższej kości łokciowej.
D. dalszej kości łokciowej.
Prawidłowo wskazana została nasada dalsza kości promieniowej. Na zdjęciu AP nadgarstka wyraźnie widać, że linia złamania przebiega w obrębie przynasady/nasady dystalnej kości promieniowej, tuż powyżej powierzchni stawowej promieniowo-nadgarstkowej. To typowa lokalizacja urazu w okolicy nadgarstka – w praktyce często nazywana złamaniem dalszej nasady kości promieniowej (np. złamanie Collesa lub Smitha, zależnie od przemieszczenia). Kość promieniowa leży po stronie kciuka, ma szerszą, rozbudowaną nasadę dalszą, która tworzy główną część panewki dla kości nadgarstka. Na standardowych projekcjach RTG (AP i bocznej) ocenia się ciągłość warstwy korowej, zarys beleczkowania, kąt nachylenia powierzchni stawowej oraz ewentualne przemieszczenia odłamów. Z mojego doświadczenia, w diagnostyce takich złamań ważne jest zwrócenie uwagi na linię stawu promieniowo-łokciowego dalszego oraz wysokość kości promieniowej względem łokciowej (tzw. ulnar variance). W codziennej pracy technika i lekarza radiologa trzymamy się zasady: zawsze najpierw identyfikujemy orientację zdjęcia (strona promieniowa/łokciowa), potem porównujemy szeroką, bloczkowatą nasadę dalszą promieniowej z dużo mniejszą nasadą dalszą łokciowej. Dzięki temu łatwiej uniknąć pomyłek. W dobrych praktykach przy podejrzeniu złamania dalszej nasady kości promieniowej wykonuje się co najmniej dwie prostopadłe projekcje, a przy wątpliwościach dokładniejsze badanie (np. TK) – zwłaszcza jeśli złamanie wchodzi do powierzchni stawowej. Warto też pamiętać, że takie złamania są bardzo częste po upadku na wyprostowaną rękę, szczególnie u osób starszych z osteoporozą, więc umiejętność ich szybkiej i pewnej identyfikacji na RTG jest kluczowa w praktyce.

Pytanie 12

W trakcie obrazowania metodą rezonansu magnetycznego wykorzystywane jest zjawisko wysyłania sygnału emitowanego przez

A. protony atomów wodoru.
B. elektrony atomów tlenu.
C. elektrony atomów wodoru.
D. protony atomów tlenu.
W rezonansie magnetycznym bardzo łatwo pomylić się, bo mamy i elektrony, i protony, i różne pierwiastki w organizmie. Kluczowe jest jednak to, że standardowe kliniczne badania MR oparte są na zjawisku jądrowego rezonansu magnetycznego, a więc dotyczą jąder atomowych, a nie elektronów. Elektrony oczywiście mają własny moment magnetyczny i istnieje coś takiego jak elektronowy rezonans paramagnetyczny, ale nie jest to metoda używana w rutynowej diagnostyce medycznej. W tomografii MR interesują nas przede wszystkim jądra wodoru, czyli protony, bo wodór w organizmie występuje w ogromnej ilości głównie w wodzie i tłuszczu. To zapewnia silny sygnał i dobry stosunek sygnału do szumu, co przekłada się na wysoką jakość obrazu. Wybranie odpowiedzi z elektronami atomów wodoru lub tlenu wynika zwykle z intuicyjnego przekonania, że „coś związanego z magnetyzmem to pewnie elektrony”, bo kojarzymy je z prądem i spinem elektronów. W MR jednak rejestrujemy sygnał z przejść energetycznych jąder w polu magnetycznym, a nie z powłok elektronowych. Z kolei odpowiedzi odwołujące się do protonów atomów tlenu też brzmią na pozór sensownie, bo tlen jest ważnym pierwiastkiem w organizmie, kojarzy się z krwią, utlenowaniem tkanek itd. Problem w tym, że atomów wodoru jest w ciele człowieka znacznie więcej niż tlenu, a dodatkowo właściwości magnetyczne jąder innych pierwiastków (np. tlenu, węgla) są dużo mniej korzystne do klasycznego obrazowania klinicznego: mają słabszy sygnał, inne częstości rezonansowe, trudniejszą technikę pobudzenia i odbioru. Dlatego w codziennej praktyce diagnostycznej bazuje się na protonach wodoru, a nie na tlenie. Typowym błędem myślowym jest też mieszanie pojęcia „magnetyczny” z „elektronowy”, bo w fizyce szkolnej dużo mówi się o elektronach, a mało o jądrze. W medycznym MR trzeba się przestawić: interesuje nas spin jądrowy protonów wodoru w silnym stałym polu magnetycznym i sygnał RF emitowany podczas relaksacji tych protonów. To jest fundament, który potem tłumaczy wszystkie dalsze zagadnienia: dobór sekwencji, kontrast obrazów, wpływ pola magnetycznego i cewek gradientowych.

Pytanie 13

DSA to cyfrowa

A. arteriografia subtrakcyjna.
B. limfografia subtrakcyjna.
C. flebografia subtrakcyjna.
D. angiografia subtrakcyjna.
Prawidłowa odpowiedź to cyfrowa angiografia subtrakcyjna, czyli Digital Subtraction Angiography (DSA). Rozszyfrowanie skrótu jest tu kluczowe: „A” pochodzi od angiography, czyli obrazowania naczyń krwionośnych. W DSA chodzi dokładnie o to, żeby jak najczyściej uwidocznić tętnice i żyły po podaniu kontrastu jodowego, a jednocześnie „odjąć” (subtrakcyjnie) obraz kości i tkanek miękkich. Technicznie wygląda to tak, że najpierw rejestruje się obraz „maskę” bez kontrastu, a potem serię obrazów po jego podaniu. Komputer piksel po pikselu odejmuje maskę od kolejnych klatek, dzięki czemu zostaje głównie to, co się zmieniło, czyli kontrast w naczyniach. W praktyce klinicznej DSA jest standardem w diagnostyce zwężeń tętnic szyjnych, tętniaków mózgowych, malformacji naczyniowych, zmian w tętnicach wieńcowych, kończyn dolnych czy tętnic nerkowych. Często wykorzystuje się ją także jako badanie łączone z zabiegiem – tzw. procedury endowaskularne: angioplastyka balonowa, implantacja stentów, embolizacja. Z mojego doświadczenia, w pracowniach hemodynamiki i angiografii pacjent z istotnym zwężeniem tętnicy zwykle w tym samym „wejściu” ma robioną i diagnostykę (DSA), i leczenie. DSA wymaga dobrej jakości aparatu angiograficznego, stabilnego ułożenia pacjenta, odpowiedniej dawki kontrastu oraz synchronizacji ekspozycji z podaniem kontrastu. Z punktu widzenia dobrych praktyk ważne jest ograniczanie dawki promieniowania (ALARA), monitorowanie ilości kontrastu i kontrola ryzyka nefropatii pokontrastowej. Cyfrowa arteriografia, flebografia czy limfografia mogą być wykonywane, ale jako techniki szczegółowe – DSA dotyczy ogólnie angiografii, a nie tylko jednego typu naczynia.

Pytanie 14

Na którym obrazie rentgenowskim sutka uwidoczniono zmianę patologiczną w obrębie węzłów chłonnych?

A. Obraz 1
Ilustracja do odpowiedzi A
B. Obraz 2
Ilustracja do odpowiedzi B
C. Obraz 3
Ilustracja do odpowiedzi C
D. Obraz 4
Ilustracja do odpowiedzi D
Prawidłowo wskazano obraz 2, ponieważ to właśnie na nim widać patologiczną zmianę w obrębie węzłów chłonnych pachowych. W górnej części projekcji bocznej sutka widoczna jest dobrze odgraniczona, silnie zacieniona struktura o charakterze powiększonego węzła chłonnego z cechami patologii. W mammografii węzły chłonne pachowe zwykle mają kształt fasolki, z widocznym przejaśnieniem odpowiadającym wnęce tłuszczowej. W przypadku zajęcia nowotworowego (np. przerzut raka piersi) dochodzi do powiększenia węzła, zatarcia wnęki tłuszczowej, nieregularnych zarysów, a czasem do zwapnień. Na obrazie 2 właśnie taki patologiczny węzeł jest widoczny – poza zasadniczym gruczołem sutkowym, w typowej lokalizacji pachowej. Z mojego doświadczenia to jeden z częstszych elementów, które mniej wprawne oko łatwo ignoruje, bo skupia się tylko na samym gruczole piersiowym, a nie na „obrzeżach” obrazu. Standardem opisu mammografii (zgodnie z BI-RADS) jest jednak systematyczne ocenianie nie tylko tkanki gruczołowej i skóry, ale również dołu pachowego i obecnych tam węzłów. W praktyce technika obrazowania też ma znaczenie: prawidłowo wykonana projekcja MLO (skośna przyśrodkowo‑boczna) powinna obejmować szczyt pachy, tak aby radiolog mógł ocenić węzły chłonne. Dlatego u technika elektroradiologii bardzo ważne jest nawykowe „dopilnowanie” głębokiego ujęcia pachy – dokładnie tak, jak na tym przykładzie. W codziennej pracy przekłada się to bezpośrednio na lepsze wykrywanie zaawansowania choroby nowotworowej i precyzyjniejsze planowanie leczenia chirurgicznego czy onkologicznego.

Pytanie 15

Obrazowanie w sekwencjach STIR, FLAIR, SE wykonywane jest w badaniu

A. TK
B. PET
C. USG
D. MR
Prawidłowo powiązałeś sekwencje STIR, FLAIR i SE z rezonansem magnetycznym, czyli badaniem MR. To są nazwy konkretnych sekwencji obrazowania stosowanych właśnie w MRI. W uproszczeniu sekwencja to sposób „pobierania” sygnału z tkanek przez aparat, z określonymi czasami TR, TE, sposobem tłumienia sygnału, itp. STIR (Short Tau Inversion Recovery) to sekwencja tłumiąca sygnał tłuszczu. Dzięki temu bardzo dobrze widać obrzęk, naciek zapalny czy zmiany pourazowe, np. w układzie kostno‑stawowym, w kręgosłupie, w badaniach onkologicznych. FLAIR (Fluid Attenuated Inversion Recovery) tłumi sygnał płynu mózgowo‑rdzeniowego, przez co świetnie uwidacznia zmiany w istocie białej mózgu, np. w stwardnieniu rozsianym, niedokrwieniu czy zapaleniach. SE (Spin Echo) to klasyczna, podstawowa sekwencja MR, na której opierają się obrazy T1‑ i T2‑zależne, stosowana praktycznie w każdym badaniu MR, od głowy, przez kręgosłup, po jamę brzuszną. W praktyce klinicznej protokół MR głowy prawie zawsze zawiera kombinację sekwencji SE T1, SE/TSE T2 oraz FLAIR; z kolei w badaniach narządu ruchu bardzo często pojawia się STIR do oceny szpiku kostnego i tkanek miękkich. Moim zdaniem warto zapamiętać to skojarzenie: jeśli słyszysz STIR, FLAIR, SE, T1, T2, DWI – myślisz od razu „MR”, bo to jest standard w opisach badań i w zaleceniach towarzystw radiologicznych. W USG, TK czy PET takich nazw sekwencji po prostu się nie używa, tam operuje się innymi parametrami i protokołami.

Pytanie 16

Bezwzględnym przeciwwskazaniem do wykonania badania rezonansem magnetycznym jest

A. opiłek metalu w oku.
B. proteza tytanowa.
C. stent naczyniowy.
D. pompa insulinowa.
Prawidłowa odpowiedź wskazuje na jedno z klasycznych, bezwzględnych przeciwwskazań do badania rezonansem magnetycznym: obecność ferromagnetycznego opiłka metalu w oku. Pole magnetyczne w tomografie MR jest bardzo silne (najczęściej 1,5–3,0 T), a gradienty pola i impulsy RF mogą zadziałać na taki opiłek jak na mały „pocisk”. Może dojść do jego przemieszczenia, przecięcia siatkówki, uszkodzenia nerwu wzrokowego, a nawet perforacji gałki ocznej. Z mojego doświadczenia to jest coś, czego personel boi się najbardziej, bo uszkodzenie jest nagłe i praktycznie nieodwracalne. Dlatego zgodnie z dobrymi praktykami, wytycznymi producentów aparatów MR i standardami bezpieczeństwa (np. zasady strefowania w pracowni MR, procedury ACR czy europejskie rekomendacje) każdy pacjent z wywiadem pracy w warunkach narażenia na opiłki metalu (ślusarze, spawacze, pracownicy hut) powinien mieć dokładnie zebrany wywiad oraz często wykonane RTG oczodołów przed dopuszczeniem do badania. W praktyce technik zawsze powinien podejrzliwie traktować odpowiedzi w ankiecie: jeśli pacjent nie jest pewien, czy miał kiedyś uraz metaliczny oka, lepiej opóźnić MR i wyjaśnić sprawę, niż ryzykować powikłanie. Wiele elementów metalowych w ciele może być oznaczonych jako MRI-safe lub MRI-conditional, ale opiłek w oku traktuje się jak potencjalnie ferromagnetyczny, niekontrolowany i bardzo niebezpieczny. To właśnie odróżnia go od np. nowoczesnych protez czy części stentów. W realnej pracy w pracowni rezonansu jednym z kluczowych zadań technika jest więc selekcja pacjentów pod kątem takich przeciwwskazań i bezwzględne przestrzeganie procedur bezpieczeństwa zanim ktokolwiek wjedzie na stół do gantry.

Pytanie 17

Którą strukturę anatomiczną zaznaczono na radiogramie stawu kolanowego?

Ilustracja do pytania
A. Kłykieć boczny.
B. Kłykieć przyśrodkowy.
C. Nadkłykieć przyśrodkowy.
D. Nadkłykieć boczny.
Na tym typie zadania wiele osób gubi się na prostym, ale podchwytliwym rozróżnieniu: co jest kłykciem, a co nadkłykciem. Na radiogramie stawu kolanowego w projekcji AP kłykcie kości udowej to te zaokrąglone części dystalnej nasady, które bezpośrednio tworzą powierzchnie stawowe i „wchodzą” w szczelinę stawową. Nadkłykcie natomiast leżą wyżej, ponad linią powierzchni stawowych, są bardziej bocznie i przyśrodkowo wysunięte i pełnią głównie funkcję miejsc przyczepu więzadeł i mięśni. Jeżeli ktoś zaznacza kłykieć przyśrodkowy lub boczny, to zwykle wynika to z automatycznego skojarzenia, że każda duża wyniosłość w okolicy stawu to właśnie kłykieć. Tymczasem na poprawnie wykonanym zdjęciu RTG, zgodnie z zasadami diagnostyki obrazowej, trzeba najpierw odszukać linię szczeliny stawowej: to ona oddziela kłykcie kości udowej od kłykci kości piszczelowej. Wszystko, co wyraźnie powyżej i bardziej „na zewnątrz”, to już nadkłykcie, a nie kłykcie. Z mojego doświadczenia w nauce anatomii w obrazowaniu największym błędem jest patrzenie tylko na kształt, bez odniesienia do sąsiednich struktur. Pomyłka między nadkłykciem przyśrodkowym a nadkłykciem bocznym bierze się najczęściej z dezorientacji, która strona na obrazie odpowiada stronie prawej lub lewej pacjenta. Radiogramy są oznaczane znacznikami L/R i zgodnie z dobrymi praktykami zawsze trzeba na początku zlokalizować ten znacznik. Dopiero wtedy można pewnie powiedzieć, czy widzimy stronę przyśrodkową, czy boczną. W tym przypadku strzałka nie wskazuje na część po stronie bocznej, więc nazwanie tej struktury nadkłykciem bocznym jest merytorycznie niezgodne z anatomią. Podsumowując, klucz do poprawnej identyfikacji to: najpierw orientacja strony, potem odróżnienie powierzchni stawowej (kłykcie) od wyższych, pozastawowych wyniosłości (nadkłykcie). Bez tego bardzo łatwo o błędny opis, co w realnej praktyce może prowadzić do nieprecyzyjnej kwalifikacji złamania czy niewłaściwej dokumentacji urazu.

Pytanie 18

Na radiogramie uwidoczniono złamanie

Ilustracja do pytania
A. paliczków palców I, V.
B. paliczków palców II, III, IV.
C. II, III, IV kości śródręcza.
D. I, V kości śródręcza.
Prawidłowo rozpoznałeś złamanie dotyczące II, III i IV kości śródręcza. Na radiogramie widoczne są nieciągłości zarysu trzonów właśnie tych kości, z przemieszczeniem odłamów i zaburzeniem osi długiej. Kości śródręcza leżą proksymalnie w stosunku do paliczków, między nadgarstkiem a paliczkami, i na standardowej projekcji AP dłoni biegną od szeregu kości nadgarstka do podstaw paliczków bliższych. W diagnostyce urazów ręki kluczowe jest właśnie odróżnienie, czy linia złamania przebiega w obrębie śródręcza, czy dotyczy paliczków. Na tym zdjęciu widać wyraźnie, że stawy śródręczno‑paliczkowe są zachowane, natomiast trzon kości śródręcza jest przerwany, co potwierdza wybór odpowiedzi z kośćmi śródręcza, a nie paliczkami. W praktyce radiologicznej przy opisie takich badań stosuje się systematyczne „przeskanowanie” obrazu: od promienia (I kości śródręcza) do łokciowej strony ręki, oceniając po kolei zarysy kor kortykalnych, szerokość szpar stawowych i ustawienie osi kości. Moim zdaniem warto też wyrabiać nawyk porównywania symetrii – jeśli II, III i IV kość śródręcza tworzą „wachlarz” o zaburzonej geometrii, jest to mocny sygnał złamania bądź przemieszczenia. Dobre praktyki mówią, żeby przy urazach dłoni zawsze wykonywać co najmniej dwie projekcje (AP i boczną lub skośną), ale nawet na pojedynczym obrazie, takim jak tutaj, da się poprawnie wskazać lokalizację złamania, jeśli zna się anatomię radiologiczną ręki i umie się liczyć kości od strony promieniowej do łokciowej. To jest dokładnie ten przypadek.

Pytanie 19

Osłony na gonady dla osób dorosłych powinny posiadać równoważnik osłabienia promieniowania nie mniejszy niż

A. 0,50 mm Pb
B. 1,00 mm Pb
C. 0,75 mm Pb
D. 0,35 mm Pb
Prawidłowo – dla osób dorosłych osłony na gonady powinny mieć równoważnik osłabienia co najmniej 1,00 mm Pb. Wynika to z zasad ochrony radiologicznej, gdzie gonady traktuje się jako narząd szczególnie wrażliwy, kluczowy dla płodności i ryzyka dziedzicznych skutków promieniowania. Grubość 1,00 mm ołowiu zapewnia bardzo wysoki stopień osłabienia wiązki promieniowania w typowych warunkach badań RTG, np. w radiografii miednicy, bioder, kręgosłupa lędźwiowego. Przy takiej grubości osłony dawka pochłonięta przez jądra lub jajniki jest istotnie zredukowana, a jednocześnie osłona jest jeszcze na tyle ergonomiczna, że da się ją wygodnie stosować w praktyce. Moim zdaniem ważne jest, żeby nie traktować tej wartości jako „opcji”, tylko jako minimum – jeśli w pracowni są osłony cieńsze, to dla dorosłych nie spełniają one standardów ochrony. W dobrych pracowniach radiologicznych rutynowo stosuje się osłony gonadowe właśnie o grubości około 1 mm Pb, dopasowane kształtem: fartuchy typu „figi”, ochraniacze moszny, osłony na okolice miednicy. Warto pamiętać, że zgodnie z zasadą ALARA (As Low As Reasonably Achievable) redukujemy dawkę wszędzie tam, gdzie to możliwe, bez utraty jakości diagnostycznej obrazu. Dobrze dobrana osłona 1 mm Pb nie powinna wchodzić w pole obrazowania i nie może zasłaniać interesujących nas struktur, dlatego tak ważne jest poprawne pozycjonowanie pacjenta i prawidłowe ułożenie samej osłony. Z mojego doświadczenia wiele błędów w pracowni polega właśnie na tym, że ktoś ma dobrą osłonę, ale źle ją zakłada i albo wchodzi w projekcję, albo w ogóle nie przykrywa gonad. Sama grubość 1,00 mm Pb to jedno, a prawidłowa technika i nawyk jej stosowania – drugie, równie ważne.

Pytanie 20

Którą strukturę anatomiczną oznaczono na zamieszczonym obrazie rezonansu magnetycznego?

Ilustracja do pytania
A. Trzon kości ramiennej.
B. Głowę kości ramiennej.
C. Guzek mniejszy kości ramiennej.
D. Guzek większy kości ramiennej.
Na obrazie rezonansu magnetycznego strzałka wskazuje gużek większy kości ramiennej, czyli bocznie położoną wyniosłość nasady bliższej. W klasycznych projekcjach MR barku gużek większy leży bardziej na zewnątrz (lateralnie) i nieco ku górze w stosunku do głowy kości ramiennej. To właśnie na nim przyczepia się większość ścięgien stożka rotatorów: nadgrzebieniowy, podgrzebieniowy i obły mniejszy. Dlatego w praktyce radiologicznej i ortopedycznej jest to punkt orientacyjny numer jeden przy ocenie urazów barku, konfliktu podbarkowego czy uszkodzeń stożka rotatorów. Moim zdaniem, jak ktoś dobrze „ogarnie” lokalizację guzka większego na MR, to połowa opisu badania barku staje się prostsza. W sekwencjach T1 i PD gużek większy ma typowy sygnał dla kości zbitej z cienką warstwą jasnej szpiki w środku, otoczony jest strukturami mięśniowo-ścięgnistymi. W przeciwieństwie do głowy kości ramiennej, która ma kształt bardziej kulisty i jest pokryta chrząstką, guzek większy jest nieregularną wyniosłością boczną. W dobrych praktykach opisu MR barku zawsze ocenia się: zarysy guzka większego, obecność nadżerek, osteofitów, obrzęku szpiku oraz relację do kaletki podbarkowej. To pozwala wcześnie wychwycić zmiany przeciążeniowe u pracowników fizycznych, sportowców czy nawet u osób pracujących długo przy komputerze z ręką w wymuszonej pozycji. W technice obrazowania ważne jest też prawidłowe ułożenie pacjenta – niewielka rotacja zewnętrzna ramienia lepiej odsłania guzek większy i przyczepy stożka rotatorów, co jest standardem w wielu pracowniach.

Pytanie 21

Na przekroju poprzecznym rezonansu magnetycznego strzałką oznaczono

Ilustracja do pytania
A. trzustkę.
B. śledzionę.
C. wątrobę.
D. żołądek.
Strzałka na przekroju poprzecznym MR pokazuje wątrobę – duży, jednorodny narząd położony w prawym górnym kwadrancie jamy brzusznej, przylegający do przepony i ściany brzucha. Na typowych obrazach przekroju poprzecznego (axial) wątroba zajmuje znaczną część prawej strony obrazu, otacza żyłę główną dolną, a jej krawędź jest lekko zaokrąglona. W rezonansie magnetycznym rozpoznajemy ją nie tylko po lokalizacji, ale też po charakterystycznym, stosunkowo jednorodnym sygnale miąższu oraz obecności struktur naczyniowych – żyły wrotnej i żył wątrobowych. W praktyce klinicznej poprawne rozpoznawanie wątroby na MR jest kluczowe przy ocenie zmian ogniskowych, takich jak naczyniaki, przerzuty czy ogniska HCC, oraz przy planowaniu biopsji czy zabiegów interwencyjnych. Radiolodzy, zgodnie z dobrymi praktykami (ESR, EASL), zawsze zaczynają opis jamy brzusznej od oceny wątroby: wielkości, jednorodności miąższu, zarysów brzegu, cech marskości, obecności płynu w jamie otrzewnej. Moim zdaniem opanowanie anatomii wątroby w obrazowaniu to podstawa, bo ten narząd jest punktem odniesienia do orientacji w całym badaniu. W technice MR ważne jest też świadome dobranie sekwencji: T1, T2, sekwencje z saturacją tłuszczu oraz fazy po kontraście paramagnetycznym, które pozwalają odróżnić prawidłowy miąższ od zmian patologicznych. W codziennej pracy technika elektroradiologii umiejętność szybkiego rozpoznania wątroby na skanach pomaga prawidłowo zaplanować zakres badania, ustawić odpowiednie pola widzenia (FOV) i ocenić, czy pacjent był dobrze wypozycjonowany.

Pytanie 22

Obraz stawu kolanowego otrzymano metodą

Ilustracja do pytania
A. tomografii komputerowej.
B. rezonansu magnetycznego z kontrastem.
C. rezonansu magnetycznego.
D. tomografii komputerowej z kontrastem.
W tym zadaniu łatwo się pomylić, bo większość osób kojarzy „przekroje” ciała głównie z tomografią komputerową. To jest właśnie typowy błąd myślowy: skoro widzę warstwowy obraz, to od razu zakładam, że to TK. Tymczasem kluczowa jest nie sama forma przekroju, ale charakter obrazu – czyli jak wyglądają tkanki miękkie, kość i płyn. Na tomografii komputerowej kość jest bardzo jasna (wysoka gęstość), a różnice między chrząstką, więzadłami i łąkotkami są dużo słabiej widoczne, szczególnie bez rekonstrukcji w odpowiednich oknach. TK świetnie nadaje się do oceny urazów kostnych, złamań śródstawowych, planowania zabiegów ortopedycznych, ale nie jest metodą pierwszego wyboru do oceny struktur wewnątrzstawowych kolana. W odpowiedzi z kontrastem w TK pojawia się dodatkowe nieporozumienie: kontrast jodowy do TK stosuje się głównie w badaniach narządów miąższowych, naczyń, ewentualnie w artrografii TK, ale to są raczej sytuacje szczególne, a nie standard przy rutynowej ocenie stawu kolanowego. Podobnie w rezonansie magnetycznym z kontrastem – kontrast gadolinowy używany jest przy podejrzeniu zmian zapalnych, nowotworowych, po rekonstrukcjach, czasem w MR-artrografii. Typowy, podręcznikowy obraz stawu kolanowego w MR, na którym uczymy się anatomii i podstaw patologii, jest wykonywany bez kontrastu. Jeśli obraz pokazuje bardzo dobrą różnicę między płynem stawowym, tkanką tłuszczową, chrząstką i kością podchrzęstną, z charakterystycznym „miękkim” wyglądem tkanek, to z dużym prawdopodobieństwem mamy do czynienia z MR, a nie z TK. Z mojego doświadczenia warto wyrobić sobie nawyk patrzenia najpierw na jakość odwzorowania tkanek miękkich i na obecność typowych artefaktów MR, zamiast automatycznie zakładać, że każdy przekrój poprzeczny to tomografia komputerowa. Takie rozróżnianie jest zgodne z dobrymi praktykami w diagnostyce obrazowej i bardzo ułatwia późniejszą naukę interpretacji badań.

Pytanie 23

Dobierz dla standardowego pacjenta projekcję, pozycję i sposób ułożenia kasety o wymiarach 30 cm x 40 cm do zdjęcia przeglądowego układu moczowego.

ProjekcjaPozycjaUłożenie kasety
1.AP3.stojąca5.poprzeczne
2.PA4.leżąca6.podłużne
A. 2, 3, 6
B. 1, 3, 5
C. 2, 4, 5
D. 1, 4, 6
Prawidłowo dobrana kombinacja 1, 4, 6 oznacza projekcję AP, pozycję leżącą i ułożenie kasety podłużne – dokładnie tak, jak wykonuje się standardowe zdjęcie przeglądowe układu moczowego (tzw. KUB – kidneys, ureters, bladder). W praktyce klinicznej większość takich badań robi się w pozycji leżącej na plecach, bo pozwala to spokojnie ułożyć pacjenta, dobrze wycentrować wiązkę i zminimalizować poruszenie. Projekcja AP oznacza, że promień główny biegnie od przodu do tyłu pacjenta, czyli pacjent leży plecami na detektorze, a lampa jest nad brzuchem. To jest najbardziej klasyczny układ w radiografii przeglądowej jamy brzusznej i miednicy. Kaseta 30×40 cm w tym badaniu powinna być ułożona wzdłuż długiej osi ciała (podłużnie), żeby objąć od górnych biegunów nerek aż do okolicy spojenia łonowego i pęcherza moczowego. Przy ułożeniu poprzecznym zwykle zabrakłoby zasięgu w kierunku czaszkowo-ogonowym, szczególnie u wyższych pacjentów. Moim zdaniem warto zapamiętać prostą regułę: gdy interesuje nas cały układ moczowy w jednym ujęciu, wybieramy AP leżące z kasetą podłużnie, centrowanie na poziom grzebieni biodrowych, lekkie zwiększenie kV w stosunku do typowego brzucha, tak żeby dobrze uwidocznić zarysy nerek, cienie złogów i gaz w jelitach. W wielu pracowniach to badanie jest jednym z podstawowych przed urografią czy TK, więc dobrze opanowana technika AP leżące + kaseta podłużnie to po prostu codzienny chleb technika RTG.

Pytanie 24

Zwiększenie napięcia na lampie rentgenowskiej powoduje

A. wydłużenie fali i zmniejszenie przenikliwości promieniowania X
B. skrócenie fali i zmniejszenie przenikliwości promieniowania X
C. wydłużenie fali i zwiększenie przenikliwości promieniowania X
D. skrócenie fali i zwiększenie przenikliwości promieniowania X
Prawidłowo – zwiększenie napięcia na lampie rentgenowskiej skraca długość fali promieniowania X i jednocześnie zwiększa jego przenikliwość. Wynika to bezpośrednio z fizyki zjawiska: wyższe napięcie anodowe (kV) nadaje elektronom większą energię kinetyczną. Te szybsze elektrony uderzają w anodę i wytwarzają fotony promieniowania X o wyższej energii. A im wyższa energia fotonu, tym krótsza długość fali (E = h·c/λ) i większa zdolność przenikania przez tkanki pacjenta czy materiały osłonowe. W praktyce radiologicznej oznacza to, że podnosząc kV, uzyskujemy bardziej „twarde” promieniowanie, które lepiej przechodzi przez gęste struktury, np. kości miednicy czy klatkę piersiową u pacjentów o większej masie ciała. Moim zdaniem kluczowe jest kojarzenie: kV = jakość promieniowania (energia, przenikliwość), a mAs = ilość promieniowania (liczba fotonów). W nowoczesnych aparatach RTG standardy pracy i dobre praktyki (np. wytyczne EFRS, europejskie zalecenia dla ekspozycji) mówią jasno: dobiera się możliwie wysokie kV i możliwie niskie mAs, aby zmniejszyć dawkę dla pacjenta, ale jednocześnie zachować odpowiedni kontrast obrazu. Dla zdjęć klatki piersiowej stosuje się zwykle wyższe napięcia (np. 100–125 kV), właśnie po to, żeby promieniowanie miało wysoką przenikliwość i równomiernie „przeszło” przez cały przekrój klatki. Przy badaniach kończyn, gdzie struktury są cieńsze, używa się niższego napięcia, bo nie potrzebujemy aż tak twardego widma. Warto też pamiętać, że zwiększenie kV zmniejsza kontrast tkankowy obrazu (bo wszystko jest bardziej przepuszczalne), ale za to redukuje pochłoniętą dawkę w skórze. W dobrze prowadzonym pracowni RTG technik świadomie balansuje kV i mAs, aby osiągnąć kompromis między jakością diagnostyczną a ochroną radiologiczną. Z mojego doświadczenia to jedna z podstawowych umiejętności w diagnostyce obrazowej – rozumieć, że zmiana napięcia to nie tylko „jaśniej/ciemniej”, ale przede wszystkim zmiana energii i przenikliwości promieniowania.

Pytanie 25

Jak określa się rekonstrukcję obrazów TK, której wynikiem są obrazy dwuwymiarowe tworzone w dowolnej płaszczyźnie przez wtórną obróbkę zestawionych ze sobą wielu przekrojów poprzecznych?

A. Maksymalnej intensywności MIP.
B. Odwzorowania objętości VTR.
C. Wielopłaszczyznowa MPR.
D. Cieniowanych powierzchni SSD.
Prawidłowo wskazałeś wielopłaszczyznową rekonstrukcję MPR (Multiplanar Reconstruction). W tomografii komputerowej to właśnie MPR oznacza tworzenie dwuwymiarowych obrazów w dowolnej płaszczyźnie (czołowej, strzałkowej, skośnej) na podstawie zestawu cienkich przekrojów poprzecznych (aksjalnych). Dane są najpierw zebrane objętościowo jako tzw. stos warstw, a potem komputer „przelicza” je na nową płaszczyznę – to jest klasyczna wtórna obróbka danych, bez ponownego naświetlania pacjenta. W praktyce klinicznej MPR to absolutny standard np. przy ocenie kręgosłupa, zatok, stawów czy naczyń. Radiolog bardzo często zaczyna od obrazów aksjalnych, a potem natychmiast przechodzi do rekonstrukcji strzałkowych i czołowych, żeby lepiej prześledzić przebieg kanału kręgowego, złamania czy zmian guzowatych. Moim zdaniem w codziennej pracy technika TK dobra znajomość MPR jest tak samo ważna jak umiejętne dobranie parametrów skanowania – bo to właśnie od jakości i poprawnego ustawienia rekonstrukcji zależy, czy lekarz zobaczy wszystkie istotne szczegóły. Dobra praktyka jest taka, żeby zawsze pilnować: odpowiedniej grubości rekonstrukcji, brak artefaktów schodkowych oraz właściwą orientację opisów (L/P, przód/tył), bo łatwo o pomyłkę. Warto też pamiętać, że MPR jest bazą do bardziej zaawansowanych technik, jak rekonstrukcje krzywoliniowe (np. wzdłuż przebiegu naczynia) czy rekonstrukcje 3D, ale sama w sobie pozostaje metodą dwuwymiarową – tyle że w dowolnie wybranej płaszczyźnie.

Pytanie 26

HRCT (high-resolution computed tomography) jest metodą obrazowania TK

A. niskiej rozdzielczości.
B. wysokiej rozdzielczości.
C. przeciętnej rozdzielczości.
D. średniej rozdzielczości.
HRCT to skrót od angielskiego „high-resolution computed tomography”, czyli tomografia komputerowa wysokiej rozdzielczości. Sama nazwa już mówi, jaka jest poprawna odpowiedź: jest to metoda TK zaprojektowana właśnie po to, żeby uzyskać jak najwyższą rozdzielczość przestrzenną obrazu, szczególnie w obrębie miąższu płuc. W praktyce oznacza to, że na obrazach HRCT bardzo dobrze widać drobne struktury anatomiczne, jak przegrody międzyzrazikowe, małe oskrzeliki, drobne zmiany śródmiąższowe. Stosuje się cienkie warstwy (zwykle 0,5–1,5 mm), wysokoczęstotliwościowe filtry rekonstrukcyjne (tzw. filtr „kostny” lub „wysokiej rozdzielczości”) i odpowiednio dobrane parametry ekspozycji. Moim zdaniem warto kojarzyć, że HRCT to nie jest inny typ aparatu, tylko specyficzny protokół badania i rekonstrukcji danych w standardowym tomografie. W zaleceniach towarzystw radiologicznych (np. Fleischner Society, ERS/ESTS) HRCT jest metodą z wyboru w diagnostyce chorób śródmiąższowych płuc, rozedmy, rozstrzeni oskrzeli, oceny zmian po COVID‑19 czy pylic. W codziennej pracy technika elektroradiologii bardzo ważne jest prawidłowe dobranie grubości warstwy, kolimacji, sposobu oddychania pacjenta (zwykle wdech, niekiedy też wydech), a także unikanie zbędnych serii, żeby niepotrzebnie nie zwiększać dawki. Standardem jest rekonstrukcja obrazów w płaszczyznach MPR (np. czołowej i strzałkowej), co jeszcze bardziej wykorzystuje wysoką rozdzielczość danych. Dobrą praktyką jest też dokładne opisanie w protokole badania, że wykonano HRCT klatki piersiowej, bo to od razu kieruje lekarza opisującego na właściwą interpretację obrazu, z uwzględnieniem bardzo drobnych zmian strukturalnych.

Pytanie 27

Po podaniu kontrastu obraz zmian nowotworowych w badaniu MR najlepiej uwidacznia się w sekwencji

A. DIXON
B. DWI
C. T2
D. T1
W rezonansie magnetycznym łatwo się pomylić, bo mamy sporo różnych sekwencji i każda „coś fajnego” pokazuje. Ale jeśli pytanie dotyczy konkretnie uwidocznienia zmian nowotworowych po podaniu kontrastu, to kluczowe jest zrozumienie, jak działają poszczególne typy sekwencji. Środek kontrastowy gadolinowy działa głównie przez skrócenie czasu relaksacji T1, więc najbardziej wpływa na sekwencje T1‑zależne. Właśnie dlatego to one są używane do oceny wzmocnienia po kontraście. DIXON to tak naprawdę technika modyfikująca głównie sekwencje T1 (i czasem T2*), służąca do rozdzielenia sygnału z tłuszczu i wody. Jest świetna np. do obrazowania narządów miąższowych czy układu mięśniowo‑szkieletowego, ale sama nazwa „DIXON” nie oznacza jeszcze, że to najlepsza sekwencja do oceny kontrastu. Jeśli stosujemy T1 DIXON po kontraście, to i tak kluczowe jest to, że jest to sekwencja T1‑zależna, a nie sam fakt „DIXON”. Dlatego wybieranie DIXON jako ogólnej odpowiedzi jest trochę mylące – to bardziej technika niż podstawowy typ sekwencji. DWI (dyfuzja) z kolei służy głównie do oceny ruchu cząsteczek wody w tkankach. Zmiany nowotworowe często ograniczają dyfuzję, więc są hiperintensywne na mapach DWI i mają obniżony sygnał na mapach ADC. To bardzo ważne w onkologii, np. w udarach, guzach mózgu, prostaty czy wątroby, ale DWI nie służy do oceny wzmocnienia po kontraście. Co więcej, standardowo DWI wykonuje się bez podania kontrastu. Dlatego myślenie: „nowotwór dobrze widać na DWI, więc po kontraście też będzie najlepiej” – to typowy błąd skrótu myślowego. Sekwencje T2‑zależne natomiast pokazują głównie zawartość wody – płyny są jasne, obrzęk, zmiany zapalne, torbiele. Guzy często są dobrze widoczne na T2 przez obrzęk czy komponentę płynną, ale podanie gadolinu nie jest tu głównym mechanizmem poprawy kontrastu obrazu. Zmiana może wyglądać trochę inaczej po kontraście, ale to nie jest główne narzędzie do oceny wzmocnienia. Z mojego doświadczenia największy problem polega na tym, że wiele osób pamięta, iż „nowotwory są jasne na T2” albo że „DWI jest super w guzach”, i automatycznie zakłada, że to będzie też najlepsze po kontraście. Tymczasem standardy protokołów MR mówią jasno: ocena wzmocnienia kontrastowego, czyli tego, jak guz „łapie kontrast”, bazuje na sekwencjach T1‑zależnych, często z dodatkowymi technikami jak fat‑sat czy DIXON, ale rdzeniem pozostaje T1.

Pytanie 28

Które kolejne sekwencje badania kręgosłupa lędźwiowego uwidoczniono na przedstawionych obrazach?

Ilustracja do pytania
A. Sag T1, Sag STIR, Sag T2
B. Sag T2, Sag T1, Sag STIR
C. Sag STIR, Sag T2, Sag T1
D. Sag T2, Sag STIR, Sag T1
W tym zadaniu pułapka polega głównie na podobieństwie obrazu T2 i STIR oraz na automatycznym założeniu, że najjaśniejszy obraz to zawsze T2. W rzeczywistości o rozpoznaniu sekwencji decyduje nie tylko jasność płynu mózgowo‑rdzeniowego, ale przede wszystkim zachowanie sygnału tłuszczu w szpiku kostnym i tkance podskórnej. W sekwencji STIR stosuje się tłumienie sygnału z tłuszczu, dlatego trzon kręgu, w którym dominuje szpik tłuszczowy, staje się wyraźnie ciemniejszy, a wszelkie obszary obrzęku, zapalenia czy nacieczenia nowotworowego robią się bardzo jasne. Jeżeli ktoś patrzy tylko na jasny kanał kręgowy i uznaje, że to na pewno T2, łatwo pomyli STIR z T2 lub odwrócić ich kolejność. Częsty błąd polega też na tym, że sekwencje układa się „w głowie” według prostego schematu: T1 – T2 – STIR, bo tak bywa w opisach protokołów. Tymczasem w praktyce klinicznej kolejność wyświetlania obrazów w PACS bywa różna i trzeba polegać na ocenie charakterystyki sygnału, a nie na przyzwyczajeniu. Na T2 płyn mózgowo‑rdzeniowy jest jasny, ale tłuszcz również pozostaje jasny, więc szpik w trzonach kręgów nie jest wygaszony. Gdy widzimy obraz, gdzie kanał kręgowy jest jasny, a jednocześnie tkanka tłuszczowa podskórna też ma wysoki sygnał, to jest typowy T2. Jeżeli natomiast płyn jest jasny, a tłuszcz wyraźnie przyciemniony – to wskazuje na STIR. Z kolei T1 łatwo rozpoznać po tym, że płyn mózgowo‑rdzeniowy jest ciemny, a tłuszcz bardzo jasny. Jeżeli ktoś ustawia T1 jako pierwszy obraz tylko dlatego, że „tak zwykle zaczyna się badanie”, pomija realne cechy obrazu. To prowadzi do błędnego porządkowania: np. Sag T2, Sag STIR, Sag T1 lub Sag T1, Sag STIR, Sag T2. Z mojego doświadczenia najczęstsze nieporozumienie wynika z niedocenienia roli tłumienia tłuszczu – STIR nie jest po prostu „jeszcze jednym T2”, ale specjalną sekwencją o czułości na zmiany zapalne i obrzękowe. W dobrej praktyce diagnostycznej zawsze patrzy się więc: jak świeci tłuszcz, jak wygląda płyn, jaki jest kontrast między trzonami a dyskami. Dopiero z tej kombinacji wyciągamy wniosek, która sekwencja jest która, niezależnie od tego, w jakiej kolejności program wyświetlił obrazy. Uporządkowanie tej logiki bardzo pomaga przy samodzielnym przeglądaniu badań MR, nie tylko kręgosłupa, ale też np. stawów czy miednicy.

Pytanie 29

Która sekwencja obrazowania MR wykorzystuje impulsy RF o częstotliwości rezonansowej tłuszczu do tłumienia sygnału pochodzącego z tkanki tłuszczowej?

A. FAT SAT
B. TOF
C. MTC
D. PCA
W tym pytaniu sedno sprawy leży w zrozumieniu, jak działają różne specjalistyczne sekwencje MR i jakie mają konkretne zadania. Tylko jedna z nich faktycznie wykorzystuje impulsy RF o częstotliwości rezonansowej tłuszczu do selektywnego tłumienia sygnału z tkanki tłuszczowej, i jest to właśnie technika typu FAT SAT, czyli fat saturation/fat suppression. Pozostałe odpowiedzi są związane z naczyniami, przepływem lub strukturą tkanek, ale nie z selektywnym wygaszaniem tłuszczu. TOF (Time of Flight) to sekwencja angiograficzna. Bazuje na zjawisku napływu świeżej, nienasyconej krwi do warstwy obrazowanej. Krew daje wtedy silniejszy sygnał niż statyczne tkanki, które są już częściowo nasycone impulsami RF. Dzięki temu doskonale widać naczynia krwionośne bez konieczności podawania kontrastu. Jednak TOF nie służy do tłumienia tłuszczu, nie używa selektywnych impulsów RF skierowanych na częstotliwość rezonansową tłuszczu, tylko wykorzystuje efekt przepływu. MTC (Magnetization Transfer Contrast) to z kolei technika, która moduluje kontrast między protonami związanymi w makrocząsteczkach (np. białkach) a „wolną” wodą. Wykorzystuje się dodatkowy impuls RF, który nasyca spinowo frakcję związanych protonów, a magnetyzacja przenosi się na frakcję wolną. To daje lepszy kontrast np. w obrazowaniu OUN, ale nie jest to klasyczne wygaszanie tłuszczu. Tłuszcz może się pośrednio zmieniać w obrazie, ale nie jest bezpośrednim celem tej sekwencji. PCA (Phase Contrast Angiography) to metoda do pomiaru przepływu krwi, gdzie informacja o prędkości przepływu jest kodowana w fazie sygnału MR. Umożliwia ilościową ocenę prędkości i kierunku przepływu, np. w tętnicach mózgowych czy w sercu. Tutaj też nie ma mowy o selektywnym nasycaniu sygnału z tłuszczu za pomocą częstotliwości rezonansowej tłuszczu. Typowy błąd myślowy polega na tym, że skoro coś jest „specjalną” sekwencją, to może od razu służyć do tłumienia tłuszczu – ale każda z tych technik ma bardzo precyzyjne, wąskie zastosowanie. FAT SAT jest jedyną odpowiedzią, która pasuje dokładnie do treści pytania: używa selektywnego impulsu RF dostrojonego do przesunięcia chemicznego tłuszczu względem wody, co skutkuje nasyceniem magnetyzacji tłuszczu i osłabieniem jego sygnału. To jest fundament wielu protokołów MR, szczególnie w diagnostyce urazów, stanów zapalnych, zmian nowotworowych i badaniach po kontraście gadolinowym. Warto sobie mocno utrwalić, że TOF i PCA to angiografia przepływowa, MTC to kontrast magnetyzacji przeniesionej, a prawdziwe „wyciszanie” tłuszczu impulsami RF to domena FAT SAT.

Pytanie 30

Do zdjęcia rentgenowskiego żeber w projekcji skośnej tylnej pacjenta należy ustawić

A. tyłem do lampy rentgenowskiej, stroną badaną bliżej kasety.
B. przodem do lampy rentgenowskiej, stroną badaną oddaloną od kasety.
C. tyłem do lampy rentgenowskiej, stroną badaną oddaloną od kasety.
D. przodem do lampy rentgenowskiej, stroną badaną bliżej kasety.
Prawidłowe ustawienie do projekcji skośnej tylnej żeber oznacza, że pacjent stoi przodem do lampy rentgenowskiej (czyli tyłem do kasety), a strona badana znajduje się bliżej kasety. W praktyce wygląda to tak: ustawiasz pacjenta w pozycji AP skośnej, obracając go wokół osi długiej ciała, tak aby badana połowa klatki piersiowej była dosunięta do kasety. Dzięki temu żebra po stronie badanej są rzutowane wyraźniej, z mniejszym powiększeniem i mniejszym zniekształceniem geometrycznym. To jest zgodne z typowymi opisami pozycji RAO/LAO dla żeber w podręcznikach z techniki RTG i zaleceniami większości pracowni. Moim zdaniem kluczowe jest tu zrozumienie, że w projekcjach skośnych żeber zawsze chcemy mieć stronę badaną bliżej detektora, bo to ogranicza efekt powiększenia i rozmycia wynikający z rozbieżności wiązki. Jeżeli badamy żebra przednie, używamy właśnie projekcji skośnych tylnych (AP oblique), a pacjent jest skierowany przodem do lampy. Jeżeli celem są raczej żebra tylne, wtedy częściej stosuje się projekcje skośne przednie (PA oblique), gdzie pacjent stoi tyłem do lampy, a przodem do kasety. W codziennej pracy technika elektroradiologii ważne jest też właściwe oznaczenie strony (L/P) i kąta obrotu, zwykle 35–45°. Przy żebrach bólowych, pourazowych, często robimy serię: projekcja PA lub AP całej klatki plus skośne po stronie bólowej właśnie w takim ustawieniu, jak w tym pytaniu. Dobrą praktyką jest również ustawienie pacjenta tak, aby miejsce największej bolesności znalazło się w centrum wiązki pierwotnej – to od razu poprawia czytelność obrazu i ułatwia lekarzowi ocenę złamań, zniekształceń czy zmian osteolitycznych.

Pytanie 31

Zarejestrowany na obrazie TK artefakt jest spowodowany

Ilustracja do pytania
A. ruchem mimowolnym.
B. nieliniowym osłabieniem wiązki.
C. wysokim stężeniem środka cieniującego.
D. metalowym implantem.
Prawidłowo powiązałeś obraz z obecnością metalowego implantu. Na przedstawionym skanie TK widoczny jest bardzo typowy artefakt metaliczny: centralny, ekstremalnie jasny obszar (wysoka gęstość, wartości HU wykraczające poza skalę) oraz promieniste smugi i pasma wychodzące na zewnątrz. To tzw. streak artifacts. Metal bardzo silnie pochłania promieniowanie rentgenowskie, przez co detektory rejestrują skrajne wartości sygnału, a algorytm rekonstrukcji obrazu „gubi się” i tworzy te charakterystyczne smugi. Z mojego doświadczenia, tak wygląda np. endoproteza, śruba kostna, proteza stawu, czasem klips naczyniowy – zawsze coś metalowego o dużej gęstości. W praktyce technik TK powinien od razu kojarzyć taki obraz z metalem w polu badania i wiedzieć, że może to istotnie utrudniać ocenę struktur sąsiednich. Standardem jest wtedy stosowanie technik redukcji artefaktów: odpowiednie ułożenie pacjenta, dobór wyższej kV, włączenie algorytmów MAR (Metal Artifact Reduction) w konsoli, czasem rekonstrukcja iteracyjna lub dual-energy CT. Warto pamiętać, że artefakty od ruchu wyglądają inaczej – dają rozmycie, podwójne kontury, ząbkowanie krawędzi, a nie ostre, promieniste smugi wychodzące z jednego bardzo gęstego punktu. Również wysoki kontrast jodowy zwykle nie powoduje aż tak dramatycznych smug, choć może dawać tzw. blooming. W nowoczesnych protokołach TK zawsze uwzględnia się obecność metalu, bo ma to wpływ na dawkę, jakość obrazu i sposób interpretacji – radiolog musi wiedzieć, że część zmian może być zwyczajnie „ukryta” w artefaktach metalicznych. Moim zdaniem to jedno z ważniejszych rozpoznań artefaktu, bo występuje bardzo często w praktyce szpitalnej, szczególnie na ortopedii i neurochirurgii.

Pytanie 32

Zadaniem technika elektroradiologa w pracowni naczyniowej jest

A. wprowadzenie cewnika w światło naczyń.
B. przygotowanie niezbędnych narzędzi.
C. przygotowanie cewników.
D. nadzorowanie sprawnego działania aparatury rentgenowskiej.
Prawidłowo wskazana rola technika elektroradiologa w pracowni naczyniowej to nadzorowanie sprawnego działania aparatury rentgenowskiej. W pracowni angiograficznej technik jest odpowiedzialny przede wszystkim za stronę techniczną badania, a nie za wykonywanie czynności inwazyjnych w obrębie naczyń. To lekarz – najczęściej radiolog interwencyjny, kardiolog lub chirurg naczyniowy – wprowadza cewnik do światła naczynia, prowadzi go, podaje kontrast i wykonuje właściwy zabieg. Technik natomiast musi zadbać o to, żeby cały system obrazowania działał stabilnie, bezpiecznie i dawał obrazy o jak najlepszej jakości przy możliwie najmniejszej dawce promieniowania. W praktyce oznacza to m.in. prawidłowe ustawienie parametrów ekspozycji, kontrolę pracy lampy rentgenowskiej, generatora, stołu angiograficznego, systemu akwizycji obrazu oraz monitorów. Technik sprawdza przed badaniem poprawność działania układów sterowania, kolimatorów, systemów automatycznej kontroli ekspozycji, a także współpracuje z lekarzem przy doborze protokołów obrazowania, np. częstości serii, czasu akwizycji, projekcji, synchronizacji z podaniem kontrastu. Moim zdaniem bardzo ważne jest też to, że technik pilnuje bezpieczeństwa radiologicznego całego zespołu i pacjenta: dobiera osłony, kontroluje dawkę, dba o prawidłowe ustawienie ramienia C, żeby ograniczyć niepotrzebne ekspozycje. W dobrze działającej pracowni naczyniowej technik jest takim „operatorem systemu”, który musi szybko reagować, gdy pojawiają się komunikaty błędów, spadek jakości obrazu, przegrzewanie lampy czy problemy z archiwizacją w systemie PACS. To wszystko bezpośrednio przekłada się na bezpieczeństwo zabiegu, komfort pracy lekarza i skuteczność diagnostyki oraz terapii.

Pytanie 33

Jak zgodnie ze standardem należy ustawić pacjenta do badania rentgenowskiego w skosie tylnym prawym?

A. Tyłem do kasety, prawa strona przylega do kasety, lewa strona odwiedziona od kasety.
B. Przodem do kasety, prawa strona przylega do kasety, lewa strona odwiedziona od kasety.
C. Przodem do kasety, lewa strona przylega do kasety, prawa strona odwiedziona od kasety.
D. Tyłem do kasety, lewa strona przylega do kasety, prawa strona odwiedziona od kasety.
W tym typie pytania najwięcej zamieszania robi samo nazewnictwo projekcji skośnych. Jeżeli ktoś nie do końca ogarnia skróty i logikę nazwy, to bardzo łatwo pomylić się pomiędzy ustawieniem przodem a tyłem do kasety albo odwrotnie zinterpretować, która strona ma przylegać. Określenia typu „skos tylny prawy” czy „skos przedni lewy” nie są przypadkowe – są oparte na międzynarodowych standardach radiologicznych i służą ujednoliceniu pozycjonowania pacjenta. W projekcjach tylnych skośnych (RPO – right posterior oblique, LPO – left posterior oblique) pacjent zawsze ustawiany jest tyłem do kasety. To słowo „tylny” właśnie o tym mówi – że bliżej detektora jest tylna powierzchnia ciała. Odpowiedzi, które sugerują ustawienie przodem do kasety, są sprzeczne z tą zasadą, bo odpowiadałyby raczej projekcjom przednim skośnym (RAO, LAO), gdzie do kasety zbliżona jest powierzchnia przednia. To jest typowy błąd: ktoś kojarzy „prawy” z „przodem” albo odwrotnie, zamiast trzymać się logiki: przedni/tylny = która powierzchnia ciała, prawy/lewy = która strona. Druga sprawa to strona przylegająca. W „skosie tylnym prawym” prawa strona ciała musi przylegać do kasety, a lewa być odwiedziona. Jeżeli wybieramy ustawienie, gdzie lewa strona przylega, a prawa jest odsunięta, to tak naprawdę opisujemy „skos tylny lewy” (LPO), czyli zupełnie inną projekcję. To jest kolejny częsty błąd myślowy: ktoś odczytuje „prawy” jako stronę odwiedzioną, a nie przylegającą, bo wyobraża sobie, że „prawe” jest bardziej odsłonięte dla lampy. Tymczasem standard mówi jasno: w nazwie projekcji strona prawa/lewa to ta strona, która jest bliżej detektora. Z praktycznego punktu widzenia nieprawidłowe pozycjonowanie pacjenta w projekcjach skośnych powoduje nakładanie się struktur, złą wizualizację stawów międzywyrostkowych, łuków kręgów czy stawów krzyżowo-biodrowych. Prowadzi to do gorszej jakości diagnostycznej obrazu, możliwej konieczności powtarzania badania, a więc większej dawki promieniowania. Dlatego warto bardzo świadomie czytać nazwy projekcji i zawsze kojarzyć: tylny/przedni = tył/przód do kasety, prawy/lewy = strona przylegająca. To jest prosta zasada, ale w praktyce ratuje przed wieloma pomyłkami.

Pytanie 34

Która struktura może być oknem akustycznym w badaniu ultrasonograficznym?

A. Złóg w pęcherzyku żółciowym.
B. Przestrzeń międzyżebrowa.
C. Wypełniony płynem pęcherz moczowy.
D. Wypełnione gazami jelito cienkie.
Prawidłowo wskazany wypełniony płynem pęcherz moczowy jest klasycznym przykładem tzw. okna akustycznego w badaniu USG. W praktyce oznacza to, że struktura zawierająca jednorodny płyn bardzo dobrze przewodzi fale ultradźwiękowe, nie rozprasza ich nadmiernie i nie tworzy silnych artefaktów, które zasłaniają głębiej położone narządy. Dzięki temu przez taki pęcherz można „podglądać” struktury leżące za nim, np. macicę, jajniki, prostatę czy fragmenty jelit, z dużo lepszą jakością obrazu. W standardach badań ginekologicznych i urologicznych USG jamy brzusznej zaleca się, żeby pacjent przyszedł z wypełnionym pęcherzem – to nie jest przypadek, tylko właśnie świadome wykorzystanie okna akustycznego. Płyn w pęcherzu jest anechogeniczny, czyli na monitorze widzimy czarny, jednolity obszar, bez wewnętrznych ech. Ułatwia to ocenę ściany pęcherza, polipów, guzów oraz umożliwia lepszą wizualizację narządów miednicy mniejszej. Moim zdaniem to jeden z najbardziej „namacalnych” przykładów, jak fizyka ultradźwięków przekłada się bezpośrednio na praktykę pracy technika elektroradiologii. W codziennej pracy dobrze jest pamiętać, że każde środowisko płynowe w ciele (torbiele, zbiorniki płynu w jamach ciała) może pełnić podobną rolę – często specjalnie wykorzystuje się wysięki lub płyn w jamie otrzewnej czy opłucnej, żeby lepiej zobrazować narządy, które normalnie byłyby częściowo zasłonięte przez gaz lub kości. To jest zgodne z dobrymi praktykami opisywanymi w podręcznikach USG i wytycznych towarzystw radiologicznych: szukamy takich „okien”, które poprawiają jakość obrazu, skracają czas badania i zmniejszają ryzyko błędnej interpretacji.

Pytanie 35

W diagnostyce mammograficznej punktowy ucisk sutka stosuje się w projekcji

A. stycznej.
B. celowanej.
C. dolinowej.
D. bocznej.
Punktowy ucisk sutka w mammografii jest klasycznym elementem tzw. projekcji celowanej, więc wybór odpowiedzi „celowana” jest jak najbardziej prawidłowy. Projekcja celowana polega na tym, że technik radiolog lub elektroradiolog wybiera niewielki fragment piersi, który na standardowych zdjęciach (CC, MLO) jest podejrzany albo po prostu nie do końca czytelny, i wykonuje dodatkowe zdjęcie z zastosowaniem małego, twardego kompresora. Ten „punktowy” ucisk zwiększa lokalną kompresję tylko w obszarze zmiany, co poprawia rozdzielczość przestrzenną, zmniejsza nałożenie się tkanek i redukuje nieostrość ruchową. Dzięki temu lepiej widać np. mikrozwapnienia, małe guzki, zniekształcenia architektoniki. W praktyce technik ustawia pierś tak, aby interesujący fragment znalazł się dokładnie pod małym kompresorem, dociąga go zdecydowanie (ale kontrolując komfort pacjentki) i wykonuje zdjęcie z nieco zmodyfikowanymi parametrami ekspozycji. W wytycznych dotyczących mammografii skriningowej i diagnostycznej (różne programy krajowe i europejskie) właśnie projekcje celowane z kompresją punktową są zalecane jako standardowy krok przy doprecyzowaniu niejasnych zmian widocznych w badaniu podstawowym. Moim zdaniem to jedna z ważniejszych umiejętności praktycznych w pracowni: dobrze „złapać” zmianę pod kompresorem, bo od jakości tego obrazu często zależy, czy radiolog zdecyduje o biopsji, kontroli za 6 miesięcy czy o zakończeniu diagnostyki. Warto też pamiętać, że punktowy ucisk może pomóc odróżnić zmianę rzeczywistą od nałożenia tkanek – jeśli po mocnej kompresji „zmiana” znika lub wyraźnie zmienia kształt, to często mamy do czynienia z artefaktem z sumacji, a nie prawdziwą patologią.

Pytanie 36

Pielografia zstępująca umożliwia diagnostykę

A. pęcherza moczowego po podaniu środka kontrastującego przez cewnik.
B. dróg moczowych po przezskórnym podaniu środka kontrastującego do miedniczki.
C. miąższu nerek po dożylnym podaniu środka kontrastującego.
D. układu naczyniowego po dożylnym podaniu środka kontrastującego.
W tym zadaniu łatwo się pomylić, bo wszystkie odpowiedzi brzmią jak jakieś badanie z kontrastem, ale klucz tkwi w nazwie i drodze podania środka cieniującego. Pielografia zstępująca nie służy do oceny miąższu nerek po dożylnym podaniu kontrastu – to opis bardziej pasujący do urografii dożylnej albo tomografii komputerowej nerek z kontrastem. W tych badaniach interesuje nas wydzielanie kontrastu przez nerki i obraz miąższu, czyli parenchymy, a nie tylko światło dróg moczowych. W pielografii natomiast środek kontrastujący ma wypełnić wnętrze układu kielichowo‑miedniczkowego i moczowodu, żeby było widać ich kształt, zwężenia, zastoje czy uszkodzenia. Kolejne skojarzenie bywa z układem naczyniowym, bo tam też często podaje się kontrast dożylnie. Jednak badania naczyń to już angiografia, flebografia czy angio‑TK, a nie pielografia. W diagnostyce naczyń zupełnie inne są wskazania, technika, a także sposób obrazowania, mimo że też używa się promieniowania jonizującego i kontrastów jodowych. Pomylenie tych pojęć wynika zwykle z tego, że każdy kontrast kojarzy się automatycznie z „żyłą”, co nie jest prawdą – tu kontrast idzie bezpośrednio do układu moczowego. Pojawia się też odpowiedź dotycząca pęcherza moczowego po podaniu kontrastu przez cewnik. To opis cystografii, czyli badania pęcherza moczowego (czasem z oceną cewki). W cystografii wypełnia się pęcherz kontrastem przez cewnik i ocenia jego kształt, ściany, ewentualny refluks pęcherzowo‑moczowodowy. To inne badanie niż pielografia, chociaż też dotyczy układu moczowego. Pielografia zstępująca skupia się na drogach moczowych powyżej pęcherza, głównie na układzie kielichowo‑miedniczkowym i moczowodach, i wymaga przezskórnego dojścia do miedniczki nerkowej. Typowym błędem myślowym jest sprowadzenie wszystkich badań z kontrastem do jednego worka i patrzenie tylko na narząd, a nie na sposób podania środka cieniującego i na dokładną nazwę procedury. W praktyce zawodowej warto zawsze kojarzyć: pielografia – drogi moczowe, cystografia – pęcherz, angiografia – naczynia, a dożylne badania miąższu nerek to już zupełnie inna technika i inne wskazania.

Pytanie 37

Badanie gęstości mineralnej kości metodą DXA należy wykonać

A. z bliższego końca kości udowej.
B. z bliższego końca kości strzałkowej.
C. z dalszego końca kości strzałkowej.
D. z dalszego końca kości udowej.
Prawidłowa odpowiedź „z bliższego końca kości udowej” odnosi się do standardowego miejsca pomiaru gęstości mineralnej kości (BMD) w badaniu DXA w obrębie kończyny dolnej. W praktyce klinicznej za złoty standard uznaje się pomiar w okolicy szyjki kości udowej oraz w obrębie bliższego końca kości udowej, bo to właśnie tam najczęściej dochodzi do złamań osteoporotycznych biodra. Ten rejon zawiera dużo istotnej klinicznie kości beleczkowej, która szybko reaguje na ubytek masy kostnej, leczenie czy zmiany hormonalne. Dzięki temu wynik jest czuły na wczesne zmiany osteoporotyczne i dobrze koreluje z ryzykiem złamania. Z mojego doświadczenia, jeśli ktoś w diagnostyce osteoporozy pamięta tylko dwa miejsca do pomiaru DXA, to powinni to być: bliższy koniec kości udowej (biodro) i odcinek lędźwiowy kręgosłupa. W zaleceniach międzynarodowych (ISCD, IOF) właśnie biodro jest kluczowym obszarem do oceny BMD, szczególnie u osób starszych. Ważne jest też prawidłowe pozycjonowanie: kończyna dolna powinna być ułożona w lekkiej rotacji wewnętrznej, tak aby szyjka kości udowej była dobrze uwidoczniona, a pomiar powtarzalny w kolejnych badaniach kontrolnych. W praktyce technik radiologii zwraca uwagę na ustawienie miednicy, symetrię, brak artefaktów (np. metalowe implanty, zagięte ubranie), bo każdy taki szczegół może zafałszować wynik T-score i Z-score. Warto też wiedzieć, że na podstawie BMD z bliższego końca kości udowej obliczane jest ryzyko złamania w kalkulatorach typu FRAX, co jeszcze bardziej podkreśla wagę tego miejsca pomiaru. Moim zdaniem to jedno z tych pytań, które dobrze utrwalają, że DXA to nie „jakiekolwiek zdjęcie kości”, tylko bardzo ściśle zdefiniowane, powtarzalne pomiary w określonych lokalizacjach anatomicznych.

Pytanie 38

Zgodnie z procedurą wzorcową w badaniu MR należy ułożyć pacjenta na brzuchu do diagnostyki

A. stawu barkowego.
B. gruczołu piersiowego.
C. kręgosłupa szyjnego.
D. jamy brzusznej.
Prawidłowo – w standardowych procedurach obrazowania MR gruczołu piersiowego pacjentkę układa się na brzuchu, czyli w pozycji pronacyjnej. To jest tzw. pozycja na brzuchu z piersiami swobodnie zwisającymi w specjalnych otworach cewki piersiowej. Dzięki temu gruczoł piersiowy nie jest spłaszczony przez ciężar własnego ciała, lepiej się układa i można uzyskać jednorodne wypełnienie kontrastem oraz równomierne pole magnetyczne. Dodatkowo taka pozycja poprawia separację tkanek i zmniejsza artefakty ruchowe związane z oddychaniem. W praktyce technik MR stosuje dedykowaną cewkę piersiową (breast coil), w której piersi są „zawieszone” w polu widzenia, a klatka piersiowa i klatka kostna są podparte. Moim zdaniem to jedno z badań, gdzie pozycjonowanie ma kluczowe znaczenie dla jakości diagnostycznej – źle ułożona pacjentka to potem problem z oceną zmian ogniskowych, naciekania ściany klatki piersiowej czy węzłów chłonnych. W wytycznych dotyczących badań MR piersi (np. EUSOBI, ACR) wyraźnie podkreśla się konieczność stosowania pozycji na brzuchu i wysokopolowego skanera z odpowiednią sekwencją dynamiczną po kontraście. W badaniach kontrolnych po leczeniu oszczędzającym pierś, w ocenie wieloogniskowości raka, a także u pacjentek z implantami silikonowymi, ta pozycja pozwala na lepsze odróżnienie zmienionego nowotworowo miąższu od blizn, zmian zapalnych czy pofałdowanych implantów. Warto też pamiętać, że ułożenie na brzuchu poprawia komfort psychiczny wielu pacjentek, daje poczucie większej intymności i zmniejsza lęk, co przekłada się na mniejszą liczbę ruchów i lepszą jakość obrazów. W diagnostyce jamy brzusznej, barku czy odcinka szyjnego kręgosłupa pozycja standardowa jest inna, dlatego właśnie odpowiedź dotycząca gruczołu piersiowego najlepiej odzwierciedla procedurę wzorcową.

Pytanie 39

Którą strukturę anatomiczną oznaczono na skanie TK głowy?

Ilustracja do pytania
A. Wodociąg mózgu.
B. Komorę boczną.
C. Szyszynkę.
D. Komorę III.
Strzałka na przedstawionym skanie TK wskazuje przestrzeń płynową o charakterystycznym kształcie litery „V” lub odwróconej „Y”, położoną symetrycznie w obrębie półkul mózgowych, tuż przy linii pośrodkowej. To jest typowy obraz komory bocznej – dokładniej jej rogów przednich (czołowych), widocznych w przekroju poprzecznym. W tomografii komputerowej komory wypełnione są płynem mózgowo–rdzeniowym, który w oknie mózgowym ma gęstość zbliżoną do wody i dlatego wygląda na ciemniejszy (hypodensyjny) niż tkanka mózgowa dookoła. W praktyce klinicznej umiejętność szybkiego rozpoznawania komór bocznych jest kluczowa: pozwala ocenić ich szerokość, symetrię, przemieszczenie oraz obecność zastoju płynu. Na podstawie kształtu i wymiarów komór bocznych radiolog ocenia np. wodogłowie, zanik mózgu, masy przemieszcające (guzy, krwiaki) czy skutki urazu. W standardowym opisie badania TK głowy zawsze odnosi się do układu komorowego – czy jest poszerzony, zapadnięty, czy zachowana jest linia pośrodkowa. Z mojego doświadczenia, w praktyce technika obrazowania bardzo pomaga kojarzenie topografii: komory boczne „siedzą” w obrębie półkul, komora III leży bardziej w środku, przy strukturach międzymózgowia, a wodociąg mózgu i komora IV schodzą w dół w kierunku pnia mózgu. Rozpoznanie komory bocznej na takim przekroju jest więc zgodne z klasycznym obrazem anatomicznym i dobrą praktyką opisu badań TK zgodnie z zasadami neuroradiologii.

Pytanie 40

Parametrem krwi, który powinien zostać oznaczony u pacjenta przed wykonaniem badania MR z kontrastem, jest

A. fibrynogen.
B. kreatynina.
C. hemoglobina.
D. bilirubina.
Prawidłowo wskazana została kreatynina. Przy badaniu rezonansu magnetycznego z podaniem kontrastu najważniejsze jest oszacowanie wydolności nerek pacjenta, bo większość stosowanych środków kontrastowych (zwłaszcza gadolinowych) jest wydalana właśnie przez nerki. Standardowo ocenia się stężenie kreatyniny w surowicy i na tej podstawie wylicza się eGFR (szacunkowy współczynnik przesączania kłębuszkowego). To właśnie eGFR mówi nam, czy ryzyko powikłań po kontraście jest akceptowalne. W praktyce, zgodnie z zaleceniami wielu towarzystw radiologicznych, przy eGFR powyżej ok. 30 ml/min/1,73 m² podanie kontrastu gadolinowego jest zazwyczaj uznawane za względnie bezpieczne, oczywiście przy braku innych przeciwwskazań. Przy niższych wartościach planuje się badanie bardzo ostrożnie, czasem rezygnuje się z kontrastu, dobiera się inny środek albo konsultuje z nefrologiem. W pracowni obrazowej wygląda to tak: przed planowanym MR z kontrastem pacjent ma w skierowaniu lub w dokumentacji aktualny wynik kreatyniny. Technik lub pielęgniarka sprawdza datę i wartość, lekarz opisujący albo radiolog kwalifikujący ocenia, czy można bezpiecznie podać kontrast. Moim zdaniem to jest jeden z tych parametrów, które naprawdę warto mieć „w małym palcu”, bo pojawia się non stop przy badaniach TK i MR. Dodatkowo pamiętaj, że oznaczenie kreatyniny jest szybkie, tanie i szeroko dostępne, dlatego weszło do standardu przed wieloma badaniami z kontrastem. To typowy przykład, jak proste badanie laboratoryjne realnie zwiększa bezpieczeństwo procedury obrazowej.