Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 16 lutego 2026 19:47
  • Data zakończenia: 16 lutego 2026 19:48

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką funkcję logiczną realizuje program zapisany w języku IL (STL)?

Ilustracja do pytania
A. OR
B. NOR
C. NOT
D. EXOR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź OR (#3) jest poprawna, ponieważ program zapisany w języku IL (STL) rzeczywiście realizuje funkcję logiczną OR. W kontekście automatyki przemysłowej, funkcja OR jest kluczowa w różnych zastosowaniach, gdzie zachowanie systemu zależy od co najmniej jednego aktywnego sygnału wejściowego. W przedstawionym przykładzie, instrukcje 'LD I0.1' oraz 'OR I0.2' wskazują, że na wyjściu Q0.1 zostanie wygenerowany sygnał logiczny '1', gdy przynajmniej jedno z wejść (I0.1 lub I0.2) jest w stanie wysokim. Takie podejście jest zgodne z zasadami projektowania systemów automatyki, gdzie kluczowe jest minimalizowanie błędów i zapewnienie niezawodności działania. Funkcja OR znajduje zastosowanie w wielu systemach alarmowych, gdzie aktywacja alarmu następuje przy spełnieniu co najmniej jednego kryterium. Korzystając z tej funkcji, inżynierowie mogą tworzyć bardziej elastyczne i rozszerzalne systemy, które mogą dostosować się do złożonych warunków operacyjnych, co jest zgodne z dobrą praktyką w projektowaniu systemów PLC.

Pytanie 2

Wartość parametru 20 V/1000 obr/min jest charakterystyczna dla

A. resolvera
B. induktosyna
C. prądnicy tachometrycznej
D. sprzęgła elektromagnetycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Parametr 20 V/1000 obr/min to typowa wartość dla prądnicy tachometrycznej, która służy do pomiaru prędkości obrotowej różnych maszyn, w tym silników. W praktyce oznacza to, że im szybciej coś się kręci, tym większe napięcie generuje ta prądnica. W przypadku, który mamy, to 20 V przy 1000 obrotach na minutę. To naprawdę przydatne w automatyce i kontrolowaniu procesów. Spotykamy je często w aplikacjach związanych z kontrolą prędkości silników elektrycznych i w systemach serwonapędów. Dlatego dobry wybór prądnicy tachometrycznej jest mega ważny, żeby pomiary były dokładne i stabilne. Z doświadczenia wiem, że to kluczowy element w nowoczesnych technologiach przemysłowych.

Pytanie 3

W jaki sposób powinno się zdefiniować dane w programach sterowników PLC, które mają postać sekwencji znaków lub cyfr, przy czym cyfry traktowane są jedynie jako znaki (bez przypisanej wartości)?

A. USINT
B. STRING
C. BYTE
D. WORD

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź STRING jest poprawna, ponieważ typ ten jest używany do reprezentowania ciągów znaków, które mogą składać się zarówno z liter, jak i cyfr. W kontekście programowania w środowisku PLC (Programmable Logic Controller), stosowanie typu STRING jest kluczowe, gdyż umożliwia przechowywanie danych jako tekst, co jest istotne w wielu aplikacjach, takich jak generowanie komunikatów, etykietowanie danych czy obsługa interfejsów użytkownika. W standardzie IEC 61131-3, który definiuje normy dotyczące programowania sterowników PLC, STRING jest jednym z podstawowych typów danych, co czyni go uniwersalnym rozwiązaniem w automatyzacji oraz programowaniu maszyn. Przykłady zastosowania obejmują przechowywanie nazw produktów, adresów, a także komunikatów błędów, które wymagają elastyczności w formacie danych. W dodatku, stringi mogą być łatwo manipulowane, co pozwala na ich formatowanie oraz analizę, co przyczynia się do większej wydajności procesów produkcyjnych.

Pytanie 4

Układ przekaźnikowy z samopodtrzymaniem załączający silnik elektryczny małej mocy zastąpiono układem ze sterownikiem PLC. Który z programów wprowadzony do sterownika zapewni identyczne sterowanie silnikiem do sterowania realizowanego przez układ przekaźnikowy?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź A jest prawidłowa, ponieważ idealnie odwzorowuje działanie układu przekaźnikowego z samopodtrzymaniem, który jest kluczowy w automatyce przemysłowej. W schemacie A, po naciśnięciu przycisku 'Start', przekaźnik Q1 jest aktywowany, co uruchamia silnik elektryczny. Styk pomocniczy Q1 zapewnia samopodtrzymanie, co oznacza, że przekaźnik pozostaje w stanie załączonym nawet po zwolnieniu przycisku 'Start'. Przyciski 'Start' i 'Stop' tworzą klasyczny układ sterowania, który jest zgodny z zasadami projektowania obwodów elektrycznych w przemyśle. W praktyce, takie rozwiązanie jest powszechnie stosowane w systemach automatyki, gdzie niezawodność i prostota działania są kluczowe. Warto również zauważyć, że stosując standardy takie jak IEC 61131, możemy zapewnić, że programy PLC są zgodne z najlepszymi praktykami w branży. Uwzględniając te aspekty, odpowiedź A nie tylko spełnia wymagania techniczne, ale również odpowiada na potrzeby użytkowników w kontekście zastosowania w realnych systemach automatyki.

Pytanie 5

Na podstawie fragmentu instrukcji serwisowej wskaż prawdopodobną przyczynę nieprawidłowej pracy urządzenia, jeżeli na jego wyświetlaczu wyświetla się kod błędu E5.

KODY BŁĘDÓW
NrKod błęduProblem
1.E1Usterka czujnika temperatury pomieszczenia
2.E2Usterka czujnika temperatury wymiennika zewn.
3.E3Usterka czujnika temperatury wymiennika wewn.
4.E4Usterka silnika jednostki wewnętrznej lub problem
z sygnałem zwrotnym
5.E5Brak komunikacji między jednostkami wewn. i zewn.
6.F0Usterka silnika prądu stałego wentylatora jednostki zewn.
7.F1Uszkodzenie modułu IPM
8.F2Uszkodzenie modułu PFC
9.F3Problem ze sprężarką
10.F4Błąd czujnika temperatury przegrzania
11.F5Zabezpieczenie temperatury głowicy sprężarki
12.F6Błąd czujnika temperatury otoczenia jednostki zewn.
13.F7Zabezpieczenie przed zbyt wysokim lub za niskim na-
pięciem zasilania
14.F8Błąd komunikacji modułów jednostki zewnętrznej
15.F9Błąd pamięci EEPROM jednostki zewnętrznej
16.FABłąd czujnika temperatury ssania
(uszkodzenie zaworu 4 drogowego)
A. Problem ze sprężarką.
B. Błąd czujnika temperatury ssania.
C. Uszkodzenie modułu IPM.
D. Brak komunikacji między jednostkami.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kod błędu E5, oznaczający 'Brak komunikacji między jednostkami wewn. i zewn.', wskazuje na istotny problem w systemach HVAC, gdzie współpraca i wymiana informacji między jednostkami są kluczowe dla prawidłowego funkcjonowania. W przypadku, gdy urządzenie nie może nawiązać komunikacji, może to prowadzić do braku synchronizacji w działaniu systemu, a tym samym do nieefektywnej pracy lub całkowitego zatrzymania. W praktyce, przed podjęciem dalszych kroków diagnostycznych, warto najpierw sprawdzić połączenia kablowe oraz zasilanie jednostek, co jest zgodne z dobrymi praktykami serwisowymi. W przypadku potwierdzenia braku komunikacji, zastosowanie narzędzi do testowania sygnałów komunikacyjnych (np. oscyloskopy) może pomóc w zdiagnozowaniu, czy problem leży w uszkodzeniu kabla, czy w jednym z modułów sterujących. Działania te są niezbędne, aby zapewnić działanie systemu na najwyższym poziomie efektywności oraz minimalizować ryzyko awarii w przyszłości.

Pytanie 6

Zakres działań eksploatacyjnych dla urządzenia mechatronicznego powinien być określony na podstawie

A. dowodu zakupu urządzenia
B. dokumentacji techniczno-ruchowej urządzenia
C. protokółu przekazania urządzenia do eksploatacji
D. karty gwarancyjnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dokumentacja techniczno-ruchowa urządzenia mechatronicznego jest kluczowym źródłem informacji dotyczących jego eksploatacji, konserwacji oraz napraw. Zawiera szczegółowe specyfikacje techniczne, instrukcje obsługi oraz harmonogramy przeglądów, co pozwala użytkownikom na odpowiednie przygotowanie się do pracy z urządzeniem. Przykładowo, regularne przeglądy oraz konserwacja zgodnie z wytycznymi zawartymi w dokumentacji są niezbędne dla zapewnienia długotrwałej i bezawaryjnej pracy urządzenia. Dobre praktyki branżowe wskazują, że niewłaściwa eksploatacja sprzętu, wynikająca z braku znajomości zasad zawartych w dokumentacji, może prowadzić do poważnych usterek oraz zwiększonych kosztów napraw. Ponadto, dokumentacja techniczno-ruchowa zapewnia również aktualizacje dotyczące zmian w procedurach eksploatacyjnych, co jest istotne w kontekście dostosowania się do nowych standardów i norm bezpieczeństwa. Rzetelne przestrzeganie zawartych tam wytycznych jest zatem fundamentem dla efektywnej i bezpiecznej eksploatacji urządzeń mechatronicznych.

Pytanie 7

Którą z wymienionych metod obróbki skrawaniem wykonuje się narzędziem przedstawionym na rysunku?

Ilustracja do pytania
A. Struganie.
B. Przeciąganie.
C. Toczenie.
D. Gwintowanie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź „gwintowanie” jest prawidłowa, ponieważ narzędzie przedstawione na rysunku to gwintownik, który jest specjalistycznym narzędziem przeznaczonym do tworzenia gwintów wewnętrznych w otworach. Gwintowanie jest istotnym procesem w obróbce skrawaniem, pozwalającym na uzyskanie precyzyjnych połączeń śrubowych. W praktyce, gwintowniki stosuje się w szerokim zakresie aplikacji, od produkcji elementów mechanicznych po tworzenie mocowań w konstrukcjach metalowych. Zgodnie z normami ISO, gwintowanie powinno być realizowane z uwzględnieniem właściwego doboru narzędzi oraz parametrów obróbczych, aby zapewnić wymagane tolerancje oraz jakość gwintów. Dobrze wykonane gwinty pozwalają na bezpieczne i stabilne połączenia w różnorodnych zastosowaniach, co jest kluczowe w branżach takich jak automotive czy lotnictwo.

Pytanie 8

Która funkcja logiczna jest realizowana przez przedstawiony program

Ilustracja do pytania
A. Funkcja wyłącznika chwilowego - wyjście %Q0.2 jest aktywne tylko podczas trzymania przycisku.
B. Funkcja logiczna OR - wyjście %Q0.2 jest aktywne, gdy dowolne z wejść jest aktywne.
C. Funkcja podtrzymania (latch) - wyjście %Q0.2 pozostaje aktywne po spełnieniu warunków wejściowych, dzięki równoległemu stykowi własnemu.
D. Funkcja wyłącznika chwilowego - wyjście %Q0.2 jest aktywne tylko podczas trzymania przycisku.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ta odpowiedź jest jak najbardziej trafna, bo przedstawiony program w języku drabinkowym (LAD) dokładnie realizuje funkcję podtrzymania, czyli tzw. latch. To bardzo praktyczne rozwiązanie, często stosowane w automatyce przemysłowej do sterowania urządzeniami, które mają pozostać włączone po krótkim impulsie. W praktyce wygląda to tak, że po spełnieniu wszystkich warunków wejściowych (czyli zadziałaniu wejść %I0.0, %I0.1 i %I0.5), wyjście %Q0.2 zostaje ustawione i... co najważniejsze – utrzymuje swój stan nawet po puszczeniu tych przycisków. Kluczowe jest tu użycie równoległego styku własnego wyjścia (%Q0.2), który podtrzymuje logikę, dopóki nie zostanie przerwany obwód przez inny warunek (np. reset). Z mojego doświadczenia wynika, że to rozwiązanie jest nieocenione w aplikacjach takich jak sterowanie oświetleniem, silnikami czy zaworami, gdzie musimy zapewnić utrzymanie stanu wyjścia do czasu spełnienia określonych warunków. W standardach programowania PLC (zgodnie z normą IEC 61131-3) latch jest jedną z podstawowych funkcji logicznych, a jego właściwe użycie poprawia bezpieczeństwo i niezawodność pracy układów. Warto zauważyć, że takie podejście ułatwia diagnostykę i serwisowanie systemów – od razu widać, co trzyma wyjście aktywne. Gdyby nie ten latch, wiele systemów byłoby po prostu mniej praktycznych. W automatyce przemysłowej to naprawdę podstawa, bez której trudno sobie wyobrazić porządny układ sterowania.

Pytanie 9

W systemie pneumatycznym schładzanie powietrza przy użyciu agregatu chłodniczego do ciśnieniowego punktu rosy +2°C ma na celu

A. zmniejszenie ciśnienia powietrza
B. zwiększenie ciśnienia powietrza
C. osuszenie powietrza
D. nasycenie powietrza parą wodną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oziębianie powietrza za pomocą agregatu chłodniczego do ciśnieniowego punktu rosy +2°C ma na celu osuszenie powietrza, co jest kluczowym procesem w instalacjach pneumatycznych. W miarę obniżania temperatury powietrza, jego zdolność do utrzymywania pary wodnej zmniejsza się, co prowadzi do kondensacji wilgoci. Ten proces jest niezwykle istotny, ponieważ nadmiar wilgoci w układzie pneumatycznym może prowadzić do korozji elementów, obniżenia efektywności działania urządzeń oraz zwiększenia ryzyka awarii. W praktyce, zastosowanie agregatów chłodniczych do osuszania powietrza jest standardem w wielu branżach, takich jak przemysł spożywczy, farmaceutyczny czy motoryzacyjny, gdzie kontrola wilgotności jest kluczowa. Ponadto, stosowanie takich rozwiązań jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie utrzymania optymalnych warunków operacyjnych, co przyczynia się do wydłużenia żywotności systemów pneumatycznych oraz poprawy ich niezawodności.

Pytanie 10

Który symbol graficzny oznacza iloczyn logiczny sygnałów?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B. jest poprawna, ponieważ symbol graficzny przedstawia bramkę logiczną AND, która jest kluczowym elementem w teorii obwodów cyfrowych. Ta bramka generuje sygnał wysoki (1) wyłącznie wtedy, gdy wszystkie jej wejścia również są wysokie. Przykładowo, w systemach cyfrowych bramki AND są powszechnie używane do tworzenia złożonych operacji logicznych w obwodach, co na przykład znajduje zastosowanie w projektowaniu układów arytmetycznych lub w systemach kontroli. W praktyce, jeśli mamy dwa sygnały wejściowe, A i B, bramka AND zwróci 1 tylko wtedy, gdy zarówno A, jak i B są równe 1. Użycie bramek logicznych, takich jak AND, stanowi fundament w inżynierii komputerowej oraz w projektowaniu systemów wbudowanych, gdzie precyzyjne zarządzanie sygnałami logicznymi jest kluczowe dla funkcjonowania urządzeń. Zgodnie z normami IEEE 91 oraz IEC 60617, bramki te są jednoznacznie definiowane i są nieodłącznym elementem schematów obwodowych.

Pytanie 11

Jak można zmienić kierunek obrotów wirnika silnika bocznikowego prądu stałego bez konieczności przemagnesowania maszyny?

A. Odwrócić kierunek prądu w uzwojeniu komutacyjnym
B. Odwrócić kierunek prądu w uzwojeniu twornika
C. Zamienić miejscami dwa przewody podłączone do źródła zasilania
D. Odwrócić kierunek prądu w uzwojeniu wzbudzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zmiana kierunku obrotów wirnika silnika bocznikowego prądu stałego poprzez odwrócenie kierunku prądu w uzwojeniu twornika jest uznawana za jedną z najefektywniejszych metod. W momencie, gdy zmieniamy kierunek przepływu prądu w uzwojeniu twornika, siła elektromotoryczna (SEM) generowana przez twornik również się odwraca. To z kolei powoduje, że wektory sił działających na wirnik zmieniają swój kierunek, co skutkuje odwrotnym ruchem obrotowym wirnika. Praktycznie, ta technika jest często wykorzystywana w różnych aplikacjach, takich jak napędy elektryczne w pojazdach, wentylatory czy maszyny przemysłowe. Dodatkowo, zgodnie z normami branżowymi dotyczącymi bezpieczeństwa oraz efektywności energetycznej, zmiana kierunku obrotów w ten sposób minimalizuje ryzyko uszkodzeń oraz wydłuża żywotność systemów napędowych. Warto również zaznaczyć, że zmiana ta jest łatwa do wdrożenia w układach z kontrolą prędkości, co czyni ją praktycznym rozwiązaniem w nowoczesnych systemach automatyki.

Pytanie 12

Gdzie nie mogą być umieszczone przewody sieci komunikacyjnych?

A. Na zewnątrz obiektów
B. W pomieszczeniach o niskich temperaturach
C. W pomieszczeniach z dużym zakurzeniem
D. W pobliżu przewodów silnoprądowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że przewody sieci komunikacyjnych nie powinny znajdować się blisko przewodów silnoprądowych, jest prawidłowa z kilku istotnych względów. Przede wszystkim, są to dwa różne typy przewodów, które z definicji pełnią różne funkcje: przewody silnoprądowe dostarczają energię elektryczną, podczas gdy przewody komunikacyjne przesyłają sygnały danych. Umieszczanie ich w bliskiej odległości może prowadzić do zakłóceń elektromagnetycznych, co negatywnie wpływa na jakość przesyłanych danych. Dodatkowo, w przypadku uszkodzenia przewodów silnoprądowych, istnieje ryzyko powstania zwarcia, co może zagrażać bezpieczeństwu nie tylko kabli komunikacyjnych, ale i całej instalacji. W praktyce, zgodnie z normami branżowymi, np. PN-EN 50174-2, zaleca się utrzymanie odpowiednich odległości między tymi przewodami oraz stosowanie odpowiednich osłon i ochrony kablowej. Dzięki przestrzeganiu tych zasad, można zminimalizować ryzyko zakłóceń oraz zapewnić bezpieczeństwo i niezawodność obu systemów.

Pytanie 13

Które etapy zapewniają synchronizację zakończenia procedury współbieżnej w przedstawionym na rysunku diagramie Grafcet?

Ilustracja do pytania
A. 2 i 5
B. Tylko 1
C. 4 i 6
D. Tylko 7

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To, co zaznaczyłeś, jest jak najbardziej trafne! Etapy 4 i 6 w Grafcet rzeczywiście odpowiadają za synchronizację zakończenia procedur współbieżnych. W automatyce, jak pewnie wiesz, synchronizacja jest mega ważna, żeby wszystkie równoległe procesy zdążyły zakończyć swoje zadania zanim ruszymy dalej, czyli do etapu 7. Gdy etapy 4 i 6 są ostatnimi w swoich gałęziach, to ich ukończenie jest kluczowe do dalszego działania. Można by to porównać do sytuacji w fabryce, gdzie różne maszyny muszą skończyć pracę, zanim zaczniemy pakować gotowe produkty. W projektowaniu systemów z Grafcet warto pamiętać o takich synchronizacjach. Dzięki temu unikniemy problemów i zapewnimy niezawodność procesów. Tak więc, dobrze, że rozumiesz ten diagram, to naprawdę ważne dla skutecznej automatyzacji.

Pytanie 14

Jakie powinno być natężenie przepływu oleju dla silnika hydraulicznego o pojemności jednostkowej 5 cm3/obr., aby wałek wyjściowy osiągnął prędkość 1200 obr./min?

A. 1,2 dm3/min
B. 0,6 dm3/min
C. 0,1 dm3/min
D. 6,0 dm3/min

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby zrozumieć, dlaczego odpowiedź 6,0 dm3/min jest poprawna, musimy uwzględnić zarówno chłonność jednostkową silnika hydraulicznego, jak i prędkość obrotową wałka. Chłonność jednostkowa wynosząca 5 cm³/obr. oznacza, że na każdy obrót wałka silnik potrzebuje 5 cm³ oleju. Przy prędkości 1200 obr./min, całkowite zapotrzebowanie na olej można obliczyć, mnożąc chłonność przez prędkość obrotową: 5 cm³/obr. * 1200 obr./min = 6000 cm³/min. Konwertując to na dm³/min (1 dm³ = 1000 cm³), otrzymujemy 6,0 dm³/min. Taka wiedza jest kluczowa w praktyce inżynierskiej, gdzie precyzyjne obliczenia przepływu oleju są niezbędne do zapewnienia optymalnej wydajności systemów hydraulicznych. Niewłaściwe natężenie przepływu może prowadzić do uszkodzenia silnika lub niewłaściwego działania układu hydraulicznego, co podkreśla znaczenie starannych obliczeń w projektowaniu układów hydraulicznych oraz zgodności z normami branżowymi dotyczącymi systemów hydraulicznych.

Pytanie 15

Zmierzyliśmy rezystancję pomiędzy czterema końcówkami 1, 2, 3, 4 uzwojeń transformatora napięcia 230 V/24 V i otrzymaliśmy następujące wartości: R12 = ∞, R13 = 0,05 Ω, R14 = ∞, R23 = ∞, R24 = 0,85 Ω, R34 = ∞. Które końcówki powinny być użyte do podłączenia napięcia 230 V?

A. 2, 4
B. 2, 3
C. 1, 2
D. 1, 3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to 1, 2, ponieważ rezystancje pomiędzy końcówkami 2 i 4 oraz 1 i 3 wskazują, że te kombinacje stanowią uzwojenia, które można zasilać napięciem 230 V. Rezystancje R<sub>12</sub> i R<sub>14</sub> są nieskończone, co sugeruje brak połączenia między tymi końcówkami, jednak R<sub>13</sub> wynosi 0,05 Ω, co wskazuje na bezpośrednie połączenie między końcówkami 1 i 3. Ponadto, R<sub>24</sub> wynosi 0,85 Ω, co również sugeruje, że między końcówkami 2 i 4 istnieje niskoresystancyjne połączenie. W praktyce, aby efektywnie zasilać transformator, należy podłączyć go do końcówek, które wykazują odpowiednie połączenia niskoresystancyjne, co zminimalizuje straty energii i zapewni odpowiednie działanie transformatora. W tym przypadku, końcówki 1, 3 oraz 2, 4 są odpowiednie do podłączenia napięcia. W standardzie IEC 60076 dotyczącym transformatorów mocy, podłączenia te są kluczowe dla zapewnienia stabilności i bezpieczeństwa operacji elektrycznych.

Pytanie 16

Która z podanych czynności związanych z eksploatacją napędu elektrycznego jest sprzeczna z zasadami obsługi tych urządzeń?

A. Kontrola pracy wentylatorów poprzez nasłuchiwanie ich działania
B. Weryfikacja połączeń elektrycznych za pomocą omomierza
C. Odkurzanie i czyszczenie żeberek radiatorów z zanieczyszczeń szmatką
D. Oczyszczenie brudnych styków łączników pilnikiem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oczyszczenie zabrudzonych styków łączników pilnikiem jest czynnością, która jest niezgodna z zasadami obsługi urządzeń elektrycznych. Stosowanie narzędzi takich jak pilnik na delikatnych powierzchniach styków może prowadzić do ich mechanicznego uszkodzenia, co z kolei może skutkować pogorszeniem jakości połączenia elektrycznego. Zgodnie z wytycznymi dotyczącymi konserwacji sprzętu elektrycznego, zaleca się stosowanie metod, które nie wpływają negatywnie na integralność komponentów, takich jak użycie specjalnych środków czyszczących i miękkich tkanin. Przykładem dobrych praktyk w tej dziedzinie jest regularne sprawdzanie styków pod kątem korozji oraz zabrudzeń, a następnie ich czyszczenie za pomocą odpowiednich narzędzi, które nie naruszają powierzchni styków, jak np. ściereczki antystatyczne czy spraye czyszczące. Takie podejście zapewnia długotrwałe i niezawodne działanie napędów elektrycznych oraz minimalizuje ryzyko awarii związanych z wadliwymi połączeniami elektrycznymi.

Pytanie 17

Który z wymienionych przewodów należy zastosować w celu podłączenia sterownika wyposażonego w moduł komunikacyjny Ethernet do switcha przedstawionego na ilustracji?

Ilustracja do pytania
A. Koncentryczny 75 Ω.
B. Profibus 2-żyłowy w oplocie.
C. Profibus 4-żyłowy w oplocie.
D. UTP kat. 5.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kabel UTP kat. 5 to taki gość, którego często spotykamy w sieciach Ethernet. To standard, gdy chodzi o łączenie różnych sprzętów z switchami. UTP, czyli Unshielded Twisted Pair, jest super, bo dobrze przesyła sygnał, a przy tym pozwala na większe odległości z prędkością do 100 Mbps. Jak korzystasz z tego kabla, to bez problemu podłączysz sobie sterownik do switcha, co pozwala na sprawną komunikację. Dodatkowo, kabel ten spełnia normy EIA/TIA-568, co znaczy, że możesz go używać w instalacjach LAN, jak profesjonalista. UTP kat. 5 działa nie tylko w biurze, ale też w automatyce przemysłowej, gdzie szybkie przesyłanie danych ma ogromne znaczenie. Więc jak decydujesz się na UTP kat. 5, to robisz dobry ruch, bo jest to kabel, który współpracuje z nowoczesnymi systemami sieciowymi.

Pytanie 18

Który sposób adresowania zmiennych zastosowano w przedstawionym fragmencie programu?

Ilustracja do pytania
A. Bajtowo-bitowy.
B. Absolutny.
C. Symboliczny.
D. Bitowo-bajtowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Adresowanie symboliczne jest kluczowym aspektem w programowaniu, zwłaszcza w kontekście systemów automatyki i sterowania. W przedstawionym fragmencie programu mamy do czynienia z oznaczeniami S1, S2 oraz K1, które są logicznymi nazwami dla elementów programu, takich jak styki i cewki. Zastosowanie adresowania symbolicznego pozwala programiście na łatwiejsze zarządzanie kodem, ponieważ zamiast trudnych do zapamiętania adresów sprzętowych, używa on opisowych nazw. Daje to nie tylko lepszą czytelność, ale także ułatwia późniejsze modyfikacje i debugowanie programu. W praktyce, programy pisane z użyciem adresowania symbolicznego są bardziej zrozumiałe dla zespołów projektowych i mogą być łatwiej przenoszone między różnymi platformami. Przykładem dobrych praktyk w branży jest stosowanie konwencji nazewnictwa, które jasno wskazują na funkcjonalność elementów, co znacznie zwiększa efektywność pracy zespołowej. Warto zaznaczyć, że adresowanie symboliczne jest również zgodne z zasadami programowania strukturalnego, które zalecają minimalizację złożoności i zwiększenie modularności kodu.

Pytanie 19

Jakie pomiary są przeprowadzane w celu oceny jakości połączeń elektrycznych?

A. Natężenia prądów przepływających przez połączenia
B. Rezystancji połączeń
C. Mocy czynnej generowanej na połączeniach
D. Mocy biernej generowanej na połączeniach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji w połączeniach elektrycznych to naprawdę ważna sprawa. Jak mamy niską rezystancję, to prąd płynie dobrze i nie mamy strat energii. W praktyce, można to łatwo zmierzyć używając omomierza czy miernika rezystancji. Jest to mega istotne, szczególnie w budynkach, bo wysoka rezystancja może prowadzić do przegrzewania się połączeń, a to może skończyć się pożarem. W elektryce zaleca się, żeby takie pomiary robić podczas odbioru technicznego, a potem regularnie w trakcie użytkowania. Na przykład, w energetyce są normy IEEE 43, które mówią o pomiarach izolacji i podkreślają, jak ważne jest sprawdzanie rezystancji, żeby systemy elektroenergetyczne były niezawodne. Dzięki tym pomiarom można na czas zauważyć problemy, jak korozja styków czy luźne połączenia, co może wydłużyć życie instalacji i zwiększyć bezpieczeństwo.

Pytanie 20

Zidentyfikuj sieć przemysłową z topologią w kształcie pierścienia.

A. LonWorks
B. Profibus DP
C. InterBus-S
D. Modbus

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
InterBus-S jest standardem komunikacyjnym wykorzystywanym w automatyce przemysłowej, który charakteryzuje się topologią pierścieniową. Ta struktura sieciowa umożliwia efektywną komunikację między urządzeniami oraz zapewnia wysoki poziom niezawodności i elastyczności. W topologii pierścieniowej każde urządzenie jest połączone z dwoma innymi, co oznacza, że sygnał przechodzi przez wszystkie węzły sieci w jednym kierunku. Dzięki temu, w przypadku awarii jednego z urządzeń, możliwe jest kontynuowanie komunikacji, co jest istotne dla utrzymania ciągłości procesów przemysłowych. InterBus-S znajduje zastosowanie w różnych aplikacjach, takich jak systemy automatyki w zakładach produkcyjnych, gdzie kontrola i monitoring procesów są kluczowe. Przykładem praktycznego zastosowania może być integracja czujników i napędów w systemach robotyki przemysłowej, gdzie szybkość i niezawodność komunikacji są kluczowe. W branży automatyki stosuje się najlepsze praktyki, takie jak projektowanie z uwzględnieniem redundancji, co czyni InterBus-S odpowiednim wyborem dla krytycznych aplikacji przemysłowych.

Pytanie 21

Którego symbolu graficznego należy użyć na diagramie drogowym w celu przedstawienia elementu sygnałowego START?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór symbolu D jako graficznego przedstawienia elementu sygnałowego START na diagramie drogowym jest jak najbardziej właściwy. Symbol ten został przyjęty w standardach dotyczących oznakowania drogowego i jest powszechnie stosowany w różnych dokumentach technicznych oraz w praktyce inżynieryjnej. Element sygnałowy START wskazuje na rozpoczęcie jakiegoś procesu, co ma kluczowe znaczenie w kontekście organizacji ruchu drogowego. Właściwe oznakowanie na drogach przyczynia się do poprawy bezpieczeństwa i efektywności ruchu. Przykładem praktycznego zastosowania tego symbolu może być jego użycie w organizacji wyścigów, gdzie sygnał startowy jest fundamentalny dla przebiegu zawodów. W sytuacjach krytycznych, takich jak manewry drogowe, jednoznaczność komunikacji wizualnej jest niezbędna, co czyni symbol D niezastąpionym narzędziem w tej dziedzinie. Warto również zaznaczyć, że zgodność z obowiązującymi normami i standardami w zakresie oznakowania jest kluczowa dla zapewnienia spójności i zrozumiałości systemu komunikacji wizualnej na drogach.

Pytanie 22

Na podstawie fragmentu algorytmu przedstawionego za pomocą sieci SFC określ, co jest realizowane w kroku 4.

Ilustracja do pytania
A. Pamiętany K1 i K2, kasowany H1.
B. Kasowany K1 i K2, pamiętany H1.
C. Niepamiętany K1 i K2 kasowany H1.
D. Kasowany K1 i K2, nie pamiętany H1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór opcji, w której K1 i K2 są kasowane, a H1 jest pamiętany, jest poprawny, ponieważ odzwierciedla logikę przedstawioną w algorytmie SFC. W kroku 4, zgodnie z konwencją SFC, operacja resetowania (oznaczana jako 'R') dla K1 i K2 wskazuje, że te sygnały nie są już aktywne. Z kolei ustawienie H1 (oznaczane jako 'S') oznacza, że ten sygnał jest zapamiętywany do dalszego przetwarzania. W praktyce, odpowiednie zarządzanie stanami sygnałów jest kluczowe dla zachowania integralności procesu. Na przykład, w aplikacjach automatyki przemysłowej, takie podejście pozwala na efektywne sterowanie maszynami, gdzie zachowanie stanu operacyjnego jest niezbędne do zapewnienia ciągłości produkcji. Przestrzeganie dobrych praktyk w projektowaniu algorytmów SFC, takich jak jasne definiowanie stanów i ich przejść, minimalizuje ryzyko błędów oraz zwiększa przejrzystość kodu, co jest zgodne z normami IEC 61131-3, dotyczącymi programowania w automatyce.

Pytanie 23

Podczas serwisowania układów hydraulicznych, jakie działanie jest kluczowe?

A. Sprawdzenie jakości farby na urządzeniach
B. Usuwanie zanieczyszczeń z powierzchni zewnętrznych
C. Malowanie rurociągów
D. Sprawdzenie szczelności połączeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie szczelności połączeń w układach hydraulicznych to kluczowy krok w procesie serwisowania. Wszelkie nieszczelności mogą prowadzić do wycieków płynów, co z kolei może skutkować spadkiem ciśnienia roboczego, co jest niebezpieczne dla całego systemu. Nieszczelności mogą także prowadzić do zanieczyszczenia płynu hydraulicznego, co ma negatywny wpływ na wydajność i trwałość pompy oraz innych elementów układu. Regularne sprawdzanie szczelności pomaga w wykrywaniu potencjalnych problemów zanim doprowadzą one do poważniejszych awarii. Dzięki temu można zapewnić dłuższą żywotność układu i uniknąć kosztownych napraw. Stosując odpowiednie metody diagnostyczne, takie jak testy ciśnieniowe czy użycie specjalnych płynów detekcyjnych, można zlokalizować nawet najmniejsze nieszczelności. W praktyce, konserwacja i sprawdzanie szczelności połączeń jest nie tylko dobrą praktyką, ale wręcz standardem w branży, który zapewnia bezpieczne i efektywne działanie układów hydraulicznych.

Pytanie 24

Jaki będzie stan na wyjściu Q0.3 w przypadku jednoczesnego podania sygnału logicznego "1″ na wejście 10.0 i 10.2?

Ilustracja do pytania
A. Niski.
B. Wysoki.
C. Nieustalony.
D. Zabroniony.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Wysoki" jest poprawna, ponieważ na wyjściu Q0.3 bramka logiczna OR generuje stan wysoki, gdy przynajmniej jedno z jej wejść znajduje się w stanie logicznym "1". W przedstawionym przypadku, sygnały logiczne "1" są jednocześnie podawane na wejścia 10.0 i 10.2, co potwierdza zasadę działania bramki OR. W praktyce, takie podejście jest powszechnie stosowane w systemach automatyki przemysłowej, gdzie wielokrotne źródła sygnałów muszą być monitorowane i odpowiednio przetwarzane. Zastosowanie bramek logicznych zgodnych z normami IEC 61131-3 umożliwia tworzenie niezawodnych i elastycznych systemów kontrolnych. Przykładem mogą być aplikacje w automatyce budowlanej, gdzie wiele czujników może sygnalizować alarm lub aktywować systemy bezpieczeństwa w przypadku wykrycia nieprawidłowości. Wiedza na temat logiki bramek jest kluczowa dla projektantów systemów, aby zapewnić ich prawidłowe działanie i efektywność.

Pytanie 25

W specyfikacji silnika można znaleźć oznaczenie S2 40. Pracując z układem wykorzystującym ten silnik, trzeba mieć na uwadze, aby

A. wilgotność otoczenia w trakcie pracy nie była wyższa niż 40%
B. czas działania nie przekraczał 40 min., a czas postoju był do momentu, gdy silnik się schłodzi.
C. silnik pracował z obciążeniem nie mniejszym niż 40% mocy znamionowej
D. temperatura otoczenia w trakcie pracy nie była wyższa niż 40°C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na czas pracy silnika wynoszący maksymalnie 40 minut oraz wymagany czas postoju do momentu ostygnięcia jest zgodna z zasadami eksploatacji silników oznaczonych jako S2. W tego rodzaju silnikach, okres pracy krótkotrwałej, jak i czas odpoczynku, są kluczowe dla ich efektywności oraz żywotności. Oznaczenie S2 40 informuje, że silnik może działać przez 40 minut z pełnym obciążeniem, po czym konieczne jest, aby miał czas na schłodzenie. Przykładem zastosowania tych zasad jest praca silnika w aplikacjach, gdzie wymagana jest jego cykliczna praca, jak w przenośnych narzędziach elektrycznych. Zgodnie z normami IEC 60034, stosowanie się do tych zasad pozwala na uniknięcie przegrzewania, co zwiększa niezawodność urządzenia oraz zmniejsza ryzyko awarii. Warto również zauważyć, że odpowiednie szacowanie cyklów pracy i odpoczynku stanowi element dobrej praktyki inżynieryjnej, co przekłada się na oszczędności w kosztach utrzymania i wydłużenie czasu eksploatacji. Dbanie o te wartości jest nie tylko wymagane, ale i korzystne z perspektywy użytkownika.

Pytanie 26

Dwuwejściowa bramka NOR, w której wejścia zostały połączone, jest tożsame z bramką

A. NOT
B. AND
C. NAND
D. OR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bramka logiczna NOR, będąca połączeniem bramki NOT i OR, działa w sposób, który może być zrozumiany przez analizę jej tabeli prawdy. Gdy oba wejścia są fałszywe, bramka NOR zwraca wynik prawdziwy. W momencie, gdy jedno lub oba wejścia są prawdziwe, wynik wynosi fałsz. Kiedy połączymy dwa wejścia bramki NOR w sposób, w jaki zdefiniowano w pytaniu, uzyskujemy sytuację, w której wynik będzie zawsze fałszywy, chyba że oba wejścia będą fałszywe. W takim przypadku bramka ta działa jak bramka NOT, ponieważ odwraca logiczny stan jednego sygnału. Przykładowo, w zastosowaniach cyfrowych, bramki NOR są często używane w projektowaniu układów, które wymagają negacji sygnałów. W projektowaniu systemów cyfrowych, zastosowanie bramek NOR w układach oszczędzających energię oraz w implementacji pamięci FLASH jest standardem. Takie podejście do projektowania układów logicznych opiera się na praktycznych aspektach działania komponentów oraz ich właściwościach w kontekście minimalizacji zużycia energii oraz przestrzeni na chipie.

Pytanie 27

Na podstawie harmonogramu czynności serwisowych przedstawionych w tabeli określ, jak często należy przeprowadzać kontrolę działania zaworów bezpieczeństwa.

Harmonogram czynności serwisowych (fragment)
Lp.Czynność serwisowaOkres wykonywania
1.Sprawdzanie temperatury pracyCodziennie
2.Kontrola przewodu zasilającegoCodziennie
3.Sprawdzanie podciśnienia generowanego przez sprężarkęCo 3 miesiące
4.Kontrola obiegu oleju w sprężarceCo 3 miesiące
5.Sprawdzanie zaworówCo 6 miesięcy
6.Kontrola działania zaworów bezpieczeństwaCo 6 miesięcy
7.Kontrola ustawień zabezpieczenia przeciążeniowego w sprężarceCo 6 miesięcy
8.Sprawdzanie rurociągu, skraplacza, części chłodniczychCo rok
9.Sprawdzanie łączników i bezpiecznikówCo rok
A. Raz na pół roku.
B. Raz na dzień.
C. Raz na kwartał.
D. Raz na rok.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kontrola działania zaworów bezpieczeństwa co 6 miesięcy jest kluczowym elementem strategii zarządzania bezpieczeństwem w każdym zakładzie przemysłowym. Zgodnie z normami branżowymi, takimi jak ISO 9001 oraz dyrektywami Unii Europejskiej, regularne inspekcje i konserwacje urządzeń zabezpieczających są niezbędne dla zapewnienia ich prawidłowego działania w sytuacjach kryzysowych. Zawory bezpieczeństwa są zaprojektowane w celu ochrony systemu przed nadmiernym ciśnieniem, a ich awaria może prowadzić do poważnych incydentów, w tym eksplozji. Przykładowo, w przemyśle petrochemicznym, podejmowanie działań prewencyjnych, takich jak systematyczna kontrola zaworów, pozwala na identyfikację potencjalnych problemów zanim dojdzie do ich wystąpienia. Ponadto, zaleca się prowadzenie dokumentacji związanej z każdym przeglądem, co ułatwia późniejsze audyty oraz pozwala na lepsze planowanie konserwacji.

Pytanie 28

Którego z przedstawionych symboli graficznych należy użyć do narysowania schematu układu elektronicznego zawierającego tranzystor bipolarny npn?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W odpowiedzi A mamy symbol tranzystora NPN, który jest naprawdę ważny w elektronice. Tego typu tranzystory często wykorzystuje się do wzmacniania sygnałów i w różnych układach przełączających. Strzałka na emitera pokazuje, w którą stronę płynie prąd, a to jest kluczowe dla jego prawidłowego działania. W praktyce, dzięki tym symbolom, inżynierowie mogą szybko zrozumieć, jak działa dany tranzystor w układzie. Warto też wspomnieć, że korzystanie ze standardowych symboli, jak ten dla tranzystora NPN, jest zgodne z normami, np. IEC 60617. To pomaga wszystkim inżynierom i technikom lepiej się komunikować podczas pracy nad schematami, co zdecydowanie podnosi efektywność pracy zespołowej.

Pytanie 29

Jaki rodzaj tranzystora oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Bipolarny npn.
B. Unipolarny złączowy.
C. Unipolarny z izolowaną bramką.
D. Bipolarny pnp.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol tranzystora unipolarnego złączowego (JFET) przedstawiony na rysunku jest charakterystyczny dla tego typu komponentu elektronicznego. JFET, jako tranzystor unipolarny, wykorzystuje pole elektryczne do sterowania przepływem prądu, co odróżnia go od tranzystorów bipolarnych, w których kontrola odbywa się za pomocą prądu bazy. W kontekście jego zastosowań, JFET-y znajdują szerokie zastosowanie w aplikacjach wymagających wysokiej impedancji wejściowej, jak na przykład w wzmacniaczach audio. Ze względu na swoją konstrukcję, JFET-y są także stosowane w obwodach RF, gdzie ich niskie napięcie szumów jest istotne dla jakości sygnału. Dodatkowo, w przemyśle elektronicznym, tranzystory unipolarne są preferowane w układach, gdzie kluczowe jest szybkie przełączanie oraz niskie zużycie energii, co jest zgodne z nowoczesnymi trendami w projektowaniu energooszczędnych urządzeń.

Pytanie 30

Który rodzaj oprogramowania komputerowego monitoruje przebieg procesu oraz dysponuje funkcjami w zakresie m.in. gromadzenia, wizualizacji i archiwizacji danych oraz kontrolowania i alarmowania?

A. CAD
B. SCADA
C. CAM
D. CAE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'SCADA' jest prawidłowa, ponieważ systemy SCADA (Supervisory Control And Data Acquisition) pełnią kluczową rolę w monitorowaniu i kontrolowaniu procesów przemysłowych oraz infrastruktury. SCADA pozwala na zbieranie danych w czasie rzeczywistym z różnych źródeł, takich jak czujniki, urządzenia pomiarowe czy automatyka przemysłowa. Dzięki zaawansowanym funkcjom wizualizacji, operatorzy mogą na bieżąco śledzić stan procesów za pomocą interfejsów graficznych, co znacząco zwiększa efektywność zarządzania. Systemy SCADA umożliwiają również archiwizację danych, co jest istotne dla analizy trendów i optymalizacji procesów. Przykładem praktycznego zastosowania SCADA jest monitorowanie sieci energetycznych, gdzie system ten pozwala na detekcję awarii oraz zarządzanie obciążeniem w czasie rzeczywistym, zgodnie z najlepszymi praktykami branżowymi, takimi jak standardy IEC 61850 dla komunikacji w systemach automatyki. W skrócie, SCADA to kluczowy element w strategiach zarządzania procesami, który przyczynia się do zwiększenia bezpieczeństwa i efektywności operacyjnej.

Pytanie 31

Jaką grupę oznaczeń powinno się wykorzystać do przedstawienia przyłącza czterodrogowych rozdzielaczy hydraulicznych na schemacie układu hydraulicznego?

A. P, T, A, B
B. 1, A, 2, B
C. 1, 2, 3, 4
D. X, Y, Z, W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź P, T, A, B jest poprawna, ponieważ te oznaczenia są powszechnie akceptowane w branży hydraulicznej do opisu przyłączy czterodrogowych rozdzielaczy hydraulicznych. Oznaczenie 'P' reprezentuje przyłącze ciśnieniowe, z którego dochodzi olej pod ciśnieniem do rozdzielacza. 'T' odnosi się do przyłącza powrotnego, które skupia olej z powrotem do zbiornika, a 'A' i 'B' to przyłącza robocze, które kierują olej do siłowników lub innych elementów wykonawczych w układzie. Zastosowanie tych oznaczeń pozwala na jasne i zrozumiałe schematy, co jest niezbędne w skomplikowanych układach hydraulicznych. Standardy ISO oraz normy branżowe, takie jak ISO 1219, potwierdzają użycie tych oznaczeń jako najlepszej praktyki w inżynierii hydraulicznej. Na przykład, w przemyśle maszynowym, stosowanie tych oznaczeń przyczynia się do efektywności diagnostyki i konserwacji systemów hydraulicznych, co jest kluczowe dla minimalizacji przestojów i zwiększenia wydajności operacyjnej.

Pytanie 32

Która z technik identyfikacji miejsca nieszczelności w systemach pneumatycznych jest najczęściej używana?

A. Obserwacja obszaru, z którego uchodzi powietrze
B. Wykrywanie źródła charakterystycznego zapachu
C. Pomiar ciśnienia w różnych punktach systemu
D. Nasłuchiwanie źródła specyficznego dźwięku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nasłuchiwanie źródła charakterystycznego dźwięku jest jedną z najskuteczniejszych metod lokalizacji nieszczelności w układach pneumatycznych. Nieszczelności te generują dźwięki, które mają specyficzny charakter, co umożliwia ich identyfikację. W praktyce, technicy często wykorzystują proste narzędzia, takie jak stethoskop pneumatyczny lub nawet standardowe słuchawki, aby wyłapać dźwięki wydobywające się z miejsca nieszczelności. Dzięki tej metodzie można szybko i efektywnie zlokalizować problem, co ogranicza czas przestoju urządzeń. Nasłuchiwanie jest zgodne z dobrymi praktykami branżowymi, które zalecają regularne przeglądy układów pneumatycznych i monitorowanie ich stanu operacyjnego. Przykładem zastosowania tej metody może być diagnostyka nieszczelności w instalacjach przemysłowych, gdzie każdy wyciek powietrza może prowadzić do znacznych strat energetycznych. Umożliwia to także wczesne wykrywanie potencjalnych awarii, co jest kluczowe dla utrzymania ciągłości produkcji oraz bezpieczeństwa pracy.

Pytanie 33

Na rysunku przedstawiono przebieg czasowy realizacji funkcji logicznej

Ilustracja do pytania
A. XOR
B. OR
C. AND
D. XNOR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Funkcja logiczna XOR (alternatywa wykluczająca) jest kluczowa w wielu dziedzinach inżynierii, szczególnie w elektronice cyfrowej i programowaniu. Odpowiedź na pytanie jest poprawna, ponieważ sygnał wyjściowy tej funkcji jest aktywowany tylko wtedy, gdy jedno z wejść jest w stanie wysokim (1), a drugie w stanie niskim (0). W praktyce, XOR jest powszechnie stosowany w obwodach arytmetycznych, takich jak sumatory, oraz w algorytmach kryptograficznych, gdzie jego zdolność do generowania różnorodnych stanów wyjściowych na podstawie stanu wejść jest niezwykle cenna. Dodatkowo, XOR znajduje zastosowanie w różnorodnych systemach kodowania, na przykład w kodach korekcyjnych, gdzie porównywane są różnice między danymi. Standardy branżowe, takie jak te opracowane przez IEEE, wskazują na znaczenie funkcji logicznych w projektowaniu złożonych systemów cyfrowych, co czyni znajomość ich działania niezbędną dla inżynierów i programistów.

Pytanie 34

W systemie Komputerowo Zintegrowanego Wytwarzania (CIM) za co odpowiada moduł RDP?

A. organizowanie i zarządzanie produkcją
B. komputerowo wspomagane projektowanie
C. komputerowe wspomaganie produkcji
D. rejestrowanie danych procesowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moduł RDP (Rejestracja Danych Procesowych) w Komputerowo Zintegrowanym Wytwarzaniu (CIM) odgrywa kluczową rolę w zbieraniu i rejestracji danych dotyczących procesów produkcyjnych. Jego głównym zadaniem jest monitorowanie kluczowych parametrów, takich jak czas obróbki, zużycie narzędzi, a także inne istotne dane, które umożliwiają analizę efektywności produkcji. Zbierane informacje są niezbędne do optymalizacji procesów, co przekłada się na zwiększenie wydajności oraz redukcję kosztów. Na przykład, analiza zebranych danych może wskazać, czy dany proces wymaga modyfikacji, aby zmniejszyć czas przestoju lub zwiększyć jakość produkcji. Zgodnie z najlepszymi praktykami w branży, regularne monitorowanie tych danych pozwala na wprowadzenie usprawnień oraz szybką reakcję na ewentualne problemy, co jest kluczowe w środowisku produkcyjnym. Wykorzystując moduł RDP, przedsiębiorstwa mogą zastosować metody ciągłego doskonalenia, takie jak Six Sigma czy Lean Manufacturing, co prowadzi do długotrwałego wzrostu konkurencyjności na rynku.

Pytanie 35

Podczas eksploatacji silnika prądu stałego zauważono iskrzenie szczotek spowodowane zanieczyszczeniem komutatora. Aby pozbyć się tej awarii, należy wyłączyć silnik, a potem

A. wyczyścić komutator i szczotki
B. przetrzeć komutator mokrą szmatką
C. oczyścić komutator i wypolerować papierem ściernym
D. nałożyć na komutator olej lub smar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "oczyścić komutator i wypolerować papierem ściernym" jest prawidłowa, ponieważ usunięcie zabrudzeń z komutatora jest kluczowym krokiem w utrzymaniu silnika prądu stałego w dobrym stanie. Komutator, będący istotnym elementem silnika, pełni funkcję przełączania prądu w uzwojeniach wirnika. Zabrudzenia, takie jak resztki węgla ze szczotek czy inne zanieczyszczenia, mogą prowadzić do iskrzenia, co z kolei zwiększa ryzyko uszkodzenia zarówno komutatora, jak i szczotek. Wypolerowanie komutatora papierem ściernym pozwala na usunięcie nie tylko zabrudzeń, ale również nierówności, co zapewnia lepszy kontakt ze szczotkami. Ta procedura jest zgodna z najlepszymi praktykami w branży, które zalecają regularne czyszczenie i konserwację komutatorów w celu zapewnienia ich długotrwałej wydajności. Przykładem zastosowania tej techniki może być regularna konserwacja silników w aplikacjach przemysłowych, gdzie niezawodność pracy jest kluczowa. Dobrą praktyką jest również monitorowanie stanu komutatora i regularne jego czyszczenie, co pozwala na minimalizowanie ryzyka awarii oraz oszczędności związane z kosztami naprawy.

Pytanie 36

Jakie materiały eksploatacyjne, które muszą być okresowo wymieniane w urządzeniu mechatronicznym, powinny być dobierane?

A. z tabliczki znamionowej urządzenia
B. z dokumentacją techniczno-ruchową urządzenia
C. z protokołem przekazania urządzenia do eksploatacji
D. z kartą gwarancyjną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Materiały eksploatacyjne w urządzeniach mechatronicznych są kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz przedłużenia żywotności. Właściwy dobór tych materiałów powinien opierać się na dokumentacji techniczno-ruchowej (DTR) urządzenia, która dostarcza szczegółowych informacji na temat wymiany komponentów, ich specyfikacji oraz interwałów serwisowych. DTR określa również zalecane typy materiałów eksploatacyjnych, co pozwala uniknąć użycia niewłaściwych komponentów, które mogą prowadzić do uszkodzeń lub obniżenia wydajności urządzenia. Przykładowo, w przypadku maszyn przemysłowych, które wymagają regularnej wymiany filtrów czy olejów, DTR zawiera konkretne informacje, które pozwalają na efektywne planowanie konserwacji. Zastosowanie się do zaleceń zawartych w DTR jest zgodne z najlepszymi praktykami branżowymi, co przekłada się na zwiększenie niezawodności i bezpieczeństwa urządzeń w eksploatacji.

Pytanie 37

Którym z przedstawionych symboli graficznych oznaczana jest cewka przekaźnika czasowego z opóźnionym załączeniem?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny przedstawiony w odpowiedzi A. jest zgodny z normami IEC 60617, które definiują symbole dla elementów elektrycznych. Cewka przekaźnika czasowego z opóźnionym załączeniem jest kluczowym elementem w automatyce przemysłowej, stosowanym do kontrolowania czasów włączania i wyłączania urządzeń elektrycznych. W praktyce, takie przekaźniki są wykorzystywane w systemach oświetleniowych, wentylacyjnych, a także w procesach produkcyjnych, gdzie precyzyjne zarządzanie czasem jest istotne. Symbol ten, łączący kwadrat z przekątnymi liniami, jest łatwy do rozpoznania i pozwala na szybkie zidentyfikowanie funkcji urządzenia. Zrozumienie tego symbolu i umiejętność jego identyfikacji są niezbędne dla każdej osoby pracującej w branży elektroenergetycznej, ponieważ przyczynia się to do efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 38

Wskaż prawidłowe stwierdzenie odnoszące się do silnika pokazanego na rysunku.

Ilustracja do pytania
A. Wirnik jest klatkowy, uzwojenie stojana skojarzone jest w gwiazdę.
B. Wirnik jest pierścieniowy, uzwojenie stojana skojarzone jest w trójkąt.
C. Wirnik jest pierścieniowy, uzwojenie stojana skojarzone jest w gwiazdę.
D. Wirnik jest klatkowy, uzwojenie stojana skojarzone jest w trójkąt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazuje, że wirnik silnika jest klatkowy, co jest poprawne. Wirnik klatkowy, zwany także wirnikiem asynchronicznym, charakteryzuje się konstrukcją składającą się z aluminiowych lub miedzianych prętów połączonych na końcach pierścieniem. Taki wirnik jest często stosowany w silnikach o dużej mocy, gdzie wymagana jest efektywność i trwałość. Uzwojenie stojana skojarzone w trójkąt zapewnia lepsze parametry pracy, co jest zgodne z zasadami zastosowania silników elektrycznych w przemyśle. Przykładem zastosowania silników z wirnikiem klatkowym są pompy, wentylatory i kompresory, gdzie ich odporność na przeciążenia i prostota konstrukcji przekładają się na niezawodność. W przemyśle, zgodnie z normami IEC, preferuje się tę konfigurację w celu zapewnienia optymalnej wydajności energetycznej oraz łatwości w serwisowaniu.

Pytanie 39

Jakie stany powinny się pojawić na kolejnych wyjściach bramek Q1, Q2, Q3, Q podczas sprawdzania przedstawionego układu po podaniu stanów wysokich na wejścia A i B?

Ilustracja do pytania
A. Q1=0, Q2=1, Q3=1, Q=0
B. Q1=1, Q2=0, Q3=0, Q=1
C. Q1=0, Q2=0, Q3=0, Q=0
D. Q1=1, Q2=1, Q3=1, Q=1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to Q1=0, Q2=1, Q3=1, Q=0. Wyjaśniając tę odpowiedź, należy zwrócić uwagę na działanie bramek logicznych w układzie. Bramki NAND działają na zasadzie negacji iloczynu, co oznacza, że jeśli oba wejścia (A i B) są w stanie wysokim, wyjście Q1 będzie w stanie niskim. Z kolei bramka NOR, która działa na zasadzie negacji sumy, przy jednym stanie niskim na wejściu (w tym przypadku bramka ta przyjmuje tylko jeden sygnał wysoki) daje stan wysoki na wyjściu Q2. Bramki AND wymagają wszystkich wejść w stanie wysokim, aby wygenerować stan wysoki, więc w przypadku, gdy tylko jedno wejście jest wysokie, Q3 przyjmuje stan wysoki. Na koniec, bramka NOT, jako inwerter, przekształca stan wysoki na niski, stąd Q = 0. Analizując tego rodzaju układy, można zauważyć ich szerokie zastosowanie w różnych systemach cyfrowych, w tym w układach zabezpieczeń, automatyce przemysłowej oraz w projektowaniu systemów wbudowanych, gdzie logiczne decyzje są kluczowe dla działania całego systemu.

Pytanie 40

Jakimi literami oznaczane są analogowe wyjścia w sterownikach PLC?

A. AQ
B. AI
C. I
D. Q

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź AQ jest prawidłowa, ponieważ symbol ten jest szeroko stosowany w branży automatyki przemysłowej do oznaczania wyjść analogowych w sterownikach PLC. Wyjścia analogowe są kluczowe w kontekście przetwarzania sygnałów, które mogą przyjmować różne wartości w określonym zakresie, co pozwala na precyzyjne sterowanie procesami technologicznymi. Na przykład, w systemach sterowania temperaturą, wyjścia analogowe umożliwiają regulację wartości na podstawie pomiarów z czujników, co jest niezbędne w wielu aplikacjach przemysłowych. Warto zaznaczyć, że standard ISO 61131-3 definiuje klasyfikację sygnałów w systemach PLC, a AQ jako oznaczenie wyjść analogowych jest zgodne z tą normą. Dobrą praktyką jest również stosowanie jednolitych konwencji w projektowaniu schematów elektrycznych, co ułatwia ich interpretację i współpracę między różnymi specjalistami.