Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 17 grudnia 2025 08:41
  • Data zakończenia: 17 grudnia 2025 08:43

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W dokumentacji powykonawczej nie należy umieszczać

A. warunków gwarancji.
B. protokołów pomiarowych.
C. dowodów zakupu z cenami.
D. certyfikatów użytych materiałów.
Dokumentacja powykonawcza to kluczowy element w każdej budowie czy projekcie technicznym. Jest jak skarb dla każdego inżyniera czy technika, ponieważ zawiera wszystkie istotne informacje o zakończonym projekcie. Dlatego właśnie nie umieszczamy w niej dowodów zakupu z cenami. Dlaczego? Ponieważ dokumentacja powykonawcza ma być przede wszystkim dokumentem technicznym, a nie finansowym. Skupiamy się w niej na aspektach technicznych, takich jak warunki gwarancji, protokoły pomiarowe czy certyfikaty użytych materiałów. Wszystko to jest niezbędne do utrzymania i ewentualnych napraw, ale ceny zakupu nie mają tu większego znaczenia. Ceny mogą się zmieniać, inflacja robi swoje, ale dokumentacja techniczna powinna być zawsze aktualna i zgodna z faktycznym stanem technicznym obiektu. W praktyce, ceny zakupu są ważne na etapie budżetowania i rozliczeń, ale nie w kontekście późniejszej eksploatacji budynku. Moim zdaniem, skupienie się na jakości i technologiach użytych w projekcie ma większe znaczenie i dlatego dowody zakupu z cenami są pomijane.

Pytanie 2

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok timera opóźniającego wyłączenie TOF
B. blok licznika impulsów zliczającego w dół CTD
C. blok licznika impulsów zliczającego w górę CTU
D. blok timera opóźniającego załączenie TON
Blok licznika impulsów zliczającego w dół, oznaczany jako CTD, jest kluczowym elementem w sterownikach PLC, który pozwala na zliczanie wstecz impulsów sterujących. Na wykresie widzimy, że wartość CV (Current Value) zmniejsza się z każdym impulsem, co odpowiada działaniu licznika zliczającego w dół. Tego typu bloki są często używane w aplikacjach przemysłowych, w których ważne jest utrzymanie kontroli nad ilością wykonanych operacji lub zliczaniem komponentów na linii produkcyjnej. Stosując standardy IEC 61131-3, projektanci systemów mogą łatwo zintegrować funkcję licznika w swoich programach, co zapewnia spójność i niezawodność działania. Moim zdaniem, liczniki zliczające w dół są niezastąpione w sytuacjach, gdzie kontrola ilości zasobów czy operacji jest kluczowa. Dzięki nim możemy również realizować bardziej zaawansowane zadania logiczne, jak np. zatrzymywanie procesu po osiągnięciu określonej liczby cykli. Ważnym aspektem jest także możliwość resetowania licznika, co daje dużą elastyczność w zastosowaniach praktycznych.

Pytanie 3

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. ciśnienia.
B. pola magnetycznego.
C. temperatury.
D. naprężeń.
To, co widzisz na zdjęciu, to typowy czujnik pola magnetycznego zwany kontaktronem. Kontaktrony są szeroko stosowane w systemach alarmowych i detekcji otwarcia drzwi czy okien. Działa to na zasadzie zamykania lub otwierania obwodu elektrycznego w obecności pola magnetycznego. W momencie, gdy magnes zbliża się do kontaktronu, jego wewnętrzne styki zbliżają się do siebie, co pozwala na przepływ prądu. To niesamowicie proste, ale skuteczne rozwiązanie. W branży standardem jest stosowanie takich czujników w miejscach, gdzie wymagana jest niezawodność i niskie koszty utrzymania. Kontaktrony są też często stosowane w licznikach energii elektrycznej, gdzie wykrywają nielegalne interwencje z zewnątrz. Moim zdaniem, to genialne, jak coś tak prostego może mieć tak szerokie zastosowanie w technologii i życiu codziennym. Warto też dodać, że kontaktrony są odporne na większość zakłóceń elektromagnetycznych, co czyni je idealnym wyborem w trudnych warunkach przemysłowych.

Pytanie 4

Do przykręcania lub odkręcania nakrętki przedstawionej na rysunku przeznaczony jest klucz

Ilustracja do pytania
A. czołowy.
B. hakowy.
C. imbusowy.
D. nasadowy.
Nakrętka przedstawiona na rysunku to nakrętka rowkowa, do której przykręcania lub odkręcania stosuje się klucz hakowy. Ten typ klucza jest specjalnie zaprojektowany, aby pasować do rowków lub otworów w nakrętce, umożliwiając łatwe manewrowanie nawet w trudno dostępnych miejscach. Klucze hakowe są powszechnie używane w przemyśle maszynowym i motoryzacyjnym, gdzie precyzja i siła są kluczowe. Ich konstrukcja umożliwia równomierne rozłożenie siły, co minimalizuje ryzyko uszkodzenia elementów złącznych. Przy pracy z maszynami, nakrętki rowkowe często są stosowane do mocowania łożysk lub elementów obrotowych, a użycie klucza hakowego zapewnia, że proces ten jest bezpieczny i efektywny. Standardy przemysłowe, takie jak DIN 1810, określają wymiary i specyfikacje dla kluczy hakowych, co jest kluczowe dla utrzymania kompatybilności i bezpieczeństwa w pracy. W praktyce, klucz hakowy to niezastąpione narzędzie w warsztatach i fabrykach, a jego użycie jest często preferowane ze względu na wygodę i niezawodność w trudnych warunkach.

Pytanie 5

Wskaż oznaczenie literowe gwintu metrycznego.

A. S
B. Tr
C. M
D. W
Gwinty metryczne to jedne z najczęściej stosowanych gwintów w przemyśle, zarówno w Polsce, jak i na świecie. Oznacza się je literą 'M', co pochodzi od 'metryczny'. Podstawową cechą gwintu metrycznego jest jego kształt: trójkątny profil z kątem wierzchołkowym 60°, który zapewnia dobre właściwości mechaniczne, takie jak wytrzymałość i trwałość. Gwinty te są normowane według standardu ISO, co ułatwia ich szerokie zastosowanie w produkcji masowej i umożliwia wymienność elementów. Przykładowo, śruby z gwintem metrycznym są używane w motoryzacji, budownictwie czy elektronice, gdzie precyzja i niezawodność są kluczowe. Warto też wspomnieć, że gwinty metryczne mogą być dostępne w różnych podziałkach, takich jak drobnozwojowe czy zwykłe, co pozwala na ich dopasowanie do specyficznych potrzeb projektowych. Dodatkowo, wybór gwintu metrycznego może wpływać na łatwość montażu i demontażu elementów konstrukcyjnych, co jest istotne w kontekście konserwacji i serwisu. Moim zdaniem, znajomość tych systemów jest niezbędna dla każdego inżyniera mechanika czy technika budowlanego, bo to podstawa w pracy z elementami złącznymi.

Pytanie 6

Który z bloków oprogramowania sterowników PLC działa wg diagramu przedstawionego na rysunku?

Ilustracja do pytania
A. Blok przerzutnika asynchronicznego RS z dominującym wejściem S
B. Blok przerzutnika synchronicznego RS z dominującym wejściem S
C. Blok przerzutnika synchronicznego RS z dominującym wejściem R
D. Blok przerzutnika asynchronicznego RS z dominującym wejściem R
Świetnie, że wybrałeś przerzutnik asynchroniczny RS z dominującym wejściem R. To oznacza, że zrozumiałeś, jak działa ten typ przerzutnika. Przerzutniki asynchroniczne działają bez potrzeby sygnału zegarowego, co pozwala na bardziej elastyczne sterowanie. W tym przypadku, wejście R ma priorytet, co oznacza, że gdy jest aktywne, wymusi stan niski na wyjściu Q niezależnie od stanu wejścia S. Jest to kluczowe w aplikacjach, gdzie ważne jest, by móc natychmiastowo zresetować układ, np. w systemach sterowania awaryjnego. W praktyce takie przerzutniki są często stosowane w automatyce przemysłowej, gdzie priorytet resetu zapewnia bezpieczeństwo i stabilność systemu. Z mojego doświadczenia wynika, że znajomość różnic między przerzutnikami synchronicznymi i asynchronicznymi jest fundamentalna dla każdego inżyniera automatyki. Wiedza ta pozwala na bardziej efektywne projektowanie układów logicznych i unikanie potencjalnych błędów w implementacji algorytmów sterowania.

Pytanie 7

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. RS-232
B. USB
C. HDMI
D. RJ-45
To złącze to RS-232, znane również jako port szeregowy. Jest jednym z najstarszych standardów komunikacji szeregowej i choć dziś nie jest już tak popularne jak kiedyś, wciąż znajduje zastosowanie w pewnych niszowych urządzeniach i systemach. RS-232 jest często używane do połączeń między komputerami a urządzeniami peryferyjnymi, takimi jak modemy, drukarki, a nawet niektóre starsze typy myszy komputerowych. Złącza te zazwyczaj mają dziewięć pinów, jak na ilustracji, chociaż istnieją też wersje z 25 pinami. Jego zaletą jest prostota i niezawodność w przesyłaniu danych na krótkie odległości. Standard RS-232 definiuje sygnały elektryczne, poziomy napięcia oraz czasowanie, co gwarantuje zgodność między urządzeniami różnych producentów. Moim zdaniem, mimo że technologia poszła do przodu, RS-232 jest wciąż interesujący ze względu na swoją trwałość i wszechstronność. Jest to doskonały przykład standardu, który przetrwał próbę czasu, głównie dzięki swojej niezawodności w specyficznych zastosowaniach przemysłowych.

Pytanie 8

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. modułu wejściowego.
B. interfejsu komunikacyjnego.
C. zasilacza sterownika PLC.
D. modułu wyjściowego.
Moduł oznaczony jako ADMC-1801 pełni funkcję modułu wejściowego w układzie sterowania z użyciem PLC. Moduły wejściowe są kluczowe w systemach automatyki, ponieważ pozwalają na zbieranie sygnałów z różnych czujników i urządzeń pomiarowych. W tym przypadku, jak widać na schemacie, moduł ten jest wykorzystywany do odbierania sygnału z czujnika PT100, który mierzy temperaturę. PT100 to zresztą standardowy czujnik rezystancyjny, cieszący się dużą popularnością ze względu na swoją dokładność i stabilność pomiarów. Odczyty z tego czujnika są następnie przekształcane przez moduł wejściowy na sygnał zrozumiały dla PLC, co umożliwia dalsze przetwarzanie i odpowiednie sterowanie procesem. Z mojego doświadczenia, użycie odpowiedniego modułu wejściowego jest kluczowe dla zapewnienia dokładności i niezawodności całego systemu sterowania. Dobre praktyki branżowe sugerują również regularne kalibrowanie takich czujników i modułów, aby utrzymać najwyższy poziom precyzji. Takie podejście zapewnia, że system działa zgodnie z założeniami projektowymi, a ewentualne odchylenia są szybko wychwytywane i korygowane.

Pytanie 9

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 10 mm
B. 60 mm
C. 30 mm
D. 20 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Długość krawędzi X wynosi 20 mm. Widać to, gdy dokładnie przeanalizuje się wymiary całego rysunku – całość ma szerokość 70 mm, a fragment poziomy poniżej linii oznaczonej X ma wymiary 30 mm (od środka do prawej krawędzi) i 20 mm (po lewej stronie odcięcie ukośne). Oznacza to, że pozostaje odcinek 70 − 30 − 20 = 20 mm, czyli właśnie wartość X. Takie zadania bardzo dobrze uczą logicznego myślenia i analizy rysunku technicznego – trzeba czytać wymiary nie tylko tam, gdzie są podane, ale też szukać ich pośrednio przez różnice. W praktyce warsztatowej (np. w obróbce skrawaniem lub przy cięciu blach) takie proste obliczenia robi się niemal automatycznie. Moim zdaniem warto zawsze pamiętać o zasadzie: jeśli czegoś nie ma wprost wymiarowanego, to da się to wyliczyć z układu pozostałych wymiarów. W dokumentacji technicznej stosuje się wymiarowanie łańcuchowe lub współrzędne – tu mamy przykład łańcuchowego, więc każde przesunięcie w poziomie można łatwo zsumować lub odjąć. To niby drobny szczegół, ale takie rzeczy robią różnicę przy czytaniu rysunku jak zawodowiec.

Pytanie 10

Którą funkcję logiczną realizuje program zapisany w pamięci sterownika PLC przedstawiony na rysunku?

Ilustracja do pytania
A. XOR
B. OR
C. NAND
D. NOR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Program przedstawiony na rysunku realizuje funkcję logiczną NOR, co jest skrótem od „NOT OR”. W logice oznacza to, że wyjście będzie aktywne tylko wtedy, gdy wszystkie wejścia są nieaktywne. W przypadku sterowników PLC, funkcja NOR jest często używana w sytuacjach, gdy chcemy, aby określone wyjście działało tylko wtedy, gdy żaden z czujników lub przełączników nie jest aktywowany. Na rysunku widzimy dwie szeregowo połączone cewki, co oznacza, że wyjście zostanie aktywowane tylko wtedy, gdy oba wejścia są w stanie niskim (czyli logiczne 0). To typowe w aplikacjach bezpieczeństwa, gdzie z różnych powodów potrzebujemy gwarancji, że coś się nie wydarzy, dopóki wszystkie warunki nie są spełnione. Moim zdaniem, zastosowanie funkcji NOR jest niezwykle praktyczne, szczególnie w automatyce przemysłowej, gdzie niezawodność jest kluczowa. Warto pamiętać, że użycie tej funkcji jest zgodne z normami IEC dotyczących projektowania systemów sterowania, co gwarantuje wysoką jakość i bezpieczeństwo działania systemu.

Pytanie 11

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Obiektowy separator napięć 24 V DC
B. Zasilacz 230 V AC / 24 V DC
C. Przetwornica napięcia 2x24 V DC / 230 V AC
D. Przetwornica akumulatorowa 2x24 V / 230 V AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zasilacz 230 V AC / 24 V DC to urządzenie, które zamienia prąd zmienny o napięciu 230 V na prąd stały o napięciu 24 V. Jest to niezwykle przydatne w wielu aplikacjach przemysłowych, gdzie potrzeba zasilania urządzeń elektronicznych i sterowników, które działają na niskim napięciu stałym. Zasilacze tego typu są wykorzystywane w automatyce przemysłowej, systemach kontroli oraz w instalacjach, gdzie wymagana jest stabilność i niezawodność zasilania. Standardem w branży jest zapewnienie, że zasilacz posiada odpowiednie zabezpieczenia przed przeciążeniem, przegrzaniem i zwarciem, co zwiększa bezpieczeństwo użytkowania. Warto zauważyć, że takie zasilacze często wyposażone są w różne tryby pracy, jak np. Hiccup Mode, który automatycznie resetuje zasilanie w przypadku awarii, co jest zgodne z dobrymi praktykami zapewniającymi ciągłość pracy systemów. Moim zdaniem, zrozumienie funkcji i konstrukcji zasilaczy to podstawa dla każdego technika zajmującego się elektroniką i automatyzacją, bo często to właśnie od nich zależy bezawaryjność całego systemu.

Pytanie 12

W jakiej kolejności powinno się wykonać czynności związane z wymianą termostatu w zbiorniku ciepłej wody?

  1. Odłączyć zasilanie.
  2. Odłączyć przewody od termostatu.
  3. Zdemontować termostat uszkodzony.
  4. Zamontować nowy termostat.
  5. Dołączyć przewody do termostatu.
  6. Załączyć zasilanie.
  1. Odłączyć przewody od termostatu.
  2. Odłączyć zasilanie.
  3. Zdemontować termostat uszkodzony.
  4. Zamontować nowy termostat.
  5. Dołączyć przewody do termostatu.
  6. Załączyć zasilanie.
Lista 1.Lista 2.
  1. Odłączyć zasilanie.
  2. Odłączyć przewody od termostatu.
  3. Zdemontować termostat uszkodzony.
  4. Zamontować nowy termostat.
  5. Załączyć zasilanie.
  6. Dołączyć przewody do termostatu.
  1. Odłączyć zasilanie.
  2. Zdemontować termostat uszkodzony.
  3. Zamontować nowy termostat.
  4. Dołączyć przewody do termostatu.
  5. Odłączyć przewody od termostatu.
  6. Załączyć zasilanie.
Lista 3.Lista 4.
A. Według listy 4.
B. Według listy 1.
C. Według listy 3.
D. Według listy 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrałeś poprawną kolejność czynności związaną z wymianą termostatu w zbiorniku ciepłej wody. Zacznijmy od początku: odłączanie zasilania to kluczowy pierwszy krok, żeby zapewnić bezpieczeństwo pracy. Prąd jest niebezpieczny, więc zawsze warto sprawdzić, czy zasilanie jest faktycznie odłączone. Następnie odłączamy przewody od starego termostatu, co umożliwia jego bezpieczne zdemontowanie. Kiedy już usuniemy uszkodzony termostat, przystępujemy do montażu nowego. Każdy nowy element mechaniczny musi być prawidłowo zamontowany, aby działał zgodnie z zamierzeniem. Potem podłączamy przewody do nowego termostatu, upewniając się, że są mocno osadzone. Na końcu załączamy zasilanie i sprawdzamy, czy wszystko działa poprawnie. Taka kolejność działań wynika z dobrych praktyk branżowych, które kładą nacisk na bezpieczeństwo i efektywność. Moim zdaniem, zawsze warto kierować się tymi zasadami, aby uniknąć problemów i zapewnić sobie spokój ducha podczas pracy z urządzeniami elektrycznymi.

Pytanie 13

Na rysunku przedstawiono diagram działania jednego z bloków funkcyjnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. licznika impulsów zliczającego w górę CTU.
B. timera opóźniającego wyłączenie TOF.
C. timera opóźniającego załączenie TON.
D. licznika impulsów zliczającego w dół CTD.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Blok przedstawiony na rysunku to licznik impulsów zliczający w dół, znany jako CTD. Działa on w ten sposób, że na każde zbocze opadające sygnału zegarowego (CD), wartość rzeczywista (CV) licznika zmniejsza się o jeden. Kiedy licznik osiąga wartość zero, wyjście Q zmienia stan, co sygnalizuje osiągnięcie zadanej liczby impulsów. To powszechnie stosowane narzędzie w automatyzacji, szczególnie przy kontrolowaniu sekwencji procesów produkcyjnych. Użycie CTD jest popularne w aplikacjach, gdzie potrzebne jest ścisłe zliczanie elementów, np. w liniach montażowych. Warto pamiętać, że w praktyce liczniki mogą być resetowane za pomocą sygnału RST, co przywraca je do stanu początkowego, umożliwiając rozpoczęcie nowego cyklu zliczania. Liczniki tego typu są nieocenione w systemach, gdzie precyzyjne kontrolowanie ilości jest kluczowe, np. przy pakowaniu produktów. Moim zdaniem, znajomość obsługi takich liczników to podstawa dla każdego inżyniera automatyka, gdyż umożliwia projektowanie skutecznych i niezawodnych systemów sterowania procesem.

Pytanie 14

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. PNP NO
B. NPN NO
C. NPN NC
D. PNP NC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gratulacje, wybrałeś poprawną odpowiedź! Czujnik przedstawiony na schemacie to czujnik z wyjściem typu NPN NC. Oznacza to, że w stanie normalnie zamkniętym (NC), czujnik przewodzi prąd w stanie spoczynkowym. Wyjście NPN oznacza, że czujnik łączy wyjście do masy (0 V) po zmianie stanu. W praktyce takie czujniki często stosuje się w aplikacjach przemysłowych, gdzie ważne jest, aby układ informował o obecności obiektu nawet w sytuacji awarii zasilania - stąd konfiguracja NC. Czujniki NPN są popularne w systemach, gdzie kontroler PLC odbiera sygnały względem masy. Stosowanie NPN w systemach automatyki przemysłowej jest zgodne z wieloma normami i standardami, co czyni je powszechnym wyborem wśród inżynierów. Warto zwrócić uwagę na to, że dobór odpowiedniego typu wyjścia czujnika zależy od konkretnej aplikacji i wymagań systemu, więc warto znać różnice między NPN a PNP oraz między NO a NC.

Pytanie 15

Na podstawie zamieszczonych w tabeli parametrów technicznych enkodera wskaż wartość napięcia zasilania, pozwalającą na jego prawidłową pracę.

Wybrane parametry techniczne enkodera
Zasilanie5 V DC ±10 %
Pobór prądu≤ 60 mA
Prędkość obrotowa10 000 rpm
Rozdzielczość5 ÷ 6000 imp./obr
Temperatura pracy-25 ÷ +100°C
Średnica osiØ10 mm
Średnica obudowyØ58 mm
A. 15,0 V DC
B. 5,4 V DC
C. 10,0 V DC
D. 4,4 V DC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 5,4 V DC i już tłumaczę dlaczego. Mamy w tabeli podane, że enkoder wymaga napięcia zasilania 5 V DC ±10%. Co to oznacza w praktyce? Oznacza to, że urządzenie może poprawnie pracować w zakresie napięcia od 4,5 V do 5,5 V. Odpowiedź 5,4 V DC mieści się w tym zakresie, więc jest prawidłowa. To ważne, ponieważ nieprawidłowe napięcie zasilania może prowadzić do niepoprawnej pracy enkodera lub nawet jego uszkodzenia. W praktyce, w zastosowaniach przemysłowych, zawsze należy trzymać się specyfikacji producenta, aby zapewnić nie tylko poprawną, ale i długotrwałą pracę urządzenia. Często w systemach automatyki mamy do czynienia z różnymi napięciami zasilania, dlatego tak ważne jest, by trzymać się wskazanych wartości. Moim zdaniem, dobrze jest też zaznajomić się z pojęciem tolerancji napięcia, które jest kluczowe przy doborze zasilania dla urządzeń elektronicznych. Świadomość tego, jak napięcie wpływa na działanie enkodera, może zapobiec wielu problemom w przyszłości.

Pytanie 16

Do demontażu przyłącza przedstawionego na rysunku należy użyć

Ilustracja do pytania
A. klucza imbusowego.
B. wkrętaka krzyżowego.
C. klucza płaskiego.
D. wkrętaka płaskiego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to klucz płaski. Na zdjęciu widać typowe przyłącze pneumatyczne z gwintem zewnętrznym i sześciokątną częścią korpusu, które umożliwia jego montaż lub demontaż za pomocą klucza płaskiego lub oczkowego. Ten kształt sześciokąta jest właśnie po to, by narzędzie dobrze przylegało do powierzchni i nie uszkodziło gwintu ani obudowy. W praktyce technicznej, szczególnie w pneumatyce i hydraulice, takie złącza występują w dużych ilościach, np. przy siłownikach, rozdzielaczach i przewodach ciśnieniowych. Klucz płaski pozwala uzyskać odpowiedni moment dokręcenia bez ryzyka zniszczenia gniazda, co bywa problemem przy użyciu kombinerek czy wkrętaków. Moim zdaniem warto pamiętać, by zawsze dobrać właściwy rozmiar klucza (np. 12 mm, 14 mm), a przed demontażem odłączyć źródło sprężonego powietrza – to drobiazg, ale często pomijany w warsztacie. Dobrą praktyką jest też użycie niewielkiej ilości taśmy teflonowej przy ponownym montażu, żeby zapewnić szczelność połączenia.

Pytanie 17

Wartość temperatury wskazana przez termometr przedstawiony na rysunku wynosi

Ilustracja do pytania
A. 19°C
B. 9°C
C. 18°C
D. 8°C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowo: 18°C. Na termometrze cieczowym odczyt wykonuje się na wysokości górnej krawędzi menisku słupa cieczy (rtęci lub alkoholu). Skala bywa opisana co 10°C grubszymi kreskami (np. 10, 20), a pomiędzy nimi znajdują się równomierne podziałki drobne. Jeśli między 10 a 20 widzisz 10 równych kresek, to każda odpowiada 1°C; jeśli jest ich 5 – to 2°C. Menisk w rysunku zatrzymuje się dokładnie przy znaku odpowiadającym 18°C – poniżej 20, wyraźnie powyżej 17, bez „zawieszenia” na 19. Dobra praktyka pomiarowa (WMO/ISO 7726) zaleca odczyt w osi wzroku, bez kąta, żeby uniknąć błędu paralaksy, oraz podanie wyniku z rozdzielczością równą najmniejszej działce. W technice HVAC i automatyce od 18°C startuje często nastawa komfortu nocnego; w chłodnictwie domowym 18°C to już poza zakresem bezpiecznego przechowywania żywności, co ma znaczenie szkoleniowe. Moim zdaniem warto nawykowo sprawdzać: etykiety liczby (10, 20, 30…), liczbę działek pośrednich i pozycję menisku. I drobiazg, ale ważny: nie dotykamy palcami zbiorniczka podczas odczytu – można podgrzać i przekłamać wynik. W laboratoriach stosuje się też korektę na rozszerzalność szkła i cieczy, ale w szkolnym odczycie wystarczy rzetelne policzenie działek i proste oko, serio.

Pytanie 18

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. kolejność podłączeń elementów wejściowych do sterownika.
B. kolejność podłączeń elementów wyjściowych do sterownika.
C. położenie przełącznika trybu pracy sterownika PLC.
D. prawidłowość podłączeń przewodów ochronnych w układzie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie prawidłowości podłączeń przewodów ochronnych w układzie jest kluczowe dla zapewnienia bezpieczeństwa każdego systemu elektrycznego, w tym układów z sterownikami PLC. Przewody ochronne są częścią systemu zabezpieczającego przed porażeniem prądem elektrycznym. Ich głównym zadaniem jest odprowadzenie potencjalnie niebezpiecznego prądu do ziemi, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce oznacza to, że w przypadku wystąpienia awarii, np. przebicia izolacji przewodu fazowego, wszelkie niebezpieczne napięcia są natychmiastowo sprowadzone do ziemi. Z tego powodu, przed uruchomieniem układu regulacji opartego na PLC, ważne jest, aby upewnić się, że przewody ochronne są prawidłowo podłączone. Standardy branżowe, takie jak normy IEC czy EN, podkreślają wagę prawidłowego uziemienia i ochrony przed porażeniem. Moim zdaniem, ignorowanie tego kroku to jak chodzenie po linie bez siatki bezpieczeństwa. Pamiętajmy, że w dziedzinie elektryki bezpieczeństwo zawsze powinno być na pierwszym miejscu.

Pytanie 19

Który z czujników należy zastosować przy wytłaczarce, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz zmiany temperatury od 0 do +90 °C?

Ilustracja do pytania
A. Czujnik 2.
B. Czujnik 1.
C. Czujnik 3.
D. Czujnik 4.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik 2 jest idealnym wyborem do wytłaczarki, ponieważ spełnia kluczowe wymogi dotyczące zakresu pracy i temperatury. Zasięg działania tego czujnika wynosi od 0 do 1,6 mm, co doskonale pokrywa wymagany zakres 0,8 ÷ 0,9 mm. To ważne, aby czujnik mógł precyzyjnie wykrywać zmiany w tej specyficznej odległości, zapewniając optymalne działanie maszyny. Dodatkowo, czujnik ten działa w zakresie temperatur od -20 do +110°C, co w pełni obejmuje wymagany zakres 0 do +90°C. Dzięki temu niezawodnie funkcjonuje w różnych warunkach pracy, co jest kluczowe w dynamicznym środowisku przemysłowym. Warto zauważyć, że czujnik ten ma obudowę IP67, co zapewnia dobrą odporność na pył i wodę, co jest często nieuniknione w środowisku produkcyjnym. W praktyce oznacza to, że czujnik ten jest odporny na trudne warunki pracy, co zwiększa jego trwałość i niezawodność. W branży stosowanie czujników o odpowiednich parametrach jest kluczowe, aby uniknąć przestojów i nieplanowanych napraw, które mogą być kosztowne.

Pytanie 20

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. NOR
B. OR
C. Ex-OR
D. Ex-NOR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Funkcja Ex-OR, znana także jako XOR, jest jedną z podstawowych operacji logicznych wykorzystywanych w systemach cyfrowych i automatyce. Charakteryzuje się tym, że zwraca wartość prawdziwą tylko wtedy, gdy dokładnie jedno z wejść jest prawdziwe. W kontekście drabinki logicznej przedstawionej na rysunku, widzimy, że układ realizuje sumę logiczną wykluczającej lub (o czym świadczy połączenie szeregowe i równoległe styczników). Praktycznie, Ex-OR jest szeroko stosowany w aplikacjach, gdzie istotne jest wykrycie różnicy pomiędzy sygnałami, np. w układach zabezpieczeń, gdzie różne stany wejściowe mogą odpowiadać za różne tryby pracy. W standardach automatyki przemysłowej, takich jak IEC 61131, Ex-OR jest często używany do realizacji zaawansowanych funkcji kontrolnych. Moim zdaniem, zrozumienie tej funkcji jest kluczowe dla każdego automatyka, ponieważ pozwala na projektowanie elastycznych i funkcjonalnych systemów sterowania.

Pytanie 21

Która ilustracja przedstawia zawór szybkiego spustu?

A. Ilustracja 4
Ilustracja do odpowiedzi A
B. Ilustracja 3
Ilustracja do odpowiedzi B
C. Ilustracja 2
Ilustracja do odpowiedzi C
D. Ilustracja 1
Ilustracja do odpowiedzi D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na zdjęciu numer 1 przedstawiono zawór szybkiego spustu. Jest to element stosowany w układach pneumatycznych do szybkiego opróżniania przewodów lub komór siłowników po zakończeniu cyklu pracy. Działa on w ten sposób, że po zaniku sygnału sterującego powietrze robocze zostaje natychmiast odprowadzone do atmosfery przez otwarty kanał zaworu, zamiast cofać się przez cały układ. W praktyce pozwala to skrócić czas powrotu tłoka i zwiększyć dynamikę działania systemu. Zawory te mają kompaktową budowę, najczęściej z gwintowanymi przyłączami i symbolem kierunku przepływu wytłoczonym na obudowie. Moim zdaniem to jeden z kluczowych elementów w automatyce pneumatycznej, bo wpływa bezpośrednio na wydajność układu. Stosuje się je m.in. w siłownikach dwustronnego działania, gdzie szybki spust umożliwia błyskawiczne odpowietrzenie komory powrotnej. Typowa konstrukcja zaworu szybkiego spustu wykorzystuje membranę lub kulkę, która reaguje na spadek ciśnienia po stronie sterującej. W instalacjach przemysłowych montuje się go bezpośrednio przy siłowniku, aby maksymalnie skrócić drogę odprowadzania powietrza.

Pytanie 22

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4 ÷ 20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. rezystancyjne metalowe.
B. rezystancyjne półprzewodnikowe.
C. termoelektryczne.
D. bimetalowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujniki Pt100 to jedne z najpopularniejszych elementów do pomiaru temperatury w systemach automatyki. Są to czujniki rezystancyjne metalowe, co oznacza, że ich działanie opiera się na zjawisku zmiany rezystancji metalu wraz ze zmianą temperatury. W przypadku Pt100, materiałem czujnika jest platyna, co zapewnia wysoką stabilność i liniowość pomiarów. Stąd nazwa Pt (od platyny) i 100 (rezystancja wynosząca 100 omów w temperaturze 0°C). Przetworniki z sygnałem wyjściowym 4 ÷ 20 mA są standardem przemysłowym, pozwalającym na przesyłanie danych z czujnika do systemu sterującego na duże odległości, przy minimalnych zakłóceniach. Z mojego doświadczenia, takie połączenie daje wysoką dokładność i niezawodność w różnych aplikacjach, od przemysłu spożywczego po energetykę. Przy projektowaniu systemów warto zwrócić uwagę na kalibrację czujników i kompatybilność z używanymi przetwornikami, co może znacznie zwiększyć efektywność i dokładność pomiarów. Warto też pamiętać, że czujniki Pt100 są szeroko stosowane, co ułatwia serwis i dostępność części zamiennych.

Pytanie 23

Do mocowania elementów przy wykorzystaniu wkrętów o wyglądzie przedstawionym na ilustracji trzeba użyć

Ilustracja do pytania
A. kluczy oczkowych.
B. wkrętaków płaskich.
C. kluczy imbusowych.
D. wkrętaków krzyżowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wkrętaka krzyżowego do tego rodzaju wkrętów jest absolutnie właściwy. Wkręty z łbem krzyżowym, często oznaczane jako Phillips, są zaprojektowane tak, by zapewniać pewne mocowanie bez ryzyka wyślizgnięcia się narzędzia. Konstrukcja krzyża w łbie wkrętu umożliwia lepszą dystrybucję siły, co przekłada się na bardziej efektywne wkręcanie. Dzięki temu nie tylko łatwiej jest uzyskać odpowiedni moment dokręcania, ale także zmniejsza się ryzyko uszkodzenia samego wkrętu. W codziennej praktyce, takie wkręty są używane w wielu dziedzinach, od montażu mebli po skomplikowane konstrukcje elektroniczne. Korzystanie z wkrętaka krzyżowego jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie właściwego dopasowania narzędzia do elementu złącznego. Jest to kluczowe nie tylko dla trwałości samego połączenia, ale także dla bezpieczeństwa użytkowania danego produktu. Obecnie, na rynku dostępne są wkrętaki krzyżowe o różnych rozmiarach, co pozwala na precyzyjne dopasowanie narzędzia do konkretnego wkrętu, co jest nieocenione w profesjonalnych zastosowaniach.

Pytanie 24

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 1, I3 = 0
B. I2 = 1, I3 = 1
C. I2 = 0, I3 = 1
D. I2 = 0, I3 = 0

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź I2 = 1, I3 = 0 jest prawidłowa, ponieważ obrazuje stan, w którym tłoczysko jest wsunięte i czujnik B1 jest aktywowany. W praktyce, gdy tłoczysko siłownika znajduje się w pozycji wsuniętej, czujnik krańcowy B1 jest włączony, co powoduje logiczny '1' na wejściu I2 sterownika PLC. Czujnik B2, natomiast, odpowiada za pozycję wysuniętą i pozostaje w stanie nieaktywnym, więc I3 jest równe '0'. Taki stan logiczny umożliwia sterowanie sekwencją cyklu pracy siłownika w zautomatyzowanych układach. Moim zdaniem, to jedno z kluczowych zastosowań PLC w przemyśle, gdzie precyzyjne sterowanie pozycją elementów ruchomych jest niezbędne. Zgodnie z dobrymi praktykami, zawsze należy upewnić się, że wszystkie czujniki są poprawnie skalibrowane i umieszczone, aby zapewnić bezawaryjne działanie systemu.

Pytanie 25

Element zabezpieczający silnik, zaznaczony na schemacie linią przerywaną, jest wyzwalany

Ilustracja do pytania
A. nadnapięciowo.
B. podprądowo.
C. ciśnieniowo.
D. cieplnie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Element zabezpieczający, który jest wyzwalany cieplnie, to najczęściej wyłącznik termiczny lub przekaźnik termiczny. Tego typu zabezpieczenia stosuje się przede wszystkim w obwodach silników elektrycznych, aby chronić je przed przegrzaniem. Dlaczego to takie ważne? Silniki elektryczne, zwłaszcza te pracujące w trudnych warunkach, mogą się przegrzewać z powodu przeciążenia lub zablokowania. Przekaźnik termiczny działa na zasadzie wydłużania się elementów bimetalicznych pod wpływem ciepła, co po przekroczeniu określonej temperatury przerywa obwód. To proste, ale bardzo skuteczne rozwiązanie. Standardy branżowe, na przykład normy IEC, zalecają stosowanie takich zabezpieczeń, aby zapewnić długowieczność maszyn i bezpieczeństwo pracy. Praktyczne zastosowanie? Wyobraź sobie, że masz silnik w fabryce, który napędza taśmociąg. Jeśli coś utknie na taśmie, silnik zaczyna pracować ciężej, co prowadzi do wzrostu temperatury. Dzięki przekaźnikowi termicznemu obwód zostaje przerwany, zanim dojdzie do uszkodzenia.

Pytanie 26

W sterowniku PLC wejścia cyfrowe oznaczane są symbolem literowym

A. AQ
B. Q
C. I
D. AI

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W sterownikach PLC wejścia cyfrowe oznaczane są symbolem literowym 'I'. To skrót od angielskiego słowa 'Input', co dosłownie oznacza wejście. Wejścia te są integralną częścią systemu PLC, ponieważ umożliwiają odbieranie sygnałów z różnych czujników i urządzeń zewnętrznych. Przykładami takich czujników mogą być przyciski, czujniki fotoelektryczne czy wyłączniki krańcowe. Dzięki temu sterownik PLC może reagować na zmienne warunki pracy i odpowiednio sterować wyjściami, takimi jak siłowniki czy lampy. Standardy przemysłowe, takie jak IEC 61131-3, od lat utrzymują jednolitość w oznaczaniu elementów systemów automatyki, co ułatwia inżynierom zrozumienie i konserwację systemów bez względu na producenta sterownika. Wejścia cyfrowe są kluczowe w systemach, gdzie potrzebna jest szybka reakcja na zmiany w otoczeniu, a ich właściwe oznaczenie umożliwia precyzyjne projektowanie i programowanie aplikacji przemysłowych. Dobre zrozumienie oznaczeń w PLC jest podstawą efektywnego projektowania systemów automatyki, co w praktyce przekłada się na zwiększenie wydajności i niezawodności procesów produkcyjnych.

Pytanie 27

Wskaż, które przebiegi kombinacyjne odpowiadają realizacji funkcji AND.

A. Przebiegi 3
Ilustracja do odpowiedzi A
B. Przebiegi 2
Ilustracja do odpowiedzi B
C. Przebiegi 1
Ilustracja do odpowiedzi C
D. Przebiegi 4
Ilustracja do odpowiedzi D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawny jest przebieg numer 2, ponieważ dokładnie odpowiada realizacji funkcji logicznej AND (koniunkcji). Dla bramek AND sygnał wyjściowy (tu: %Q0.3) przyjmuje stan wysoki tylko wtedy, gdy oba sygnały wejściowe (%I0.0 oraz %I0.7) są jednocześnie w stanie logicznym 1. W przebiegu drugim widać, że %Q0.3 jest wysoki tylko w tych przedziałach czasu, w których obydwa wejścia mają wartość 1 – w pozostałych momentach spada do zera. To idealnie odwzorowuje działanie koniunkcji binarnej, gdzie 1 AND 1 = 1, a każda inna kombinacja daje 0. W praktyce automatyki przemysłowej taki sygnał spotyka się np. w sytuacji, gdy maszyna uruchamia się tylko wtedy, gdy włączony jest główny wyłącznik oraz potwierdzenie bezpieczeństwa. Moim zdaniem warto zapamiętać, że dla bramki AND charakterystyczne jest występowanie krótkich impulsów wyjściowych tylko wtedy, gdy oba sygnały wejściowe się pokrywają – to często widać na oscyloskopie w testach PLC.

Pytanie 28

Do pomiaru wilgotności powietrza stosuje się

A. manometr.
B. barometr.
C. termometr.
D. higrometr.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Higrometr to urządzenie, które jest niezastąpione w wielu dziedzinach technicznych i naukowych. Dzięki niemu możemy precyzyjnie zmierzyć wilgotność powietrza, co ma kluczowe znaczenie w różnych branżach. Na przykład, w przemyśle tekstylnym wilgotność wpływa na właściwości materiałów, a w elektronicznym na funkcjonowanie urządzeń. W rolnictwie kontrola wilgotności jest istotna dla zdrowia roślin i plonów. Warto też wiedzieć, że higrometry mogą działać na różne sposoby, np. wykorzystując włosie, które zmienia długość pod wpływem wilgoci, czy też za pomocą technologii elektronicznej, jak czujniki pojemnościowe. Z mojego doświadczenia, w laboratoriach często spotyka się higrometry psychrometryczne, które używają dwóch termometrów - suchego i mokrego. W praktyce, dobrze skalibrowany higrometr to podstawa w miejscach, gdzie warunki atmosferyczne mogą wpływać na procesy produkcyjne czy zdrowie pracowników. Dlatego w wielu normach ISO znajdziemy wytyczne dotyczące precyzyjnego pomiaru wilgotności, co podkreśla znaczenie tego urządzenia w utrzymaniu jakości i bezpieczeństwa.

Pytanie 29

Na schemacie zespołu przygotowania powietrza symbol graficzny manometru oznaczono cyfrą

Ilustracja do pytania
A. 4
B. 2
C. 3
D. 1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ na schemacie zespołu przygotowania powietrza, manometr jest oznaczony cyfrą 2. Manometr to instrument pomiarowy służący do mierzenia ciśnienia płynów i gazów. W przypadku systemów pneumatycznych, takich jak zespoły przygotowania powietrza, manometry pełnią kluczową rolę w monitorowaniu ciśnienia roboczego, co jest niezbędne do prawidłowego działania całego układu. Poprawne odczytywanie i interpretacja danych z manometru pozwala na szybkie reagowanie na wszelkie odchylenia od normy, co może zapobiec awariom i zwiększyć efektywność systemu. Standardy w branży pneumatycznej, takie jak ISO 1219, precyzują oznaczanie urządzeń na schematach, co ułatwia identyfikację i obsługę. Moim zdaniem, umiejętność czytania takich schematów jest fundamentalna dla każdego technika pracującego w dziedzinie automatyki i pneumatyki. Dobrze jest także znać różne typy manometrów, jak te z rurką Bourdona, które są popularne ze względu na swoją niezawodność i precyzję.

Pytanie 30

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. ultradźwiękowy.
B. indukcyjny.
C. magnetyczny.
D. pojemnościowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świetny wybór! Czujnik magnetyczny to idealne rozwiązanie do sygnalizacji położenia tłoka w siłownikach pneumatycznych. Tłok w siłowniku często jest wyposażony w magnes, co pozwala na bezdotykowe wykrywanie jego położenia za pomocą czujników magnetycznych. Jest to niezawodne i ekonomiczne podejście. W praktyce czujniki te są montowane na zewnątrz korpusu siłownika i są w stanie dokładnie zlokalizować położenie tłoka w różnych punktach jego drogi. Rozwiązanie to jest powszechnie stosowane w automatyce przemysłowej, gdzie precyzyjne sterowanie położeniem jest kluczowe. Czujniki magnetyczne są odporne na warunki środowiskowe i działają skutecznie nawet w obecności zanieczyszczeń czy wilgoci, co czyni je niezastąpionymi w trudnych warunkach pracy. Dodatkowo, takie czujniki często mają regulowaną czułość i zasięg, co umożliwia ich adaptację do różnych zastosowań. Warto dodać, że w branży stosowanie czujników magnetycznych jest standardem ze względu na ich trwałość i niskie koszty eksploatacji.

Pytanie 31

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. transformator.
B. silnik prądu zmiennego.
C. dławik.
D. silnik prądu stałego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na zdjęciu widać silnik synchroniczny zasilany prądem zmiennym (AC). Urządzenie opisane jest parametrami: 110 V, 50 Hz, 250 RPM, co jednoznacznie wskazuje, że pracuje w sieci prądu przemiennego o częstotliwości 50 Hz. Silniki tego typu utrzymują stałą prędkość obrotową, zsynchronizowaną z częstotliwością napięcia zasilającego – stąd nazwa „synchroniczny”. W praktyce stosuje się je tam, gdzie wymagana jest precyzyjna i powtarzalna prędkość: w zegarach, napędach urządzeń pomiarowych, gramofonach, a nawet w automatyce przemysłowej do sterowania zaworami. W odróżnieniu od silników prądu stałego nie posiadają komutatora ani szczotek, dzięki czemu są bardziej trwałe i ciche w pracy. Moim zdaniem warto zwrócić uwagę, że na obudowie producent podał zarówno napięcie, jak i częstotliwość – to klasyczny znak, że mamy do czynienia z urządzeniem AC. Silnik synchroniczny pracuje stabilnie dopóki częstotliwość sieci jest stała, dlatego często wykorzystuje się go jako napęd, który nie wymaga dodatkowej regulacji obrotów.

Pytanie 32

Urządzenie 1-fazowe jest oznaczone symbolem. W celu podłączenia do sieci niezbędne będzie podpięcie do niego przewodów

Ilustracja do pytania
A. N, PE
B. L, N
C. L, N, PE
D. L, PE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź z przewodami L i N jest prawidłowa, ponieważ urządzenie 1-fazowe wymaga podłączenia do źródła zasilania obejmującego przewód fazowy (L) oraz neutralny (N). Symbol, który widzisz, to oznaczenie podwójnej izolacji, co oznacza, że urządzenie nie wymaga podłączenia przewodu ochronnego (PE). Dzięki temu, masz pewność, że urządzenie jest bezpieczne do użytku bez podłączenia do ziemi. Według standardów, takie urządzenia są konstruowane w taki sposób, by zapewnić ochronę nawet w przypadku awarii izolacji podstawowej. Praktyczne zastosowanie tego znajdziesz w wielu urządzeniach domowych, takich jak suszarki czy golarki elektryczne, które często korzystają z podwójnej izolacji. Takie rozwiązanie jest zgodne z normami IEC i jest szeroko stosowane w branży. Warto pamiętać, że podłączenie tylko przewodów L i N jest standardem w przypadku urządzeń o podwójnej izolacji, a ignorowanie tego mogłoby prowadzić do błędów w instalacji elektrycznej.

Pytanie 33

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. Ex-NOR
B. NOR
C. OR
D. Ex-OR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Funkcja Ex-OR, czyli exclusive OR, jest jedną z podstawowych funkcji logicznych używanych w automatyce i elektronice. To, co jest charakterystyczne dla Ex-OR, to jej zdolność do wykrywania różnic między dwoma sygnałami wejściowymi. W praktyce oznacza to, że wyjście będzie aktywne (czyli w stanie wysokim) tylko wtedy, gdy jeden z sygnałów wejściowych jest w stanie wysokim, a drugi w niskim. Taki mechanizm znajduje szerokie zastosowanie w systemach cyfrowych, gdzie konieczne jest porównywanie dwóch sygnałów lub wartości binarnych. W programowalnych sterownikach logicznych (PLC) Ex-OR używa się często do celów diagnostycznych, np. do wykrywania błędów w przesyłanych danych. W standardach przemysłowych, takich jak IEC 61131-3, Ex-OR jest jedną z kluczowych funkcji logicznych, które programiści muszą znać. Z mojego doświadczenia wynika, że opanowanie tej funkcji otwiera drogę do bardziej skomplikowanych aplikacji, gdzie liczy się precyzyjne sterowanie i analiza danych. To właśnie dzięki Ex-OR można tworzyć systemy, które reagują na konkretne różnice między stanami wejściowymi, co jest często wykorzystywane w systemach zabezpieczeń i kontroli jakości.

Pytanie 34

Czujnik indukcyjny służy do detekcji elementów

A. szklanych.
B. drewnianych.
C. metalowych.
D. plastikowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik indukcyjny to jedno z najczęściej stosowanych urządzeń w automatyce przemysłowej. Jego głównym zadaniem jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego generowanego przez cewkę wewnątrz czujnika. Gdy metalowy przedmiot znajdzie się w polu działania czujnika, następuje zmiana indukcyjności, co jest interpretowane jako sygnał obecności. Taka technologia jest niezwykle przydatna w środowiskach produkcyjnych, gdzie detekcja metalowych elementów jest kluczowa, na przykład w systemach montażowych czy liniach produkcyjnych. W przeciwieństwie do czujników optycznych, czujniki indukcyjne są odporne na zabrudzenia i kurz, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych. Normy takie jak IEC 60947-5-2 określają wymagania dotyczące czujników zbliżeniowych, zapewniając ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych. Moim zdaniem, wiedza o tych czujnikach to podstawa dla każdego, kto chce zrozumieć współczesną automatykę. Dzięki temu można lepiej projektować systemy, które są bardziej wydajne i mniej podatne na awarie.

Pytanie 35

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1 i L2 i L3.
B. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
C. Sumy rezystancji żył L1, L2, L3 oraz PEN.
D. Rezystancji żył L1, L2, L3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mierzenie rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowym krokiem w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, ten test pozwala na wykrycie wszelkich uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych zwarć lub porażeń prądem. Rezystancja izolacji powinna być odpowiednio wysoka, aby zapobiegać przepływowi prądu między przewodami. Z mojego doświadczenia, często spotyka się sytuacje, w których niewłaściwa izolacja prowadzi do awarii i przerw w dostawie energii, co w konsekwencji może wpłynąć na działanie całego systemu elektrycznego. Standardy takie jak PN-IEC 60364 wskazują, że minimalna rezystancja izolacji dla większości instalacji powinna wynosić 1 MΩ. Wartości poniżej tego poziomu mogą sugerować, że istnieje problem, który należy rozwiązać przed oddaniem instalacji do użytku. Takie podejście jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie regularnych przeglądów i testów, aby zapewnić niezawodność i bezpieczeństwo systemów elektrycznych. To również elementarne działanie w kontekście prewencji ryzyka pożarowego oraz ochrony zdrowia i życia ludzkiego.

Pytanie 36

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór miernika z obrazu #2 jest trafny, gdyż jest to specjalistyczne urządzenie dedykowane do testowania okablowania strukturalnego. Takie mierniki, jak te od Fluke Networks, są zaprojektowane do dokładnego mierzenia parametrów sieciowych, takich jak długość kabla, tłumienie sygnału czy przesłuch między parami. Mierniki te pozwalają wykonywać testy zgodnie z normami, takimi jak TIA/EIA, co gwarantuje, że okablowanie spełnia wymagania certyfikacyjne. W praktyce, przy instalacjach sieciowych, użycie takiego sprzętu jest nieocenione, bo pozwala na szybkie diagnozowanie problemów związanych z jakością połączenia. Dzięki wbudowanym funkcjom, takim jak auto-test, użytkownik może w prosty sposób sprawdzić, czy kabel spełnia normy dla Ethernetu 1000BASE-T, co jest istotne w środowiskach wymagających wysokiej przepustowości. Ważne jest, aby stosować odpowiednie urządzenia, które nie tylko wskazują problemy, ale też dostarczają szczegółowych raportów dotyczących stanu sieci, co jest kluczowe dla utrzymania jej niezawodności i wydajności.

Pytanie 37

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. B
B. P
C. T
D. A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przyłącze T w zaworze hydraulicznym jest przeznaczone do podłączenia zbiornika z cieczą hydrauliczną. To przyłącze, zwane także portem powrotu, umożliwia odprowadzenie cieczy powracającej do zbiornika z systemu hydraulicznego, po tym jak wykonała swoje zadanie, np. przesunięcie tłoka w siłowniku. Jest to kluczowe dla utrzymania prawidłowego obiegu cieczy i zapobiegania nadmiernemu ciśnieniu w układzie. W praktyce, prawidłowe podłączenie zbiornika do przyłącza T pozwala na efektywne działanie całego systemu i uniknięcie awarii spowodowanych zbyt dużym ciśnieniem. Moim zdaniem, znajomość tego typu detali jest niezbędna dla każdego, kto chce pracować z hydrauliką, ponieważ błędne podłączenie może prowadzić do poważnych problemów. Standardy branżowe wyraźnie wskazują na konieczność stosowania się do opisanych zasad przy projektowaniu i konserwacji systemów hydraulicznych.

Pytanie 38

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. rezystancji żył L1, L2, L3, PEN
B. sumy rezystancji żył L1, L2, L3, PEN
C. sumy rezystancji izolacji żył L1, L2, L3
D. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Izolacja ma za zadanie zapobiegać niepożądanym przepływom prądu między przewodami, które mogą prowadzić do zwarć lub porażenia prądem. Normy takie jak PN-EN 61557 określają minimalne wartości rezystancji izolacji, które powinny być zachowane w instalacjach elektrycznych. W praktyce, wysoka rezystancja izolacji, na poziomie kilku megaomów, świadczy o dobrej jakości izolacji i bezpieczeństwie użytkowania. Regularne pomiary pozwalają na wczesne wykrycie uszkodzeń mechanicznych lub starzenia się materiału izolacyjnego, co jest szczególnie istotne w środowiskach o wysokiej wilgotności lub narażonych na wpływy chemiczne. Przykład z życia: w przemyśle ciężkim, gdzie maszyny są narażone na działanie olejów i smarów, takie pomiary są standardową praktyką, aby zapobiec awariom i kosztownym przestojom produkcyjnym.

Pytanie 39

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DY-w
B. DG-w
C. DS-w
D. LY-w

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 40

Do wykrycia nieciągłości okablowania w komunikacyjnej sieci przemysłowej stosowany jest

A. wykrywacz przewodów.
B. miernik parametrów instalacji.
C. kamera termowizyjna.
D. tester przewodów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tester przewodów jest narzędziem niezbędnym w diagnozowaniu problemów z okablowaniem w sieciach przemysłowych. Dzięki niemu możemy szybko i efektywnie zidentyfikować nieciągłości, zwarcia, a także inne problemy związane z połączeniami elektrycznymi. Testerzy często obsługują różne typy kabli, od miedzianych po światłowodowe, co czyni je wszechstronnym narzędziem w rękach technika. W praktyce, tester przewodów pozwala na szybkie sprawdzenie ciągłości obwodu, co jest kluczowe w utrzymaniu niezawodności komunikacyjnej w skomplikowanych sieciach przemysłowych. Z mojego doświadczenia wynika, że regularne testowanie przewodów jest również zgodne z dobrymi praktykami branżowymi, które zalecają regularne przeglądy i konserwacje infrastruktury sieciowej. Warto pamiętać, że w wielu normach, takich jak ISO/IEC 11801, zaleca się wykorzystanie takich urządzeń do testowania okablowania strukturalnego. Dzięki temu można zapobiec wielu problemom, zanim jeszcze wystąpią, co w kontekście dużych instalacji przemysłowych może oszczędzić nie tylko czas, ale i znaczne koszty związane z potencjalnymi awariami. Tester przewodów jest zatem jednym z bardziej opłacalnych narzędzi, które i tak szybko się zwróci, jeśli tylko będziemy korzystać z niego regularnie.