Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 9 grudnia 2025 15:02
  • Data zakończenia: 9 grudnia 2025 15:11

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Grupa, w której członkom można nadawać uprawnienia jedynie w obrębie tej samej domeny, co domena nadrzędna lokalnej grupy domeny, nosi nazwę grupa

A. lokalna komputera
B. lokalna domeny
C. globalna
D. uniwersalna
Grupa lokalna domeny to typ grupy, której członkowie i uprawnienia są ograniczone do danej domeny. Oznacza to, że możesz przypisywać uprawnienia tylko w kontekście tej samej domeny, co jest zgodne z modelami zarządzania tożsamością i dostępem. Kluczowym zastosowaniem grup lokalnych domeny jest możliwość zarządzania dostępem do zasobów w sieci, co jest istotne w środowiskach korporacyjnych. Na przykład, jeśli masz zasoby, takie jak foldery lub drukarki, które powinny być dostępne tylko dla użytkowników tej samej domeny, wykorzystanie grup lokalnych domeny jest odpowiednim rozwiązaniem. Stosując grupy lokalne, administracja może łatwiej kontrolować dostęp do tych zasobów, co zwiększa bezpieczeństwo i efektywność zarządzania. W praktyce, grupy lokalne są często wykorzystywane w połączeniu z kontrolą dostępu opartą na rolach (RBAC), co pozwala na bardziej granularne zarządzanie uprawnieniami, zgodne z najlepszymi praktykami w zakresie bezpieczeństwa IT.

Pytanie 2

Adres IP komputera wyrażony sekwencją 172.16.0.1 jest zapisany w systemie

A. dziesiętnym.
B. ósemkowym.
C. dwójkowym.
D. szesnastkowym.
Adres IP w postaci 172.16.0.1 to zapis w systemie dziesiętnym, tzw. notacja dziesiętna z kropkami (ang. dotted decimal notation). Każda z czterech liczb oddzielonych kropkami reprezentuje jeden bajt (czyli 8 bitów) adresu, a zakres wartości dla każdej części to od 0 do 255, co wynika wprost z możliwości zakodowania liczb na 8 bitach. To bardzo praktyczne rozwiązanie, bo ludzie zdecydowanie łatwiej zapamiętują krótkie liczby dziesiętne niż ciągi zer i jedynek. W rzeczywistości komputery oczywiście operują adresami IP w postaci binarnej, ale w administracji sieciowej, podczas konfiguracji urządzeń czy w dokumentacji, powszechnie używa się właśnie notacji dziesiętnej. Taka postać adresów jest standardem od lat zarówno w IPv4, jak i (dla uproszczonych przykładów) w IPv6. Co ciekawe, system dziesiętny w adresowaniu IP upowszechnił się do tego stopnia, że praktycznie nikt nie używa już innych form zapisu na co dzień. Na przykład, adres 172.16.0.1 binarnie wyglądałby tak: 10101100.00010000.00000000.00000001, ale kto by to zapamiętał? Warto znać obie reprezentacje, bo czasem trzeba sięgnąć do konwersji przy subnettingu. Sam zapis dziesiętny umożliwia szybkie rozpoznanie klasy adresu czy też przynależności do podsieci, co jest bardzo przydatne przy zarządzaniu większymi sieciami. W praktyce – konfigurując router, serwer, czy nawet ustawiając sieć domową, zawsze spotkasz się właśnie z taką dziesiętną formą adresów IP.

Pytanie 3

Po włączeniu komputera wyświetlił się komunikat "Non-system disk or disk error. Replace and strike any key when ready". Może to być spowodowane

A. uszkodzonym kontrolerem DMA
B. dyskietką umieszczoną w napędzie
C. skasowaniem BIOS-u komputera
D. brakiem pliku NTLDR
Zrozumienie problemu z komunikatem "Non-system disk or disk error" wymaga znajomości podstawowych zasad działania komputerów osobistych i ich BIOS-u. Sugerowanie, że przyczyną problemu może być brak pliku NTLDR, jest błędne, ponieważ ten plik jest kluczowy dla rozruchu systemu Windows, a komunikat wskazuje na problem z bootowaniem z nośnika, a nie na brak pliku w zainstalowanym systemie. Twierdzenie, że uszkodzony kontroler DMA mógłby być odpowiedzialny za ten błąd, również jest mylące. Kontroler DMA odpowiada za przesyłanie danych między pamięcią a urządzeniami peryferyjnymi, a jego uszkodzenie raczej skutkowałoby problemami z wydajnością lub dostępem do danych, a nie bezpośrednio z komunikatem o braku systemu. Skasowany BIOS komputera to kolejna koncepcja, która nie znajduje zastosowania w tej sytuacji. BIOS, będący podstawowym oprogramowaniem uruchamiającym, nie może być "skasowany" w tradycyjnym sensie; może być jedynie zaktualizowany, a jego usunięcie uniemożliwiłoby jakiekolwiek bootowanie systemu. Często w takich sytuacjach występuje brak zrozumienia, że komunikaty o błędach mogą odnosić się do problemów z rozruchem i należy je interpretować w kontekście obecności nośników w napędzie oraz ich zawartości. Warto więc zwracać uwagę na to, co znajduje się w napędach przed uruchomieniem komputera.

Pytanie 4

Do jakiej grupy w systemie Windows Server 2008 powinien być przypisany użytkownik odpowiedzialny jedynie za archiwizację danych zgromadzonych na dysku serwera?

A. Użytkownicy zaawansowani
B. Użytkownicy domeny
C. Użytkownicy pulpitu zdalnego
D. Operatorzy kopii zapasowych
Przypisanie kogoś do grupy Użytkownicy domeny nie daje mu nic specjalnego, jeśli chodzi o archiwizację danych. Owszem, mają oni podstawowy dostęp do sieci w obrębie domeny, ale nie mogą tworzyć ani przywracać kopii zapasowych. Grupa Użytkownicy zaawansowani też nie daje konkretnych umiejętności związanych z archiwizowaniem danych. Ich uprawnienia są bardziej o zaawansowanej konfiguracji systemu, ale omijają kluczowe operacje związane z kopiowaniem danych. Użytkownicy pulpitu zdalnego mogą się logować do serwera zdalnie, co może być przydatne, ale również nie dają im dostępu do zarządzania kopiami zapasowymi. Często ludzie myślą, że jeśli mają dostęp do systemu, to automatycznie mają uprawnienia do ważnych zadań administracyjnych, co może prowadzić do luk w zabezpieczeniach oraz problemów z utratą danych w razie awarii. Dlatego to jest kluczowe, żeby osoby odpowiedzialne za archiwizację danych miały odpowiednie uprawnienia i podkreśla to znaczenie poprawnego przypisania ról w Windows Server.

Pytanie 5

Układ na karcie graficznej, którego zadaniem jest zamiana cyfrowego sygnału generowanego poprzez kartę na sygnał analogowy, który może być wyświetlony poprzez monitor to

A. głowica FM
B. multiplekser
C. RAMBUS
D. RAMDAC
RAMDAC to bardzo istotny układ w kartach graficznych, zwłaszcza tych starszych, gdzie monitory korzystały głównie z sygnału analogowego (np. VGA). RAMDAC, czyli Random Access Memory Digital-to-Analog Converter, odpowiada za zamianę cyfrowych danych generowanych przez procesor graficzny na sygnał analogowy, który obsłuży typowy monitor CRT czy starsze wyświetlacze LCD. Bez tego układu nie byłoby możliwe prawidłowe wyświetlanie obrazu na takich monitorach, bo one nie rozumieją sygnałów cyfrowych bezpośrednio. Moim zdaniem warto wiedzieć, że choć dzisiejsze monitory coraz częściej obsługują sygnał cyfrowy (np. HDMI, DisplayPort), to przez wiele lat istnienie RAMDAC-a było absolutnie kluczowe. W praktyce, gdy podłączasz stary monitor do wyjścia VGA, to właśnie RAMDAC robi całą robotę, żeby obraz wyglądał poprawnie. Standardy branżowe od lat 90. wręcz wymuszały obecność tego układu w niemal każdej karcie graficznej przeznaczonej na rynek konsumencki i biznesowy. To taki trochę 'most' pomiędzy światem cyfrowym a analogowym. Często RAMDAC-y miały własną, szybką pamięć, przez co mogły bardzo sprawnie przetwarzać obraz nawet przy wyższych rozdzielczościach czy częstotliwościach odświeżania. Dziś coraz rzadziej się o nich mówi, ale w kontekście starszych komputerów ten temat jest mega istotny i warto go znać, bo spotyka się je np. naprawiając starsze sprzęty czy modernizując stare stanowiska.

Pytanie 6

Który adres stacji roboczej należy do klasy C?

A. 172.0.0.1
B. 223.0.0.1
C. 232.0.0.1
D. 127.0.0.1
Adres 223.0.0.1 jest adresem klasy C, co wynika z jego pierwszego oktetu, który mieści się w zakresie od 192 do 223. Adresy klasowe w IPv4 są klasyfikowane na podstawie pierwszego oktetu, a klasy C są przeznaczone dla małych sieci, w których można mieć do 254 hostów. Adresy klasy C są powszechnie stosowane w organizacjach, które potrzebują mniejszych podsieci. Przykładowo, firma z 50 komputerami może przypisać im zakres adresów zaczynający się od 223.0.0.1 do 223.0.0.50, co skutkuje efektywnym zarządzaniem adresacją. Warto również znać, że adresy klasy C korzystają z maski podsieci 255.255.255.0, co pozwala na wydzielenie 256 adresów IP w danej podsieci (z czego 254 są użyteczne dla hostów). Znajomość klas adresowych i ich zastosowania jest istotna w kontekście projektowania sieci oraz ich efektywnego zarządzania, a także w kontekście bezpieczeństwa i optymalizacji ruchu sieciowego.

Pytanie 7

Aby przeprowadzić aktualizację zainstalowanego systemu operacyjnego Linux Ubuntu, należy wykorzystać komendę

A. yum upgrade
B. apt-get upgrade albo apt upgrade
C. kernel update
D. system update
Odpowiedź 'apt-get upgrade albo apt upgrade' jest całkowicie na miejscu, bo te komendy to jedne z podstawowych narzędzi do aktualizacji programów w systemie Linux, zwłaszcza w Ubuntu. Obie służą do zarządzania pakietami, co znaczy, że można nimi instalować, aktualizować i usuwać oprogramowanie. Komenda 'apt-get upgrade' w zasadzie aktualizuje wszystkie zainstalowane pakiety do najnowszych wersji, które można znaleźć w repozytoriach. Natomiast 'apt upgrade' to nowocześniejsza wersja, bardziej przystępna dla użytkownika, ale robi praktycznie to samo, tylko może w bardziej zrozumiały sposób. Warto pamiętać, żeby regularnie sprawdzać dostępność aktualizacji, bo można to zrobić przez 'apt update', co synchronizuje nasze lokalne dane o pakietach. Używanie tych poleceń to naprawdę dobry nawyk, bo pozwala utrzymać system w dobrym stanie i zmniejsza ryzyko związane z lukami bezpieczeństwa.

Pytanie 8

Ile pinów znajduje się w wtyczce SATA?

A. 5
B. 4
C. 9
D. 7
Wybór liczby pinów innej niż 7 we wtyczce SATA prowadzi do nieporozumień związanych z funkcjonalnością tego standardu. Odpowiedzi takie jak 4, 5 czy 9 ignorują fakt, że wtyczka SATA została zaprojektowana w celu optymalizacji transferu danych oraz kompatybilności z różnymi urządzeniami. Liczba 4 czy 5 pinów może sugerować uproszczoną konstrukcję, co jest niezgodne z rzeczywistością, ponieważ wtyczka SATA obsługuje pełną funkcjonalność poprzez swoje 7 pinów, które odpowiadają za przesył danych oraz sygnalizację. Warto zrozumieć, że wtyczki i gniazda zaprojektowane zgodnie ze standardem SATA mają na celu zapewnienie odpowiedniej wydajności oraz niezawodności, co jest niemożliwe przy mniejszej liczbie pinów. Ponadto, błędny wybór dotyczący liczby pinów może prowadzić do nieuchronnych problemów związanych z podłączeniem urządzeń, jak np. brak możliwości transferu danych, co ma kluczowe znaczenie w nowoczesnych systemach komputerowych. Dobre praktyki w zakresie projektowania systemów komputerowych wymagają zrozumienia, jak różne standardy, w tym SATA, wpływają na wydajność oraz kompatybilność komponentów. Ignorowanie takich szczegółów jak liczba pinów i ich funkcje prowadzi do nieefektywności i frustracji podczas użytkowania sprzętu.

Pytanie 9

Jaką wartość w systemie dziesiętnym ma suma liczb szesnastkowych: 4C + C4?

A. 271
B. 270
C. 272
D. 273
Aby zrozumieć poprawność odpowiedzi 272, musimy najpierw przeliczyć liczby szesnastkowe 4C i C4 na system dziesiętny. Liczba szesnastkowa 4C składa się z dwóch cyfr – 4 i C. W systemie szesnastkowym C odpowiada dziesiętnej wartości 12, więc 4C to 4 * 16^1 + 12 * 16^0 = 64 + 12 = 76 w systemie dziesiętnym. Z kolei C4 to C * 16^1 + 4 * 16^0 = 12 * 16 + 4 = 192 + 4 = 196. Suma tych wartości wynosi 76 + 196 = 272. Takie przeliczenia są kluczowe w programowaniu, zwłaszcza w kontekście programowania niskopoziomowego oraz obliczeń związanych z adresowaniem pamięci, gdzie system szesnastkowy jest powszechnie stosowany. Warto również zauważyć, że znajomość konwersji między systemami liczbowymi jest niezbędna w wielu dziedzinach informatyki, takich jak kryptografia, grafika komputerowa oraz przy tworzeniu oprogramowania operacyjnego, gdzie precyzyjnie zarządzane adresy pamięci są kluczowe. W praktyce, umiejętność konwersji między systemami liczbowymi może być wykorzystana do optymalizacji algorytmów oraz poprawy efektywności kodu.

Pytanie 10

Która z poniższych liczb w systemie dziesiętnym poprawnie przedstawia liczbę 101111112?

A. 382(10)
B. 381(10)
C. 191(10)
D. 193(10)
Odpowiedź 19110 jest prawidłową reprezentacją liczby 101111112 w systemie dziesiętnym, gdyż liczba ta została zapisana w systemie binarnym. Aby przeliczyć liczbę z systemu binarnego na dziesiętny, należy zsumować wartości poszczególnych cyfr, mnożąc każdą cyfrę przez odpowiednią potęgę liczby 2. W przypadku 101111112, cyfra 1 na miejscu 0 (2^0) ma wartość 1, cyfra 1 na miejscu 1 (2^1) ma wartość 2, cyfra 1 na miejscu 2 (2^2) ma wartość 4, cyfra 1 na miejscu 3 (2^3) ma wartość 8, cyfra 1 na miejscu 4 (2^4) ma wartość 16, cyfra 0 na miejscu 5 (2^5) ma wartość 0, cyfra 1 na miejscu 6 (2^6) ma wartość 64 i cyfra 1 na miejscu 7 (2^7) ma wartość 128. Po zsumowaniu tych wartości 128 + 64 + 16 + 8 + 4 + 2 + 1 otrzymujemy 19110. Praktyczne zastosowanie tej wiedzy ma miejsce w programowaniu, gdzie często musimy konwertować dane z jednego systemu liczbowego na inny, co jest kluczowe w wielu algorytmach i strukturach danych.

Pytanie 11

Do usunięcia kurzu z wnętrza obudowy drukarki fotograficznej zaleca się zastosowanie

A. sprężonego powietrza w pojemniku z wydłużoną rurką
B. opaski antystatycznej
C. szczotki z twardym włosiem
D. środka smarującego
Czyszczenie wnętrza drukarki fotograficznej przy użyciu szczotki z twardym włosiem może prowadzić do wielu problemów. Twarde włosie może zarysować delikatne powierzchnie oraz komponenty, takie jak soczewki i czujniki, co może wpłynąć na jakość druku. Ponadto, stosowanie szczotki może powodować rozprzestrzenianie się kurzu i zanieczyszczeń w obrębie urządzenia, a nie ich usunięcie. W przypadku opaski antystatycznej, jej główną funkcją jest ochrona przed ładunkami elektrostatycznymi, a nie usuwanie kurzu. Użycie opaski w kontekście czyszczenia wnętrza drukarki nie ma sensu, ponieważ nie eliminuje ona zanieczyszczeń, a jedynie zmniejsza ryzyko uszkodzeń spowodowanych wyładowaniami elektrostatycznymi. Środek smarujący również nie jest przeznaczony do czyszczenia. Jego zastosowanie w niewłaściwy sposób może prowadzić do uszkodzenia mechanizmu drukarki, a także przyciągać kurz i brud, pogarszając sytuację. Istotne jest, aby przy czyszczeniu sprzętu stosować metody zgodne z zaleceniami producentów, aby zapewnić długotrwałe i bezawaryjne działanie urządzenia.

Pytanie 12

Kiedy podczas startu systemu z BIOSu firmy AWARD komputer wyemitował długi dźwięk oraz dwa krótkie, to oznacza, że wystąpił błąd?

A. płyty głównej
B. pamięci FLASH - BIOS
C. kontrolera klawiatury
D. karty graficznej
Odpowiedzi związane z błędami płyty głównej, pamięci FLASH - BIOS oraz kontrolera klawiatury są niepoprawne. Problemy związane z płytą główną mogą objawiać się różnorodnymi sygnałami, ale długi sygnał i dwa krótkie sygnały najczęściej nie są z nimi związane. Odpowiedzi te odzwierciedlają typowe błędy myślowe, takie jak mylenie symptomów. Płyta główna, chociaż kluczowym komponentem, nie sygnalizuje problemów w taki sposób. Co więcej, błędy pamięci FLASH - BIOS nie są sygnalizowane przez długie i krótkie sygnały; te są bardziej związane z uszkodzeniem BIOS-u, które zazwyczaj objawia się innymi sygnałami, takimi jak ciągłe piszczenie. Również kontroler klawiatury, który ma swoje własne sygnały diagnostyczne, nie jest powiązany z długim sygnałem i dwoma krótkimi. Zrozumienie, jak BIOS interpretuje i sygnalizuje problemy, jest kluczowe w diagnostyce komputerowej, co pozwala na skuteczniejsze rozwiązywanie problemów sprzętowych. Warto zatem dokładnie zaznajomić się z dokumentacją dotyczącą sygnalizacji POST oraz standardami diagnostycznymi, aby uniknąć pomyłek w przyszłości.

Pytanie 13

Jakie jest oznaczenie sieci, w której funkcjonuje host o IP 10.10.10.6 klasy A?

A. 10.10.0.0
B. 10.0.0.0
C. 10.255.255.255
D. 10.10.10.255
Adres 10.10.0.0 jest nieprawidłowym adresem sieci dla hosta o adresie IP 10.10.10.6, ponieważ sugeruje, że sieć ma maskę podsieci, która uwzględnia tylko pierwsze dwa oktety, co jest niezgodne z zasadami klasyfikacji adresów IP. W klasie A, adres IP 10.10.10.6 wskazuje, że cały pierwszy oktet (10) powinien być użyty do określenia adresu sieci, a nie dwóch. Adres 10.10.10.255 jest w ogóle adresem rozgłoszeniowym (broadcast), co oznacza, że nie może być traktowany jako adres sieci. Adresy rozgłoszeniowe są używane do jednoczesnego wysyłania danych do wszystkich urządzeń w danej sieci, co czyni je w pełni niewłaściwymi w kontekście adresów sieciowych. Ponadto, 10.255.255.255 jest adresem rozgłoszeniowym dla całej sieci klasy A, co również wyklucza go z możliwości bycia adresem sieci. Kluczowe błędy w myśleniu, które prowadzą do tych nieprawidłowych wniosków, obejmują pomylenie adresów sieciowych z adresami hostów oraz nieprawidłowe stosowanie maski podsieci. W rzeczywistości, aby dokładnie określić adres sieci, należy zawsze odnosić się do zasad klasyfikacji adresów oraz do standardów takich jak RFC 1918, które określają zasady używania adresów prywatnych. Zrozumienie tych zasad jest kluczowe dla prawidłowego projektowania i zarządzania sieciami.

Pytanie 14

Który z poniższych protokołów należy do warstwy aplikacji w modelu ISO/OSI?

A. ICMP
B. ARP
C. FTP
D. TCP
TCP (Transmission Control Protocol) nie jest protokołem warstwy aplikacji, lecz protokołem warstwy transportowej w modelu ISO/OSI. Jego zadaniem jest zapewnienie niezawodnej, uporządkowanej i kontrolowanej transmisji danych między aplikacjami działającymi na różnych hostach w sieci. TCP zajmuje się segmentacją danych i ich retransmisją w przypadku utraty pakietów, co jest kluczowe w wielu zastosowaniach, ale nie dostarcza funkcjonalności potrzebnej do przesyłania plików, jak robi to FTP. ARP (Address Resolution Protocol) jest protokołem używanym do przekształcania adresów IP na adresy MAC w warstwie łącza danych. Choć jest istotny dla komunikacji sieciowej, nie jest protokołem warstwy aplikacji i nie ma funkcji związanych z bezpośrednim przesyłaniem danych. ICMP (Internet Control Message Protocol) służy do przesyłania komunikatów kontrolnych i diagnostycznych w sieci, na przykład w przypadku wystąpienia błędów w transmisji danych. Tak jak ARP, ICMP działa na warstwie sieci i nie jest protokołem warstwy aplikacji. Zrozumienie, jaka jest rola każdego z protokołów w modelu ISO/OSI, pozwala uniknąć typowych błędów myślowych, takich jak mylenie protokołów transportowych z aplikacyjnymi. Wiedza ta jest kluczowa dla budowania i zarządzania efektywnymi i bezpiecznymi sieciami komputerowymi.

Pytanie 15

Wtyczka zaprezentowana na fotografie stanowi element obwodu elektrycznego zasilającego

Ilustracja do pytania
A. napędy CD-ROM
B. dyski wewnętrzne SATA
C. procesor ATX12V
D. stację dyskietek
Wtyczka przedstawiona na zdjęciu jest zasilaczem typu ATX12V, który jest kluczowym elementem w nowoczesnych komputerach stacjonarnych. Ten typ złącza został wprowadzony, aby zapewnić dodatkowe zasilanie dla procesorów, które z czasem wymagały większej mocy. ATX12V to standard opracowany przez producentów płyt głównych i zasilaczy komputerowych, aby zapewnić stabilne i niezawodne zasilanie dla komponentów o wysokiej wydajności. Złącze ATX12V zwykle posiada cztery piny, które dostarczają napięcia 12V bezpośrednio do procesora, co jest niezbędne dla jego wydajności i stabilności. W praktyce oznacza to, że systemy oparte na tym standardzie mogą obsługiwać bardziej zaawansowane procesory, które wymagają większej ilości energii elektrycznej do prawidłowego działania. Ponadto, stosowanie tego złącza jest zgodne z dobrymi praktykami projektowymi w zakresie poprawy efektywności energetycznej i zarządzania termicznego w urządzeniach komputerowych, co ma kluczowe znaczenie w kontekście zarówno domowych, jak i profesjonalnych zastosowań komputerów stacjonarnych.

Pytanie 16

Użytkownik planuje instalację 32-bitowego systemu operacyjnego Windows 7. Jaka jest minimalna ilość pamięci RAM, którą powinien mieć komputer, aby system mógł działać w trybie graficznym?

A. 2 GB
B. 256 MB
C. 512 MB
D. 1 GB
Minimalne wymagania dotyczące pamięci RAM dla systemu operacyjnego Windows 7 w wersji 32-bitowej są często mylnie interpretowane. Odpowiedzi sugerujące 256 MB i 512 MB RAM jako wystarczające są nieprawidłowe. W przeszłości, w przypadku starszych systemów operacyjnych, takie wartości mogłyby być rozważane, jednak w erze Windows 7, które wprowadza znacznie bardziej złożony interfejs graficzny oraz nowe funkcje, te liczby są znacznie niewystarczające. System operacyjny potrzebuje odpowiedniej ilości pamięci RAM, aby efektywnie zarządzać procesami i zapewnić użytkownikowi płynne doświadczenia, co jest szczególnie ważne w trybie graficznym. Wiele osób myśli, że minimalne wymagania są wystarczające do codziennego użytku, co jest błędnym podejściem. Z perspektywy wydajności, 1 GB RAM jest zalecanym minimum, a posiadanie tylko 512 MB lub mniej może prowadzić do znacznych opóźnień i trudności w obsłudze. Rekomendacje branżowe wskazują, że dla komfortowej pracy w systemie Windows 7, warto dążyć do posiadania co najmniej 2 GB RAM-u, co zapewnia lepszą wydajność i możliwość uruchamiania wielu aplikacji jednocześnie, co jest kluczowe w kontekście nowoczesnego użytkowania komputerów.

Pytanie 17

Wskaż interfejsy płyty głównej widoczne na rysunku.

Ilustracja do pytania
A. 1 x RJ45, 2 x USB 2.0, 2 x USB 3.0, 1 x eSATA, 1 x Line Out, 1 x Microfon In, 1 x DVI-I, 1 x HDMI
B. 1 x RJ45, 2 x USB 2.0, 2 x USB 3.0, 1 x eSATA, 1 x Line Out, 1 x Microfon In, 1 x DVI-D, 1 x HDMI
C. 1 x RJ45, 4 x USB 2.0, 1.1, 1 x eSATA, 1 x Line Out, 1 x Microfon In, 1 x DVI-A, 1 x HDMI
D. 1 x RJ45, 4 x USB 3.0, 1 x SATA, 1 x Line Out, 1 x Microfon In, 1 x DVI-I, 1 x DP
Patrząc na zestaw portów, łatwo się pomylić, bo producenci potrafią naprawdę mieszać oznaczenia. Jednak szczegóły są tu kluczowe. Częsty błąd to mylenie DVI-D z DVI-I. DVI-I, jak na zdjęciu, ma więcej pinów, bo obsługuje zarówno sygnał cyfrowy, jak i analogowy – to bardzo praktyczne rozwiązanie, zwłaszcza jeśli korzystasz z przejściówek lub starszych monitorów. DVI-D przesyła tylko sygnał cyfrowy, a DVI-A tylko analogowy i ten ostatni praktycznie już nie występuje w nowych płytach głównych. Często ludzie zakładają, że jeśli widzą port DVI, to zawsze jest to DVI-D, bo tak było w wielu laptopach czy starszych kartach graficznych, jednak na płytach głównych spotyka się głównie DVI-I dla uniwersalności. Kolejna sprawa to liczba i rodzaj portów USB – przeważnie na I/O panelu mamy zarówno porty USB 2.0, jak i 3.0 (te ostatnie są zwykle niebieskie), a nie tylko jeden typ. USB 3.0 to już właściwie standard do szybkich dysków czy pamięci flash, ale USB 2.0 nadal służy do myszy czy klawiatur. eSATA bywa mylony z portami SATA, które jednak znajdują się na płycie, a nie na tylnym panelu – eSATA pozwala podłączać szybkie zewnętrzne dyski twarde, nie jest jednak tak popularny jak USB. Port DP (DisplayPort) nie występuje na tej płycie, mimo że coraz częściej pojawia się w nowocześniejszych konstrukcjach, zwłaszcza do monitorów 4K czy pracy wielomonitorowej. Kolory złączy audio to często pomijany szczegół, ale warto pamiętać, że Line Out to zielony, a Microfon In różowy – zamiana tych portów prowadzi do braku dźwięku lub nieaktywnego mikrofonu, co bardzo często widzę u początkujących użytkowników. Ogólnie rzecz biorąc, typowym błędem jest nieuważne czytanie oznaczeń lub nieznajomość starszych standardów, ale praktyka w serwisie szybko uczy zwracać uwagę na takie detale. Branża idzie w stronę unifikacji portów (USB-C, Thunderbolt), jednak starsze standardy jak DVI-I i eSATA wciąż mają swoje miejsce, zwłaszcza gdy mówimy o sprzęcie do zastosowań specjalnych lub pracy serwisowej.

Pytanie 18

Po dokonaniu eksportu klucza HKCU powstanie kopia rejestru zawierająca dane dotyczące ustawień

A. wszystkich aktywnie załadowanych profili użytkowników systemu
B. procedur startujących system operacyjny
C. sprzętu komputera dla wszystkich użytkowników systemu
D. aktualnie zalogowanego użytkownika
Wybór odpowiedzi dotyczącej procedur uruchamiających system operacyjny, sprzętowej konfiguracji komputera lub profili użytkowników nie jest właściwy, ponieważ każdy z tych obszarów ma swoje unikalne klucze w rejestrze systemu Windows. Klucz HKLM (HKEY_LOCAL_MACHINE) przechowuje informacje dotyczące sprzętu oraz konfiguracji systemu operacyjnego dla wszystkich użytkowników, a nie tylko jednego. To może prowadzić do nieporozumień, ponieważ zakłada się, że eksportując HKCU, uzyskuje się dostęp do globalnych ustawień systemowych, co jest mylne. Sprzętowe informacje komputera są integralną częścią kluczy HKLM, które obejmują takie dane jak sterowniki, ustawienia BIOS oraz inne parametry sprzętowe wspólne dla wszystkich użytkowników. Kolejny błąd myślowy pojawia się przy pomyśle, że eksportuje się informacje o wszystkich aktywnie ładowanych profilach użytkowników. W rzeczywistości każdy profil użytkownika ma oddzielny klucz HKU (HKEY_USERS), a eksport HKCU dotyczy tylko profilu aktualnie zalogowanego użytkownika. Błędy te mogą prowadzić do poważnych pomyłek w zarządzaniu systemem, zwłaszcza w kontekście kopiowania i przywracania ustawień, co może skutkować utratą danych lub nieprawidłowym działaniem aplikacji. Zrozumienie struktury rejestru jest kluczowe dla efektywnego zarządzania systemem operacyjnym, a nieuwzględnienie tego aspektu może prowadzić do trudności w diagnostyce i rozwiązywaniu problemów.

Pytanie 19

Do jakiego typu wtyków przeznaczona jest zaciskarka pokazana na ilustracji?

Ilustracja do pytania
A. SC/PC
B. BNC
C. RJ45
D. E2000
Zaciskarka, którą widzisz na zdjęciu, to naprawdę fajne narzędzie do montażu złącz BNC. Te złącza, znane jako BNC (Bayonet Neill-Concelman), są używane wszędzie, gdzie mamy do czynienia z telekomunikacją i wideo, zwłaszcza w systemach CCTV czy profesjonalnym sprzęcie audio-wideo. Dzięki swojemu bagnetowemu mechanizmowi te złącza montuje się bardzo szybko i pewnie. Zaciskarka jest zaprojektowana, żeby dobrze zacisnąć metalowe elementy złącza na kablu koncentrycznym, co z kolei daje nam trwałe połączenie. Ważne, aby dobrze skalibrować narzędzie, bo inaczej możemy uszkodzić złącze. Podczas montażu złączy BNC musimy też dbać o integralność dielektryka w kablu, bo to wpływa na jakość sygnału. Praca z tym narzędziem wymaga, żeby technik znał standardy dotyczące kabli koncentrycznych i wiedział, jakich narzędzi i procedur używać, jak opisano w normach EIA/TIA. Ta wiedza jest naprawdę kluczowa, żeby instalacje działały prawidłowo i były trwałe.

Pytanie 20

Aby skopiować folder c:\test wraz ze wszystkimi podfolderami na przenośny dysk f:\ w systemie Windows 7, jakie polecenie należy zastosować?

A. copy f:\test c:\test /E
B. xcopy f:\test c:\test /E
C. copy c:\test f:\test /E
D. xcopy c:\test f:\test /E
W przypadku odpowiedzi 'copy c:\test f:\test /E', należy zauważyć, że polecenie 'copy' nie obsługuje kopiowania katalogów z ich zawartością. Narzędzie to jest przeznaczone do kopiowania pojedynczych plików, a próba użycia go do kopiowania folderów z podkatalogami zakończy się błędem. Użytkownicy często mylą funkcjonalności 'copy' i 'xcopy', co prowadzi do nieporozumień. W przypadku opcji 'copy f:\test c:\test /E', zamiana miejscami źródła i celu prowadzi do niepoprawnego rozumienia, że kopiujemy z nośnika na lokalny dysk, co jest w tym kontekście zupełnie niewłaściwe. Odpowiedzi takie jak 'xcopy f:\test c:\test /E' również nie są adekwatne, ponieważ odwracają kierunek kopiowania, co jest sprzeczne z zamierzonym celem skopiowania danych na dysk przenośny. Typowym błędem myślowym jest założenie, że każda opcja kopiowania danych w systemie Windows będzie działać analogicznie, co nie jest prawdą. Zrozumienie różnic w funkcjonalności i zastosowaniu odpowiednich narzędzi jest kluczowe dla efektywnej pracy z systemem operacyjnym, szczególnie w kontekście zarządzania danymi i użycia odpowiednich poleceń dla zadawanych czynności.

Pytanie 21

SuperPi to aplikacja używana do oceniania

A. poziomu niewykorzystanej pamięci operacyjnej RAM
B. obciążenia oraz efektywności kart graficznych
C. wydajności procesorów o podwyższonej częstotliwości
D. sprawności dysków twardych
Wydajność dysków twardych, obciążenie i wydajność kart graficznych oraz ilość niewykorzystanej pamięci operacyjnej RAM to obszary, które mogą być analizowane za pomocą innych narzędzi, jednak nie mają one zastosowania w kontekście programu SuperPi. Analiza wydajności dysków twardych zazwyczaj wiąże się z testami odczytu i zapisu danych, co można zrealizować przez programy takie jak CrystalDiskMark. W przypadku kart graficznych, wykorzystywane są benchmarki takie jak 3DMark, które mierzą wydajność w renderowaniu grafiki oraz obliczeniach związanych z grafiką 3D. Ilość niewykorzystanej pamięci RAM może być monitorowana za pomocą menedżerów zadań lub narzędzi systemowych, które pokazują aktualne zużycie pamięci przez różne procesy. Program SuperPi, skupiając się wyłącznie na obliczeniach matematycznych i wydajności procesora, nie jest w stanie dostarczyć informacji na temat tych innych kategorii wydajności. Warto także zauważyć, że błędem jest mylenie różnych typów benchmarków, co może prowadzić do nieporozumień co do ich funkcji oraz zastosowania w praktyce. Każdy benchmark ma swoje specyficzne zastosowanie i odpowiednie narzędzia, które powinny być używane w zależności od obszaru, który chcemy ocenić.

Pytanie 22

Urządzenie pokazane na ilustracji służy do

Ilustracja do pytania
A. zaciskania wtyków RJ45
B. weryfikacji poprawności połączenia
C. ściągania izolacji z przewodu
D. instalacji przewodów w złączach LSA
Narzędzie przedstawione na rysunku to narzędzie do instalacji przewodów w złączach LSA znane również jako narzędzie Krone. Jest ono powszechnie stosowane w telekomunikacji oraz instalacjach sieciowych do zakończenia przewodów w panelach krosowych lub gniazdach. Narzędzie to umożliwia wciśnięcie przewodów w złącza IDC (Insulation Displacement Connector) bez konieczności zdejmowania izolacji co zapewnia szybkie i niezawodne połączenie. Wciśnięcie przewodu powoduje przemieszczenie izolacji co skutkuje bezpośrednim kontaktem przewodnika z metalowymi stykami. Dzięki temu technologia LSA zapewnia trwałe i stabilne połączenia bez ryzyka uszkodzenia przewodów. Narzędzie to posiada również funkcję odcinania nadmiaru przewodu co jest istotne dla utrzymania porządku w stosowanych instalacjach. Stosowanie narzędzi LSA jest standardem w branży co wynika z ich precyzji oraz wydajności. Wielu specjalistów uznaje je za niezbędny element wyposażenia podczas pracy z systemami telekomunikacyjnymi co potwierdza ich niezastąpioną rolę w procesie instalacji.

Pytanie 23

Systemy operacyjne należące do rodziny Linux są dystrybuowane na mocy licencji

A. MOLP
B. komercyjnej
C. GNU
D. shareware
Odpowiedź GNU jest prawidłowa, ponieważ systemy operacyjne z rodziny Linux są dystrybuowane głównie na podstawie licencji GNU General Public License (GPL). Ta licencja, stworzona przez fundację Free Software Foundation, ma na celu zapewnienie swobody użytkowania, modyfikacji i dystrybucji oprogramowania. Dzięki temu każda osoba ma prawo do korzystania z kodu źródłowego, co sprzyja innowacjom i współpracy w społeczności programistycznej. Przykładem jest dystrybucja Ubuntu, która jest jedną z najpopularniejszych wersji systemu Linux, dostarczająca użytkownikom łatwy dostęp do potężnych narzędzi, bez konieczności płacenia za licencję. W praktyce, licencje GNU przyczyniają się do tworzenia otwartych i bezpiecznych rozwiązań, które są stale rozwijane przez globalną społeczność. Systemy operacyjne oparte na tej licencji są wykorzystywane w wielu sektorach, od serwerów po urządzenia mobilne, co podkreśla ich znaczenie oraz elastyczność w zastosowaniach komercyjnych i prywatnych.

Pytanie 24

Na ilustracji zaprezentowano sieć komputerową w układzie

Ilustracja do pytania
A. pierścienia
B. gwiazdy
C. magistrali
D. mieszanej
Topologia pierścienia to rodzaj sieci komputerowej, w której każdy węzeł jest podłączony do dwóch innych węzłów, tworząc jedną nieprzerwaną ścieżkę komunikacyjną przypominającą pierścień. W tej topologii dane przesyłane są w jednym kierunku od jednego węzła do następnego, co minimalizuje ryzyko kolizji. Jednym z praktycznych zastosowań tej topologii jest sieć Token Ring, gdzie stosuje się protokół token passing umożliwiający kontrolowany dostęp do medium transmisyjnego. Główne zalety topologii pierścienia to jej deterministyczny charakter oraz łatwość w przewidywaniu opóźnień w przesyłaniu danych. W kontekście standardów sieciowych, sieci opartych na tej topologii można znaleźć w lokalnych sieciach LAN wykorzystujących standard IEEE 802.5. Dobrymi praktykami w implementacji topologii pierścienia są regularna kontrola stanu połączeń oraz odpowiednia konfiguracja urządzeń sieciowych, aby zapewnić niezawodność i optymalną wydajność sieci. Choć nieco mniej popularna w nowoczesnych zastosowaniach niż topologia gwiazdy, topologia pierścienia znalazła swoje zastosowanie w specyficznych środowiskach przemysłowych, gdzie deterministyczny dostęp do medium jest kluczowy.

Pytanie 25

Jakie urządzenie ilustruje zamieszczony rysunek?

Ilustracja do pytania
A. Przełącznik
B. Punkt dostępowy
C. Most sieciowy
D. Koncentrator
Punkt dostępowy, znany również jako access point, to urządzenie umożliwiające bezprzewodowy dostęp do sieci lokalnej (LAN). W praktyce, punkty dostępowe są kluczowym elementem infrastruktury sieci bezprzewodowych, takich jak Wi-Fi, gdzie służą jako most pomiędzy siecią przewodową a urządzeniami bezprzewodowymi, jak laptopy, smartfony, czy tablety. Warto zauważyć, że punkty dostępowe często stosowane są w miejscach o dużym natężeniu ruchu, takich jak biura, szkoły, czy lotniska, gdzie umożliwiają wielu użytkownikom jednoczesne połączenie się z internetem zgodnie z odpowiednimi standardami, np. IEEE 802.11. Dobrym przykładem zastosowania punktu dostępowego jest jego integracja z siecią w celu rozszerzenia zasięgu sygnału, co pozwala na lepsze pokrycie i minimalizację martwych stref. Kluczowe aspekty konfiguracji punktów dostępowych obejmują zarządzanie kanałami i częstotliwościami w celu zminimalizowania interferencji oraz zapewnienie odpowiedniego poziomu bezpieczeństwa, np. poprzez zastosowanie szyfrowania WPA3. Dzięki tym cechom, punkty dostępowe stanowią fundament nowoczesnych, elastycznych sieci bezprzewodowych, wspierając mobilność i łączność użytkowników w różnych środowiskach.

Pytanie 26

Na ilustracji przedstawiono diagram blokowy karty

Ilustracja do pytania
A. dźwiękowej
B. sieciowej
C. telewizyjnej
D. graficznej
Karta telewizyjna to urządzenie pozwalające na odbiór sygnału telewizyjnego i jego przetwarzanie na komputerze. Na przedstawionym schemacie widać elementy charakterystyczne dla karty telewizyjnej takie jak tuner, który odbiera sygnał RF (Radio Frequency) z anteny. Zastosowanie tunera jest kluczowe w kontekście odbioru sygnału telewizyjnego, ponieważ pozwala na dekodowanie i dostrajanie odbieranych fal radiowych do konkretnych kanałów telewizyjnych. Przetwornik analogowo-cyfrowy (A/C) jest używany do konwersji analogowego sygnału wideo na cyfrowy, co jest niezbędne do dalszego przetwarzania przez komputer. Ważnym elementem jest także dekoder wideo oraz sprzętowa kompresja MPEG-2, które umożliwiają kompresję strumienia wideo, co jest standardem w transmisji telewizji cyfrowej. EEPROM i DRAM służą do przechowywania niezbędnych danych oraz do buforowania strumienia danych. Tego typu karty są szeroko stosowane w systemach komputerowych, gdzie istnieje potrzeba integracji funkcji telewizyjnej, np. w centrach medialnych. Stosowanie kart telewizyjnych jest zgodne ze standardami transmisji wideo i audio, co zapewnia ich kompatybilność z różnymi formatami sygnału. Przykładem praktycznego zastosowania są systemy do nagrywania programów telewizyjnych i ich późniejszego odtwarzania na komputerze.

Pytanie 27

Który z podanych adresów IPv4 należy do kategorii B?

A. 224.100.10.10
B. 128.100.100.10
C. 192.168.1.10
D. 10.10.10.10
Adres IPv4 128.100.100.10 należy do klasy B, co wynika z jego pierwszego oktetu. Klasa B obejmuje adresy, których pierwszy oktet mieści się w przedziale od 128 do 191. W praktyce, klasyfikacja adresów IP jest kluczowym elementem w projektowaniu sieci komputerowych, ponieważ pozwala na efektywne zarządzanie przestrzenią adresową. Adresy klasy B są często wykorzystywane w średnich i dużych sieciach, ponieważ oferują możliwość stworzenia do 65 536 adresów IP w ramach jednej sieci (przy użyciu maski podsieci 255.255.0.0). Przykładem zastosowania adresów klasy B jest ich wykorzystanie w przedsiębiorstwach, które potrzebują dużej liczby adresów dla swoich urządzeń, takich jak komputery, serwery, drukarki i inne. W kontekście standardów, klasyfikacja adresów IP opiera się na protokole Internet Protocol (IP), który jest kluczowym elementem w architekturze Internetu. Warto zaznaczyć, że klasy adresów IP są coraz mniej używane na rzecz CIDR (Classless Inter-Domain Routing), który oferuje większą elastyczność w alokacji adresów. Niemniej jednak, zrozumienie klasyfikacji jest nadal istotne dla profesjonalistów zajmujących się sieciami.

Pytanie 28

Tworzenie zaszyfrowanych połączeń pomiędzy hostami przez publiczną sieć Internet, wykorzystywane w rozwiązaniach VPN (Virtual Private Network), to

A. trasowanie
B. tunelowanie
C. mapowanie
D. mostkowanie
Tunelowanie to technika stosowana w architekturze sieciowej do tworzenia zaszyfrowanych połączeń między hostami przez publiczny internet. W kontekście VPN, umożliwia zdalnym użytkownikom bezpieczny dostęp do zasobów sieciowych tak, jakby znajdowali się w lokalnej sieci. Tunelowanie działa poprzez encapsulację danych w protokole, który jest następnie przesyłany przez sieć. Przykładowo, protokół PPTP (Point-to-Point Tunneling Protocol) oraz L2TP (Layer 2 Tunneling Protocol) są powszechnie używane w tunelowaniu. Warto zauważyć, że tunelowanie nie tylko zapewnia bezpieczeństwo, ale także umożliwia zarządzanie ruchem sieciowym, co jest kluczowe w kontekście zabezpieczania komunikacji między różnymi lokalizacjami. Dobrą praktyką w korzystaniu z tunelowania jest stosowanie silnych algorytmów szyfrowania, takich jak AES (Advanced Encryption Standard), aby zapewnić poufność i integralność przesyłanych danych. W związku z rosnącymi zagrożeniami w sieci, znajomość i umiejętność implementacji tunelowania staje się niezbędna dla specjalistów IT.

Pytanie 29

Wskaż standard protokołu wykorzystywanego do kablowego połączenia dwóch urządzeń

A. IEEE 802.15.1
B. WiMAX
C. IEEE 1394
D. IrDA
Słuchaj, IEEE 1394, znany bardziej jako FireWire, to taki standard, który pozwala na podłączenie dwóch urządzeń bez zbędnych komplikacji. Ma naprawdę szybki transfer danych, co sprawia, że świetnie się sprawdza, gdy trzeba przesyłać dużą ilość informacji, na przykład przy strumieniowym wideo czy w przypadku podpinania zewnętrznych dysków twardych. Fajna sprawa jest taka, że można podłączyć do niego kilka urządzeń na raz, więc można tworzyć całe łańcuchy bez dodatkowych koncentratorów. W filmie i muzyce, gdzie jakość ma znaczenie, FireWire to często wybór nr 1. Co więcej, obsługuje zarówno przesyłanie danych, jak i zasilanie, więc to naprawdę wszechstronny standard. Choć teraz USB jest bardziej popularne, to jednak FireWire nadal ma swoje miejsce, zwłaszcza tam, gdzie wydajność jest kluczowa. Dobrze jest znać ten standard, jeśli planujesz pracować w dziedzinach związanych z multimediami.

Pytanie 30

Który z elementów szafy krosowniczej został pokazany na ilustracji?

Ilustracja do pytania
A. Panel krosowy 1U
B. Przepust kablowy 2U
C. Maskownica 1U
D. Wieszak do kabli 2U
Panel krosowy 1U jest kluczowym elementem infrastruktury sieciowej, który umożliwia organizację i zarządzanie okablowaniem w szafach krosowniczych. Dzięki swojej konstrukcji pozwala na łatwe przypisywanie portów i bezproblemową zmianę połączeń, co jest nieocenione w dynamicznych środowiskach IT. Panel krosowy 1U jest zgodny ze standardami przemysłowymi takimi jak TIA/EIA-568, co zapewnia jego kompatybilność z różnymi systemami okablowania. Zwykle jest wyposażony w odpowiednią liczbę portów RJ-45, które pozwalają na podłączenie kabli kategorii 5e, 6 lub nawet wyższych. W praktyce, panel krosowy jest podstawą dla zarządzanych sieci w biurach, centrach danych oraz instytucjach, gdzie kluczowe jest utrzymanie wysokiej jakości i organizacji sieci. Użycie paneli krosowych pozwala na uporządkowanie kabli i ułatwia diagnozowanie problemów sieciowych poprzez szybki dostęp do poszczególnych portów. Montaż panelu w szafie krosowniczej jest prosty, a jego obsługa intuicyjna, co czyni go powszechnym rozwiązaniem w branży IT.

Pytanie 31

Do umożliwienia komunikacji pomiędzy sieciami VLAN, wykorzystuje się

A. Router
B. Koncentrator
C. Punkt dostępowy
D. Modem
Router jest urządzeniem, które umożliwia komunikację między różnymi sieciami, w tym sieciami VLAN. VLAN, czyli Virtual Local Area Network, to technologia, która pozwala na segregację ruchu sieciowego w obrębie tej samej fizycznej sieci. Aby dane mogły być wymieniane między różnymi VLAN-ami, konieczne jest użycie routera, który zajmuje się przesyłaniem pakietów danych między tymi odrębnymi segmentami sieci. Router jest w stanie analizować adresy IP oraz inne informacje w nagłówkach pakietów, co pozwala na ich prawidłowe kierowanie. Przykładowo, w dużych organizacjach, gdzie różne działy mogą mieć swoje VLAN-y (np. dział finansowy i IT), router umożliwia tym działom wymianę informacji, przy jednoczesnym zachowaniu bezpieczeństwa i segregacji danych. Stosowanie routerów w kontekście VLAN-ów jest zgodne z dobrą praktyką w projektowaniu rozbudowanych architektur sieciowych, co podkreśla znaczenie tych urządzeń w zwiększaniu efektywności i bezpieczeństwa komunikacji sieciowej.

Pytanie 32

Protokół, który konwertuje nazwy domen na adresy IP, to

A. ICMP (Internet Control Message Protocol)
B. ARP (Address Resolution Protocol)
C. DNS (Domain Name System)
D. DHCP (Dynamic Host Configuration Protocol)
ARP, ICMP i DHCP to ważne protokoły w infrastrukturze sieciowej, jednak nie wykonują one funkcji tłumaczenia nazw domenowych na adresy IP. Protokół ARP (Address Resolution Protocol) jest odpowiedzialny za mapowanie adresów IP na adresy MAC w sieciach lokalnych. Użytkownicy mogą mylić ARP z DNS, ponieważ oba protokoły są używane w procesie komunikacji sieciowej, lecz pełnią różne role. ICMP (Internet Control Message Protocol) służy do przesyłania komunikatów kontrolnych i diagnostycznych, takich jak ping, ale nie zajmuje się tłumaczeniem nazw. DHCP (Dynamic Host Configuration Protocol) natomiast jest odpowiedzialny za automatyczne przydzielanie adresów IP urządzeniom w sieci, co również nie ma związku z funkcją rozwiązywania nazw. Typowym błędem jest mylenie funkcji poszczególnych protokołów, co może prowadzić do nieporozumień w zarządzaniu siecią. Ważne jest zrozumienie, że każdy protokół ma swoją specyfikę i zastosowanie, a ich niewłaściwe użycie może prowadzić do problemów z wydajnością i bezpieczeństwem sieci. W kontekście zarządzania infrastrukturą sieciową, kluczowe jest nie tylko zrozumienie podstawowych funkcji protokołów, ale także umiejętność ich prawidłowej konfiguracji i wykorzystywania zgodnie z najlepszymi praktykami branżowymi.

Pytanie 33

Ile bitów trzeba wydzielić z części hosta, aby z sieci o adresie IPv4 170.16.0.0/16 utworzyć 24 podsieci?

A. 5 bitów
B. 4 bity
C. 3 bity
D. 6 bitów
Wybierając mniej niż 5 bitów, takie jak 3 lub 4, tracimy zdolność do zapewnienia wystarczającej liczby podsieci dla wymaganej liczby 24. Dla 3 bitów otrzymujemy jedynie 2^3=8 podsieci, co jest niewystarczające, a dla 4 bitów 2^4=16 podsieci, co również nie zaspokaja wymagań. Takie podejście może prowadzić do nieefektywności w zarządzaniu siecią, ponieważ zbyt mała liczba podsieci może skutkować przeciążeniem i trudnościami w administracji. W praktyce, niewłaściwe oszacowanie wymaganej liczby bitów prowadzi do problemów z adresacją, co może skutkować konfiguracjami, które nie spełniają potrzeb organizacji. Również błędne obliczenia mogą prowadzić do nieprzewidzianych zatorów w komunikacji między różnymi segmentami sieci. Właściwe planowanie podsieci jest kluczowe w inżynierii sieciowej, gdyż pozwala na efektywne zarządzanie zasobami oraz minimalizację problemów związanych z adresacją i zasięgiem. Ewentualne pominięcie odpowiedniej liczby bitów może również powodować problemy z bezpieczeństwem, ponieważ zbyt mała liczba podsieci może prowadzić do niekontrolowanego dostępu do zasobów sieciowych.

Pytanie 34

Który z trybów nie jest dostępny dla narzędzia powiększenia w systemie Windows?

A. Lupy
B. Zadokowany
C. Płynny
D. Pełnoekranowy
Odpowiedzi wskazujące na dostępność trybów takich jak pełnoekranowy, zadokowany czy lupy mogą wynikać z nieporozumienia dotyczącego funkcjonalności narzędzia lupa w systemie Windows. Tryb pełnoekranowy rzeczywiście istnieje i umożliwia użytkownikom maksymalizację obszaru roboczego, co jest niezwykle istotne w kontekście pracy z niewielkimi detalami w dokumentach lub obrazach. Przy użyciu tego trybu, użytkownicy mogą lepiej skoncentrować się na szczegółach, które są dla nich istotne. Z kolei tryb zadokowany, który umieszcza narzędzie lupa w wybranej części ekranu, jest przydatny dla osób, które chcą mieć stały dostęp do powiększenia, nie tracąc przy tym widoku na inne aplikacje. Wbudowane opcje lupy w systemie Windows są zgodne z dobrymi praktykami dostępu do technologii, zapewniając wsparcie dla osób z problemami wzrokowymi. Typowym błędem jest założenie, że wszystkie tryby są dostępne jednocześnie, co prowadzi do nieporozumień. Warto zrozumieć, że każde narzędzie ma swoje ograniczenia i specyfikacje, a brak trybu płynnego w narzędziu lupa w Windows podkreśla konieczność świadomego korzystania z dostępnych opcji, aby maksymalizować ich efektywność. Zrozumienie tych aspektów jest kluczowe dla efektywnego wykorzystania narzędzi dostępnych w systemach operacyjnych i wspiera użytkowników w codziennych zadaniach.

Pytanie 35

Rodzajem macierzy RAID, która nie jest odporna na awarię dowolnego z dysków wchodzących w jej skład, jest

A. RAID 4
B. RAID 6
C. RAID 2
D. RAID 0
RAID 0 to taka ciekawa konfiguracja, która teoretycznie kusi szybkością, ale niestety totalnie nie zapewnia żadnego poziomu bezpieczeństwa danych. W praktyce polega to na tym, że wszystkie dane są dzielone na bloki i rozrzucane po wszystkich dyskach należących do macierzy. Dzięki temu odczyt i zapis są szybsze, bo operacje wykonują się równolegle, jednak – i tu jest właśnie ten haczyk – awaria chociażby jednego dysku sprawia, że cała macierz staje się bezużyteczna. Nie ma żadnych sum kontrolnych ani parzystości, więc nie ma jak odtworzyć danych. Moim zdaniem RAID 0 to raczej rozwiązanie do zastosowań, gdzie dane nie są ważne lub można je bardzo łatwo odtworzyć – np. montaż wideo na surowych plikach, które i tak mamy backupowane gdzieś indziej, albo czasami w grach na szybkim dysku. W profesjonalnym środowisku IT raczej nikt nie zaleca RAID 0 jako jedynej formy magazynowania czegoś wartościowego. Standardy branżowe typowo mówią wprost: RAID 0 nie zapewnia redundancji, nie jest odporny na żadne awarie i nie powinien być stosowany tam, gdzie bezpieczeństwo danych ma jakiekolwiek znaczenie. Co ciekawe, często początkujący administratorzy sięgają po RAID 0, bo daje lepsze wyniki syntetyczne w benchmarkach, ale w realnym świecie to trochę jak jazda bez pasów – póki nie ma wypadku, jest fajnie, ale potem może być bardzo nieprzyjemnie. Dlatego zawsze warto pamiętać o backupie i rozumieć ograniczenia tej technologii.

Pytanie 36

Wskaż technologię stosowaną do zapewnienia dostępu do Internetu w połączeniu z usługą telewizji kablowej, w której światłowód oraz kabel koncentryczny pełnią rolę medium transmisyjnego

A. xDSL
B. GPRS
C. PLC
D. HFC
Odpowiedzi PLC, xDSL i GPRS nie są zgodne z opisanym kontekstem technologicznym. PLC (Power Line Communication) wykorzystuje istniejącą infrastrukturę elektryczną do przesyłania sygnału, co ogranicza jego zastosowanie do obszarów, w których nie ma dostępu do sieci kablowych czy światłowodowych. Technologia ta ma ograniczenia związane z jakością sygnału oraz zakłóceniami, dlatego nie jest odpowiednia do łączenia usług telewizyjnych z Internetem na dużą skalę. Z kolei xDSL (Digital Subscriber Line) to technologia oparta na tradycyjnych liniach telefonicznych, która również nie korzysta z światłowodów ani kabli koncentrycznych, a jej prędkości transmisji są znacznie niższe w porównaniu do HFC. xDSL jest często stosowane w miejscach, gdzie nie ma możliwości podłączenia do sieci światłowodowej, co ogranicza jego zasięg i niezawodność. GPRS (General Packet Radio Service) to technologia stosowana głównie w sieciach komórkowych, która pozwala na przesyłanie danych w trybie pakietowym, jednak jej prędkości są znacznie niższe w porównaniu z rozwiązaniami kablowymi. Istnieje tu wiele typowych błędów myślowych, takich jak mylenie różnych technologii transmisyjnych oraz niewłaściwe łączenie ich z wymaganiami dotyczącymi jakości i prędkości sygnału. W związku z tym, wybór odpowiedniej technologii do dostarczania Internetu i telewizji powinien być oparty na analizie specyficznych potrzeb użytkowników oraz możliwości infrastrukturalnych.

Pytanie 37

Komputer zarejestrowany w domenie Active Directory nie ma możliwości połączenia się z kontrolerem domeny, na którym znajduje się profil użytkownika. Jaki rodzaj profilu użytkownika zostanie utworzony na tym urządzeniu?

A. tymczasowy
B. lokalny
C. obowiązkowy
D. mobilny
Wybór odpowiedzi, że profil lokalny zostanie utworzony, jest błędny, ponieważ lokalny profil użytkownika jest tworzony tylko wtedy, gdy użytkownik loguje się po raz pierwszy na danym komputerze, a dane te są zachowywane na tym samym urządzeniu. W kontekście problemów z połączeniem z kontrolerem domeny, profil lokalny nie jest alternatywą, gdyż nie pozwala na synchronizację z danymi przechowywanymi na serwerze. Z kolei mobilny profil użytkownika wymaga działania w sieci i synchronizacji z kontrolerem domeny, co w przypadku braku połączenia nie może mieć miejsca. Mobilne profile są zaprojektowane tak, aby były dostępne na różnych komputerach w sieci, jednak również opierają się na dostępności serwera. Profile obowiązkowe to z kolei zdefiniowane szablony, które użytkownik nie może modyfikować, co nie odpowiada sytuacji, w której użytkownik loguje się do systemu po raz pierwszy, nie mając aktywnego połączenia z serwerem. Podejście do tworzenia i zarządzania profilami użytkowników w Active Directory powinno opierać się na zrozumieniu, jak te różne typy profilów działają oraz jak wpływają na dostęp do danych i aplikacji, co jest kluczowe dla administracji systemami oraz zarządzania zasobami IT.

Pytanie 38

W jakich jednostkach opisuje się przesłuch zbliżny NEXT?

A. w dżulach
B. w omach
C. w decybelach
D. w amperach
Jednostki omy, ampery oraz dżule nie są właściwe do wyrażania przesłuchu zbliżnego NEXT. Omy to jednostka oporu elektrycznego, która odnosi się do tego, jak trudno jest przepuścić prąd przez materiał. W kontekście crosstalk, omy nie mają zastosowania, ponieważ nie odnoszą się bezpośrednio do zakłóceń sygnału, lecz do oporu przewodnika. Z kolei ampery to jednostka miary natężenia prądu, która reprezentuje ilość ładunku elektrycznego przepływającego przez przewodnik w jednostce czasu. Oczywiście, natężenie prądu ma znaczenie w kontekście ogólnej analizy sieci, ale nie jest miarą zakłóceń, które dotyczą interakcji pomiędzy różnymi sygnałami w przewodach. Dżule są jednostką energii, co jest całkowicie innym zagadnieniem, ponieważ koncentrują się na pracy wykonanej przez dany prąd elektryczny w określonym czasie. Pomieszanie tych pojęć prowadzi do nieprawidłowych wniosków w zakresie analizy sieci. Każda z tych jednostek pełni swoją rolę w różnych aspektach elektrotechniki, jednak nie są one odpowiednie do oceny przesłuchu zbliżnego, który wymaga innej perspektywy pomiarowej. Dlatego kluczowe jest zrozumienie specyfiki zakłóceń sygnału oraz ich wpływu na funkcjonowanie systemów komunikacyjnych, aby uniknąć błędów w analizie i projektowaniu sieci.

Pytanie 39

Aby stworzyć las w strukturze AD DS (Active Directory Domain Services), konieczne jest utworzenie przynajmniej

A. czterech drzew domeny
B. trzech drzew domeny
C. jednego drzewa domeny
D. dwóch drzew domeny
Odpowiedzi sugerujące potrzebę posiadania więcej niż jednego drzewa domeny w lesie AD DS są oparte na błędnym zrozumieniu podstawowych zasad architektury Active Directory. W rzeczywistości las AD DS jest skonstruowany w taki sposób, że może składać się z pojedynczego drzewa domeny, które w pełni zaspokaja potrzeby organizacji. Tworzenie dwóch, trzech czy czterech drzew domeny może prowadzić do niepotrzebnej złożoności w zarządzaniu oraz zwiększenia ryzyka błędów konfiguracyjnych. Każde drzewo domeny w lesie działa jako osobny zbiór obiektów i schematów, co oznacza, że wprowadzenie wielu drzew zwiększa trudności związane z synchronizacją danych i zarządzaniem uprawnieniami. Typowe błędy myślowe związane z tym zagadnieniem obejmują przekonanie, że większa liczba drzew domeny jest równoznaczna z lepszym zarządzaniem, podczas gdy w rzeczywistości może prowadzić do bardziej skomplikowanej architektury, trudniejszej do utrzymania. W praktyce, dla większości organizacji, wystarczające jest stworzenie jednego drzewa, które może być rozwijane w miarę potrzeb, z zachowaniem przejrzystości i prostoty struktury AD.

Pytanie 40

Zewnętrzny dysk 3,5 cala o pojemności 5 TB, przeznaczony do archiwizacji lub tworzenia kopii zapasowych, dysponuje obudową z czterema różnymi interfejsami komunikacyjnymi. Który z tych interfejsów powinno się użyć do podłączenia do komputera, aby uzyskać najwyższą prędkość transferu?

A. USB 3.1 gen 2
B. eSATA 6G
C. WiFi 802.11n
D. FireWire80
Wybór eSATA 6G, WiFi 802.11n lub FireWire80 jako interfejsu do podłączenia dysku zewnętrznego nie jest optymalnym rozwiązaniem, gdyż żaden z tych interfejsów nie oferuje tak wysokich prędkości przesyłu danych jak USB 3.1 gen 2. eSATA 6G może osiągnąć prędkości do 6 Gbps, co jest zbliżone, ale nadal niższe niż maksymalne możliwości USB 3.1 gen 2. Dodatkowo, eSATA nie obsługuje zasilania, co może wymagać dodatkowego zasilania dla dysku zewnętrznego, co jest niepraktyczne w wielu sytuacjach. WiFi 802.11n oferuje prędkości do 600 Mbps, ale z racji na zmienne warunki sygnału, opóźnienia i zakłócenia, rzeczywista wydajność przesyłu danych jest znacznie niższa. WiFi nie jest więc odpowiednie do transferu dużych plików, gdzie stabilność i szybkość są kluczowe. FireWire 80, mimo że był szybszy od wcześniejszych standardów FireWire, nie osiąga prędkości USB 3.1 gen 2, co czyni go przestarzałym wyborem w kontekście nowoczesnych zastosowań. Często pojawiającym się błędem w myśleniu jest przekonanie, że starsze standardy mogą wciąż konkurować z nowymi technologiami; rzeczywistość technologiczna zmienia się z dnia na dzień, a zatem korzystanie z przestarzałych interfejsów może prowadzić do znaczących opóźnień i utraty danych.