Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 21 października 2025 19:59
  • Data zakończenia: 21 października 2025 20:14

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie powinno być napięcie pomiarowe przy ocenie rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V, w których brak jest ochrony przed przepięciami?

A. 750 V
B. 250 V
C. 500 V
D. 1 000 V
Wynik 500 V jako wymagane napięcie pomiarowe przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V bez ochrony przeciwprzepięciowej jest zgodny z zaleceniami normy PN-EN 61557-2, która określa metody pomiaru rezystancji izolacji. Użycie napięcia 500 V pozwala na uzyskanie wiarygodnych wyników pomiarów, ponieważ jest wystarczające do wykrycia potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć lub innych awarii. W praktyce, pomiar 500 V jest standardowo stosowany zarówno w budynkach mieszkalnych, jak i przemysłowych, co zapewnia bezpieczeństwo użytkowników oraz niezawodność instalacji. Ważne jest, aby pomiar był przeprowadzany w odpowiednich warunkach, a urządzenia pomiarowe były regularnie kalibrowane. Przykładem zastosowania może być ocena stanu izolacji w trakcie przeglądów okresowych instalacji, co pozwala na wczesne wykrycie problemów, zanim dojdzie do poważnych awarii lub zagrożeń.

Pytanie 3

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja
Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.20
N.1 – N.20
PE.1 – PE.2
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.1
N.1 – L2.1
N.1 – L3.10
Ilustracja do pytania
A. L1 i L2 są zwarte.
B. N i L3 są zwarte oraz PE jest przerwana.
C. L1 i L2 są przerwane.
D. N i PE są zwarte oraz L3 jest przerwana.
Odpowiedź, że żyły N i L3 są zwarte oraz PE jest przerwana, jest prawidłowa, ponieważ wyniki pomiarów rezystancji wskazują na bezpośrednie połączenie elektryczne między tymi żyłami, co objawia się rezystancją równą 0 Ω. Taka sytuacja może wynikać z zastosowania odpowiednich technik testowania, które są zgodne z normami, takimi jak PN-EN 60204-1, dotyczące bezpieczeństwa urządzeń elektrycznych. W praktyce oznacza to, że w przypadku awarii lub zwarcia w obwodzie, może dojść do niebezpiecznych sytuacji, dlatego niezwykle istotne jest regularne testowanie instalacji elektrycznych. Przewód PE jest kluczowy dla bezpieczeństwa, a jego przerwanie wskazuje na poważne ryzyko. W takich sytuacjach należy podejść do naprawy systemu z najwyższą ostrożnością, stosując odpowiednie metody diagnostyczne, aby zapobiec zagrożeniom związanym z porażeniem prądem elektrycznym.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Impedancji zwarciowej
B. Rezystancji uziomu
C. Rezystancji izolacji
D. Napięcia krokowego
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony podstawowej w instalacjach elektrycznych, szczególnie w tych o napięciu znamionowym do 1 kV. Odpowiedni poziom rezystancji izolacji zapewnia, że nie występują niepożądane przepływy prądu do ziemi, co mogłoby prowadzić do porażenia prądem lub uszkodzenia urządzeń. Zgodnie z normą PN-EN 60364-6, minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla systemów o napięciu do 1 kV, co gwarantuje odpowiednie bezpieczeństwo. Przykładem zastosowania tego pomiaru jest przeprowadzanie testów przed oddaniem do użytkowania nowej instalacji, a także regularne kontrole w celu wykrycia degradacji izolacji na skutek starzenia się materiałów, wilgoci czy innych czynników zewnętrznych. Dzięki tym pomiarom można zminimalizować ryzyko awarii, co jest szczególnie istotne w obiektach użyteczności publicznej oraz w środowiskach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Podczas naprawy obwodu zasilania silnika indukcyjnego trójfazowego o mocy 7,5 kW technik ma wymienić uszkodzony przewód OWY 4×4 mm2 450 V/750 V na nowy. Która z poniższych właściwości przewodu H03RR-F 4G4 uniemożliwia jego wykorzystanie w miejsce dotychczasowego?

A. Brak żyły izolowanej w kolorze żółtozielonym
B. Niewłaściwy materiał izolacji przewodu
C. Zbyt niskie napięcie znamionowe przewodu
D. Zbyt mały przekrój znamionowy żył przewodu
Wybór przewodu H03RR-F 4G4 może wydawać się odpowiedni na pierwszy rzut oka, jednak istnieje kilka kluczowych powodów, dla których nie może on zastąpić przewodu OWY 4×4 mm² 450 V/750 V. Rozważając niewystarczający przekrój znamionowy żył przewodu, należy podkreślić, że zarówno przewód OWY, jak i H03RR-F mają podobny przekrój, co nie jest istotnym czynnikiem wykluczającym. W zakresie materiału powłoki, chociaż przewód H03RR-F posiada powłokę z tworzywa sztucznego, które jest elastyczne, w kontekście zastosowań w instalacjach przemysłowych, nie zawsze jest to kluczowy problem, ponieważ właściwości materiału mogą odpowiadać wymaganiom środowiskowym. Kolejny błąd związany z brakiem żyły z izolacją w kolorze żółtozielonym, który jest oznaczeniem dla przewodu ochronnego, również nie jest decydujący, ponieważ w praktyce często można zastosować przewody, w których ta żyła nie jest wyraźnie oznaczona, pod warunkiem spełnienia ogólnych wymagań dla ochrony. Kluczowym aspektem, który musimy wziąć pod uwagę, jest napięcie znamionowe, które w przypadku H03RR-F jest zdecydowanie zbyt niskie. W praktyce, stosowanie przewodów o napięciu znamionowym dostosowanym do wymagań instalacji jest kluczowe dla zapewnienia ich bezpieczeństwa i efektywności pracy. Niedocenianie tego aspektu prowadzi do podejmowania błędnych decyzji, które mogą skutkować poważnymi konsekwencjami, zarówno w kontekście bezpieczeństwa, jak i niezawodności całego systemu. Wszelkie decyzje dotyczące doboru przewodów powinny być zgodne z obowiązującymi normami i standardami, aby uniknąć potencjalnych zagrożeń.

Pytanie 9

Jaką wartość powinien mieć prąd znamionowy bezpiecznika aparatowego zamontowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego, którego parametry to: U1N = 230 V, U2N = 13 V, używanego w ładowarce do akumulatorów, jeżeli przewidywany prąd obciążenia podczas ładowania akumulatorów wynosi 15 A?

A. 10 A
B. 6 A
C. 16 A
D. 1 A
Poprawna odpowiedź wynosi 1 A, co jest zgodne z wartością prądu znamionowego, jaką powinien mieć bezpiecznik aparaturowy zainstalowany w obwodzie uzwojenia pierwotnego transformatora jednofazowego. Wartość prądu znamionowego bezpiecznika określa maksymalny prąd, jaki może płynąć przez obwód przed wystąpieniem uszkodzenia lub awarii. W przypadku transformatora, który pracuje w charakterze ładowarki do akumulatorów, kluczowe jest, aby dobrać odpowiednią wartość prądu zabezpieczenia. W analizowanej sytuacji, przy napięciu 230 V na uzwojeniu pierwotnym i przewidywanym prądzie obciążenia 15 A na uzwojeniu wtórnym, istotne jest uwzględnienie współczynnika wydajności oraz strat mocy. Zgodnie z normami, przyjmuje się, aby wartość prądu znamionowego bezpiecznika była co najmniej 20-25% wyższa od prądu obciążenia. W praktyce często stosuje się bezpieczniki o wartości 1 A dla obwodów, w których prąd nie przekracza 15 A. Takie podejście ma na celu zapewnienie dodatkowego marginesu bezpieczeństwa oraz ochrony urządzenia. Wartości te są zgodne z normami IEC 60269 oraz IEC 60947, które zalecają dobór odpowiednich zabezpieczeń w zależności od charakterystyki obciążenia.

Pytanie 10

W którym obwodzie powinno się odłączyć zasilanie, aby bezpiecznie przeprowadzić wymianę cewki stycznika w obwodzie sterującym silnikiem znajdującym się w hali maszyn?

A. Wyłącznie w obwodzie sterującym silnikiem
B. Tylko w obwodzie głównym silnika
C. W rozdzielnicy stanowiskowej, z której zasilany jest silnik
D. W głównej rozdzielnicy zasilającej całą halę maszyn
Musisz koniecznie wyłączyć napięcie w rozdzielnicy stanowiskowej, zanim zaczniesz wymieniać cewkę stycznika. To naprawdę ważne dla Twojego bezpieczeństwa. Rozdzielnica ta to miejsce, które zarządza zasilaniem dla silnika, a z tego co pamiętam, takie podejście jest zgodne z normami bezpieczeństwa, jak np. PN-EN 50110-1. Operatorzy powinni wyłączać napięcie w obwodzie zasilającym urządzenie, które konserwują, żeby uniknąć porażenia prądem. Podczas wymiany cewki ważne jest, by nie tylko Twoje bezpieczeństwo było na pierwszym miejscu, ale też żeby sprzęt nie ucierpiał przez przypadkowe włączenie. Przykład? W zakładach produkcyjnych przed każdym przeglądem trzeba ustalić, które obwody trzeba deenergizować, żeby ryzyko wypadków było jak najmniejsze. Warto też prowadzić dokumentację i etykietować rozdzielnice, żeby łatwiej było zidentyfikować, które obwody są aktywne. To na pewno zwiększa bezpieczeństwo podczas prac konserwacyjnych.

Pytanie 11

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Producent energii elektrycznej
B. Zarządca obiektu
C. Dostawca energii elektrycznej
D. Właściciel obiektu
Właściciel budynku, jako podmiot odpowiedzialny za jego zarządzanie, może być mylnie postrzegany jako ten, kto odpowiada za stan techniczny układów pomiarowo-rozliczeniowych. Jednakże, w kontekście przepisów prawa i praktyk branżowych, jego rola ogranicza się głównie do zapewnienia odpowiednich warunków do instalacji i użytkowania tych urządzeń. Właściciel budynku nie ma kompetencji ani zasobów technicznych, aby samodzielnie sprawować nadzór nad układami pomiarowymi, co może prowadzić do nieporozumień co do odpowiedzialności. Z kolei wytwórca energii elektrycznej odpowiada za produkcję energii, ale nie zajmuje się bezpośrednio pomiarami i rozliczeniami dla odbiorców. Tylko dostawca energii, który finalnie sprzedaje energię, ma obowiązek monitorować stan techniczny urządzeń pomiarowych, aby zapewnić ich prawidłowe działanie. Zarządca budynku, mimo że może mieć pewne obowiązki w zakresie zarządzania infrastrukturą, nie jest w stanie zapewnić technicznej niezawodności układów pomiarowych bez ścisłej współpracy z dostawcą energii. Dobre praktyki branżowe oraz regulacje prawne jasno określają, że to dostawca energii jest odpowiedzialny za prawidłowe funkcjonowanie systemów pomiarowych, co jest kluczowe dla dokładnych rozliczeń i zapobiegania sporom między klientami a dostawcami.

Pytanie 12

Co należy zrobić przed przystąpieniem do pomiaru rezystancji izolacji za pomocą megomierza?

A. Uziemić megomierz
B. Zmierzyć napięcie zasilania
C. Odłączyć zasilanie
D. Podłączyć urządzenie do sieci
Podłączanie urządzenia do sieci przed pomiarem rezystancji izolacji jest niebezpieczne i sprzeczne z zasadami bezpieczeństwa. Megomierz sam generuje wysokie napięcie potrzebne do wykonania pomiaru, więc dodatkowe podłączenie do sieci mogłoby spowodować przepięcie i uszkodzenie izolacji, a co gorsza, stanowić zagrożenie dla operatora. Z kolei pomiar napięcia zasilania nie jest konieczny przed pomiarem rezystancji izolacji. Owszem, pomiar napięcia może być istotny w innych kontekstach, ale dla tego konkretnego zadania kluczowe jest upewnienie się, że obwód jest beznapięciowy. Uziemienie megomierza, choć może wydawać się rozsądne, nie jest konieczne w kontekście pomiaru samej izolacji. Megomierze są projektowane tak, aby były bezpieczne w użyciu bez dodatkowego uziemienia, o ile są używane zgodnie z instrukcją producenta. Uziemienie może być ważne w innych kontekstach pomiarowych, ale nie w przypadku samego pomiaru rezystancji izolacji. Często mylne przekonanie o konieczności uziemienia wynika z niepełnego zrozumienia specyfikacji urządzeń pomiarowych. Dlatego kluczowe jest dokładne zapoznanie się z instrukcją obsługi urządzenia i przestrzeganie jej zaleceń dla danego typu pomiaru.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Który z poniższych sposobów łączenia uzwojeń transformatora zapewnia jednoczesne zasilanie wszystkich faz?

A. Układ gwiazda-trójkąt
B. Układ trójkąt-gwiazda
C. Układ równoległy
D. Układ szeregowy
Układ trójkąt-gwiazda, choć podobny do układu gwiazda-trójkąt, działa na odwrót – uzwojenie pierwotne jest połączone w trójkąt, a wtórne w gwiazdę. Taki układ nie jest typowo stosowany do jednoczesnego zasilania wszystkich faz, ponieważ ma inne zastosowania, takie jak redukcja prądu rozruchowego w silnikach trójfazowych. Układ równoległy odnosi się do połączenia równoległego, które nie jest stosowane w przypadku uzwojeń transformatorów trójfazowych. Transformator działa na zasadzie indukcji elektromagnetycznej, a nie przepływu prądu jak w połączeniu równoległym, co czyni tę koncepcję nieodpowiednią. Układ szeregowy odnosi się do połączenia szeregowego, które również nie jest stosowane w transformatorach trójfazowych do zasilania wszystkich faz jednocześnie. W szeregowych połączeniach uzwojeń, napięcie się sumuje, co jest przydatne w innych kontekstach, ale nie w przypadku zasilania trójfazowego. Typowym błędem jest myślenie, że wszystkie te układy mogą być stosowane zamiennie w transformatorach, co nie jest prawdą. Każdy z nich ma swoje specyficzne zastosowania i nie można ich stosować zamiennie bez zrozumienia ich funkcji oraz wpływu na działanie całego systemu zasilającego.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W instalacji trójfazowej działającej w układzie TN-C, gdy na odbiornikach wystąpi napięcie fazowe przekraczające 300 V, co może być tego przyczyną?

A. zwarciem między fazą a przewodem PEN
B. przerwaniem ciągłości przewodu PEN
C. przerwą w jednej z faz
D. zwarciem pomiędzy fazami
Przerwanie ciągłości przewodu PEN w instalacji 3-fazowej pracującej w układzie TN-C prowadzi do sytuacji, w której napięcie fazowe może wzrosnąć powyżej 300 V. W takiej konfiguracji przewód PEN pełni zarówno funkcje przewodu neutralnego, jak i ochronnego. W przypadku przerwania jego ciągłości, nie tylko zanikają połączenia ochronne, ale również występuje ryzyko, że napięcie na odbiornikach z fazy, do której dochodzi, wzrośnie do wartości zagrażających bezpieczeństwu, co jest szczególnie niebezpieczne dla urządzeń i ludzi. W praktyce, w przypadku przerwania przewodu PEN, pozostałe przewody fazowe zaczynają 'przeciążać' system, co może doprowadzić do niebezpiecznych sytuacji, takich jak uszkodzenie sprzętu, wyzwolenie zabezpieczeń, a w skrajnych przypadkach do porażenia prądem. Stosowanie odpowiednich zabezpieczeń oraz regularne kontrole instalacji są kluczowe dla zapobiegania takim awariom. W kontekście norm, warto odwołać się do PN-IEC 60364, który definiuje zasady ochrony przed porażeniem prądem elektrycznym.

Pytanie 18

Dla urządzenia zasilanego z instalacji elektrycznej trójfazowej o napięciu 400 V, maksymalna moc pobierana wynosi 10 kW. Jaką minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego należy wybrać, zakładając, że odbiorniki mają charakterystyki rezystancyjne i pomijając selektywność zabezpieczeń?

A. 25 A
B. 10 A
C. 20 A
D. 16 A
Dobra robota! Wiesz, że minimalna wartość prądu znamionowego zabezpieczenia przedlicznikowego w instalacji trójfazowej zasilanej napięciem 400 V i maksymalnym poborem mocy 10 kW wynosi 16 A? Obliczenia są oparte na wzorze P = √3 * U * I, gdzie P to moc, U to napięcie, a I to prąd. Jak podstawisz wszystkie wartości, to dostaniesz, że I = 10 kW / (√3 * 400 V), co daje około 14,43 A. Jednak musisz pamiętać, że zabezpieczenie powinno mieć standardową wartość, więc bierzemy 16 A, bo to najbliższa wyższa wartość. Zwykle wybór odpowiedniego zabezpieczenia ma ogromne znaczenie dla bezpieczeństwa całej instalacji oraz dla uniknięcia przeciążenia. Pamiętaj, że wartości zabezpieczeń muszą być zgodne z normami PN-IEC 60898. To zapewnia, że urządzenia będą działały prawidłowo i nie będą narażone na uszkodzenia. Takie podejście naprawdę ma sens i pomoże Ci w przyszłości.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W tabeli zestawiono wyniki pomiarów rezystancji izolacji różnych instalacji elektrycznych, przeprowadzonych podczas prób odbiorczych. Która z instalacji znajduje się w złym stanie technicznym, wykluczającym jej eksploatację?

InstalacjaRezystancja izolacji, MΩ
A.SELV0,9
B.FELV0,9
C.230 V/400 V1,5
D.400 V/ 690 V1,2
A. A.
B. C.
C. D.
D. B.
Wybór innej odpowiedzi niż B może wynikać z niedostatecznego zrozumienia kryteriów oceny stanu technicznego instalacji elektrycznych. Wiele osób przypuszcza, że wszystkie wartości rezystancji izolacji są akceptowalne, jeśli mieszczą się w pewnym zakresie, co jest błędnym podejściem. Każda instalacja elektryczna ma określone normy, które muszą być przestrzegane, aby zapewnić bezpieczeństwo i niezawodność. W przypadku instalacji elektrycznych, normy takie jak IEC 60364 wyraźnie wskazują, że rezystancja izolacji poniżej 1 MΩ jest niebezpieczna. Przypuszczenie, że wartości takie jak 1 MΩ są jedynie orientacyjne, ignoruje poważne zagrożenia związane z niską rezystancją, takie jak ryzyko pożaru lub porażenia prądem. Odpowiedzi inne niż B mogą również wskazywać na mylne zrozumienie pojęcia rezystancji izolacji, gdzie sądzono, że im wyższa wartość, tym lepiej, ale bez odniesienia do kontekstu użytkowego. Ignorowanie wpływu rezystancji na bezpieczeństwo eksploatacji prowadzi do poważnych konsekwencji, dlatego tak istotne jest stosowanie się do standardów i dobrych praktyk w każdej instalacji elektrycznej. W kontekście praktycznym, brak regularnych pomiarów i konserwacji instalacji, co może być przyczyną niskiej rezystancji, jest kolejnym typowym błędem, który może prowadzić do tragedii. Utrzymanie właściwych wartości rezystancji nie tylko chroni użytkowników, ale również zapewnia długowieczność samej instalacji.

Pytanie 21

Jak często powinno się przeprowadzać przeglądy okresowe sprzętu ochronnego, takiego jak: drążki izolacyjne do manipulacji, kleszcze oraz uchwyty izolacyjne, a także dywaniki i chodniki gumowe?

A. Co 3 lata
B. Co 5 lat
C. Co 1 rok
D. Co 2 lata
Odpowiedzi sugerujące rzadziej przeprowadzane badania okresowe, takie jak co 5 lat, co 3 lata czy co 1 rok, opierają się na błędnym zrozumieniu znaczenia regularnych przeglądów sprzętu ochronnego. Zwłaszcza w przypadku urządzeń izolacyjnych, jak drążki czy kleszcze, standardy bezpieczeństwa wyraźnie wskazują, że ich właściwości izolacyjne mogą ulegać degradacji z czasem, nawet przy normalnym użytkowaniu. Przeprowadzanie badań co 5 lat może prowadzić do sytuacji, w której sprzęt, który powinien już zostać wymieniony, nadal jest używany, co stwarza ogromne ryzyko porażenia prądem. Co więcej, odpowiedzi sugerujące przeglądy co 3 lata lub co 1 rok również mogą nie spełniać wymogów bezpieczeństwa, ponieważ nie uwzględniają specyfiki i intensywności użytkowania sprzętu w różnych warunkach. W praktyce, nieprzestrzeganie zalecanych cykli przeglądów może skutkować zarówno uszkodzeniem sprzętu, jak i narażeniem pracowników na niebezpieczeństwo. Właściwe zrozumienie tych zasad jest kluczowe dla ochrony zdrowia i życia osób pracujących w branży elektrycznej, a także dla zachowania zgodności z obowiązującymi normami i przepisami prawa, co jest niezwykle istotne w kontekście odpowiedzialności prawnej i etycznej pracodawców.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakie są maksymalne dopuszczalne odchylenia napięcia zasilającego dla elektrycznych urządzeń napędowych?

A. 10,0% Un
B. 5,0% Un
C. 7,5% Un
D. 2,5% Un
Wybór innych wartości maksymalnych dopuszczalnych odchyleń napięcia, takich jak 2,5% Un, 7,5% Un czy 10,0% Un, prowadzi do nieporozumień związanych z funkcjonowaniem elektrycznych urządzeń napędowych. Odchylenie 2,5% Un jest zbyt restrykcyjne, co może powodować problemy w sytuacjach, gdy napięcie zasilania ulega naturalnym fluktuacjom, na przykład w wyniku obciążeń sieci lub zmian w warunkach operacyjnych. Z kolei odchylenia 7,5% Un i 10,0% Un mogą wprowadzać istotne ryzyka dla efektywności i bezpieczeństwa urządzeń. Zbyt wysokie odchylenie napięcia może spowodować, że urządzenia będą pracować w niewłaściwy sposób, co prowadzi do nadmiernego zużycia energii, a także zwiększa ryzyko awarii. Należy pamiętać, że zbyt duże wahania napięcia mogą prowadzić do uszkodzeń izolacji, co w dłuższej perspektywie może skutkować poważnymi kosztami naprawy oraz przestoju w produkcji. W kontekście inżynierii elektrycznej, kluczowe jest przestrzeganie ustalonych norm, aby zapewnić optymalne warunki pracy urządzeń oraz ich długowieczność. Niewłaściwe podejście do kwestii dopuszczalnych odchyleń napięcia może prowadzić do błędnych wniosków i potencjalnych zagrożeń dla systemu zasilania.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakiego składnika nie powinien mieć kabel zasilający do głównej rozdzielnicy w strefie przemysłowej, która jest klasyfikowana jako niebezpieczna pod względem pożaru?

A. Zewnętrznego splotu włóknistego.
B. Żył z aluminium.
C. Obudowy stalowej.
D. Pokrywy polietylenowej.
Pomieszczenia przemysłowe o podwyższonym ryzyku pożarowym wymagają zastosowania odpowiednich materiałów w konstrukcji kabli zasilających. Pancerz stalowy stanowi skuteczną barierę przed mechanicznymi uszkodzeniami, co jest szczególnie istotne w środowiskach, gdzie mogą występować różne czynniki ryzyka. Powłoka polietylenowa natomiast zapewnia nie tylko izolację, ale również odporność na działanie wysokich temperatur. W świetle obowiązujących norm, takie jak PN-EN 50575, istotne jest, aby używane materiały charakteryzowały się niskim poziomem wydzielania dymu oraz niską toksycznością, co ma kluczowe znaczenie w przypadku pożaru. Wybór żył aluminiowych może wydawać się atrakcyjny ze względu na ich niższą wagę i koszt, jednak w kontekście bezpieczeństwa i przewodnictwa elektrycznego, stalowe żyły są preferowane, zwłaszcza w trudnych warunkach eksploatacyjnych. Zastosowanie zewnętrznego oplotu włóknistego w kablach zasilających w takich miejscach jest nieodpowiednie, ponieważ nie spełnia wymogów odporności na ogień. Oploty te nie tylko mogą ulegać uszkodzeniu w wysokich temperaturach, ale również przyczyniać się do szybszego rozprzestrzeniania się ognia. Podejmując decyzję o wyborze odpowiednich materiałów w konstrukcji kabli, kluczowe jest zrozumienie ich właściwości oraz dostosowanie ich do specyfiki środowiska pracy.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Aby zidentyfikować części silników w wersji przeciwwybuchowej, które mają podwyższoną temperaturę, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu silnika nie powinno się przeprowadzać tych pomiarów?

A. W sąsiedztwie pokrywy wentylatora
B. Na końcu obudowy w rejonie napędu
C. Na tarczy łożyskowej, od strony napędowej w pobliżu pokrywy łożyska
D. W centralnej części obudowy blisko skrzynki przyłączeniowej
Pomiar temperatury silników w wykonaniu przeciwwybuchowym jest kluczowy dla zapewnienia ich bezpieczeństwa i niezawodności. Wybór odpowiedniego miejsca do pomiaru temperatury jest niezwykle istotny, ponieważ nieprawidłowe lokalizacje mogą prowadzić do błędnych odczytów oraz mogą nie uwzględniać rzeczywistych warunków pracy silnika. W przypadku podwyższonej temperatury obudowy silnika, pomiar w pobliżu pokrywy wentylatora jest niewłaściwy, gdyż to miejsce jest często narażone na wpływ zewnętrznych warunków atmosferycznych oraz może być miejscem intensywnego przepływu powietrza, co prowadzi do fałszywych wskazań. Standardy branżowe, takie jak IEC 60079, określają, że należy unikać pomiaru w tych miejscach, aby zapewnić dokładność i wiarygodność danych. Zamiast tego, pomiary powinny być wykonywane w miejscach, gdzie temperatura jest rzeczywiście reprezentatywna dla stanu silnika, na przykład pośrodku obudowy lub na tarczy łożyskowej, co pozwala na lepsze śledzenie potencjalnych problemów z przegrzewaniem.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Spadnie o 10%
B. Wzrośnie o 21%
C. Spadnie o 19%
D. Wzrośnie o 10%
Transformator jednofazowy działa na zasadzie przekładni napięciowej, która jest definiowana jako stosunek liczby zwojów uzwojenia wysokiego napięcia do liczby zwojów uzwojenia niskiego napięcia. W przypadku, gdy nawinięto o 10% więcej zwojów na stronie dolnego napięcia, liczba zwojów w uzwojeniu niskiego napięcia wzrasta, co prowadzi do zmiany przekładni. Jeśli oznaczymy liczbę zwojów uzwojenia niskiego napięcia jako N1, uzwojenia wysokiego napięcia jako N2, to nowa liczba zwojów uzwojenia niskiego napięcia wyniesie 1,1 * N1. Nowa przekładnia napięciowa (U2/U1) oblicza się jako N2/(1,1 * N1), co skutkuje zmniejszeniem przekładni o około 10%. W praktyce, zwiększenie liczby zwojów po stronie dolnego napięcia oznacza, że transformator będzie w stanie obniżyć napięcie w mniejszym stopniu, co ma znaczenie w aplikacjach wymagających stabilizacji napięcia, takich jak zasilanie urządzeń elektronicznych, gdzie precyzyjne napięcie jest kluczowe. W przemyśle energetycznym zrozumienie przekładni napięciowej jest niezbędne do projektowania transformatorów oraz ich optymalizacji. Zmiany w liczbie zwojów mogą być korzystne w niektórych warunkach operacyjnych, co podkreśla znaczenie regularnych przeglądów i modernizacji transformatorów.

Pytanie 31

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Fazomierza
B. Częstościomierza
C. Watomierza
D. Waromierza
Wybór fazomierza, częstościomierza lub watomierza nie jest właściwy przy pomiarze mocy biernej, co wynika z ich specyfiki funkcjonalnej. Fazomierz służy do pomiaru kąta przesunięcia fazowego między napięciem a prądem, co tylko pośrednio może pomóc w określeniu mocy biernej, ale nie umożliwia jej bezpośredniego pomiaru. Z kolei częstościomierz jest urządzeniem do pomiaru częstotliwości sygnału, co jest istotne w kontekście analizy harmonijnej, lecz nie dostarcza informacji na temat mocy w obwodach prądu zmiennego. Watomierz natomiast mierzy moc czynną, a nie bierną, co oznacza, że koncentruje się na energii rzeczywistej konsumowanej przez odbiorniki. Jest to kluczowe dla oceny efektywności energetycznej, ale nie odnosi się bezpośrednio do mocy biernej, co może prowadzić do mylnego wniosku, iż pomiar mocy czynnej wystarczy do określenia całości wydajności układu. Zrozumienie tej różnicy jest kluczowe w kontekście projektowania i analizy systemów energetycznych, gdzie zarówno moc czynna, jak i bierna mają swoje znaczenie w ocenie jakości zasilania i stabilności sieci. Nieodpowiednie interpretowanie tych pojęć może prowadzić do nieefektywnego zarządzania zasobami energetycznymi, co w dłuższej perspektywie generuje dodatkowe koszty operacyjne.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Gdy prace pomiarowe i kontrolne w instalacjach elektrycznych są wymagane do wykonania przez dwie osoby, to osoba przeprowadzająca pomiary powinna mieć odpowiednie kwalifikacje, a druga osoba wspierająca

A. musi dysponować świadectwem kwalifikacyjnym na stanowisku dozoru, lecz bez zakresu pomiarów
B. nie musi mieć świadectwa kwalifikacji, jeśli przeszła odpowiednie szkolenie
C. powinna posiadać świadectwo kwalifikacyjne na stanowisku eksploatacji w zakresie pomiarów
D. nie jest zobowiązana do posiadania świadectwa kwalifikacji, jeśli ukończyła szkołę zawodową
Zrozumienie wymagań dotyczących kwalifikacji osób wykonujących prace pomiarowo-kontrolne instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa i jakości wykonywanych zadań. Odpowiedzi sugerujące, że osoba wspomagająca musi posiadać świadectwo kwalifikacji, ignorują fakt, że nie każde stanowisko wymaga formalnych certyfikatów, zwłaszcza jeśli mowa o pracach, które można przeprowadzać w oparciu o odpowiednie przygotowanie i szkolenie. Posiadanie wykształcenia zawodowego nie jest równoznaczne ze zdolnością do przeprowadzania skomplikowanych pomiarów elektrycznych, gdzie kluczowe są umiejętności praktyczne i znajomość procedur bezpieczeństwa. W praktyce, wiele osób podejmujących się wsparcia podczas pomiarów, posiada doświadczenie nabyte w trakcie praktyk czy kursów, które nie zawsze kończą się formalnym świadectwem, ale są wystarczające do bezpiecznego i efektywnego działania. Zatem, stawianie wymogu posiadania świadectwa kwalifikacyjnego na stanowisku dozoru, jeśli osoba nie wykonuje czynności wymagających takiej kwalifikacji, wprowadza zbędne ograniczenia i może prowadzić do niepoprawnych wniosków o kompetencjach pracowników. Warto podkreślić, że na rynku pracy, elastyczność w podejściu do kwalifikacji i umiejętności pracowników w kontekście ich faktycznych obowiązków jest nie tylko korzystna, ale także zgodna z nowoczesnymi trendami w zarządzaniu zasobami ludzkimi.

Pytanie 38

Jakie dodatkowe urządzenie jest wymagane do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f = 50 Hz?

A. Bezpiecznik silnikowy
B. Kondensator
C. Wyłącznik różnicowoprądowy
D. Opornik
Kondensator jest niezbędnym elementem dla silnika indukcyjnego trójfazowego zasilanego napięciem jednofazowym, ponieważ umożliwia on utworzenie sztucznego przesunięcia fazowego. Silnik indukcyjny trójfazowy wymaga trzech faz zasilania do prawidłowego działania, a zasilanie jednofazowe dostarcza tylko jedną. Dodanie kondensatora do obwodu silnika pozwala na wytworzenie dodatkowej fazy, co z kolei umożliwia rozwinięcie momentu obrotowego i rozpoczęcie pracy silnika. W praktyce zastosowanie kondensatorów jest powszechne w układach, gdzie konieczne jest zasilanie silników trójfazowych z jednofazowych źródeł energii, na przykład w małych warsztatach czy w domach jednorodzinnych. Warto również zaznaczyć, że przy doborze kondensatora należy kierować się jego pojemnością, która powinna być odpowiednia do konkretnego silnika, aby zapewnić optymalne parametry pracy oraz uniknąć uszkodzenia urządzenia. Dobre praktyki wskazują na konieczność stosowania kondensatorów o odpowiedniej klasie i znamionach, aby zapewnić długotrwałą i bezpieczną pracę silnika.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Którego z wymienionych pomiarów eksploatacyjnych w instalacji oświetleniowej nie można zrealizować standardowym miernikiem uniwersalnym?

A. Prądu pobieranego przez odbiornik
B. Rezystancji izolacji przewodów
C. Ciągłości przewodów ochronnych
D. Napięć w poszczególnych fazach
Pomiar rezystancji izolacji przewodów jest kluczowym aspektem utrzymania bezpieczeństwa i niezawodności instalacji elektrycznych. Aby dokładnie wykonać ten pomiar, używa się specjalistycznych mierników zwanych megomierzami, które generują wysokie napięcia (zwykle od 250V do 1000V). Tego rodzaju pomiar jest istotny, ponieważ pozwala ocenić, czy izolacja przewodów nie jest uszkodzona oraz czy nie występują upływy prądu, co mogłoby prowadzić do zagrożenia pożarowego lub porażenia elektrycznego. Standardy takie jak PN-EN 61557-1 opisują wymagania dotyczące testowania rezystancji izolacji, a ich przestrzeganie jest kluczowe w ramach regularnych przeglądów oraz konserwacji instalacji. Przykładowo, podczas testowania instalacji oświetleniowej w budynku użycie megomierza może pomóc w identyfikacji potencjalnych problemów zanim doprowadzą one do awarii lub zagrożenia dla użytkowników.