Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 16 lutego 2026 19:21
  • Data zakończenia: 16 lutego 2026 19:48

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z przedstawionych na rysunkach podzespołów urządzenia pneumatycznego zapewnia redukcję ciśnienia i zatrzymanie cząstek stałych w układzie zasilania sprężonym powietrzem?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór innej odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu pneumatycznego. Na przykład, niektóre osoby mogą pomylić rolę zbiornika ciśnieniowego z funkcją filtracji. Zbiornik ciśnieniowy służy głównie do przechowywania sprężonego powietrza, ale nie ma zdolności do usuwania zanieczyszczeń z powietrza, co jest kluczowe w kontekście zadania. Innym typowym błędem jest także utożsamianie zaworów z filtrami. Zawory sterują przepływem powietrza, ale nie eliminują cząstek stałych ani nie regulują ciśnienia, co czyni je niewłaściwym wyborem. Kolejnym istotnym elementem jest to, że wiele osób nie zdaje sobie sprawy z norm i standardów, które definiują jakość powietrza sprężonego. Dlatego też, pomijając konieczność filtracji, mogą wybierać komponenty, które w praktyce prowadzą do nieefektywności całego systemu. Aby uniknąć tych pułapek, kluczowe jest posiadanie solidnej wiedzy na temat zasad działania poszczególnych elementów oraz ich funkcji w kontekście całego układu. Znajomość standardów takich jak ISO 8573-1 oraz praktyk konserwacyjnych jest więc niezbędna dla prawidłowego działania systemów pneumatycznych.

Pytanie 2

Wartość mocy czynnej wskazana przez watomierz wynosi

Ilustracja do pytania
A. 500 W
B. 325 W
C. 65 W
D. 130 W
Odpowiedź 325 W jest poprawna, ponieważ wartość ta odpowiada rzeczywistemu odczytowi mocy czynnej na watomierzu. Watomierz jest urządzeniem pomiarowym, które rejestruje moc czynną w obwodach elektrycznych, co ma kluczowe znaczenie w obliczeniach dotyczących zużycia energii elektrycznej w domach i przemysłowych instalacjach. Przy pomiarach mocy czynnej, należy pamiętać, że odczyt ten nie obejmuje mocy biernej ani pozornej, co czyni go istotnym w kontekście efektywności energetycznej. W praktyce, poprawne wykorzystanie watomierzy w instalacjach elektrycznych pozwala na monitorowanie wydajności urządzeń, co jest zgodne z normą PN-EN 60529. Użycie watomierzy jest kluczowe nie tylko w celu oceny kosztów energii, ale także w ocenie wpływu na środowisko, ponieważ pozwala na identyfikację urządzeń o niskiej efektywności energetycznej i optymalizację ich działania. Warto również zauważyć, że regularne monitorowanie mocy czynnej może pomóc w wykrywaniu nieprawidłowości w działaniu instalacji elektrycznych, co jest ważne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 15 bar
B. 1 500 bar
C. 150 bar
D. 15 000 bar
Wybór ciśnienia 15 000 bar jest niewłaściwy, ponieważ wartość ta przekracza wytrzymałość typowych materiałów stosowanych w hydraulice. Tak ekstremalne ciśnienie nie jest praktykowane w żadnym standardowym zastosowaniu hydraulicznym. To prowadzi do mylnego wrażenia, że wyższe ciśnienie zawsze oznacza większą moc, co jest błędne. Niepotrzebne zwiększenie ciśnienia może prowadzić do uszkodzeń elementów układu hydraulicznego, a w skrajnych przypadkach do katastrof. Odpowiedź 1 500 bar również jest niepoprawna, ponieważ przeliczenia wskazują, że jest to wartość znacznie wyższa niż wymagana w danym przypadku. Z kolei 15 bar jest zbyt niskim ciśnieniem, co skutkowałoby nieskutecznością siłownika w wytwarzaniu wymaganej siły. Istotnym błędem w myśleniu może być niepełne zrozumienie zasad działania hydrauliki, gdzie kluczowe są proporcje między siłą, ciśnieniem i powierzchnią czynnych tłoków. Właściwe obliczenia i dobór parametrów są kluczowe w projektowaniu i eksploatacji maszyn hydraulicznych, co podkreśla znaczenie edukacji technicznej oraz przestrzegania standardów branżowych. Zrozumienie tych zasad pozwala na uniknięcie kosztownych błędów oraz zwiększa bezpieczeństwo operacyjne w zastosowaniach hydraulicznych.

Pytanie 6

Układ sterowania obrotami silnika elektrycznego (prawo-lewo), w którym wykorzystano sterownik PLC, działający według programu LD jak na rysunku, nie działa prawidłowo. Przyczyną jest błędne wykorzystanie w programie sterowniczym operandu

Ilustracja do pytania
A. X0
B. Y2
C. Y1
D. X1
Wybór odpowiedzi X1, Y2 lub Y1 nie jest właściwy z kilku powodów. Przede wszystkim, każda z tych opcji odnosi się do innych elementów w systemie sterowania, które nie mają bezpośredniego związku z rzeczywistym działaniem styku S0. X1, jako potencjalny styk inny od X0, mógłby być użyty w całkowicie innym kontekście, ale nie odpowiada na problem związany z normalnie zamkniętym stykiem S0. Przykładowo, jeśli styk X1 byłby użyty jako główny przycisk włączający, to jego działanie zależałoby od innego zestawu warunków, co nie wpływałoby na rzeczywiste połączenie i działanie silnika. W przypadku Y2 i Y1, oba te elementy są wyjściami, które nie mają wpływu na stan wejścia S0. Zrozumienie różnicy między stykami wejściowymi a wyjściowymi jest kluczowe w projektowaniu układów sterowania. W kontekście programowania PLC istotne jest, aby nie mylić styku normalnie zamkniętego z normalnie otwartym, ponieważ prowadzi to do niepoprawnych wniosków i może skutkować nieprawidłowym działaniem całego systemu. W takich sytuacjach, kluczowe jest przeanalizowanie schematu elektrycznego i upewnienie się, że każde oznaczenie odpowiada rzeczywistym elementom w układzie. Zastosowanie dobrych praktyk w projektowaniu i programowaniu układów sterowania jest niezbędne do osiągnięcia niezawodności i efektywności w działaniu systemów automatyki.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Do sprawdzenia wymiaru ϕ40 należy użyć

Ilustracja do pytania
A. suwmiarki ślusarskiej.
B. mikrometru zewnętrznego.
C. średnicówki mikrometrycznej.
D. liniału krawędziowego.
Wybór średnicówki mikrometrycznej, mikrometru zewnętrznego lub liniału krawędziowego do pomiaru średnicy ϕ40 wykazuje zrozumienie ograniczeń tych narzędzi. Średnicówki mikrometryczne, mimo że są precyzyjne, są bardziej wyspecjalizowane i przeznaczone do pomiarów mniejszych średnic, co czyni je mniej praktycznymi w przypadku wymiaru 40 mm. Zazwyczaj używa się ich do bardziej precyzyjnych analiz, gdzie większa dokładność jest niezbędna, a więc są one zbędne w tym kontekście. Mikrometry zewnętrzne, chociaż oferują wysoką precyzję, mają ograniczenia dotyczące zakresu pomiarowego, co utrudnia ich zastosowanie w przypadku większych średnic, co czyni je niewłaściwym narzędziem do pomiaru średnicy 40 mm. Liniały krawędziowe z kolei nie są przeznaczone do pomiaru średnic, a jedynie do pomiarów długości, co czyni je całkowicie nieadekwatnym wyborem w kontekście tego pytania. Typowe błędy myślowe mogą obejmować założenie, że każde narzędzie pomiarowe wystarczy do każdego wymiaru, co jest błędne. Przy wyborze narzędzi do pomiarów niezbędne jest zrozumienie specyfiki i zakresu możliwości każdego narzędzia, a także jego zastosowania w praktycznych sytuacjach. Niewłaściwy dobór narzędzia może prowadzić do nieprecyzyjnych pomiarów, co w efekcie wpływa na jakość i bezpieczeństwo produkowanych elementów.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Na rysunku przedstawione zostały fragmenty dwóch elementów, które należy połączyć techniką połączenia wciskowego wtłaczanego. Jaka powinna być zależność pomiędzy wymiarami d1 i d2?

Ilustracja do pytania
A. dl > d2
B. dl = d2
C. dl < d2
D. dl ≤ d2
Zrozumienie związku między wymiarami d1 i d2 w połączeniu wciskowym wtłaczanym jest kluczowe dla projektowania trwałych i efektywnych połączeń. Odpowiedzi, które sugerują, że dl ≤ d2, dl < d2 lub dl = d2, są błędne i wynikają z nieprawidłowego zrozumienia zasady działania połączenia wciskowego. Przy założeniu, że d2 jest mniejsze lub równe d1, można by pomyśleć, że niewielkie różnice wymiarowe są wystarczające do zapewnienia stabilności. W rzeczywistości, aby zapewnić odpowiednie tarcie i uniknąć luzu, średnica wału musi być zdecydowanie większa od średnicy otworu. Jeśli d1 jest równe lub mniejsze od d2, połączenie nie będzie miało wystarczającej siły utrzymującej, co może prowadzić do przemieszczenia elementów lub ich uszkodzenia podczas pracy. W praktyce, takie błędne podejście można spotkać w przypadkach, gdzie inżynierowie nie uwzględniają odpowiednich tolerancji wymiarowych, co prowadzi do niepewnych i nietrwałych połączeń. Dlatego kluczowe jest zrozumienie, że połączenia wciskowe wymagają starannego doboru wymiarów, aby uniknąć nadmiernych naprężeń, które mogą uszkodzić zarówno element wciskany, jak i otwór. Właściwe projektowanie zgodnie z normami, takimi jak ISO lub ANSI, powinno opierać się na zasadzie, że d1 zdecydowanie przewyższa d2, co zapewnia niezawodność i efektywność połączenia.

Pytanie 11

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Reduktor, manometr, filtr powietrza, smarownica
B. Smarownica, manometr, reduktor, filtr powietrza
C. Manometr, reduktor, smarownica, filtr powietrza
D. Filtr powietrza, manometr, reduktor, smarownica
Odpowiedź, która wskazuje na kolejność smarownica, manometr, reduktor, filtr powietrza, jest poprawna, ponieważ odzwierciedla właściwą konfigurację montażu elementów w układzie przygotowania sprężonego powietrza. Smarownica jest pierwszym elementem, który powinien być zainstalowany bezpośrednio po źródle sprężonego powietrza. Jej zadaniem jest dostarczanie odpowiedniej ilości oleju do narzędzi i urządzeń pneumatycznych, co znacząco wpływa na ich żywotność i efektywność pracy. Następnie manometr, który monitoruje ciśnienie w układzie, powinien być zamontowany, aby umożliwić użytkownikowi bieżącą kontrolę ciśnienia roboczego. Reduktor, który reguluje ciśnienie, powinien być umieszczony w dalszej kolejności, co pozwala na dostosowanie ciśnienia do wymagań urządzeń zasilanych sprężonym powietrzem. Na końcu, filtr powietrza powinien oczyszczać powietrze przed jego dostarczeniem do urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania. Taka kolejność montażu jest zgodna z najlepszymi praktykami w dziedzinie pneumatyki, co gwarantuje niezawodność oraz efektywność całego układu.

Pytanie 12

Do którego gniazda należy podłączyć czarny przewód pomiarowy, a do którego czerwony, aby wykonać pomiar przy wybranym zakresie?

Ilustracja do pytania
A. 1 - czarny i 2 - czerwony.
B. 1 - czarny i 3 - czerwony.
C. 3 - czarny i 1 - czerwony.
D. 3 - czarny i 2 - czerwony.
Ta odpowiedź jest poprawna, ponieważ gniazdo numer 3, oznaczone jako COM (common), jest standardowym gniazdem dla czarnego przewodu pomiarowego. To gniazdo jest używane we wszystkich pomiarach jako punkt odniesienia dla napięć i prądów. Z kolei gniazdo numer 2, oznaczone symbolem VΩmA, jest dedykowane dla czerwonego przewodu pomiarowego, co sprawia, że idealnie nadaje się do pomiarów napięcia, oporności oraz prądu. Korzystając z tych gniazd, można wykonywać prawidłowe pomiary, zapewniając jednocześnie bezpieczeństwo i dokładność. W praktyce, znajomość tych oznaczeń jest kluczowa, zwłaszcza w kontekście pomiarów elektrycznych, gdzie nieprawidłowe podłączenie przewodów może prowadzić do uszkodzenia sprzętu. Dobrą praktyką jest zawsze upewnienie się, że przewody są podłączone do odpowiednich gniazd przed rozpoczęciem pomiarów. Takie podejście zgodne jest z normami bezpieczeństwa oraz standardami pracy w laboratoriach i na stanowiskach badawczych.

Pytanie 13

Jaką z wymienionych czynności należy regularnie przeprowadzać w trakcie konserwacji systemu pneumatycznego?

A. Usuwać kondensat wodny
B. Regulować ciśnienie powietrza
C. Wymieniać rury pneumatyczne
D. Wymieniać szybkozłącza
Wymiana przewodów pneumatycznych, szybkozłączek oraz regulacja ciśnienia powietrza są czynnościami, które mogą być częścią konserwacji, jednak nie powinny być traktowane jako regularne zadania rutynowe. Wymiana przewodów pneumatycznych jest zazwyczaj związana z ich uszkodzeniem lub zużyciem, co oznacza, że nie jest konieczne przeprowadzanie tego procesu cyklicznie. Odpowiednie przewody powinny być wybrane zgodnie z normami i specyfikacjami, ale ich wymiana powinna odbywać się jedynie w sytuacjach kryzysowych, a nie na zasadzie rutyny. Szybkozłączki również mają swoją żywotność i powinny być wymieniane tylko w przypadku stwierdzenia nieszczelności lub uszkodzeń mechanicznych, co nie jest działaniem cyklicznym. Regulacja ciśnienia powietrza jest ważna, ale powinna odbywać się w momencie, gdy istnieje potrzeba dostosowania parametrów pracy systemu, a nie jako regularna czynność konserwacyjna. Te działania wiążą się z nieporozumieniem dotyczącym podejścia do konserwacji, gdzie użytkownicy mogą myśleć, że każda z tych czynności jest niezbędna do codziennego utrzymania układu. Kluczowym aspektem efektywnej konserwacji układu pneumatycznego jest monitorowanie i zapobieganie problemom, a nie tylko reagowanie na zaistniałe awarie. Dlatego istotne jest zastosowanie strategii prewencyjnej, w której kluczowym elementem pozostaje regularne usuwanie kondensatu, co ma fundamentalne znaczenie dla długotrwałej i niezawodnej pracy systemu.

Pytanie 14

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. suwmiarka
B. szczelinomierz
C. liniał
D. mikrometr
Szczelinomierz to narzędzie pomiarowe, które jest szczególnie zaprojektowane do określania luzów i szczelin pomiędzy elementami konstrukcyjnymi. Jego konstrukcja umożliwia precyzyjne pomiary w trudnych warunkach pracy, gdzie inne narzędzia, takie jak suwmiarka czy mikrometr, mogą nie dostarczyć wystarczającej dokładności. Szczelinomierze są często stosowane w różnych branżach, w tym w mechanice precyzyjnej, motoryzacji i inżynierii lotniczej, gdzie kontrola luzów pomiędzy ruchomymi elementami jest kluczowa dla zapewnienia prawidłowego funkcjonowania maszyn. Na przykład, w silnikach spalinowych precyzyjne pomiary luzów między zaworami a gniazdami zaworowymi są niezbędne do zapewnienia optymalnej wydajności silnika oraz minimalizacji zużycia. W standardach branżowych, takich jak ISO, podkreśla się znaczenie stosowania odpowiednich narzędzi do pomiarów luzów, co czyni szczelinomierz najlepszym wyborem w tego typu aplikacjach.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakiego materiału powinno się użyć do ekranowania urządzeń pomiarowych, aby zredukować wpływ pól elektromagnetycznych na ich funkcjonowanie?

A. Aluminium
B. Teflon
C. Szkło
D. Preszpan
Aluminium jest doskonałym materiałem do ekranowania urządzeń pomiarowych ze względu na swoje właściwości elektryczne. Ma wysoką przewodność elektryczną, co pozwala na skuteczne blokowanie pól elektromagnetycznych poprzez odbicie fal elektromagnetycznych oraz ich pochłanianie. W praktyce, ekranowanie aluminium znajduje zastosowanie w wielu aplikacjach, w tym w laboratoriach pomiarowych, gdzie precyzyjne pomiary są kluczowe. W branży inżynieryjnej aluminium jest szeroko stosowane do budowy obudów urządzeń, które wymagają ochrony przed zakłóceniami elektromagnetycznymi, zgodnie z normami takimi jak IEC 61000-4-3, które określają wymagania dotyczące odporności na zakłócenia elektromagnetyczne. Dobre praktyki inżynieryjne zalecają również łączenie ekranów z uziemieniem, co dodatkowo zwiększa skuteczność ekranowania. Wykorzystanie aluminium w tej roli umożliwia również redukcję masy urządzeń, co jest istotne w konstrukcji przenośnych aplikacji pomiarowych.

Pytanie 18

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. zasilaczy
B. prostowników
C. generatorów
D. stabilizatorów
Stabilizatory to urządzenia elektroniczne, które zapewniają stałe napięcie na wyjściu, niezależnie od zmian napięcia zasilania oraz obciążenia podłączonego do nich układu. Ich kluczową funkcją jest ochrona urządzeń elektronicznych przed niekorzystnymi skutkami wahań napięcia, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, jak w urządzeniach medycznych, systemach komputerowych czy automatyce przemysłowej. Stabilizatory można podzielić na liniowe i impulsowe, z których każdy typ ma swoje unikalne zalety i zastosowania. Stabilizatory liniowe są proste w konstrukcji i oferują niewielkie zniekształcenia, ale ich wydajność energetyczna jest niższa, co sprawia, że w zastosowaniach wymagających dużych prądów lepiej sprawdzają się stabilizatory impulsowe. W standardach branżowych, takich jak IEC 61000, uwzględnia się wymagania dotyczące stabilności napięcia w kontekście kompatybilności elektromagnetycznej, co czyni stabilizatory niezbędnym elementem w projektowaniu nowoczesnych systemów elektronicznych.

Pytanie 19

Która pompa hydrauliczna zbudowana jest z elementów przedstawionych na rysunku?

Ilustracja do pytania
A. Śrubowa.
B. Tłokowa promieniowa.
C. Tłokowa osiowa.
D. Zębata.
Pompa śrubowa, którą zidentyfikowałeś, wyróżnia się konstrukcją opartą na dwóch śrubach, które obracają się w przeciwnych kierunkach. Taka konstrukcja pozwala na efektywne przemieszczanie cieczy w zamkniętej przestrzeni, co czyni ją idealnym rozwiązaniem w aplikacjach wymagających wysokiej wydajności i stabilności. Pompy śrubowe są często wykorzystywane w przemyśle naftowym oraz chemicznym, gdzie transportuje się substancje o dużej lepkości. Dzięki swojej konstrukcji, pompy te charakteryzują się niskimi pulsacjami i możliwością pracy przy dużych obciążeniach. W praktyce, stosuje się je również w systemach nawadniania oraz w instalacjach HVAC, gdzie ich niezawodność i trwałość są kluczowe. Posiadając wiedzę na temat budowy i funkcji pomp śrubowych, można lepiej dobierać odpowiednie urządzenia do specyficznych potrzeb przemysłowych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 20

Który z podanych czujników nie nadaje się do detekcji położenia stanowiska napełniania butelek przedstawionego na ilustracji?

Ilustracja do pytania
A. Magnetyczny.
B. Optyczny.
C. Pojemnościowy.
D. Indukcyjny.
Czujnik magnetyczny nie nadaje się do wykrywania położenia stanowiska napełniania butelek, ponieważ jego działanie opiera się na detekcji obiektów metalowych. W przypadku, gdy butelki są wykonane z materiałów nieprzewodzących, takich jak plastik lub szkło, czujnik ten nie będzie skuteczny. W praktyce, czujniki pojemnościowe są doskonałym wyborem do wykrywania nie-metalowych obiektów, gdyż potrafią wykrywać zmiany w pojemności elektrycznej w obrębie swojego pola działania. Czujniki indukcyjne, z kolei, są idealne do detekcji metali i mogą być wykorzystywane w systemach automatyzacji przemysłowej, gdzie wykrywanie pozycji metalowych elementów jest kluczowe. Czujniki optyczne, wykorzystujące światło do wykrywania obecności obiektów, również dobrze sprawdzają się w kontekście napełniania butelek, zwłaszcza gdy są one przezroczyste. W zależności od zastosowania, wybór odpowiedniego czujnika jest kluczowy dla optymalizacji procesu produkcji.

Pytanie 21

Jaką czynność należy przeprowadzić, aby zwiększyć średnicę otworu i umożliwić osadzenie w nim łba śruby?

A. Pogłębianie
B. Wiercenie wtórne
C. Wiercenie
D. Rozwiercanie
Wiercenie to proces robienia otworów, ale w tym przypadku to nie jest najlepszy wybór do powiększania średnicy otworu. Ono bardziej nadaje się do tworzenia nowych otworów, a nie do zmiany tych, które już są. Wiercenie wtórne też nie jest idealne, bo koncentruje się na uzupełnianiu istniejących otworów, a my potrzebujemy coś więcej. Rozwiercanie może działać w tej sytuacji, ale jest trudniejsze i może uszkodzić materiał, bo wymaga większej precyzji. Kiedy wybierasz metodę obróbcą, musisz brać pod uwagę wymagania projektu i materiał, z którego zrobiony jest element. Wiele osób myśli, że można te metody stosować zamiennie, a to prowadzi do problemów jak źle dobrane średnice otworów, co może zrujnować konstrukcję lub utrudnić montaż.

Pytanie 22

Montaż realizowany według zasady całkowitej zamienności polega na

A. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
B. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
C. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
D. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
Montaż zgodny z zasadą całkowitej zamienności oznacza, że wszystkie części składowe danego zespołu są produkowane z bardzo wąskimi tolerancjami wymiarowymi. Dzięki temu, każda z części może być wymieniana bez konieczności dodatkowej obróbki. Taki sposób produkcji jest kluczowy w branżach, gdzie precyzja i niezawodność są priorytetem, na przykład w przemyśle lotniczym czy motoryzacyjnym. W praktyce oznacza to, że przy wymianie części, takich jak elementy silnika czy układu napędowego, nie zachodzi potrzeba ich dopasowywania ani regulacji, co znacznie przyspiesza czas montażu. Standardy, takie jak ISO 286 dotyczące tolerancji wymiarowych oraz norma AS9100 w przemyśle lotniczym, podkreślają znaczenie tego podejścia, ponieważ mają one na celu zapewnienie wysokiej jakości oraz bezpieczeństwa produktów. Dostosowanie procesu produkcji do zasady całkowitej zamienności pozwala również na obniżenie kosztów, ponieważ zmniejsza się ryzyko błędów montażowych oraz reklamacji związanych z niewłaściwym działaniem części.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Przy pomocy którego elementu można regulować siłę uderzenia odbijaka pneumatycznego przedstawionego na rysunku?

Ilustracja do pytania
A. 4 - Zaworu redukcyjnego w zespole przygotowania powietrza.
B. 1 - Zaworu zasuwowego odcinającego.
C. 3 - Układu sterującego czasem pracy odbijaka AP 115.
D. 2 - Zaworu sterującego kierunkiem przepływu 3/2.
Zawór redukcyjny w zespole przygotowania powietrza (element 4) odgrywa kluczową rolę w regulacji ciśnienia powietrza, które jest dostarczane do odbijaka pneumatycznego. Dzięki temu można precyzyjnie dostosować siłę uderzenia urządzenia, co ma istotne znaczenie w wielu aplikacjach przemysłowych. Użycie zaworu redukcyjnego pozwala na obniżenie ciśnienia z poziomu wyjściowego do wartości optymalnej dla konkretnego procesu, co zwiększa efektywność i bezpieczeństwo operacji. Przykładowo, w procesach montażowych, gdzie precyzja jest kluczowa, regulacja siły uderzenia pozwala uniknąć uszkodzeń komponentów. Zgodnie z zaleceniami branżowymi, stosowanie zaworów redukcyjnych jest standardem w układach pneumatycznych, ponieważ pozwala na bardziej stabilne i przewidywalne działanie systemu. Dzięki temu operacje można przeprowadzać z większą kontrolą oraz w zgodności z normami jakości. Warto również zaznaczyć, że właściwe ustawienie ciśnienia wpływa na żywotność i niezawodność urządzeń pneumatycznych.

Pytanie 25

Zaświecenie której lampki sygnalizacyjnej informuje o niebezpieczeństwie?

Ilustracja do pytania
A. Lampki 3.
B. Lampki 4.
C. Lampki 2.
D. Lampki 1.
Lampka 4, oznaczająca czerwoną sygnalizację, jest kluczowym elementem systemów bezpieczeństwa. Czerwony kolor jest powszechnie akceptowany na całym świecie jako symbolem niebezpieczeństwa, co czyni go łatwo rozpoznawalnym w sytuacjach awaryjnych. W praktyce, w wielu branżach, takich jak przemysł, transport czy energetyka, lampki sygnalizacyjne pełnią istotną rolę w zapewnieniu bezpieczeństwa. Na przykład, w zakładach przemysłowych, czerwona lampka może sygnalizować zatrzymanie maszyny z powodu awarii, a pracownicy są zobowiązani do natychmiastowego reagowania na ten sygnał. W kontekście przepisów BHP, stosowanie czerwonego w sygnalizacji jest zgodne z normami międzynarodowymi, takimi jak ISO 7010, które określają standardy dotyczące oznakowania bezpieczeństwa. Właściwe rozumienie znaczenia lampki sygnalizacyjnej jest kluczowe dla skutecznego zarządzania ryzykiem oraz minimalizacji zagrożeń w miejscu pracy.

Pytanie 26

Po sprawdzeniu zgodności połączeń (Rysunek II.) z dokumentacją techniczną (Rysunek I.) wynika, że błędnie wybrany jest

Ilustracja do pytania
A. siłownik Al
B. przekaźnik KI
C. przekaźnik K2
D. rozdzielacz VI
Odpowiedź 'rozdzielacz VI' jest prawidłowa, ponieważ po porównaniu Rysunku I z Rysunkiem II można zauważyć istotne różnice w podłączeniu cewki tego elementu. Na Rysunku I, cewki rozdzielacza VI są poprawnie podłączone do styków 2 i 4, co jest zgodne z dokumentacją techniczną. Natomiast na Rysunku II, cewki te są podłączone do styków 1 i 4, co wskazuje na błąd w połączeniach. W praktyce, prawidłowe podłączenie elementów w układach elektrycznych jest kluczowe dla zapewnienia ich właściwego funkcjonowania oraz bezpieczeństwa. Niezgodności w podłączeniach mogą prowadzić do uszkodzenia komponentów, a także do potencjalnych zagrożeń pożarowych. Dlatego tak ważne jest, aby zawsze dokładnie porównywać schematy z rzeczywistymi połączeniami, zwracając szczególną uwagę na numery styków i ich funkcje. Przestrzeganie standardów dokumentacji technicznej, takich jak normy IEC czy obowiązujące przepisy BHP, ma fundamentalne znaczenie w pracy inżyniera oraz technika. W sytuacjach takich jak modernizacje systemów, zawsze należy weryfikować, czy zmiany wprowadzone w instalacji są zgodne z dokumentacją, aby uniknąć poważnych błędów i zapewnić niezawodność systemu.

Pytanie 27

Jakie urządzenie pośredniczy w interakcji między urządzeniem mechatronicznym a jego użytkownikiem?

A. Przekaźnik programowalny
B. Robot przemysłowy
C. Panel operatorski HMI
D. Sterownik PLC
Panel operatorski HMI (Human-Machine Interface) jest kluczowym elementem w komunikacji pomiędzy urządzeniem mechatronicznym a jego operatorem. Działa jako interfejs, który umożliwia użytkownikowi monitorowanie i kontrolowanie procesów technologicznych w czasie rzeczywistym. Dzięki panelom HMI, operatorzy mogą łatwo odczytywać dane, takie jak temperatura, ciśnienie czy prędkość, a także wprowadzać zmiany w ustawieniach systemu. Przykładem zastosowania panelu HMI może być linia produkcyjna, gdzie operatorzy mogą zarządzać maszynami, przeglądać alarmy oraz dostosowywać parametry produkcji. W kontekście standardów branżowych, panele HMI są zgodne z normami takimi jak ISA-101, które określają zasady projektowania interfejsów użytkownika w systemach sterowania. Wspierają także dobre praktyki w zakresie ergonomii, co wpływa na bezpieczeństwo i efektywność pracy operatorów.

Pytanie 28

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Stycznik elektromagnetyczny
B. Wyłącznik nadmiarowy
C. Wyłącznik różnicowoprądowy
D. Przekaźnik termobimetalowy
Wyłącznik nadmiarowy, stycznik elektromagnetyczny oraz wyłącznik różnicowoprądowy to urządzenia, które pełnią różne funkcje w systemach elektrycznych, ale nie są odpowiednie do zabezpieczenia silnika indukcyjnego przed przeciążeniem. Wyłącznik nadmiarowy, mimo że jest używany do ochrony przed przeciążeniem, działa na zasadzie automatycznego wyłączania obwodu przy przekroczeniu określonego prądu. Jednak nie jest on dostosowany do specyficznych warunków pracy silników indukcyjnych, gdzie ważne jest szybkie reagowanie na zmiany obciążenia. Stycznik elektromagnetyczny, z drugiej strony, służy do załączania i wyłączania obwodów elektrycznych, a jego zadanie polega na kontrolowaniu przepływu energii elektrycznej, a nie na monitorowaniu stanu przeciążenia. Wyłącznik różnicowoprądowy jest przeznaczony głównie do ochrony ludzi przed porażeniem prądem elektrycznym, a jego działanie opiera się na wykrywaniu różnicy prądu między przewodami zasilającymi, co nie ma związku z przeciążeniem silnika. Wybór niewłaściwego urządzenia do ochrony silnika może prowadzić do uszkodzenia sprzętu, a także do niebezpieczeństwa dla użytkowników. Dlatego ważne jest, aby w odpowiedni sposób dobierać komponenty zabezpieczające zgodnie z ich funkcjami oraz zaleceniami producentów i normami branżowymi.

Pytanie 29

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. mostek tensometryczny
B. potencjometr obrotowy
C. czujnik termoelektryczny
D. prądnica tachometryczna
Prądnica tachometryczna jest urządzeniem wykorzystywanym do pomiaru prędkości obrotowej wału silnika, które działa na zasadzie indukcji elektromagnetycznej. Jej działanie opiera się na generacji napięcia proporcjonalnego do prędkości obrotowej, co czyni ją niezwykle przydatną w monitorowaniu pracy maszyn. Prądnice tachometryczne znajdują zastosowanie w różnych dziedzinach, takich jak automatyka przemysłowa, kontrola procesów technologicznych oraz systemy napędowe. Dzięki nim można dokładnie kontrolować prędkość obrotową silników, co jest kluczowe dla utrzymania stabilności pracy urządzeń oraz minimalizacji zużycia energii. Współczesne prądnice tachometryczne są często zintegrowane z systemami sterowania, co pozwala na automatyzację procesów i zwiększenie efektywności produkcji. Używane są także w aplikacjach wymagających precyzyjnego pomiaru, takich jak robotyka czy systemy CNC, gdzie dokładność i niezawodność pomiarów są krytyczne.

Pytanie 30

Komutatorowa prądnica tachometryczna podłączona do wału silnika wykonawczego, działającego w systemie mechatronicznym, stanowi przetwornik

A. prędkości obrotowej na napięcie stałe
B. prędkości obrotowej na impulsy elektryczne
C. kąta obrotu na regulowane napięcie stałe
D. kąta obrotu na impulsy elektryczne
Komutatorowa prądnica tachometryczna to urządzenie przetwarzające prędkość obrotową na napięcie stałe, co czyni je niezwykle użytecznym w aplikacjach mechatronicznych, w tym w systemach automatyki i robotyki. Podczas pracy, prądnica generuje napięcie proporcjonalne do prędkości obrotowej wału silnika, co umożliwia dokładne pomiary i kontrolę prędkości. Przykładowo, w systemach regulacji prędkości silników elektrycznych, informacje dostarczane przez prądnice tachometryczne stanowią feedback dla regulatorów PID, co pozwala na precyzyjne dostosowanie mocy dostarczanej do silnika. Zastosowanie takich urządzeń przyczynia się do zwiększenia efektywności i bezpieczeństwa systemów mechatronicznych, a ich standardy budowy i działania są zgodne z normami IEC i ISO, zapewniając niezawodność i zgodność w różnych warunkach pracy. Wiedza na temat działania prądnic tachometrycznych jest zatem kluczowa dla inżynierów projektujących nowoczesne systemy automatyki.

Pytanie 31

Ciśnienie o wartości 1 N/m2 to

A. 1 Pa
B. 1 bar
C. 1 mmHg
D. 1 at
Ciśnienie równe 1 N/m² jest równoznaczne z 1 Pa (paskalem), co jest jednostką miary ciśnienia w układzie SI. Definicja ciśnienia mówi, że jest to siła działająca na jednostkę powierzchni. W praktyce, 1 Pa oznacza, że na powierzchnię o wymiarach 1 m² działa siła o wartości 1 N. Paskal jest powszechnie stosowany w wielu dziedzinach, takich jak inżynieria mechaniczna, budownictwo oraz nauki przyrodnicze. Dla przykładu, w kontekście hydrauliki, ciśnienie 1 Pa jest niewielkie, ale w kontekście atmosferycznym, na poziomie morza, ciśnienie wynosi około 101325 Pa (czyli 1 atm), co pokazuje, jak mała jest jednostka 1 Pa w porównaniu do standardowego ciśnienia atmosferycznego. W praktyce, ciśnienie wyrażane w paskalach jest również często używane w procesach przemysłowych i laboratoryjnych, co czyni tę jednostkę kluczową w zrozumieniu i obliczeniach dotyczących sił działających w różnych systemach.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W układzie zasilającym napęd pneumatyczny urządzenia mechatronicznego zamontowano zespół przygotowania powietrza złożony z 4 elementów. Którą z wymienionych funkcji realizuje element, którego symbol graficzny wskazuje strzałka?

Ilustracja do pytania
A. Wprowadza mgłę olejową do układu.
B. Osusza powietrze dostarczane z sprężarki.
C. Filtruje powietrze dostarczane ze sprężarki.
D. Reguluje poziom ciśnienia w układzie.
Twoja odpowiedź jest prawidłowa, ponieważ element, którego symbol graficzny wskazuje strzałka, to filtr powietrza. Filtr powietrza jest kluczowym komponentem układu przygotowania powietrza. Jego główną funkcją jest usuwanie zanieczyszczeń, takich jak kurz, olej i woda, z powietrza dostarczanego przez sprężarkę. Takie zanieczyszczenia mogą prowadzić do uszkodzenia urządzeń pneumatycznych oraz obniżenia efektywności pracy systemu. Zastosowanie filtrów powietrza jest zgodne z najlepszymi praktykami w obszarze inżynierii pneumatycznej, co zapewnia długotrwałą i niezawodną pracę urządzeń. W wielu systemach przemysłowych, dobór odpowiedniego filtra powietrza jest kluczowy dla zachowania czystości powietrza, co z kolei wpływa na jakość procesów produkcyjnych. Prawidłowo działający filtr powietrza znacząco wpływa na wydajność całego układu, zmniejszając ryzyko awarii i konieczności kosztownych napraw.

Pytanie 35

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Rękawice ochronne
B. Buty ochronne
C. Odzież ochronna
D. Okulary ochronne
Podczas pracy w hali produkcyjnej, gdzie konserwacja urządzenia mechatronicznego jest przeprowadzana, wybór odpowiednich środków ochrony indywidualnej jest kluczowy dla zapewnienia bezpieczeństwa pracowników. Chociaż odzież ochronna, okulary ochronne i buty ochronne są istotnymi elementami ochrony, to ich rolę w kontekście konserwacji często się bagatelizuje. Odzież ochronna, mimo że chroni przed zabrudzeniami i drobnymi urazami, nie zapewnia takiego poziomu ochrony dłoni, jak rękawice ochronne. Często można spotkać nieprawidłowe przekonanie, że odzież wystarczająco chroni przed kontaktami z ostrymi elementami lub substancjami chemicznymi. Ponadto, okulary ochronne, które mają na celu zabezpieczenie oczu przed odpryskami, nie chronią innych części ciała, takich jak ręce, które są narażone na bezpośrednie uszkodzenia. Buty ochronne, choć są niezbędne dla ochrony stóp przed ciężkimi przedmiotami czy upadkami, nie zmieniają faktu, że to rękawice są najbardziej krytycznym elementem ochrony podczas wykonywania precyzyjnych operacji wymagających dużej zręczności i bliskiego kontaktu z urządzeniem. W rzeczywistości, brak odpowiednich rękawic może prowadzić do poważnych urazów, co podkreśla znaczenie ich użycia w każdym przypadku, gdzie ryzyko uszkodzenia dłoni jest obecne. Dlatego ważne jest, aby nie lekceważyć znaczenia rękawic ochronnych i zrozumieć, że są one nie tylko dodatkiem do stroju roboczego, ale kluczowym elementem systemu zabezpieczeń w środowisku przemysłowym.

Pytanie 36

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RRT - dwie osie obrotowe i jedną oś prostoliniową
B. TTT - trzy osie prostoliniowe
C. RRR - trzy osie obrotowe
D. RTT - jedną oś obrotową i dwie osie prostoliniowe
Odpowiedź RRR, która sugeruje manipulatory z kilkoma osiami obrotowymi, nie za bardzo pasuje do kontekstu prostopadłościennej przestrzeni roboczej. Obrotowe ruchy mogą wydawać się elastyczne, ale w praktyce nie dają tej samej precyzji, co ruchy prostoliniowe. Odpowiedzi RRT i RTT, które łączą osie obrotowe i prostoliniowe, też nie spełniają wymagań tej konkretnej przestrzeni. Wiesz, w takich manipulacjach ważne są bezpośrednie ruchy liniowe, które pozwalają na dotarcie do każdego punktu w prostopadłościanie, a z samymi obrotami to nie takie proste. Często błędne myślenie przy takich odpowiedziach wynika z niedostatecznego zrozumienia kinematyki, a niektórzy mylą ruchy manipulatorów z ich geometrią. Dlatego, moim zdaniem, ważne jest, żeby znać różne typy kinematyki, żeby móc dobierać odpowiednie urządzenia do konkretnych zadań.

Pytanie 37

Dla którego stanu wejść na wyjściu Y układu logicznego pojawi się "1"?

Ilustracja do pytania
A. A=1, B=1, C=1
B. A=l, B=0, C=0
C. A=0, B=1, C=1
D. A=0, B=0, C=0
Pozostałe odpowiedzi są błędne, bo nie biorą pod uwagę podstaw działania układów logicznych. Na przykład, A=1, B=1, C=1 sugeruje, że wszystkie wejścia są aktywne, co w przypadku bramki AND teoretycznie dałoby aktywne wyjście Y. Ale w naszym przypadku, nie osiągniemy Y=1, jeśli inne warunki nie są spełnione. Z kolei A=0, B=1, C=1 pokazuje, że jedno z wejść jest nieaktywne, przez co nie możemy uzyskać pełnego aktywnego stanu, a to jest poważny błąd w myśleniu. W układach logicznych trzeba znać zasady, bo niektóre kombinacje wejść zostawiają wyjście w stanie '0'. Ostatnia opcja z A=0, B=0, C=0 ilustruje, że wszystkie wejścia są nieaktywne i zgodnie z regułami działania bramek logicznych nie mogą dać nam '1' na wyjściu. Zrozumienie tych prostych zasad jest kluczowe w pracy z systemami cyfrowymi, bo błędy w interpretacji mogą prowadzić do dużych pomyłek w praktyce.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W instalacji pneumatycznej przedstawionej na rysunku przewód główny, do którego podłącza się m.in. kolejne układy sterowania pneumatycznego zainstalowany, jest ze spadkiem 1% w celu

Ilustracja do pytania
A. umożliwienia spływu kondensatu.
B. spowolnienia przepływu.
C. poprawy szczelności.
D. przyspieszenia przepływu.
Spadek przewodu głównego w instalacji pneumatycznej, taki na poziomie 1%, to naprawdę ważna rzecz, jeśli chodzi o sprawne odprowadzanie kondensatu, który powstaje z chłodzenia sprężonego powietrza. Jak wiadomo, para wodna w sprężonym powietrzu skrapla się i potem gromadzi w dolnych częściach przewodu. To może być naprawdę problematyczne, bo może prowadzić do korozji i zanieczyszczenia różnych elementów w systemie pneumatycznym. Dlatego trzeba zadbać o to, żeby kondensat miał gdzie spływać, na przykład do zespołu przygotowania powietrza. To zgodne z dobrymi praktykami, które mówią, że każda instalacja pneumatyczna powinna mieć dobrze zaprojektowane systemy do odprowadzania skroplin. Z tego, co widzę, to pomaga utrzymać system w dobrym stanie i zmniejsza ryzyko awarii. A to przecież jest kluczowe, żeby procesy przemysłowe mogły działać bez zakłóceń. No i nie można zapominać, że regularne kontrole i konserwacja tych systemów są absolutnie niezbędne, żeby wszystko działało jak należy i spełniało normy bezpieczeństwa.