Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.08 - Wykonywanie i naprawa elementów maszyn, urządzeń i narzędzi
  • Data rozpoczęcia: 17 grudnia 2025 12:44
  • Data zakończenia: 17 grudnia 2025 12:48

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gumowe łączniki jako elementy elastyczne są wykorzystywane w celu

A. ograniczenia drgań przekazywanych pomiędzy elementami maszyn
B. zwielokrotnienia drgań przenoszonych wewnątrz obudów maszyn
C. powiększenia amplitudy drgań komponentów maszyn oraz ich struktur nośnych
D. wzmocnienia amplitudy drgań przenoszonych wewnątrz urządzeń
Łączniki gumowe odgrywają kluczową rolę w ograniczaniu drgań przekazywanych pomiędzy częściami maszyn, co jest istotne dla zachowania ich sprawności oraz wydajności. Działając jako elementy izolujące, łączniki te skutecznie tłumią drgania, co pozwala na zmniejszenie uszkodzeń mechanicznych oraz wydłużenie żywotności urządzeń. Przykładowo, w przypadku silników elektrycznych, zastosowanie łączników gumowych zmniejsza przenoszenie drgań na ramę maszyny, co ogranicza hałas oraz wibracje. W przemyśle motoryzacyjnym, łączniki te są używane w układach zawieszenia, aby poprawić komfort jazdy poprzez tłumienie drgań pochodzących z nawierzchni drogi. Zgodnie z normami ISO i dobrymi praktykami inżynieryjnymi, stosowanie łączników gumowych jest zalecane w projektowaniu maszyn, aby zapewnić ich stabilność i niezawodność w działaniu, co wpływa na bezpieczeństwo oraz efektywność operacyjną.

Pytanie 2

W przypadku którego z połączeń występuje zjawisko rozszerzalności cieplnej metali?

A. Skurczowego
B. Nitowanego
C. Kołkowego
D. Bagnetowego
Odpowiedź skurczowa jest prawidłowa, ponieważ zjawisko rozszerzalności cieplnej metali jest kluczowym aspektem w technikach łączenia, które wykorzystują różnice w temperaturze do osiągnięcia pożądanej geometrii i szczelności. W przypadku połączeń skurczowych, metalowe elementy są najpierw podgrzewane, co powoduje ich rozszerzenie. Po zakończeniu procesu grzewczego, materiały te są następnie łączone, a ich chłodzenie prowadzi do skurczenia się metali, co z kolei generuje siły dociskowe. Przykładami zastosowania połączeń skurczowych są różne elementy konstrukcji maszyn, gdzie wykorzystuje się materiał połączony z dużą precyzją oraz w przemyśle motoryzacyjnym, gdzie osie i wały są często łączone w ten sposób, aby zapewnić odpowiednią stabilność i trwałość. W kontekście inżynieryjnym, standardy takie jak ISO 9001 podkreślają znaczenie jakości połączeń, co czyni umiejętność korzystania ze skurczowych połączeń niezbędną w projektowaniu i wytwarzaniu. Zrozumienie tego zjawiska ma kluczowe znaczenie dla inżynierów i techników, aby mogli skutecznie stosować metody łączenia w praktyce.

Pytanie 3

Jakie połączenia charakteryzują się dużą elastycznością deformacyjną oraz zdolnością do powrotu do pierwotnej formy?

A. Roztłaczanie.
B. Klejenie.
C. Nitowanie.
D. Guma.
Odpowiedź "gumowe" jest prawidłowa, ponieważ materiały gumowe charakteryzują się wyjątkowymi właściwościami elastycznymi, które umożliwiają im odkształcanie się pod wpływem sił zewnętrznych, a następnie powracanie do pierwotnego kształtu po ich usunięciu. Te właściwości sprawiają, że gumowe połączenia są często stosowane w aplikacjach wymagających amortyzacji, takich jak uszczelki, podeszwy obuwia czy elementy zawieszenia pojazdów, gdzie potrzebna jest zdolność do absorpcji drgań i wstrząsów. W branży budowlanej oraz motoryzacyjnej stosuje się materiały gumowe także w produkcji wibracyjnych i elastycznych połączeń, które są w stanie wytrzymać znaczne obciążenia, jednocześnie nie ulegając deformacji. Dodatkowo, normy takie jak ISO 14001 i BS 9001 podkreślają znaczenie elastyczności materiałów w projektowaniu komponentów, co sprzyja ich długowieczności oraz efektywności energetycznej.

Pytanie 4

Guma to materiał powszechnie wykorzystywany w wytwarzaniu

A. wibroizolatorów
B. frezów walcowych
C. elektrod otulonych
D. felg samochodowych
Guma to naprawdę ciekawy materiał, który ma świetne właściwości, zwłaszcza jeśli chodzi o elastyczność i tłumienie drgań. Dlatego idealnie nadaje się do zastosowań jak wibroizolatory. Te wibroizolatory są używane w budownictwie i przemyśle, bo pomagają zredukować drgania oraz hałas, które mogą przechodzić z jednego elementu na drugi. A to w efekcie polepsza komfort użytkowania i wydłuża trwałość konstrukcji. Dzięki elastyczności guma świetnie radzi sobie z tłumieniem wstrząsów, co jest kluczowe w różnych aplikacjach, jak maszyny w fabrykach, samochody czy też budynki. Na przykład w budownictwie gumowe wibroizolatory są stosowane w fundamentach budynków, żeby zmniejszyć wibracje z ruchu ulicznego czy sąsiednich maszyn. Ważne, żeby używać materiałów wibroizolacyjnych zgodnie z normami, jak ISO 10816, bo to wpływa na stabilność i bezpieczeństwo konstrukcji. Użycie gumy w wibroizolatorach to naprawdę dobry krok, co potwierdzają różne badania i testy materiałowe.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Który zabieg przedstawiono na rysunku?

Ilustracja do pytania
A. Ścinanie ręczne płaszczyzn.
B. Przerzynanie ręczne.
C. Prostowanie blach.
D. Piłowanie płaszczyzn.
Odpowiedź "Piłowanie płaszczyzn" jest trafna, bo w rysunku widać jak się posługuje pilnikiem. Ta technika ma na celu stworzenie gładkich i prostych powierzchni, czy to w metalu, czy w drewnie. Ważne jest, żeby materiał był dobrze zamocowany, czego przykładem jest materiał w imadle, który jest pokazany na rysunku. Użycie pilnika do usuwania zbędnego materiału to standard w obróbce skrawaniem. W obszarze metalurgii piłowanie płaszczyzn to istotny krok, który pozwala uzyskać precyzyjne wymiary i jakość powierzchni. Co więcej, różne gradacje pilników pozwalają dopasować obróbkę do potrzeb projektu. Można to wykorzystać do przygotowania części do dalszej obróbki lub do poprawy wyglądu finalnego produktu.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Zębatki używane w urządzeniach RTV oraz AGD zazwyczaj produkowane są z

A. tworzyw sztucznych
B. materiałów narzędziowych
C. proszków ściernych
D. cynów lutowniczych
Koła zębate w sprzęcie RTV i AGD najczęściej wykonywane są z tworzyw sztucznych ze względu na ich korzystne właściwości mechaniczne, niską wagę oraz odporność na korozję. Tworzywa sztuczne, takie jak nylon, poliamidy czy poliwęglany, charakteryzują się dobrą wytrzymałością na ściskanie oraz niskim współczynnikiem tarcia, co w znaczący sposób zwiększa efektywność działania mechanizmów. Przykładem zastosowania mogą być mechanizmy napędowe w odtwarzaczach DVD lub sprzęcie audio, gdzie koła zębate muszą pracować płynnie, minimalizując hałas. Dodatkowo, produkcja kół zębatych z tworzyw sztucznych pozwala na łatwiejsze kształtowanie ich geometrii, co jest istotne w kontekście projektowania i prototypowania. Standardy ISO dotyczące materiałów dla przemysłu elektronicznego podkreślają znaczenie właściwych właściwości materiałów, co czyni tworzywa sztuczne idealnym wyborem dla tego typu zastosowań.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Czym jest proces piaskowania?

A. aplikacja powłoki ochronnej na materiał
B. usunięcie zanieczyszczeń z powierzchni materiału
C. produkcja tarcz ściernych poprzez wtłaczanie ścierniwa w metal
D. modyfikacja struktury krystalicznej metali
Proces piaskowania jest techniką obróbcza, której celem jest usunięcie zanieczyszczeń oraz nadanie odpowiedniej tekstury powierzchni materiału. Wykorzystuje się w nim ścierniwo, które jest przyspieszane za pomocą strumienia powietrza pod wysokim ciśnieniem. Dzięki temu można skutecznie usunąć rdze, farby, resztki smarów, a także inne zanieczyszczenia, które mogą wpłynąć na dalszą obróbkę materiału, na przykład malowanie lub spawanie. Przykładem zastosowania piaskowania jest przygotowanie podłoża przed malowaniem konstrukcji stalowych, gdzie czystość powierzchni jest kluczowa dla trwałości powłok. Standardy branżowe, takie jak ISO 8501, podkreślają znaczenie odpowiedniego przygotowania powierzchni, co w praktyce oznacza użycie piaskowania jako jednego z kluczowych etapów. Dodatkowo, piaskowanie jest także stosowane w przemyśle lotniczym, gdzie precyzyjne usunięcie wszelkich zanieczyszczeń jest niezbędne dla bezpieczeństwa i wydajności maszyn.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Na podstawie rysunku wskaż wynik pomiaru wykonanego za pomocą suwmiarki warsztatowej.

Ilustracja do pytania
A. 41,00 mm
B. 80,10 mm
C. 53,05 mm
D. 36,10 mm
Dobra robota, poprawna odpowiedź to 41,00 mm. Odczyt suwmiarki to w zasadzie dwie rzeczy: główna skala i noniusz. Główna skala mówi nam o 4 cm, co daje 40 mm, a noniusz dodaje jeszcze 1 mm, czyli razem mamy 41 mm. Umiejętność odczytywania suwmiarki jest naprawdę ważna w różnych branżach, na przykład w mechanice czy inżynierii. Precyzyjne pomiary są kluczowe, bo wpływają na jakość produktów, które tworzymy. Suwmiarka dzięki różnym funkcjom pozwala na dokładne mierzenie długości i różnych wymiarów wewnętrznych i zewnętrznych. Z mojego doświadczenia, dobrym pomysłem jest regularne kalibrowanie narzędzi pomiarowych, żeby mieć pewność, że są dokładne i niezawodne, zwłaszcza kiedy chodzi o normy ISO 9001, które mówią o jakości.

Pytanie 14

Na podstawie fragmentu dokumentacji szlifierki taśmowej odczytaj długość taśmy szlifierskiej.

ModelMMF 75-200-2
Artykuł3922075
Dane techniczne
Szerokość szlifu75 mm
Szybkość taśmy14,5 / 29 m/s
Moc silnika1,5 / 2,2 kW
Podłączenie elektryczne400 V / 50 Hz
Wymiary taśmy szlifierskiej75 x 2000 mm
Ø koła kontaktowego200 mm
Ø króćca odsysającego100 mm
Wymiary w mm (dł. x szer. x wys.)1070 x 340 x 950
Ciężar72 kg
A. 2 000 mm
B. 75 mm
C. 1 070 mm
D. 100 mm
Odpowiedź 2 000 mm jest poprawna, ponieważ zgodnie z dokumentacją szlifierki taśmowej, długość taśmy szlifierskiej wynosi właśnie 2000 mm. Informacja ta znajduje się w sekcji "Wymiary taśmy szlifierskiej", co jest istotne dla prawidłowego doboru materiałów eksploatacyjnych oraz parametrów roboczych urządzenia. Długość taśmy ma kluczowe znaczenie w kontekście wydajności pracy szlifierki. Wybór odpowiedniej długości taśmy wpływa nie tylko na efektywność szlifowania, ale również na bezpieczeństwo użytkowania maszyny. Zastosowanie taśmy o niewłaściwych wymiarach może prowadzić do jej uszkodzenia, co w konsekwencji zwiększa koszty eksploatacji. W przemyśle, gdzie szlifierki taśmowe są powszechnie używane, zgodność z podanymi wymiarami jest fundamentem efektywnego zarządzania procesem produkcyjnym. Warto również pamiętać, że dobór odpowiedniej długości taśmy powinien być zgodny z normami branżowymi, które regulują parametry techniczne dla tego typu urządzeń.

Pytanie 15

Aby określić oś symetrii czołowej powierzchni wałka, należy użyć

A. kątownika
B. przymiaru kreskowego
C. linijki
D. środkownika
Środkownik jest narzędziem pomiarowym, które służy do wyznaczania osi symetrii elementów, takich jak wałki. Jego konstrukcja umożliwia precyzyjne określenie środkowej linii na powierzchni czołowej wałka, co jest kluczowe w procesach obróbczych. Stosując środkownik, operator może szybko wykryć ewentualne odchylenia od geometrii idealnej, co jest niezbędne w przypadku precyzyjnych operacji, takich jak toczenie czy szlifowanie. W praktyce, wyznaczenie osi symetrii z użyciem środkownika pozwala na uzyskanie lepszego dopasowania pomiędzy poszczególnymi elementami maszyny, co przekłada się na ich wydajność i żywotność. Zgodnie z normami ISO dotyczącymi tolerancji wymiarowych, właściwe wyznaczenie osi symetrii jest kluczowe dla zapewnienia prawidłowego funkcjonowania układów mechanicznych. Warto również zaznaczyć, że środkownik jest narzędziem stosowanym w różnych dziedzinach przemysłu, a jego użycie jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 16

Z jakiego materiału nie produkuje się sprężyn?

A. Plastiku.
B. Stali narzędziowej.
C. Stali stopowej.
D. Żeliwa szarego
Żeliwo szare nie jest materiałem stosowanym do produkcji sprężyn ze względu na swoje właściwości. To stop żelaza z węglem, który dzięki swojej strukturze grafitowej charakteryzuje się dużą twardością i odkształcalnością, ale jednocześnie ma niską wytrzymałość na rozciąganie oraz ograniczoną elastyczność. Sprężyny muszą być wykonane z materiałów, które potrafią efektywnie magazynować i oddawać energię, co jest kluczowe w przypadku zastosowań w mechanice, automatyce i inżynierii. Idealnymi materiałami do produkcji sprężyn są stal stopowa oraz stal narzędziowa, które posiadają odpowiednie właściwości mechaniczne i wytrzymałościowe, umożliwiające ich efektywne zastosowanie w różnych warunkach. Przykładem mogą być sprężyny w zawieszeniach pojazdów, które muszą wytrzymywać dynamiczne obciążenia i adaptować się do zmieniających się warunków jazdy.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie jest główne zastosowanie frezarek w przemyśle?

A. Cięcie materiałów na wymiar
B. Łączenie elementów metalowych
C. Obróbka powierzchni płaskich i kształtowych
D. Malowanie powierzchni
Frezarki to maszyny, które odgrywają kluczową rolę w przemyśle maszynowym i nie tylko. Ich główne zastosowanie to obróbka powierzchni płaskich i kształtowych, co oznacza, że są one używane do nadawania określonych kształtów i wymiarów częściom z różnych materiałów, takich jak metale, tworzywa sztuczne czy drewno. Frezowanie umożliwia precyzyjne formowanie powierzchni, zarówno prostych, jak i skomplikowanych, co jest niezbędne w produkcji części maszyn, narzędzi i urządzeń. Dzięki zastosowaniu różnorodnych narzędzi frezarskich możliwe jest wykonanie rowków, żłobków czy otworów. W praktyce frezarki są używane w wielu branżach, od motoryzacyjnej przez lotniczą, aż po produkcję mebli. Zaawansowane technologie, takie jak CNC, umożliwiają automatyzację procesu frezowania, co zwiększa precyzję i efektywność produkcji. Obecnie frezarki są niezastąpione w produkcji seryjnej, a także przy tworzeniu prototypów i elementów jednostkowych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W której obrabiarce znajduje się stół krzyżowy?

A. Wtryskarki dźwigniowej
B. Frezarki wspornikowej
C. Wytłaczarki planetarnej
D. Piły taśmowej pionowej
Frezarka wspornikowa to maszyna, która wykorzystuje stół krzyżowy do precyzyjnego ustawiania obrabianego materiału w dwóch osiach - poziomej i pionowej. Stół krzyżowy, wyposażony w prowadnice, umożliwia dokładne przesuwanie detalu, co jest niezbędne w procesach frezowania, gdzie precyzja i powtarzalność są kluczowe. W frezarkach wspornikowych stół krzyżowy współpracuje z narzędziem skrawającym, co pozwala na wykonanie skomplikowanych kształtów i detali. Przykładowo, w przemyśle metalowym, frezarki wspornikowe używane są do produkcji elementów maszyn, gdzie wymagane są dokładne tolerancje wymiarowe. Ponadto, stół krzyżowy w tych obrabiarkach często posiada możliwość mocowania dodatkowych akcesoriów, co zwiększa wszechstronność maszyny i jej zdolność do obróbki różnych materiałów. Standardy przemysłowe, jak ISO 9001, podkreślają znaczenie precyzyjnych procesów obróbczych, co czyni frezarki wspornikowe odpowiednimi narzędziami w spełnianiu tych wymagań.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Stal szybkotnąca jest stosowana do produkcji

A. rur ciągnionych
B. noży tokarskich
C. profili zamkniętych
D. blach trapezowych
Stal szybkotnąca, znana również jako stal HSS (High-Speed Steel), jest materiałem charakteryzującym się wyjątkowymi właściwościami, dzięki którym jest idealnym wyborem do produkcji narzędzi skrawających, w tym noży tokarskich. Stal szybkotnąca zawiera dodatki takie jak wolfram, molibden i kobalt, które poprawiają jej twardość i odporność na wysokie temperatury, co jest kluczowe w procesach obróbczych, gdzie występuje znaczne tarcie i ciepło. Przykładowo, noże tokarskie wykonane z HSS mogą pracować z dużymi prędkościami obrotowymi, co zwiększa efektywność obróbki i redukuje czas produkcji. W praktyce, narzędzia te są powszechnie stosowane w przemyśle, szczególnie w obróbce metali, gdzie wymagane są precyzyjne cięcia i długotrwała trwałość. Dobre praktyki w branży sugerują regularne sprawdzanie stanu narzędzi skrawających, a także dostosowywanie parametrów obróbczych do specyfikacji materiału, co w przypadku stali HSS przyczynia się do uzyskania optymalnych wyników.

Pytanie 23

Do czego stosuje się przedstawiony na rysunku przyrząd?

Ilustracja do pytania
A. Do pomiaru spoin.
B. Do pomiaru głębokości otworów.
C. Do określania płaskości powierzchni.
D. Do sprawdzania gwintów.
Miernik spoin to specjalistyczne narzędzie, które odgrywa kluczową rolę w branży spawalniczej oraz w procesach wytwarzania, gdzie jakość spoin ma istotne znaczenie. Jego głównym zastosowaniem jest dokładne określenie wymiarów spoin, co bezpośrednio wpływa na wytrzymałość i integralność strukturalną złącz. Przykładowo, w przemyśle motoryzacyjnym oraz budowlanym, gdzie spoiny są powszechnie stosowane w konstrukcjach metalowych, użycie miernika spoin pozwala na zapewnienie, że wszystkie spoiny spełniają określone normy jakościowe. Normy te, takie jak ISO 3834, definiują wymagania dotyczące jakości spawania, a stosowanie odpowiednich narzędzi pomiarowych, takich jak miernik spoin, jest kluczowe dla ich spełnienia. Ponadto, możliwość precyzyjnego pomiaru spoin może zapobiec kosztownym błędom w produkcji, takim jak nieodpowiednie zgrzewanie czy spawanie, co mogłoby prowadzić do uszkodzeń i wymagać kosztownych napraw lub wymiany części. Dlatego znajomość i umiejętność używania miernika spoin jest niezbędna dla każdego profesjonalisty w tej dziedzinie.

Pytanie 24

W którym procesie obróbki stosowane jest narzędzie przedstawione na ilustracji?

Ilustracja do pytania
A. Wykrawania otworów.
B. Ciągnienia drutów.
C. Szlifowania wałków.
D. Radełkowania powierzchni.
Odpowiedź 'Ciągnienia drutów' jest poprawna, ponieważ narzędzie przedstawione na ilustracji to ciągadło, które jest kluczowym elementem w procesu ciągnienia. Ciągnienie drutów to metoda obróbcza, w której materiał, zazwyczaj metalowy, jest przeciągany przez otwór o określonej średnicy. Dzięki temu procesowi zmniejsza się średnica drutu, a jednocześnie zwiększa jego długość, co jest niezbędne w produkcji elementów takich jak druty, pręty czy rury, stosowanych w różnych branżach, w tym budownictwie i motoryzacji. Stosowanie ciągadła pozwala na uzyskanie drutów o bardzo precyzyjnych wymiarach oraz wysokiej jakości powierzchni, co jest zgodne z najlepszymi praktykami w zakresie obróbki metali. Proces ten jest również powszechnie wykorzystywany w przemyśle elektrotechnicznym, gdzie wymagane są druty o dużej wytrzymałości na rozciąganie. Dobrze zrealizowane ciągnienie drutów przyczynia się do efektywności produkcji oraz redukcji odpadów materiałowych, co jest istotne z perspektywy zrównoważonego rozwoju.

Pytanie 25

Przyrząd przedstawiony na ilustracji stosuje się do pomiaru

Ilustracja do pytania
A. spoin spawalniczych.
B. modułu zębów.
C. głębokości otworów.
D. chropowatości powierzchni.
Spoinomierz to naprawdę ważne narzędzie, które znajdziesz w branży spawalniczej. Dzięki niemu możesz dokładnie zmierzyć różne parametry spoin, jak wysokość, szerokość i kąt nachylenia. To wszystko jest kluczowe, żeby mieć pewność, że spaw jest solidny i wytrzymały. W praktyce, spoinomierz umożliwia szybkie i precyzyjne inspekcje, co często przyspiesza całą produkcję. Warto też pamiętać, że zgodnie z normami ISO 5817, jak masz do czynienia z jakością spawów, używanie narzędzi takich jak spoinomierz jest wręcz konieczne. Przykłady z branży motoryzacyjnej czy lotniczej mówią same za siebie – tam, gdzie jakość spoin jest na wagę bezpieczeństwa, regularne pomiary są standardem. Musisz też wiedzieć, że jeśli spoiny zostaną źle wykonane, a my ich nie zauważymy, to mogą się zdarzyć poważne problemy. Dlatego te pomiary są aż tak ważne.

Pytanie 26

Który klucz zastosowano do montażu łożyska jak na przedstawionej ilustracji?

Ilustracja do pytania
A. Oczkowy.
B. Nastawny.
C. Trzpieniowy.
D. Hakowy.
Odpowiedź 'hakowy' to strzał w dziesiątkę! Klucz hakowy to super narzędzie, które świetnie nadaje się do zakupu i wyjmowania łożysk kulkowych, i widać to na obrazku. Ma hak, który idealnie wchodzi w pierścień zewnętrzny łożyska, co daje mu pewny chwyt i pomaga w przenoszeniu siły. Dzięki temu praca z łożyskami staje się dużo łatwiejsza i bezpieczniejsza. W praktyce, używanie takiego klucza sprawia, że każde serwisowanie maszyn jest zgodne z tym, co mówią producenci. Poza tym, stosując klucz hakowy, zmniejszamy ryzyko uszkodzenia łożysk i mamy pewność, że wszystko jest dobrze osadzone, co jest kluczowe dla długotrwałej pracy maszyn. Dobrze jest pamiętać, że używanie odpowiednich narzędzi, jak klucz hakowy, to coś, co każdy inżynier powinien mieć na uwadze, bo to zwiększa bezpieczeństwo i efektywność.

Pytanie 27

Nie można uznać za przyczynę uszkodzeń w trakcie produkcji

A. błędów użytkownika
B. symetrycznego oświetlenia
C. braku konserwacji
D. nieprzestrzegania cyklu napraw
Symetryczne oświetlenie jest istotnym elementem w procesach produkcyjnych, a jego brak może prowadzić do problemów w weryfikacji jakości, jednak samo w sobie nie jest bezpośrednią przyczyną uszkodzeń. W dobrych praktykach przemysłowych, symetryczne oświetlenie jest zalecane, aby zapewnić równomierne warunki pracy, co wpływa na wydajność i dokładność działań operacyjnych, ale nie prowadzi do uszkodzeń materiałów czy produktów. Na przykład, w halach produkcyjnych, odpowiednie oświetlenie pozwala pracownikom na dokładne monitorowanie detali, co może zmniejszać ryzyko błędów. Kiedy jednak mówimy o uszkodzeniach, to bardziej wpływ mają takie czynniki jak brak konserwacji maszyn, błędy ludzkie czy nieprzestrzeganie procedur naprawczych. Dlatego symetryczne oświetlenie, choć ważne, nie jest przyczyną uszkodzeń, co czyni tę odpowiedź poprawną.

Pytanie 28

Nie można zweryfikować współosiowości osi wałów przekładni po zmontowaniu za pomocą

A. czujnika zegarowego
B. suwmiarki uniwersalnej
C. czujnika laserowego
D. przyrządów pomiarowych
Odpowiedź 'suwmiarka uniwersalna' jest fajnie wybrana, ale, no niestety, to nie do końca to. Ta suwmiarka nie ma takiej precyzji, żeby dobrze ocenić, jak osiowo są ustawione wały po montażu. Owszem, suwmiarki są super do mierzenia różnych wymiarów, ale jak chodzi o pomiary osiowe, to jednak nie dają rady. W praktyce do takich rzeczy lepiej użyć czujników zegarowych, bo one pokazują nawet najmniejsze odchylenia. To pomaga naprawić ewentualne błędy przy składaniu. Można też pomyśleć o czujnikach laserowych, które są mega dokładne i używają światła do pomiarów. Dlatego w inżynierii, jak robisz takie pomiary, warto mieć pod ręką specjalistyczne narzędzia, bo to naprawdę pomaga uzyskać dobre wyniki.

Pytanie 29

Tępa krawędź narzędzi skrawających prowadzi do

A. podniesienia wydajności obrabiarek tradycyjnych
B. obniżenia kosztów jednostkowych produkcji
C. wzrostu zużycia energii elektrycznej przez obrabiarkę
D. redukcji ilości dostarczanego płynu chłodzącego do narzędzia
Stępienie ostrzy narzędzi skrawających wpływa na zwiększone zużycie energii elektrycznej przez obrabiarkę, ponieważ narzędzia o tępych ostrzach wymagają większej siły do skrawania materiału. W praktyce oznacza to, że przy takim narzędziu wzrasta opór podczas obróbki, co prowadzi do większego obciążenia silnika obrabiarki. W wyniku tego silnik musi pracować bardziej intensywnie, co przekłada się na wyższe zużycie energii. Dobrym przykładem są operacje frezowania, gdzie ze stępionym narzędziem może występować nie tylko większe zużycie energii, ale także gorsza jakość obrabianego detalu. Standardy branżowe wskazują, że regularne ostrzenie narzędzi skrawających jest kluczowe dla zachowania efektywności energetycznej oraz jakości produkcji. Ponadto, użycie narzędzi w dobrym stanie pozwala na optymalizację dużych kosztów operacyjnych, co jest szczególnie istotne w długoterminowych procesach produkcyjnych.

Pytanie 30

Wosk jako materiał używany do wytwarzania modelu znajduje zastosowanie w procesie odlewania

A. precyzyjnego
B. odśrodkowego
C. ciśnieniowego
D. ciągłego
Wosk jest materiałem, który jest szeroko stosowany w metodzie odlewania precyzyjnego ze względu na swoje unikalne właściwości. Odlewanie precyzyjne, znane również jako odlewanie na wosk tracony, polega na wykonaniu formy z wosku, która następnie zostaje pokryta warstwą materiału ceramicznego lub metalowego. Po utwardzeniu formy, wosk jest podgrzewany i usuwany, co pozostawia precyzyjny odlew w formie. Tego rodzaju technika jest niezwykle przydatna w branżach takich jak jubilerstwo, medycyna oraz przemysł lotniczy, gdzie wymagana jest wysoka jakość detali oraz doskonałe wykończenia. Wosk, dzięki swojej łatwej obróbce i możliwości uzyskania skomplikowanych kształtów, pozwala na tworzenie modeli, które są wiernym odwzorowaniem zamierzonych detali. Standardy, takie jak ISO 9001, podkreślają znaczenie precyzji w procesach produkcyjnych, co czyni tę metodę wyjątkowo wartościową.

Pytanie 31

Koła zębate powstają w procesie toczenia oraz

A. frezowania i dłutowania
B. tłoczenia i przeciągania
C. kalandrowania i szlifowania
D. wytłaczania i frezowania
Frezowanie i dłutowanie to kluczowe procesy obróbcze stosowane w produkcji kół zębatych. Frezowanie polega na usuwaniu materiału za pomocą narzędzia skrawającego, które obraca się wokół własnej osi. Dzięki tej metodzie można osiągnąć wysoką precyzję w formowaniu zębatek, co jest istotne dla prawidłowego funkcjonowania mechanizmów przekładniowych. Dłutowanie z kolei jest procesem, który umożliwia uzyskanie kształtów zewnętrznych oraz wewnętrznych detali, idealnych do produkcji kół zębatych o złożonej geometrii. Przykładem zastosowania tych technologii jest produkcja kół zębatych do przekładni w samochodach, gdzie precyzyjny kształt zębów ma kluczowe znaczenie dla ich wydajności i trwałości. W branży inżynieryjnej obowiązują normy ISO dotyczące tolerancji wymiarowych, które są przestrzegane podczas obróbki kół zębatych, co zapewnia ich niezawodność i kompatybilność z innymi komponentami.

Pytanie 32

Środkownik pozwala na określenie

A. płaskości powierzchni
B. środka płaskich powierzchni czołowych przedmiotów walcowych
C. średnicy rowków wewnętrznych
D. długości powierzchni cylindrycznych wałków
Środkownik to narzędzie wykorzystywane w obróbce skrawaniem, które umożliwia precyzyjne wyznaczanie środka płaskich powierzchni czołowych przedmiotów walcowych. Dzięki zastosowaniu środkownika, operatorzy maszyn mogą skutecznie określić centralny punkt na takich powierzchniach, co jest kluczowe w procesach takich jak wiercenie, frezowanie czy toczenie. Przykładowo, w tokarstwie, idealne umiejscowienie narzędzia skrawającego w osi obrotu przedmiotu obrabianego jest istotne dla zapewnienia symetrii oraz estetyki finalnego produktu. W standardach przemysłowych, takich jak ISO 2768, podkreśla się znaczenie precyzyjnego wyznaczania środków w kontekście tolerancji wymiarowych. W praktyce, wykorzystanie środkownika pozwala na uzyskanie wyższej jakości obróbki oraz minimalizację odchyleń, co bezpośrednio wpływa na wydajność produkcji oraz redukcję kosztów materiałowych.

Pytanie 33

Zakład usługowo-mechaniczny dokonuje remontu czterdziestu, dwuwrzecionowych obrabiarek miesięcznie.
Na podstawie danych zamieszczonych w tabeli, oblicz czas potrzebny na montaż wszystkich wrzecion.

Nr zabieguOpis zabieguPracochłonność – wartości średnie [min]
1.Przygotowanie elementów wrzeciona8,80
2.Montaż łożyskowania20,20
3.Montaż tulei14,34
4.Montaż wrzeciona w obudowie oraz sprawdzanie bicia23,25
5.Montaż dystansów28,41
6.Montaż zabezpieczeń wrzecienie39,16
7.Sprawdzenie techniczne wrzeciona30,84
SUMA165,00
A. 110,00 godzin.
B. 368,00 godzin.
C. 220,00 godzin.
D. 62,50 godziny.
Odpowiedź 220,00 godzin jest prawidłowa, ponieważ obliczenia oparte są na rzeczywistych danych dotyczących montażu wrzecion. Przyjmuje się, że czas montażu jednego wrzeciona wynosi 11 godzin. Zatem dla czterdziestu dwuwrzecionowych obrabiarek otrzymujemy 40 obrabiarek x 2 wrzeciona na obrabiarkę x 11 godzin na wrzeciono, co daje 880 godzin całkowitego czasu montażu. Jednakże, gdy przeliczymy to na liczbę roboczogodzin, które są dostępne w miesiącu, oraz uwzględnimy standardy pracy w danej branży, wzięcie pod uwagę ilości i dostępności zasobów może prowadzić do bardziej efektywnego wykorzystania czasu. W praktyce, organizacje często próbują optymalizować procesy montażowe, aby zredukować czas przestojów i zwiększyć wydajność produkcji, co jest kluczowe w branży usługowo-mechanicznej.

Pytanie 34

Obróbkę wykańczającą powierzchni podstawy czujnika wskazaną strzałką na rysunku wykonano w operacji

Ilustracja do pytania
A. piłowania.
B. nagniatania.
C. przeciągania.
D. szlifowania.
Szlifowanie to kluczowy proces obróbczy, który ma na celu uzyskanie wysokiej jakości wykończenia powierzchni. W kontekście podstawy czujnika, obróbka ta jest szczególnie istotna, ponieważ czujniki wymagają dużej precyzji oraz gładkości powierzchni dla optymalnego funkcjonowania. Szlifowanie pozwala na usunięcie niewielkich nierówności i zadrapań, co jest niezbędne dla dokładnych pomiarów. W praktyce, szlifowanie wykorzystuje się w wielu gałęziach przemysłu, takich jak motoryzacja, elektronika czy mechanika precyzyjna. Standardy dotyczące szlifowania, takie jak ISO 1302, podkreślają znaczenie precyzyjnych tolerancji oraz jakości powierzchni, co wpływa na właściwości użytkowe podzespołów. Warto zauważyć, że szlifowanie różni się od innych metod obróbczych, takich jak piłowanie, które dąży do szybkiego usunięcia materiału, a nie do uzyskania gładkiej powierzchni. Umiejętne zastosowanie szlifowania przyczynia się do wydłużenia żywotności komponentów i ich niezawodności w działaniu.

Pytanie 35

Przekroczenie dopuszczalnej temperatury łożysk wskazuje na

A. wydłużenie ich trwałości
B. ich prawidłowe funkcjonowanie
C. postępujące zużycie
D. odpowiednie smarowanie
Wzrost temperatury łożysk ponad dopuszczalną normę jest istotnym wskaźnikiem postępującego zużycia. Wysoka temperatura łożysk może być spowodowana kilkoma czynnikami, takimi jak niewłaściwe smarowanie, nadmierne obciążenie czy zanieczyszczenie środowiska pracy. W kontekście praktycznym, należy zwrócić uwagę na to, że łożyska pracujące w podwyższonej temperaturze mogą prowadzić do uszkodzeń powierzchniowych, takich jak pitting, spękania czy matowienie, co w efekcie skraca ich żywotność. Na przykład, standard ISO 281 dotyczący trwałości łożysk podkreśla znaczenie monitorowania temperatury jako kluczowego wskaźnika stanu technicznego. Właściwe procedury konserwacyjne, takie jak regularne smarowanie i kontrola stanu łożysk, mogą znacząco wpłynąć na ich wydajność i trwałość. Zrozumienie wpływu temperatury na łożyska jest kluczowe dla utrzymania niezawodności maszyn i urządzeń w różnych branżach.

Pytanie 36

Strzałką na przedstawionej ilustracji wskazano elementy czopa wału, które zostały wykonane w operacji

Ilustracja do pytania
A. toczenia.
B. frezowania.
C. radełkowania.
D. piłowania.
Odpowiedź 'frezowania' jest poprawna, ponieważ strzałka na ilustracji wskazuje na charakterystyczne rowki, które powstają właśnie w wyniku tego procesu obróbczyczego. Frezowanie to operacja, w której narzędzie obrotowe, zwane frezem, przemieszcza się w płaszczyźnie, tworząc na obrabianym elemencie precyzyjne kształty i rowki. Jest to jedna z najczęściej stosowanych metod obróbczych w przemyśle, szczególnie gdy wymagane są wysokie standardy dokładności i jakości powierzchni. Przykładem zastosowania frezowania może być produkcja elementów maszyn, przekładni czy też skomplikowanych kształtów, gdzie precyzyjne rowki są kluczowe dla ich funkcjonowania. W kontekście standardów branżowych, frezowanie jest zgodne z normami ISO dotyczącymi obróbki skrawaniem, co potwierdza jego uniwersalność i zastosowanie w różnych gałęziach przemysłu. Warto również zrozumieć, że frezowanie jest często preferowane ze względu na możliwość obróbki materiałów o różnej twardości oraz uzyskiwania gładkich powierzchni.

Pytanie 37

W jakich obrabiarkach wykorzystuje się stół obrotowo-podziałowy?

A. W wytłaczarkach
B. We frezarkach
C. W ciągarkach
D. W walcarkach
Odpowiedź "We frezarkach" jest poprawna, ponieważ stół obrotowo-podziałowy jest kluczowym elementem w obrabiarkach, które wykonują skomplikowane operacje frezarskie. Stół ten umożliwia precyzyjne ustawienie detalu w różnych pozycjach, co jest szczególnie istotne przy wieloaspektowym frezowaniu. Użycie stołu obrotowo-podziałowego pozwala na wykonywanie cięć w różnych płaszczyznach, co zwiększa dokładność i efektywność procesów produkcyjnych. Przykładem zastosowania może być obróbka elementów maszyn, które wymagają skomplikowanych kształtów i otworów. W branży inżynieryjnej oraz produkcyjnej stosuje się standardy takie jak ISO 9001, które podkreślają znaczenie precyzji obróbczej, a wykorzystanie stołów obrotowo-podziałowych w frezarkach wpisuje się w te normy, zapewniając wysoką jakość wytwarzanych produktów. Dzięki tej technologii, operatorzy mają możliwość zwiększenia wydajności oraz redukcji czasu cyklu produkcyjnego, co jest istotne w kontekście konkurencyjności na rynku.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakie materiały można ze sobą łączyć przy użyciu spawania TIG?

A. Metal-metal
B. Metal-drewno
C. Metal-tworzywo sztuczne
D. Metal-szkło
Spawanie TIG, czyli spawanie gazem obojętnym przy pomocy nietopliwej elektrody wolframowej, to naprawdę fajna technika. Przy łączeniu stali ze stalą sprawdza się super, bo ich właściwości są do siebie podobne. Stal jest dość przewodząca i łatwa w spawaniu, więc efekty są zazwyczaj bardzo dobre. Można uzyskać spoinę, która wygląda naprawdę estetycznie i jest solidna. W przemyśle, jak motoryzacja czy budownictwo, gdzie precyzja i wygląd są kluczowe, spawanie TIG jest często wykorzystywane. Żeby uzyskać najlepsze rezultaty, ważne jest, żeby dobrze ustawić parametry spawania, na przykład prąd czy szybkość posuwu. A co najważniejsze, ta technika pozwala też łączyć różne gatunki stali, co jest pomocne przy naprawach czy modernizacjach konstrukcji.