Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 9 grudnia 2025 15:09
  • Data zakończenia: 9 grudnia 2025 15:16

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór odpowiedniego elementu do zastąpienia uszkodzonego S1 jest kluczowy dla prawidłowego działania układu. Na schemacie widzimy elektrozawór sterujący, gdzie S1 pełni funkcję zaworu rozdzielającego. Jego zadaniem jest kontrolowanie przepływu medium, dzięki czemu układ pneumatyczny działa zgodnie z założeniami. W tym kontekście wybór zaworu z odpowiednim typem sterowania, np. mechanicznego czy pneumatycznego, jest istotny. Poprawna odpowiedź wskazuje na element, który może pełnić tę funkcję, zapewniając niezawodność i dokładność działania układu. W branży pneumatycznej dobór elementu zastępczego często opiera się na standardach, takich jak ISO 5599-1, które określają wymiary i sposób montażu. Właściwie dobrany zawór zapewnia minimalizację ryzyka przecieków i optymalne działanie systemu. Praktyczne zastosowanie tego wyboru można zauważyć w automatyzacji procesów, gdzie takie elementy odpowiadają za szybką i precyzyjną kontrolę ruchów mechanicznych.

Pytanie 2

W układzie zastosowano przekaźnik uniwersalny realizujący funkcję opóźnionego załączania. Aby uzyskać wymagane działanie przekaźnika, pokrętło nastawy funkcji należy ustawić

Ilustracja do pytania
A. w pozycji 4.
B. w pozycji 2.
C. w pozycji 3.
D. w pozycji 1.
Wybrałeś pozycję 2, co jest zgodne z funkcją opóźnionego załączania przekaźnika. W tej pozycji przekaźnik zaczyna działać po określonym czasie t od momentu załączenia zasilania. To ustawienie jest kluczowe w wielu układach automatyki przemysłowej, gdzie konieczne jest sekwencyjne uruchamianie urządzeń. Na przykład, w systemach wentylacyjnych opóźnione załączenie może być używane do zapewnienia, że silniki startują w określonej kolejności, zmniejszając ryzyko przeciążenia sieci. W praktyce stosuje się to również w urządzeniach, które muszą osiągnąć określone warunki pracy, zanim zasilanie zostanie w pełni załączone. Jest to zgodne z normami IEC dotyczących automatyki i sterowania, które zalecają takie podejście dla zwiększenia niezawodności systemów. Zachowanie przekaźnika w tej pozycji pozwala na precyzyjne sterowanie i minimalizację ryzyka uszkodzenia sprzętu.

Pytanie 3

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 1 000 Ω
B. 100 Ω
C. 500 Ω
D. 0 Ω
Czujniki Pt500 są powszechnie używane w systemach regulacji temperatury, głównie ze względu na ich dokładność i stabilność. Tego rodzaju czujnik nazywany jest rezystancyjnym czujnikiem temperatury (RTD) i działa na zasadzie zmiany rezystancji w zależności od temperatury. Pt w nazwie odnosi się do platyny, materiału, z którego jest wykonany element reagujący na temperaturę. Przykładowo, w temperaturze 0 °C jego rezystancja wynosi 500 Ω, co wynika ze specyfikacji technicznej tego typu czujników. To, że czujnik Pt500 w 0 °C pokazuje 500 Ω, jest zgodne ze standardami kalibracji RTD. W praktyce, instalując taki czujnik, mamy pewność, że pomiary będą precyzyjne, jeśli są wykonane zgodnie z przyjętymi normami. Dodatkowo Pt500 jest kompatybilny z różnymi układami pomiarowymi, co czyni go elastycznym narzędziem w wielu zastosowaniach przemysłowych. Warto pamiętać, że w miarę wzrostu temperatury rezystancja czujnika również wzrasta, co pozwala na precyzyjne monitorowanie zmian termicznych. Poznanie charakterystyki czujników RTD, takich jak Pt500, to klucz do efektywnego projektowania układów pomiarowych w automatyce przemysłowej.

Pytanie 4

Na schemacie układu sterowania elementy PT1 i PT2 to

Ilustracja do pytania
A. falowniki.
B. prostowniki niesterowane.
C. prostowniki sterowane.
D. przemienniki częstotliwości.
Na schemacie widoczne są dwa elementy oznaczone jako PT1 i PT2, które pełnią funkcję prostowników sterowanych. Charakterystycznym symbolem jest tu dioda z ukośną linią przy bramce – oznacza to tyrystor (SCR), który pozwala regulować moment przewodzenia prądu w każdej połówce sinusoidy napięcia przemiennego. Dzięki temu można sterować napięciem wyjściowym i w efekcie prędkością lub momentem silnika prądu stałego (oznaczonego jako M na rysunku). W praktyce takie rozwiązania stosuje się w układach napędowych, gdzie wymagana jest płynna regulacja obrotów. Sterowanie kątem załączenia tyrystora pozwala zmieniać średnią wartość napięcia zasilającego silnik. Moim zdaniem to bardzo elegancki i klasyczny przykład regulacji mocy w systemach DC, jeszcze zanim falowniki stały się powszechne. W przemyśle taki układ był (i nadal bywa) używany np. w dźwignicach, suwnicach czy walcarkach, gdzie liczy się precyzja i niezawodność. W odróżnieniu od prostowników niesterowanych, tutaj sterowanie odbywa się poprzez impuls bramkowy, co daje znacznie większą kontrolę nad procesem.

Pytanie 5

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. ADD
B. MUL
C. DIV
D. SUB
Wybór funkcji SUB jako tej odpowiedzialnej za odejmowanie w sterowniku PLC jest trafny. SUB to skrót od 'subtract', co w języku angielskim oznacza odejmowanie. W kontekście programowania PLC, funkcja ta jest używana do odejmowania jednej wartości od drugiej. Może to być przydatne w wielu zastosowaniach przemysłowych, np. gdy trzeba obliczyć różnicę między dwoma pomiarami czujników czy też śledzić zużycie materiałów. Odejmowanie jest jednym z podstawowych działań arytmetycznych, które często są wykorzystywane w automatyce i sterowaniu procesami przemysłowymi. W standardzie IEC 61131-3, który jest często przywoływany w kontekście programowania PLC, funkcje arytmetyczne takie jak ADD, SUB, MUL, DIV są podstawą przy pisaniu algorytmów. W praktyce, dobrze zaprojektowane programy PLC korzystają z tych funkcji, aby realizować precyzyjne operacje matematyczne, co umożliwia osiąganie większej efektywności i dokładności w procesach produkcyjnych. Z mojego doświadczenia, zrozumienie i umiejętność stosowania takich podstawowych operacji jak odejmowanie jest kluczowe dla każdego, kto chce efektywnie pracować z PLC.

Pytanie 6

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. pojemnościowy.
B. indukcyjny.
C. ultradźwiękowy.
D. magnetyczny.
Świetny wybór! Czujnik magnetyczny to idealne rozwiązanie do sygnalizacji położenia tłoka w siłownikach pneumatycznych. Tłok w siłowniku często jest wyposażony w magnes, co pozwala na bezdotykowe wykrywanie jego położenia za pomocą czujników magnetycznych. Jest to niezawodne i ekonomiczne podejście. W praktyce czujniki te są montowane na zewnątrz korpusu siłownika i są w stanie dokładnie zlokalizować położenie tłoka w różnych punktach jego drogi. Rozwiązanie to jest powszechnie stosowane w automatyce przemysłowej, gdzie precyzyjne sterowanie położeniem jest kluczowe. Czujniki magnetyczne są odporne na warunki środowiskowe i działają skutecznie nawet w obecności zanieczyszczeń czy wilgoci, co czyni je niezastąpionymi w trudnych warunkach pracy. Dodatkowo, takie czujniki często mają regulowaną czułość i zasięg, co umożliwia ich adaptację do różnych zastosowań. Warto dodać, że w branży stosowanie czujników magnetycznych jest standardem ze względu na ich trwałość i niskie koszty eksploatacji.

Pytanie 7

Na podstawie fragmentu instrukcji montażu przycisku sterującego dobierz narzędzie do jego demontażu.

Ilustracja do pytania
A. Wkrętak krzyżakowy.
B. Wkrętak płaski.
C. Klucz nasadowy.
D. Klucz oczkowy.
Wybór wkrętaka płaskiego jako narzędzia do demontażu przycisku sterującego jest trafny z kilku powodów. Po pierwsze, większość przycisków i elementów sterujących zaprojektowano z myślą o łatwym montażu i demontażu, co często wymaga jedynie podstawowych narzędzi, jak właśnie wkrętak płaski. Wkrętak ten umożliwia precyzyjne działanie na śruby lub zaczepy bez ryzyka uszkodzenia plastikowych elementów obudowy. Z mojego doświadczenia wynika, że wkrętaki płaskie są niezastąpione w sytuacjach, gdzie przestrzeń jest ograniczona, a demontaż wymaga delikatności. Standardy branżowe często zalecają użycie narzędzi minimalizujących uszkodzenia, co może mieć znaczenie przy obsłudze delikatnych urządzeń elektronicznych. Praktyczne zastosowanie wkrętaka płaskiego obejmuje nie tylko demontaż, ale również możliwość korekty ustawienia elementów montażowych, co czyni go uniwersalnym narzędziem w skrzynce każdego majsterkowicza.

Pytanie 8

Użyta funkcja komparatora przedstawiona na rysunku, jest sprawdzeniem warunku

Ilustracja do pytania
A. „nierówny”.
B. „mniejszy”.
C. „równy”.
D. „mniejszy lub równy”.
Funkcja komparatora użyta na rysunku to 'mniejszy lub równy'. To oznacza, że porównywana jest wartość w zmiennej %MW48 z liczbą 5. Jeśli wartość w %MW48 jest mniejsza lub równa 5, komparator zwróci prawdę. W praktyce, takie zastosowanie jest często wykorzystywane w automatyce i systemach sterowania, gdzie musimy monitorować i reagować na zmieniające się wartości procesowe. Przykładowo, w przypadku sterowania poziomem cieczy w zbiorniku, można użyć takiego komparatora do aktywacji pompy, gdy poziom cieczy jest mniejszy lub równy określonej wartości. To podejście jest zgodne z dobrymi praktykami w dziedzinie automatyki, ponieważ umożliwia proste i efektywne monitorowanie stanu systemu. Dodatkowo, stosowanie komparatorów 'mniejszy lub równy' w kodzie sterowników PLC jest częste, ponieważ pozwala na podjęcie decyzji w oparciu o proste warunki logiczne. Wykorzystując takie podejście, możemy zwiększyć niezawodność systemu, co jest kluczowe w aplikacjach przemysłowych.

Pytanie 9

Przetwornik poziomu, o zakresie pomiarowym 0 cm ÷ 100 cm, przetwarza liniowo zmierzony poziom na natężenie prądu z przedziału 4 mA ÷ 20 mA. Przy wzroście poziomu z wartości 55 cm na 75 cm natężenie prądu wyjściowego z przetwornika

A. zmaleje o 3,2 mA
B. wzrośnie o 3,2 mA
C. wzrośnie o 1,6 mA
D. zmaleje o 1,6 mA
Przetwornik poziomu o zakresie 0 cm do 100 cm, który przetwarza poziom na prąd w zakresie 4 mA do 20 mA, działa na zasadzie proporcjonalności. Oznacza to, że każdy centymetr zmiany poziomu odpowiada określonej zmianie prądu. W tym przypadku, mamy do czynienia z pełnym zakresem 100 cm, który odpowiada rozpiętości 16 mA (od 4 mA do 20 mA). Oznacza to, że każdy centymetr zmiany poziomu odpowiada zmianie prądu o 0,16 mA. Skoro poziom wzrasta z 55 cm na 75 cm, to zmienia się o 20 cm. Przy zmianie o 20 cm, prąd wzrośnie o 20 * 0,16 mA, co daje 3,2 mA. To dokładnie ta różnica, którą obliczyliśmy. W praktyce, takie przetworniki są często stosowane w przemyśle, na przykład w zbiornikach magazynujących płyny, gdzie precyzyjny odczyt poziomu jest kluczowy dla zarządzania zasobami i uniknięcia przepełnienia. Technicy często kalibrują takie urządzenia, aby zapewnić, że działają zgodnie z oczekiwaniami, co jest zgodne z dobrymi praktykami branżowymi. Dzięki temu, mamy pewność, że systemy te działają precyzyjnie i niezawodnie, co jest niezwykle ważne w kontekście automatyzacji procesów przemysłowych.

Pytanie 10

Przy doborze przewodów w instalacji elektrycznej nie uwzględnia się

A. skuteczności ochrony przeciwporażeniowej.
B. dopuszczalnego spadku napięcia.
C. obciążalności prądowej.
D. parametrów ekonomicznych.
Przy doborze przewodów w instalacji elektrycznej, uwzględnienie parametrów ekonomicznych jest rzeczywiście mniej istotne w porównaniu do innych kryteriów. Choć koszty instalacji mogą mieć znaczenie w kontekście budżetowania projektu, są one drugorzędne w stosunku do kwestii bezpieczeństwa i wydajności. Dla elektryka priorytetem jest zapewnienie, że przewody spełniają odpowiednie normy techniczne i bezpieczeństwa. W praktyce oznacza to, że większą wagę przykłada się do obciążalności prądowej, dopuszczalnego spadku napięcia oraz skuteczności ochrony przeciwporażeniowej. Standardy takie jak PN-IEC 60364 wymagają, aby przewody były dobrane zgodnie z ich zdolnością do przenoszenia prądu i zapewniały minimalny spadek napięcia, co ma kluczowe znaczenie dla efektywności energetycznej systemu. Skuteczność ochrony przeciwporażeniowej jest również nie do przecenienia, ponieważ chroni przed porażeniem prądem elektrycznym. Podsumowując, parametry ekonomiczne są ważne, ale w kontekście projektowania instalacji elektrycznych ustępują miejsca bardziej krytycznym czynnikom technicznym, które zapewniają bezpieczeństwo i niezawodność systemu.

Pytanie 11

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PID
B. P
C. PI
D. PD
Odpowiedź PI wskazuje na regulator proporcjonalno-całkujący. Na wykresie widzimy charakterystyczny skok, a następnie liniowy przyrost w czasie. To typowe dla PI, który reaguje zarówno na bieżący błąd, jak i jego całkę w czasie. Dlatego jest skuteczny w eliminowaniu uchybu ustalonego. Zastosowanie regulatora PI znajdziesz w systemach, gdzie wymagana jest stabilność i precyzja, jak w regulacji temperatury pieca czy prędkości silnika. W praktyce PI jest często używany, bo łączy prostotę P z eliminacją błędu stałego przez I. Standardy branżowe często zalecają PI w procesach, gdzie nie są potrzebne szybkie reakcje na zakłócenia, jak w przypadku PD lub PID. PI daje stabilność w systemach z długimi czasami odpowiedzi. Z mojego doświadczenia, PI jest nieoceniony w aplikacjach, gdzie precyzja jest kluczowa, a zakłócenia mają charakter wolno zmieniający się.

Pytanie 12

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 2
Ilustracja do odpowiedzi A
B. Wynik 1
Ilustracja do odpowiedzi B
C. Wynik 3
Ilustracja do odpowiedzi C
D. Wynik 4
Ilustracja do odpowiedzi D
Poprawna odpowiedź to wynik 3. Dla przewodu YLY 3x10 mm² o długości około 8 metrów rezystancja pojedynczej żyły powinna być bardzo mała – w granicach kilku miliomów, maksymalnie kilkudziesięciu miliomów (czyli poniżej 0,1 Ω). Wartość 1,01 Ω, widoczna na zdjęciu nr 3, jest wystarczająco niska, by potwierdzić ciągłość przewodu, uwzględniając niedoskonały styk sond pomiarowych i opór przewodów pomiarowych miernika. W praktyce elektrycznej uznaje się, że wynik poniżej 1–2 Ω wskazuje na zachowaną ciągłość żyły, a wartości znacznie wyższe oznaczają przerwę lub uszkodzenie przewodu. Moim zdaniem ten pomiar wygląda wiarygodnie – w instalacjach zasilających przewody o przekroju 10 mm² mają bardzo niską rezystancję, a więc przepływ prądu nie jest ograniczany. W praktyce pomiary ciągłości wykonuje się często funkcją „brzęczyka” (test diody), ale przy większych przekrojach stosuje się pomiar rezystancji rzeczywistej, jak tu. Dobrą praktyką jest przed pomiarem zwarcie przewodów pomiarowych i zanotowanie oporu własnego, by odjąć go od wyniku. 1 Ω to zatem w tym kontekście wartość potwierdzająca, że przewód jest sprawny, a żyła ma ciągłość.

Pytanie 13

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. transformator.
B. dławik.
C. silnik prądu stałego.
D. silnik prądu zmiennego.
Silnik prądu zmiennego, szczególnie synchroniczny, jest kluczowym elementem wielu urządzeń, które wykorzystują elektryczność przemienną. To właśnie on odpowiada za precyzyjne sterowanie ruchem i synchronizację, co czyni go idealnym do zastosowań takich jak napędy precyzyjnych mechanizmów zegarowych czy systemy automatyki. Takie silniki działają w określonym rytmie zgodnie z częstotliwością sieci zasilającej, co zapewnia im stabilność obrotów. Z mojego doświadczenia wynika, że ważnym aspektem jest również ich efektywność energetyczna, co przekłada się na mniejsze zużycie prądu w dłuższym okresie użytkowania. Warto zauważyć, że standardy takie jak IEC czy RoHS zapewniają, że są one produkowane zgodnie z rygorystycznymi normami jakości i bezpieczeństwa. Dzięki temu są nie tylko wydajne, ale też bezpieczne w użytkowaniu. W praktyce, wybierając silnik synchroniczny, masz pewność, że osiągniesz dużą precyzję i niezawodność działania, co jest kluczowe w wielu aplikacjach przemysłowych i domowych.

Pytanie 14

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PI
B. PD
C. P
D. PID
Regulator PI jest często stosowany w układach automatyki, gdzie wymagana jest korekcja błędu w sposób ciągły i precyzyjny. Na wykresie widzimy charakterystyczną odpowiedź skokową tego typu regulatora, która wskazuje na sumę proporcjonalnej i całkującej części. Część proporcjonalna, oznaczona jako K_R, odpowiada za szybkie reagowanie na zmiany, zaś część całkująca, charakteryzująca się stałą czasową T_i, wpływa na eliminację błędów ustalonych. Moim zdaniem, takie podejście jest niezwykle przydatne w układach, gdzie precyzja i stabilność są kluczowe, na przykład w systemach grzewczych lub klimatyzacyjnych. Standardy branżowe, takie jak ISA S5.1, zalecają stosowanie regulatorów PI w wielu aplikacjach przemysłowych ze względu na ich zdolność do utrzymania stabilności bez nadmiernego uchybu. W praktyce, znajomość odpowiednich parametrów regulacji umożliwia inżynierom dostosowanie układu do specyficznych wymagań operacyjnych, co jest kluczowe w dynamicznie zmieniających się środowiskach przemysłowych.

Pytanie 15

Który element silnika tłokowego wskazuje strzałka?

Ilustracja do pytania
A. Korbowód.
B. Wał korbowy.
C. Dźwignię.
D. Wodzik.
Wał korbowy to kluczowy element silnika tłokowego, który przekształca ruch posuwisto-zwrotny tłoka w ruch obrotowy. Dzięki temu możemy wytwarzać moment obrotowy wykorzystywany do napędu pojazdu. Wał korbowy jest zwykle wykonany z wytrzymałych materiałów, takich jak stal stopowa, aby sprostać obciążeniom dynamicznym i zmiennym, jakie działają na silnik podczas pracy. W konstrukcji silnika wał korbowy jest połączony z korbowodem, który łączy go bezpośrednio z tłokiem. Wał korbowy musi być doskonale wyważony, aby zapobiec drganiom, które mogłyby prowadzić do uszkodzenia innych komponentów. W praktyce, wał korbowy jest podparty na łożyskach ślizgowych, co zmniejsza tarcie i zapewnia płynność ruchu. Warto również wspomnieć o nowoczesnych rozwiązaniach, jak zastosowanie materiałów kompozytowych w produkcji wałów korbowych, co jest trendem w przemyśle motoryzacyjnym, dążącym do zmniejszenia masy silnika i poprawy jego efektywności. Z mojego doświadczenia, dobrze zaprojektowany wał korbowy wpływa znacząco na żywotność i osiągi silnika.

Pytanie 16

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady blokady sygnałów wyjściowych.
B. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
C. Zasady blokady programowej sygnałów wejściowych.
D. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
Zasady przerwy roboczej odnoszą się do sytuacji, kiedy w przypadku awarii lub potrzeby wyłączenia systemu, zewnętrzny sygnał wprowadza stan 0 na wejście sterownika PLC. To bardzo praktyczne podejście, ponieważ umożliwia szybkie i bezpieczne zatrzymanie działania systemu w sytuacji awaryjnej. W wielu aplikacjach przemysłowych, normy bezpieczeństwa, takie jak np. norma EN 60204-1 dotycząca bezpieczeństwa maszyn, zalecają, by wszystkie niebezpieczne urządzenia mogły być wyłączone przez odcięcie zasilania, co jest ekwiwalentem stanu 0. Moim zdaniem, taka zasada jest kluczem do utrzymania bezpieczeństwa w zakładzie produkcyjnym. Dodatkowo, zastosowanie przerwy roboczej jest intuicyjne i minimalizuje ryzyko błędów operatora, ponieważ zazwyczaj wyłączenie zasilania jest czymś naturalnym przy awariach. W praktyce, takie podejście może być implementowane za pomocą przycisków awaryjnych, które natychmiastowo wyłączają system przez zmuszenie sterownika do przejścia w stan 0. Warto też wspomnieć, że takie rozwiązania często są wspierane przez dodatkowe zabezpieczenia mechaniczne, co jeszcze bardziej podnosi poziom bezpieczeństwa.

Pytanie 17

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. temperatury.
B. naprężeń.
C. pola magnetycznego.
D. ciśnienia.
To, co widzisz na zdjęciu, to typowy czujnik pola magnetycznego zwany kontaktronem. Kontaktrony są szeroko stosowane w systemach alarmowych i detekcji otwarcia drzwi czy okien. Działa to na zasadzie zamykania lub otwierania obwodu elektrycznego w obecności pola magnetycznego. W momencie, gdy magnes zbliża się do kontaktronu, jego wewnętrzne styki zbliżają się do siebie, co pozwala na przepływ prądu. To niesamowicie proste, ale skuteczne rozwiązanie. W branży standardem jest stosowanie takich czujników w miejscach, gdzie wymagana jest niezawodność i niskie koszty utrzymania. Kontaktrony są też często stosowane w licznikach energii elektrycznej, gdzie wykrywają nielegalne interwencje z zewnątrz. Moim zdaniem, to genialne, jak coś tak prostego może mieć tak szerokie zastosowanie w technologii i życiu codziennym. Warto też dodać, że kontaktrony są odporne na większość zakłóceń elektromagnetycznych, co czyni je idealnym wyborem w trudnych warunkach przemysłowych.

Pytanie 18

Zgodnie z programem sterującym przedstawionym na rysunku załączenie wyjścia %Q0.1 w sterowniku PLC nastąpi

Ilustracja do pytania
A. natychmiast i będzie trwało 5 sekund od zmiany stanu z 0 na 1 na wejściu %I0.1
B. po 5 sekundach od pojawienia się stanu 1 na wejściu %I0.1
C. natychmiast i będzie trwało przez 5 sekund gdy wejście %I0.1 będzie aktywne
D. po 5 sekundach od zmiany stanu z 1 na 0 na wejściu %I0.1
Odpowiedź jest poprawna, ponieważ timer TON w sterowniku PLC jest używany do opóźnienia załączenia wyjścia o określony czas po pojawieniu się sygnału wejściowego. W tym przypadku, gdy na wejściu %I0.1 pojawia się stan wysoki, timer zaczyna odliczać czas 5 sekund, co jest zdefiniowane w parametrach timera jako PT (preset time). Po upływie tego czasu wyjście %Q0.1 zostaje załączone. Timer TON jest jednym z najczęściej wykorzystywanych bloków w programowaniu PLC, szczególnie w automatyzacji procesów produkcyjnych, gdzie niezbędne jest precyzyjne sterowanie czasem. Typowymi zastosowaniami mogą być np. sterowanie oświetleniem w halach produkcyjnych, gdzie światło włącza się z opóźnieniem, aby zapewnić bezpieczeństwo pracowników opuszczających stanowiska pracy. Warto również pamiętać, że zgodnie ze standardami IEC 61131-3, timer TON jest jednym z elementów struktury programistycznej języka LD (Ladder Diagram), co czyni go uniwersalnym i powszechnie rozumianym w branży. Dzięki temu, że jest to rozwiązanie standardowe, można go łatwo zastosować w różnych systemach automatyki, co zwiększa elastyczność i kompatybilność projektów PLC.

Pytanie 19

Którym kodem oznaczony będzie przekaźnik programowalny dobrany do układu automatycznego sterowania, jeżeli zasilanie układu będzie wynosiło 24 V DC, a maksymalne wartości prądów obciążenia nie będą przekraczały 8 A przy napięciu nie przekraczającym wartości 250 V AC.

Kod przekaźnikaNapięcie zasilaniaWyjściaZnamionowe obciążenie wyjścia
001230 V AC4 wyjścia przekaźnikowe10 A/ 250 V AC
00224 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
00324 V DC4 wyjścia tranzystorowe0,5 A/ 24 V DC
00412 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
005220 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
A. 004
B. 003
C. 002
D. 005
Wybór przekaźnika oznaczonego kodem 002 jest poprawny, ponieważ spełnia on zarówno wymagania dotyczące napięcia zasilania, jak i obciążenia wyjść. Przekaźnik ten pracuje przy zasilaniu 24 V DC, co jest zgodne z wymaganiem dla układu. Ponadto, znamionowe obciążenie wyjścia wynosi 10 A przy napięciu 250 V AC, co bez problemu pokrywa wymagane 8 A przy takim samym napięciu. W praktyce, wybór odpowiedniego przekaźnika programowalnego jest kluczowy, aby zapewnić niezawodność i bezpieczeństwo systemu automatyki. Należy zawsze uwzględniać nie tylko napięcie zasilania, ale także typ i wartość obciążenia. Przekaźniki programowalne są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających elastycznego sterowania procesami. Dobór odpowiednich parametrów technicznych jest zgodny z dobrymi praktykami projektowania systemów automatyki, które zakładają nie tylko spełnienie minimalnych wymagań, ale również uwzględnienie pewnego zapasu bezpieczeństwa. Warto również pamiętać, że przekaźniki programowalne, dzięki swojej elastyczności, mogą być konfigurowane do różnych zadań, co czyni je uniwersalnym narzędziem w wielu zastosowaniach przemysłowych.

Pytanie 20

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 1.
B. Tabliczka 2.
C. Tabliczka 4.
D. Tabliczka 3.
Twoja odpowiedź jest prawidłowa, ponieważ tabliczka 1 wskazuje na silnik przeznaczony do pracy ciągłej, co opisuje symbol S1. Praca ciągła oznacza, że silnik może działać bez przerw przez długi czas na stałym obciążeniu bez ryzyka przegrzania. To jest istotne w wielu zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe, np. w produkcji masowej lub liniach montażowych. Standard IEC 60034, który jest podany na tabliczce, zapewnia zgodność z międzynarodowymi normami dotyczącymi wydajności i bezpieczeństwa silników elektrycznych. Ważne jest, aby silniki do pracy ciągłej były prawidłowo chłodzone i miały odpowiednią klasę ochrony IP, jak IP54, co oznacza ochronę przed kurzem i rozbryzgami wody. Praktyczne zastosowanie takiego silnika może być widoczne w przypadku ciągłej pracy pomp, wentylatorów czy taśm produkcyjnych, gdzie przestoje mogą prowadzić do strat finansowych. Ważne jest, aby zawsze dobierać silnik odpowiedni do specyfiki pracy, co zwiększa jego trwałość i niezawodność.

Pytanie 21

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 10 mm
B. 60 mm
C. 20 mm
D. 30 mm
Długość krawędzi X wynosi 20 mm. Widać to, gdy dokładnie przeanalizuje się wymiary całego rysunku – całość ma szerokość 70 mm, a fragment poziomy poniżej linii oznaczonej X ma wymiary 30 mm (od środka do prawej krawędzi) i 20 mm (po lewej stronie odcięcie ukośne). Oznacza to, że pozostaje odcinek 70 − 30 − 20 = 20 mm, czyli właśnie wartość X. Takie zadania bardzo dobrze uczą logicznego myślenia i analizy rysunku technicznego – trzeba czytać wymiary nie tylko tam, gdzie są podane, ale też szukać ich pośrednio przez różnice. W praktyce warsztatowej (np. w obróbce skrawaniem lub przy cięciu blach) takie proste obliczenia robi się niemal automatycznie. Moim zdaniem warto zawsze pamiętać o zasadzie: jeśli czegoś nie ma wprost wymiarowanego, to da się to wyliczyć z układu pozostałych wymiarów. W dokumentacji technicznej stosuje się wymiarowanie łańcuchowe lub współrzędne – tu mamy przykład łańcuchowego, więc każde przesunięcie w poziomie można łatwo zsumować lub odjąć. To niby drobny szczegół, ale takie rzeczy robią różnicę przy czytaniu rysunku jak zawodowiec.

Pytanie 22

Na rysunku przedstawiono

Ilustracja do pytania
A. zawór odcinający.
B. zespół przygotowania powietrza.
C. blok rozdzielający.
D. elektrozawór.
To, co widzisz na rysunku, to typowy zespół przygotowania powietrza. Składa się z kilku kluczowych elementów: filtr, regulator ciśnienia oraz smarownica. Filtr ma za zadanie usuwać zanieczyszczenia z powietrza, takie jak kurz czy wilgoć, co jest niezwykle ważne w zapewnieniu prawidłowego działania narzędzi pneumatycznych. Regulator ciśnienia pozwala na utrzymanie stałego ciśnienia w systemie, co jest kluczowe dla stabilnej pracy urządzeń. Natomiast smarownica dodaje mgiełkę oleju do przepływającego powietrza, co zmniejsza tarcie i zużycie ruchomych części narzędzi pneumatycznych, wydłużając ich żywotność. Takie zespoły są powszechnie stosowane w warsztatach samochodowych, w przemyśle czy na liniach produkcyjnych. Znajomość ich działania jest kluczowa dla każdego technika zajmującego się systemami pneumatycznymi, ponieważ zapewnia to nie tylko niezawodność, ale także bezpieczeństwo pracy. Praktyka pokazuje, że regularne przeglądy i konserwacja tego typu urządzeń znacząco wpływają na wydajność całego systemu pneumatycznego.

Pytanie 23

Które narzędzie należy zastosować do nacięcia gwintu w otworze?

A. Narzędzie 2.
Ilustracja do odpowiedzi A
B. Narzędzie 4.
Ilustracja do odpowiedzi B
C. Narzędzie 1.
Ilustracja do odpowiedzi C
D. Narzędzie 3.
Ilustracja do odpowiedzi D
Poprawna odpowiedź to narzędzie 1 – czyli gwintownik. Służy ono do nacinania gwintów wewnętrznych w otworach, dzięki czemu można wkręcać w nie śruby lub wkręty o odpowiednim profilu gwintu. Gwintownik ma charakterystyczne rowki wzdłużne, które odprowadzają wióry powstające podczas skrawania metalu. W praktyce stosuje się zwykle zestaw trzech gwintowników: zdzierak, pośredni i wykańczak – każdy pogłębia gwint coraz bardziej, aż do uzyskania pełnego profilu. Podczas pracy należy używać odpowiedniego środka smarującego, np. oleju do gwintowania, który poprawia jakość powierzchni i wydłuża żywotność narzędzia. Z mojego doświadczenia wynika, że kluczowe jest utrzymanie osi gwintownika idealnie w jednej linii z otworem – nawet niewielkie odchylenie powoduje, że śruba nie wchodzi płynnie lub zrywa gwint. W przemyśle mechaniczno-montażowym gwintowniki są podstawowym narzędziem w produkcji elementów z otworami gwintowanymi.

Pytanie 24

Które oznaczenie powinien zawierać przewód jeżeli jego płaszcz ochronny jest wykonany z polichlorku winylu odpornego na wysokie temperatury?

Ilustracja do pytania
A. V3
B. V2
C. N2
D. N4
Oznaczenie V2 jest kluczowe, gdy mówimy o przewodach, których płaszcz ochronny wykonany jest z polichlorku winylu odpornego na wysokie temperatury. To oznaczenie wskazuje, że materiał ten jest przygotowany do pracy w trudniejszych warunkach, gdzie temperatura może znacząco wzrosnąć. Polichlorek winylu, popularnie znany jako PVC, jest powszechnie stosowany w przemyśle elektrycznym ze względu na swoje właściwości izolacyjne i odporność chemiczną. Kiedy wybieramy przewód do zastosowań wymagających wyższej odporności termicznej, taki jak w instalacjach przemysłowych lub w miejscach narażonych na działanie promieniowania cieplnego, przewody oznaczone V2 spełniają te wymagania. Często spotyka się je w systemach oświetleniowych, w pobliżu urządzeń grzewczych, czy w instalacjach na dachach budynków. Ważne jest, aby przestrzegać odpowiednich norm i standardów, takich jak PN-EN czy VDE, które szczegółowo opisują wymagania dla materiałów przewodów w różnych zastosowaniach. Dzięki temu możemy zapewnić bezpieczeństwo i niezawodność naszych instalacji. V2 to gwarancja, że instalacja wytrzyma ekstremalne warunki bez ryzyka uszkodzeń.

Pytanie 25

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. zaciskania wtyków RJ-45.
B. zaciskania tulejek.
C. ściągania izolacji.
D. zaciskania wtyków RJ-11.
To narzędzie, które widzisz na rysunku, to klasyczna szczypce do ściągania izolacji. Działa na zasadzie automatycznego zacisku, co pozwala na precyzyjne usunięcie izolacji z przewodów bez uszkadzania samego rdzenia. W praktyce, narzędzia tego typu są nieocenione przy przygotowywaniu przewodów do lutowania czy montażu w złączach elektrycznych. W branży elektroinstalacyjnej, szczególnie przy pracy z okablowaniem elektrycznym, standardem jest używanie właśnie takich ściągaczy. Moim zdaniem, to niezastąpiona pomoc przy większych projektach, gdzie liczy się zarówno czas, jak i precyzja. Z mojego doświadczenia, odpowiednie ściąganie izolacji to klucz do bezpiecznego i efektywnego połączenia elektrycznego. Warto znać różne typy takich narzędzi, ponieważ niektóre przystosowane są do specyficznych rodzajów przewodów. Pamiętaj, by zawsze dobierać narzędzie do średnicy i rodzaju przewodu, aby uniknąć uszkodzeń i zapewnić trwałość połączeń.

Pytanie 26

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. P
B. T
C. A
D. B
Przyłącze T w zaworze hydraulicznym jest przeznaczone do podłączenia zbiornika z cieczą hydrauliczną. To przyłącze, zwane także portem powrotu, umożliwia odprowadzenie cieczy powracającej do zbiornika z systemu hydraulicznego, po tym jak wykonała swoje zadanie, np. przesunięcie tłoka w siłowniku. Jest to kluczowe dla utrzymania prawidłowego obiegu cieczy i zapobiegania nadmiernemu ciśnieniu w układzie. W praktyce, prawidłowe podłączenie zbiornika do przyłącza T pozwala na efektywne działanie całego systemu i uniknięcie awarii spowodowanych zbyt dużym ciśnieniem. Moim zdaniem, znajomość tego typu detali jest niezbędna dla każdego, kto chce pracować z hydrauliką, ponieważ błędne podłączenie może prowadzić do poważnych problemów. Standardy branżowe wyraźnie wskazują na konieczność stosowania się do opisanych zasad przy projektowaniu i konserwacji systemów hydraulicznych.

Pytanie 27

Zgodnie z charakterystyką przetwarzania, dla temperatury 80ºC na wyjściu przetwornika pojawi się prąd o natężeniu

Ilustracja do pytania
A. 13 mA
B. 16 mA
C. 10 mA
D. 18 mA
Doskonale! Odpowiedź 16 mA jest prawidłowa, ponieważ związana jest z liniowym charakterem przetwornika prądu w odniesieniu do temperatury. Patrząc na wykres, można zauważyć, że przy 0°C prąd wynosi 0 mA, a przy 100°C wynosi 20 mA. To wskazuje, że przetwornik ma charakterystykę liniową z przelicznikiem 0,2 mA na każdy stopień Celsjusza. Przy 80°C, przeliczenie daje dokładnie 16 mA, co jest zgodne z wykresem. Takie przetworniki są powszechnie używane w przemysłowych systemach automatyki, gdzie precyzyjne odwzorowanie zmiennych fizycznych na sygnał elektryczny jest kluczowe. Dzięki temu, kontrola temperatur w procesach chemicznych czy energetycznych jest bardziej efektywna. Standardy przemysłowe, takie jak 4-20 mA, są często wykorzystywane ze względu na ich odporność na zakłócenia i łatwość integracji z systemami sterowania. Ułatwia to też diagnostykę, bo sygnały poniżej 4 mA mogą wskazywać na awarię czujnika.

Pytanie 28

Który język programowania sterowników PLC wykorzystano w projekcie przedstawionym na rysunku

Ilustracja do pytania
A. FBD
B. IL
C. LD
D. SFC
Język LD, czyli Ladder Diagram, jest jednym z najpopularniejszych sposobów programowania sterowników PLC. Jego struktura przypomina schemat drabinkowy, co ułatwia zrozumienie logiki działania programu. Na przedstawionym rysunku widać poziome linie z elementami przypominającymi styki oraz cewki – to charakterystyczne dla LD. Ten język bazuje na zasadach działania tradycyjnych układów przekaźnikowych, co sprawia, że jest intuicyjny dla elektryków i automatyków. W praktyce LD jest używany do sterowania procesami przemysłowymi, gdzie kluczowa jest logika sekwencyjna. Standardy takie jak IEC 61131-3 zalecają stosowanie LD, co podkreśla jego znaczenie w branży. LD pozwala na łatwe implementowanie funkcji takich jak blokady czy logika czasowa, co jest nieocenione w złożonych systemach sterowania. Dzięki prostocie i czytelności LD ułatwia diagnostykę i konserwację systemów w terenie, co z mojego doświadczenia jest dużym plusem w codziennej pracy inżyniera.

Pytanie 29

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. PNP NO
B. NPN NC
C. NPN NO
D. PNP NC
Odpowiedź NPN NC jest prawidłowa, ponieważ czujnik na schemacie wskazuje na tranzystor NPN z wyjściem normalnie zamkniętym (NC). W przypadku wyjść typu NPN, prąd płynie od kolektora do emitera, co oznacza, że wyjście czujnika jest połączone z masą, gdy czujnik jest aktywowany. Wyjście NC oznacza, że w stanie nieaktywnym obwód jest zamknięty, a po aktywacji czujnika obwód się otwiera. To konsekwentnie stosowane rozwiązanie, zwłaszcza w aplikacjach, gdzie konieczne jest zapewnienie bezpieczeństwa. W praktycznych zastosowaniach, takie czujniki są często używane w systemach automatyki przemysłowej. Pomagają w monitorowaniu i kontrolowaniu pozycji elementów maszyn, dostarczając istotnych informacji o stanie systemu. Standardy przemysłowe często zalecają stosowanie wyjść typu NPN NC ze względu na ich niezawodność i bezpieczeństwo, szczególnie w sytuacjach, gdzie błąd w detekcji mógłby prowadzić do uszkodzenia sprzętu lub obrażeń.

Pytanie 30

Na podstawie zamieszczonych w tabeli parametrów technicznych enkodera wskaż wartość napięcia zasilania, pozwalającą na jego prawidłową pracę.

Wybrane parametry techniczne enkodera
Zasilanie5 V DC ±10 %
Pobór prądu≤ 60 mA
Prędkość obrotowa10 000 rpm
Rozdzielczość5 ÷ 6000 imp./obr
Temperatura pracy-25 ÷ +100°C
Średnica osiØ10 mm
Średnica obudowyØ58 mm
A. 4,4 V DC
B. 10,0 V DC
C. 5,4 V DC
D. 15,0 V DC
Poprawna odpowiedź to 5,4 V DC i już tłumaczę dlaczego. Mamy w tabeli podane, że enkoder wymaga napięcia zasilania 5 V DC ±10%. Co to oznacza w praktyce? Oznacza to, że urządzenie może poprawnie pracować w zakresie napięcia od 4,5 V do 5,5 V. Odpowiedź 5,4 V DC mieści się w tym zakresie, więc jest prawidłowa. To ważne, ponieważ nieprawidłowe napięcie zasilania może prowadzić do niepoprawnej pracy enkodera lub nawet jego uszkodzenia. W praktyce, w zastosowaniach przemysłowych, zawsze należy trzymać się specyfikacji producenta, aby zapewnić nie tylko poprawną, ale i długotrwałą pracę urządzenia. Często w systemach automatyki mamy do czynienia z różnymi napięciami zasilania, dlatego tak ważne jest, by trzymać się wskazanych wartości. Moim zdaniem, dobrze jest też zaznajomić się z pojęciem tolerancji napięcia, które jest kluczowe przy doborze zasilania dla urządzeń elektronicznych. Świadomość tego, jak napięcie wpływa na działanie enkodera, może zapobiec wielu problemom w przyszłości.

Pytanie 31

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. niebieski.
B. żółto-zielony.
C. niebiesko-zielony.
D. czerwony.
Kolor przewodu ma kluczowe znaczenie w elektryce, ponieważ pozwala na szybkie i bezbłędne rozpoznanie jego funkcji. Żółto-zielona izolacja przewodów jest zarezerwowana dla przewodów ochronnych, znanych jako PE (Protective Earth). Przewody te są niezbędne do ochrony przed porażeniem prądem elektrycznym, gdyż zapewniają bezpieczną drogę przepływu prądu w przypadku uszkodzenia izolacji. W praktyce, przewody PE są podłączane do metalowych obudów urządzeń elektrycznych i prowadzone do ziemi, co powoduje, że potencjalnie niebezpieczne napięcia są bezpiecznie odprowadzane. Zgodnie z normą IEC 60446, kolor żółto-zielony jest jednoznacznie przypisany do przewodów ochronnych. Warto dodać, że właściwe oznaczenie kolorystyczne przewodów nie tylko zwiększa bezpieczeństwo, ale także ułatwia późniejszą konserwację i ewentualne naprawy instalacji. Wybór żółto-zielonego przewodu dla połączeń ochronnych jest standardem międzynarodowym, który pomaga unikać pomyłek i zapewnia spójność w projektowaniu instalacji elektrycznych. Moim zdaniem, znajomość i stosowanie tych standardów jest nie tylko kwestią dobrych praktyk, ale też świadczy o profesjonalizmie w pracy elektryka.

Pytanie 32

Tabliczka znamionowa przedstawiona na rysunku, to tabliczka znamionowa

Ilustracja do pytania
A. kondensatora.
B. silnika prądu stałego.
C. transformatora.
D. silnika prądu przemiennego.
Tabliczka znamionowa, którą widzimy, to klasyczna tabliczka silnika prądu przemiennego. Jest to ważny element, który zawiera kluczowe informacje o specyfikacji technicznej urządzenia. Na tej tabliczce znajdziemy między innymi dane dotyczące napięcia, mocy, prędkości obrotowej oraz częstotliwości. Te parametry są istotne dla poprawnego podłączenia i eksploatacji silnika. W przypadku silników prądu przemiennego, zgodnie z dobrymi praktykami, warto zwrócić uwagę na współczynnik mocy (cos φ), który wpływa na efektywność energetyczną urządzenia. Moim zdaniem, takie tabliczki są nie tylko praktyczne, ale wręcz niezbędne w procesie instalacji i konserwacji. W praktyce zawodowej często spotykamy się z sytuacjami, gdzie dokładne odczytanie tych informacji potrafi zaoszczędzić wiele problemów. Silniki prądu przemiennego są szeroko stosowane w przemyśle, od napędów maszyn po wentylatory, dlatego zrozumienie ich specyfikacji to podstawa.

Pytanie 33

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok timera opóźniającego załączenie TON
B. blok licznika impulsów zliczającego w górę CTU
C. blok timera opóźniającego wyłączenie TOF
D. blok licznika impulsów zliczającego w dół CTD
Blok licznika impulsów zliczającego w dół, oznaczany jako CTD, jest kluczowym elementem w sterownikach PLC, który pozwala na zliczanie wstecz impulsów sterujących. Na wykresie widzimy, że wartość CV (Current Value) zmniejsza się z każdym impulsem, co odpowiada działaniu licznika zliczającego w dół. Tego typu bloki są często używane w aplikacjach przemysłowych, w których ważne jest utrzymanie kontroli nad ilością wykonanych operacji lub zliczaniem komponentów na linii produkcyjnej. Stosując standardy IEC 61131-3, projektanci systemów mogą łatwo zintegrować funkcję licznika w swoich programach, co zapewnia spójność i niezawodność działania. Moim zdaniem, liczniki zliczające w dół są niezastąpione w sytuacjach, gdzie kontrola ilości zasobów czy operacji jest kluczowa. Dzięki nim możemy również realizować bardziej zaawansowane zadania logiczne, jak np. zatrzymywanie procesu po osiągnięciu określonej liczby cykli. Ważnym aspektem jest także możliwość resetowania licznika, co daje dużą elastyczność w zastosowaniach praktycznych.

Pytanie 34

Na podstawie danych umieszczonych w tabeli, dobierz średnicę wiertła do wykonania otworu pod gwint M8 o skoku 1 mm.

Średnica
znamionowa
gwintu
Skok
gwintu
mm
Średnica
nominalna
wiertła
mm
M81.256.80
17.00
0.757.25
M91.257.80
18.00
0.758.25
A. 6,80 mm
B. 7,25 mm
C. 7,00 mm
D. 7,80 mm
Odpowiedź 7,00 mm jest prawidłowa, ponieważ zgodnie z tabelą, dla gwintu M8 z skokiem 1 mm, należy użyć wiertła o średnicy 7,00 mm. To ważne, aby zrozumieć, dlaczego dobór właściwej średnicy wiertła jest kluczowy. Gwinty są używane do tworzenia połączeń śrubowych, które muszą być trwałe i wytrzymałe. Jeśli otwór jest za ciasny, może dojść do uszkodzenia narzędzi lub nawet materiału, z którym pracujesz. Z kolei zbyt duży otwór wpłynie na siłę połączenia, a nawet spowoduje jego luzowanie się. Praktyka mówi, że otwór powinien być na tyle duży, by śruba mogła bez problemu wejść, ale jednocześnie na tyle mały, by gwint miał odpowiednią przyczepność. Dobrze jest zapamiętać, że dla gwintów metrycznych, średnicę wiertła często oblicza się jako różnicę średnicy gwintu i skoku gwintu. Dlatego w przypadku M8 (8 mm) i skoku 1 mm, 8 mm - 1 mm = 7 mm. To nie tylko teoria, ale także zasada stosowana w praktyce przez profesjonalistów w branży.

Pytanie 35

Dokładna obróbka elementów współpracujących ze sobą polegająca na usuwaniu drobnych cząstek materiału w obecności pasty ściernej to

A. struganie.
B. szlifowanie.
C. docieranie.
D. honowanie.
Docieranie to proces, który pozwala na uzyskanie bardzo dokładnych wymiarów i gładkości powierzchni poprzez delikatne usuwanie materiału. Technika ta jest szczególnie popularna w przemyśle mechanicznym, gdzie precyzyjne dopasowanie elementów jest kluczowe, na przykład w produkcji części optycznych czy narzędzi precyzyjnych. Docieranie polega na użyciu pasty ściernej, która jest rozprowadzana pomiędzy powierzchniami, a następnie poddana kontrolowanemu tarciu. Dzięki temu możliwe jest usunięcie mikroskopijnych nierówności, co w praktyce oznacza doskonałe dopasowanie współpracujących elementów. Moim zdaniem, to trochę jak sztuka, bo wymaga cierpliwości i precyzji. W branży lotniczej i motoryzacyjnej docieranie jest nieodłącznym elementem zapewniającym niezawodność i bezpieczeństwo. Standardy, takie jak ISO 9001, często podkreślają znaczenie tej techniki w zachowaniu jakości produkcji. Warto również wspomnieć, że dobór odpowiedniej pasty ściernej, zależnie od materiału, jest kluczowy dla powodzenia całego procesu.

Pytanie 36

Który zawór rozdzielający należy zamontować w układzie elektropneumatycznym przedstawionym na rysunku?

Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Zawór1234
Ilustracja do pytania
A. 2
B. 4
C. 1
D. 3
Wybór zaworu numer 4 jest właściwy, ponieważ w układzie elektropneumatycznym przedstawionym na schemacie wymagane jest użycie zaworu typu 5/2 z dwiema cewkami. Tego typu zawory pozwalają na precyzyjne sterowanie ruchem siłownika, co jest kluczowe w systemach, które wymagają dwukierunkowego działania. Zawory 5/2 z dwiema cewkami stosuje się w bardziej zaawansowanych aplikacjach, gdzie potrzeba większej kontroli nad siłownikiem. Dwie cewki umożliwiają przełączanie pomiędzy dwoma stanami roboczymi, co jest istotne w kontekście pracy z zaawansowanymi systemami automatyki. Z mojego doświadczenia, takie rozwiązanie jest standardem w branży przemysłowej, szczególnie tam, gdzie liczy się niezawodność i precyzja działania. Dodatkowo, zawory te pozwalają na łatwe przełączanie biegunowości, co zwiększa ich uniwersalność. W praktyce, zastosowanie tego typu zaworu w układach pneumatycznych zwiększa efektywność i bezpieczeństwo pracy, minimalizując jednocześnie ryzyko awarii. To także zgodne z dobrymi praktykami inżynierskimi, które zalecają użycie zaworów 5/2 w systemach wymagających niezawodnego sterowania kierunkiem przepływu powietrza.

Pytanie 37

Na którym rysunku przedstawiono zawór odcinający z pokrętłem?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawnie – przedstawiony zawór z pokrętłem to klasyczny zawór odcinający. Jego zadaniem jest całkowite zatrzymanie lub dopuszczenie przepływu medium, najczęściej powietrza lub cieczy technicznej, w układzie pneumatycznym lub hydraulicznym. Pokrętło umożliwia ręczne sterowanie – dzięki niemu operator może precyzyjnie zamknąć lub otworzyć przepływ. W praktyce przemysłowej takie zawory montuje się np. przy zasilaniu siłowników, przed filtrami, reduktorami czy elementami serwisowymi, aby móc bezpiecznie odciąć część instalacji do konserwacji lub naprawy. W konstrukcji zaworów odcinających istotne są szczelność i trwałość uszczelnień – często stosuje się teflonowe lub gumowe gniazda, które zapewniają pełne uszczelnienie nawet przy niskich ciśnieniach. Moim zdaniem warto zwrócić uwagę, że to jedno z podstawowych urządzeń w każdym układzie pneumatycznym – niby proste, ale bez niego trudno byłoby bezpiecznie serwisować maszynę.

Pytanie 38

Mechanizm przedstawiony na rysunku zapewnia członowi napędzanemu (element w kolorze czerwonym)

Ilustracja do pytania
A. ruch ciągły.
B. multiplikację przełożenia.
C. ruch przerywany.
D. multiplikację obrotów.
Mechanizm przedstawiony na rysunku to mechanizm genewski, który zapewnia ruch przerywany. To znany mechanizm w automatyce i mechanice, który przekształca ruch obrotowy w przerywany. Kluczowym elementem jest tutaj krzywka z wycięciami, która okresowo wchodzi w interakcję z czerwonym elementem, nadając mu ruch na krótkie odcinki. Tego rodzaju mechanizmy można znaleźć w zegarach mechanicznych albo maszynach pakujących, gdzie potrzebna jest precyzyjna kontrola czasowa ruchu. Dzięki przerywanemu ruchowi można uzyskać kontrolowane, cykliczne przemieszczenia, co jest kluczowe w wielu zastosowaniach przemysłowych. Mechanizm genewski to doskonały przykład zastosowania prostych zasad mechaniki do rozwiązywania skomplikowanych problemów inżynieryjnych. Z mojego doświadczenia wiem, że jest to też świetne wprowadzenie do nauki o ruchach przerywanych dla studentów technikum.

Pytanie 39

Stosując zasadę stałego spadku napięcia na przewodzie zasilającym, w przypadku zwiększenia dwukrotnie odległości odbiornika od źródła zasilania należy zastosować przewód o

Ilustracja do pytania
A. cztery razy większym polu przekroju.
B. dwa razy mniejszym polu przekroju.
C. dwa razy większym polu przekroju.
D. cztery razy mniejszym polu przekroju.
Zasadę stałego spadku napięcia stosujemy, aby uniknąć nadmiernych strat energii w przewodach, co jest istotne w instalacjach elektrycznych. Spadek napięcia jest proporcjonalny do długości przewodu i odwrotnie proporcjonalny do jego przekroju, co wynika z prawa Ohma i wzoru na rezystancję. Gdy zwiększamy długość przewodu dwukrotnie, spadek napięcia również się podwoi, chyba że zrekompensujemy to większym przekrojem przewodnika. Dlatego, aby utrzymać ten sam spadek napięcia, powinniśmy zwiększyć pole przekroju przewodu dwa razy. To podejście jest zgodne z dobrymi praktykami projektowania instalacji elektrycznych, które dążą do minimalizacji strat energetycznych i zapewnienia bezpiecznej pracy systemu. Praktycznie, w różnych zastosowaniach przemysłowych i budowlanych, inżynierowie często muszą brać pod uwagę te zmiany, aby zapewnić efektywność energetyczną i zgodność z normami, takimi jak PN-EN 60204 dotycząca bezpieczeństwa maszyn i instalacji elektrycznych.

Pytanie 40

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN.
B. sumy rezystancji żył L1, L2, L3, PEN
C. sumy rezystancji izolacji żył L1, L2, L3
D. rezystancji żył L1, L2, L3, PEN
Pomiar rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Izolacja ma za zadanie zapobiegać niepożądanym przepływom prądu między przewodami, które mogą prowadzić do zwarć lub porażenia prądem. Normy takie jak PN-EN 61557 określają minimalne wartości rezystancji izolacji, które powinny być zachowane w instalacjach elektrycznych. W praktyce, wysoka rezystancja izolacji, na poziomie kilku megaomów, świadczy o dobrej jakości izolacji i bezpieczeństwie użytkowania. Regularne pomiary pozwalają na wczesne wykrycie uszkodzeń mechanicznych lub starzenia się materiału izolacyjnego, co jest szczególnie istotne w środowiskach o wysokiej wilgotności lub narażonych na wpływy chemiczne. Przykład z życia: w przemyśle ciężkim, gdzie maszyny są narażone na działanie olejów i smarów, takie pomiary są standardową praktyką, aby zapobiec awariom i kosztownym przestojom produkcyjnym.