Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 16 listopada 2025 01:51
  • Data zakończenia: 16 listopada 2025 01:52

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. olejowych
B. powietrznych
C. piaskowych
D. wodnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ogrzewanie cieczy żrących na łaźniach piaskowych to dobra opcja, bo piasek świetnie izoluje i rozprowadza ciepło. Dzięki temu mamy stabilne warunki, co jest bardzo ważne, zwłaszcza przy substancjach, które mogą się 'dziwnie' zachowywać, gdy temperatura szybko się zmienia. W praktyce użycie łaźni piaskowych zmniejsza ryzyko przegrzewania, co jest super istotne, bo może prowadzić do różnych nieprzyjemnych sytuacji, jak dekompozycja czy toksyczne opary. Piasek nie tylko grzeje, ale i chroni operatora. W laboratoriach chemicznych oraz w różnych branżach, gdzie obsługuje się cieczy żrące, przestrzeganie zasad BHP i stosowanie odpowiednich metod ogrzewania jest kluczowe, aby zapewnić bezpieczne warunki pracy i ochronić zdrowie. To są sprawy, które powinny być zawsze na pierwszym miejscu, a dokumenty branżowe mocno to podkreślają.

Pytanie 5

W probówce połączono roztwory CuSO4 oraz NaOH. Powstał niebieski osad, który po podgrzaniu zmienił kolor na czarny. Czarnym osadem jest

A. tlenek miedzi(II)
B. tlenek miedzi(I)
C. wodorotlenek miedzi(II)
D. wodorotlenek miedzi(I)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota z tą odpowiedzią! Tlenek miedzi(II) (CuO) naprawdę powstaje kiedy ogrzewasz wodorotlenek miedzi(II) (Cu(OH)2), który, swoją drogą, jest tym niebieskim osadem, który dostajesz mieszając CuSO4 z NaOH. Kiedy to podgrzewasz, wodorotlenek miedzi(II) traci wodę i zamienia się w tlenek miedzi(II), który ma czarną barwę. To ciekawa reakcja, bo tlenek miedzi(II) ma sporo zastosowań – używa się go jako katalizatora w różnych reakcjach chemicznych, a także w ceramice. Na przykład, w przemyśle ceramicznym korzysta się z niego przy produkcji pigmentów, a dzięki swoim przewodzącym właściwościom, także w elektronice. Warto to rozumieć, bo nie tylko chemia analityczna na tym korzysta, ale też nauka w laboratoriach, gdzie obserwacja takich reakcji jest mega ważna.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Naczynia z roztworem kwasu siarkowego(VI) o dużym stężeniu nie powinny być pozostawiane otwarte nie tylko za względów bezpieczeństwa, ale także dlatego, że kwas

A. zwiększy swoją masę, ponieważ jest higroskopijny
B. zwiększy swoje stężenie, ponieważ wyparuje woda
C. zmniejszy swoją masę, ponieważ jest higroskopijny
D. zmniejszy swoją masę, ponieważ jest lotny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ stężony roztwór kwasu siarkowego(VI) jest substancją higroskopijną, co oznacza, że ma zdolność do absorbowania wilgoci z otoczenia. Gdy naczynie z takim roztworem jest otwarte, kwas siarkowy może wchłaniać pary wodne z powietrza, co prowadzi do zwiększenia jego masy. Jest to istotne z perspektywy bezpieczeństwa, ponieważ przyrost masy roztworu może wpływać na jego stężenie oraz właściwości chemiczne. Na przykład, w praktyce laboratoryjnej, jeżeli kwas siarkowy jest przechowywany w otwartych naczyniach, może dojść do niezamierzonego wzrostu stężenia kwasu, co zwiększa ryzyko reakcji niepożądanych. W przemyśle chemicznym, gdzie kwas siarkowy jest powszechnie stosowany, kluczowe jest przestrzeganie odpowiednich norm i procedur przechowywania, aby uniknąć niebezpiecznych sytuacji. Dobrą praktyką jest stosowanie szczelnych pojemników oraz regularne monitorowanie właściwości roztworów, co pozwala na zapewnienie ich stabilności i bezpieczeństwa użytkowania.

Pytanie 8

Proces nastawiania miana kwasu solnego na wodorowęglan potasu KHCO3 przebiega zgodnie z następującą instrukcją:
Na wadze analitycznej odmierzyć 1 g KHCO3 (z precyzją 0,00001 g) i przesypać go ilościowo do kolby stożkowej, dodać około 50 cm3 destylowanej wody i dokładnie wymieszać roztwór. Następnie dodać kilka kropel roztworu czerwieni metylowej. Przeprowadzić miareczkowanie kwasem aż do pierwszej zmiany koloru wskaźnika.
W tym przypadku titrantem jest

A. czerwień metylowa
B. kwas
C. roztwór wodorowęglanu potasu
D. woda destylowana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawną odpowiedzią jest kwas, ponieważ w procesie miareczkowania to on pełni rolę titranta, czyli substancji, której stężenie jest znane i która jest dodawana do próbki w celu ustalenia jej stężenia. W opisanym eksperymencie miareczkowanie polega na dodawaniu kwasu solnego do roztworu wodorowęglanu potasu, co powoduje jego neutralizację. W wyniku reakcji kwasu z wodorowęglanem potasu dochodzi do uwolnienia dwutlenku węgla oraz powstania soli i wody. Kwas solny, jako mocny kwas, jest w stanie szybko zareagować z wodorowęglanem, co czyni go idealnym titrantem w tej procedurze. W praktyce, miareczkowanie jest powszechnie stosowane w laboratoriach do analizy jakościowej i ilościowej substancji chemicznych, a umiejętność prawidłowego przeprowadzania tego procesu jest kluczowa dla chemików. Dobrym przykładem zastosowania miareczkowania jest określenie zawartości kwasu w różnych produktach spożywczych, co jest istotne z punktu widzenia ich jakości i bezpieczeństwa dla konsumentów.

Pytanie 9

Wykonano ocenę jakości dostarczonej partii wodorotlenku sodu.
Zgodne ze specyfikacją towaru są

Parametr oznaczanyJednostkaWartość parametru
Według specyfikacjiZbadana analitycznie
Zawartość wodorotlenku sodu%>=9898,3
Zawartość węglanu sodu%<=0,40,39
Zawartość chlorku sodu%<=0,0150,015
A. zawartości procentowe wodorotlenku sodu, węglanu sodu i chlorku sodu.
B. tylko zawartości procentowe wodorotlenku sodu i chlorku sodu.
C. tylko zawartości procentowe węglanu sodu i chlorku sodu.
D. tylko zawartości procentowe wodorotlenku sodu i węglanu sodu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, która wskazuje na zawartości procentowe wodorotlenku sodu, węglanu sodu i chlorku sodu jako te, które są zgodne ze specyfikacją, jest poprawna. Z analizy wyników wynika, że wszystkie te substancje muszą być odpowiednio monitorowane w partii wodorotlenku sodu. W przypadku wodorotlenku sodu, jego minimalna zawartość powinna wynosić co najmniej 98%, co zostało spełnione, gdyż wynosi 98,3%. Zawartość węglanu sodu nie może przekraczać 0,4%, a wynik 0,39% jest zgodny z tym wymogiem. Ponadto, zawartość chlorku sodu musi być niższa lub równa 0,015%, co w tym przypadku również zostało spełnione, gdyż wynik wynosi 0,015%. Takie podejście do monitorowania jakości substancji chemicznych jest kluczowe w branży chemicznej, gdzie każdy zbiornik musi być regularnie oceniany pod kątem spełnienia określonych norm jakościowych. Przykładami zastosowania tej wiedzy są procesy wytwarzania chemikaliów oraz zapewnienie zgodności z normami ISO, które kładą nacisk na kontrolę jakości.

Pytanie 10

Proces przesiewania próbki prowadzi się za pomocą urządzenia przedstawionego na rysunku

A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proces przesiewania próbki za pomocą sita laboratoryjnego, które zostało przedstawione na rysunku, jest kluczowym etapem w analityce materiałów sypkich. Sita laboratoryjne umożliwiają rozdzielanie cząstek na podstawie ich rozmiaru, co jest istotne w wielu dziedzinach, w tym w chemii, biologii i inżynierii materiałowej. Standardowe sita są zgodne z normami, takimi jak ISO 3310, co zapewnia dokładność i powtarzalność wyników. Na przykład, w badaniach ziemi i minerałów, przesiewanie jest często pierwszym krokiem w analizach granulometrycznych, pozwalając na ocenę struktury i składu próbki. W przemyśle farmaceutycznym, proces ten jest niezbędny do zapewnienia jednorodności składników w lekach. Zastosowanie sita laboratoryjnego przyczynia się do uzyskania wiarygodnych danych badawczych, co jest fundamentem dla podejmowania właściwych decyzji technologicznych i jakościowych w procesach produkcyjnych.

Pytanie 11

Urządzenie pokazane na ilustracji jest przeznaczone do

A. ekstrakcji ciecz-ciecz
B. dekantacji
C. sedymentacji
D. ługowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aparat do ługowania jest kluczowym narzędziem w chemii analitycznej i przemysłowej, wykorzystywanym do rozdzielania substancji, które są rozpuszczalne w różnych rozpuszczalnikach. Proces ługowania polega na wydobywaniu substancji z materiału stałego poprzez ich rozpuszczenie w cieczy. Przykładem zastosowania ługowania jest proces oczyszczania metali ciężkich z odpadów, gdzie stosuje się odpowiednie chemikalia do rozpuszczenia metalu, który następnie można dalej przetwarzać. W kontekście standardów branżowych, procedury ługowania są ściśle regulowane przez normy środowiskowe, takie jak REACH, które mają na celu minimalizację wpływu chemikaliów na środowisko. Ponadto, w laboratoriach często stosuje się różne techniki ługowania, takie jak ługowanie kwasowe lub alkaliczne, w zależności od rodzaju substancji, która ma być wydobyta oraz jej toksyczności. Zrozumienie procesu ługowania jest kluczowe nie tylko dla chemików, ale także dla inżynierów zajmujących się technologią oczyszczania oraz ochroną środowiska.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Przebieg: Po zważeniu dwóch suchych zlewek, odważ kolejno: do jednej 3,63 g Co(NO3)2·6H2O, a do drugiej 3,75 g Na2CO3·10H2O. Następnie do obu zlewek wlej 25 cm3 gorącej wody i mieszając za pomocą bagietki doprowadź do całkowitego rozpuszczenia soli. Do roztworu Co(NO3)2 dodaj gorący roztwór Na2CO3 podczas mieszania. Otrzymany roztwór schłodź w łaźni wodnej z 3 kostkami lodu do temperatury pokojowej. Schłodzony roztwór przefiltruj przy użyciu zestawu do sączenia pod próżnią. Osad na lejku przepłucz wodą destylowaną, aż osiągnie obojętny odczyn przesączu. Przesączony osad osusz z sączkiem międzyposiadającym złożone arkusze bibuły w temperaturze pokojowej. Po wyschnięciu osad zważ i oblicz wydajność. Określ, jaki czynnik wpływa na skład jakościowy uzyskanego węglanu kobaltu(II)?

A. Kolejność ważenia reagentów
B. Tempo sączenia
C. Wpływ przemycia osadu
D. Precyzja obliczeń wydajności

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Efekt przemycia osadu ma istotny wpływ na skład jakościowy otrzymanego węglanu kobaltu(II), ponieważ skuteczne przemywanie osadu pozwala usunąć zanieczyszczenia, które mogą wpływać na właściwości fizyczne i chemiczne finalnego produktu. W praktyce laboratorium chemicznego, przemywanie osadu wodą destylowaną jest kluczowym krokiem, który pozwala na eliminację rozpuszczalnych w wodzie związków, takich jak pozostałości reagentów czy inne sole, które mogą skompromitować czystość końcowego produktu. Przykładem mogą być zanieczyszczenia anionowe, które mogą wchodzić w reakcje z produktem końcowym, co wpływa na jego właściwości reaktancyjne czy rozpuszczalność. Dobre praktyki laboratoryjne sugerują, że przemywanie powinno być kontynuowane do momentu uzyskania obojętnego odczynu przesączu, co zapewnia, że resztki reagenta zostały skutecznie usunięte. Zastosowanie tego standardu w procesie syntezy chemicznej jest niezbędne dla uzyskania materiałów o wysokiej czystości, co jest kluczowe w wielu zastosowaniach przemysłowych i badawczych.

Pytanie 14

Naczynia miarowe, skalibrowane "na wlew" (IN) to:

A. kolby miarowe
B. kolby destylacyjne
C. pipety jednomiarowe o obj. 25 cm3
D. biurety

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolby miarowe to naczynia kalibrowane na wlew, co oznacza, że ich pojemność jest określona na poziomie, gdy ciecz wlewana jest do oznaczenia na szyjce naczynia. Dzięki temu kolby miarowe zapewniają wysoką dokładność pomiarów objętości. Stosowane są one w chemii analitycznej oraz w laboratoriach do przygotowywania roztworów o dokładnie określonych stężeniach. Przykładem zastosowania kolb miarowych może być przygotowanie roztworu buforowego, gdzie precyzyjne wymieszanie składników jest kluczowe dla uzyskania stabilnych warunków reakcji. Dobrą praktyką jest używanie kolb o różnych pojemnościach, co pozwala na elastyczne dostosowanie objętości do potrzeb konkretnego doświadczenia. Kolby miarowe powinny być używane zgodnie z odpowiednimi standardami, takimi jak ISO 4788, które definiują wymagania dotyczące dokładności i precyzji pomiarów w laboratoriach.

Pytanie 15

Piktogram nie jest konieczny dla

A. substancji, które mają działanie drażniące na oczy
B. substancji, które działają drażniąco na skórę
C. substancji, które powodują korozję metali
D. mieszanin samoreaktywnych typu G

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mieszaniny samoreaktywne typu G to substancje, które nie wymagają stosowania piktogramów, ponieważ są one klasyfikowane w inny sposób niż substancje drażniące. Zgodnie z rozporządzeniem CLP (Classification, Labelling and Packaging), piktogramy są stosowane do oznaczania substancji, które posiadają określone właściwości niebezpieczne, takie jak drażniące działanie na oczy czy skórę. Mieszaniny samoreaktywne typu G, do których zalicza się substancje mogące ulegać niekontrolowanym reakcjom chemicznym, są klasyfikowane na podstawie ich właściwości fizykochemicznych i nie są objęte wymaganiami dotyczącymi piktogramów. Przykładem może być pewien rodzaj azotanu, który, będąc samoreaktywnym, nie wymaga dodatkowego oznakowania ostrzegawczego, o ile nie wykazuje innych zagrożeń. Dobrą praktyką w obszarze zarządzania substancjami chemicznymi jest znajomość ich klasyfikacji oraz odpowiednich przepisów, co pozwala na bezpieczne ich stosowanie w przemyśle oraz laboratoriach.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Przeprowadzono reakcję 13 g cynku z kwasem solnym zgodnie z równaniem: Zn + 2 HCl → ZnCl2 + H2↑. Otrzymano 1,12 dm3 wodoru (w warunkach normalnych). Masy molowe to: MZn = 65 g/mol, MH = 1g/mol, MCl = 35,5g/mol. Jaka jest wydajność tego procesu?

A. 25%
B. 60%
C. 50%
D. 75%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wydajność reakcji, należy najpierw ustalić, ile moli wodoru zostało uzyskanych oraz ile moli powinno być teoretycznie wyprodukowanych na podstawie reakcji. Z równania reakcji: Zn + 2 HCl → ZnCl2 + H2 wynika, że 1 mol cynku produkuje 1 mol wodoru. Masy molowe podane w zadaniu umożliwiają obliczenie, że 13 g cynku to około 0,2 mola (13 g / 65 g/mol). Teoretycznie, z 0,2 mola cynku powinniśmy uzyskać 0,2 mola wodoru, co odpowiada 4,48 dm³ (0,2 mola * 22,4 dm³/mol) przy warunkach normalnych. Zgodnie z danymi, zebrano 1,12 dm³ wodoru, co wskazuje, że uzyskano 25% teoretycznej ilości. W praktyce, wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, szczególnie w przemyśle, gdzie każda strata surowców wpływa na koszty produkcji. Zrozumienie i obliczanie wydajności jest niezbędne w procesach produkcyjnych, aby optymalizować reakcje i minimalizować straty, co jest zgodne z zasadami zrównoważonego rozwoju.

Pytanie 18

Metodą, która nie służy do utrwalania próbek wody, jest

A. schłodzenie do temperatury 2-5°C
B. dodanie biocydów
C. zakwaszenie do pH < 2
D. naświetlanie lampą UV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Naświetlanie próbek wody lampą UV nie jest skuteczną metodą ich utrwalania, ponieważ ta technika służy głównie do dezynfekcji wody, a nie do długoterminowego utrwalania próbek. Proces naświetlania UV eliminuje mikroorganizmy, jednak nie zatrzymuje procesów chemicznych, które mogą prowadzić do zmian w składzie chemicznym próbki. W praktyce, dla zachowania integralności próbki wody, stawia się na metody takie jak schłodzenie do temperatury 2-5°C, co ogranicza aktywność mikroorganizmów i spowalnia procesy biochemiczne. Dodanie biocydów również może być skuteczne w eliminacji niepożądanych mikroorganizmów, natomiast zakwaszenie próbki do pH < 2 ma na celu denaturację białek i stabilizację niektórych związków chemicznych, co jest szczególnie ważne w kontekście analizy chemicznej. W przypadku analizy wody, zwłaszcza w kontekście norm takich jak PN-EN ISO 5667, każda z tych metod ma swoje wytyczne i zasady stosowania, które należy przestrzegać, aby zapewnić wiarygodność wyników.

Pytanie 19

Który zestaw zawiera niezbędne urządzenia laboratoryjne do przygotowania 10% (m/m) roztworu NaCl?

A. Waga laboratoryjna, zlewka, cylinder miarowy, naczynko wagowe
B. Waga laboratoryjna, cylinder miarowy, kolba miarowa, szkiełko zegarkowe
C. Waga laboratoryjna, zlewka, cylinder miarowy, palnik
D. Waga laboratoryjna, kolba miarowa, naczynko wagowe, palnik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na zestaw sprzętów laboratoryjnych, które są niezbędne do sporządzenia 10% (m/m) roztworu chlorku sodu. Waga laboratoryjna umożliwia dokładne odważenie odpowiedniej ilości chlorku sodu, co jest kluczowe dla uzyskania właściwego stężenia roztworu. Zlewka służy do mieszania składników i przygotowania roztworu, a cylinder miarowy pozwala na precyzyjne odmierzenie objętości wody. Naczynko wagowe jest używane do ważenia substancji stałych, co dodatkowo zwiększa dokładność pomiarów. Takie podejście jest zgodne z najlepszymi praktykami w laboratoriach chemicznych, gdzie precyzja i dokładność są kluczowe dla uzyskania wiarygodnych wyników. Sporządzając roztwory, należy również pamiętać o zasadach BHP, aby zapewnić bezpieczeństwo podczas pracy z substancjami chemicznymi.

Pytanie 20

Na etykiecie kwasu siarkowego(VI) znajduje się piktogram pokazany na rysunku. Oznacza to, że substancja ta jest

Ilustracja do pytania
A. mutagenna.
B. żrąca.
C. rakotwórcza.
D. nieszkodliwa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "żrąca" jest poprawna, ponieważ piktogram na etykiecie kwasu siarkowego(VI) jednoznacznie oznacza substancje, które mogą powodować ciężkie uszkodzenia tkanek. W systemie GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) substancje żrące są klasyfikowane na podstawie ich zdolności do uszkadzania skóry oraz innych tkanek. Kwas siarkowy(VI) jest silnym kwasem, który ma zdolność do reagowania z wodą, co dodatkowo potęguje jego żrące właściwości. W praktyce, kontakt z kwasem siarkowym(VI) może prowadzić do poważnych oparzeń chemicznych, które wymagają natychmiastowej interwencji medycznej. W laboratoriach i przemyśle chemicznym niezwykle istotne jest przestrzeganie zasad bezpieczeństwa związanych z obsługą substancji żrących, takich jak stosowanie odpowiednich środków ochrony osobistej (PPE), w tym rękawic, okularów ochronnych oraz odzieży odpornych na działanie chemikaliów. Zgodność z normami bezpieczeństwa, takimi jak OSHA i CLP, jest kluczowa dla minimalizacji ryzyka związanego z narażeniem na substancje żrące.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Co oznacza zapis cz.d.a. na etykiecie opakowania odczynnika chemicznego?

A. zawiera maksymalnie 0,1% zanieczyszczeń
B. zawiera maksymalnie 0,05% zanieczyszczeń
C. zawiera co najmniej 0,1% zanieczyszczeń
D. zawiera co najmniej 0,05% zanieczyszczeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi, że odczynnik zawiera maksymalnie 0,1% zanieczyszczeń jest poprawny, ponieważ termin "cz.d.a." oznacza "czystość do analizy". Standardy analityczne, takie jak te określone przez European Pharmacopoeia oraz American Chemical Society, wskazują, że substancje oznaczone jako cz.d.a. spełniają wymogi czystości, które ograniczają zawartość zanieczyszczeń. W praktyce oznacza to, że odczynniki te mogą być wykorzystywane w analizach laboratoryjnych, gdzie niska zawartość zanieczyszczeń jest kluczowa dla uzyskania dokładnych wyników. Na przykład, w chemii analitycznej, zanieczyszczenia mogą wpływać na wyniki pomiarów spektroskopowych, dlatego istotne jest, aby stosowane odczynniki były wysokiej czystości. Właściwe zrozumienie oznaczeń na etykietach odczynników chemicznych jest zatem niezbędne dla każdego, kto pracuje w laboratoriach, aby zapewnić wiarygodność wyników badań.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2 ,
schłodzenie
do temperatury 2-5°C
laboratorium 24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2 ,
schłodzenie
do temperatury 2-5°C
laboratorium 48 godzin

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
B. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
C. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
D. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ na etykiecie odważki analitycznej znajduje się informacja o stężeniu 0,1 mol/dm³. Aby przygotować 1000 cm³ (1 dm³) roztworu AgNO₃ o takim stężeniu, potrzebujemy 0,1 mola tego związku. Mnożąc liczbę moli przez masę molową AgNO₃ (169,87 g/mol), otrzymujemy masę potrzebną do przygotowania roztworu, która wynosi 16,987 g. W praktyce, przygotowując roztwór o konkretnym stężeniu, kluczowe jest precyzyjne odmierzenie masy substancji oraz odpowiednie rozcieńczenie. Taka umiejętność jest niezbędna w laboratoriach chemicznych, gdzie dokładność odgrywa podstawową rolę w eksperymentach i analizach. Przygotowanie roztworu o właściwym stężeniu jest zgodne z zasadami dobrej praktyki laboratoryjnej (GLP), które zapewniają wiarygodność wyników badań. Dodatkowo, umiejętność przygotowywania roztworów o określonych stężeniach jest fundamentalna w chemii analitycznej, chemii organicznej oraz wielu zastosowaniach przemysłowych, w tym w farmaceutyce.

Pytanie 26

Miesięczne zapotrzebowanie laboratorium analitycznego na 2-propanol wynosi 500 cm3. Na jak długo wystarczy ta substancja?

A. 7 miesięcy
B. 3 miesiące
C. 1 miesiąc
D. 5 miesięcy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź '5 miesięcy' jest prawidłowa, ponieważ zapotrzebowanie miesięczne na 2-propanol wynosi 500 cm<sup>3</sup>. Jeśli zatem mamy 2500 cm<sup>3</sup> 2-propanolu, wystarczy on na pięć miesięcy, co obliczamy, dzieląc całkowitą ilość substancji przez miesięczne zapotrzebowanie: 2500 cm<sup>3</sup> / 500 cm<sup>3</sup> = 5 miesięcy. W zastosowaniach laboratoryjnych, gdzie 2-propanol jest często wykorzystywany jako rozpuszczalnik, dezynfekant lub w procesach ekstrakcji, ważne jest, aby regularnie monitorować stany magazynowe, aby zapewnić ciągłość pracy. Praktyka ta jest zgodna z normami zarządzania jakością, takimi jak ISO 9001, które podkreślają znaczenie efektywnego zarządzania zasobami oraz ciągłości procesów. Dobrze zarządzany zapas substancji chemicznych jest kluczowy dla efektywności operacyjnej laboratorium.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

W wyniku reakcji 20 g tlenku magnezu z wodą uzyskano 20 g wodorotlenku magnezu. Oblicz efektywność reakcji.
MMg = 24 g/mol, MO = 16 g/mol, MH = 1 g/mol?

A. 68,9%
B. 20%
C. 79,2%
D. 48,2%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wydajność reakcji, musimy najpierw ustalić teoretyczną ilość wodorotlenku magnezu (Mg(OH)₂) uzyskaną z 20 g tlenku magnezu (MgO). Reakcja między tlenkiem magnezu a wodą opisuje równanie: MgO + H₂O → Mg(OH)₂. W celu wyliczenia teoretycznej masy Mg(OH)₂, najpierw obliczamy liczbę moli MgO: 20 g / (24 g/mol + 16 g/mol) = 0,833 mol. Reakcja ta wskazuje, że 1 mol MgO daje 1 mol Mg(OH)₂, więc teoretycznie otrzymamy 0,833 mol Mg(OH)₂. Teraz przeliczamy liczbę moli na masę: 0,833 mol × (24 g/mol + 2 × 1 g/mol + 16 g/mol) = 0,833 mol × 58 g/mol = 48,3 g. Wydajność reakcji obliczamy, dzieląc masę uzyskanego produktu (20 g) przez masę teoretyczną (48,3 g) i mnożąc przez 100%: (20 g / 48,3 g) × 100% = 41,5%. Procent wydajności obliczany na podstawie początkowych danych o masach różni się od obliczeń teoretycznych, a w praktyce wydajność może być niższa z powodu strat w procesie. Wydajność 68,9% jest osiągalna, biorąc pod uwagę czynniki wpływające na efektywność reakcji, takie jak czystość reagentów oraz warunki reakcji. W praktyce chemicznej dążenie do jak najwyższej wydajności jest kluczowe, co wiąże się z koniecznością optymalizacji procesów technologicznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64
A. 2,15 cm3
B. 2,13 cm3
C. 2,50 cm3
D. 2,52 cm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 31

Zgodnie z zasadami BHP w laboratorium, po zakończeniu pracy z odczynnikami chemicznymi należy:

A. Zostawić otwarte pojemniki i natychmiast opuścić laboratorium.
B. Wylać pozostałości odczynników do zlewu niezależnie od ich rodzaju.
C. Wszystkie nieużyte odczynniki pozostawić na stole roboczym.
D. Zamknąć szczelnie pojemniki z odczynnikami, posegregować odpady chemiczne zgodnie z instrukcjami i dokładnie umyć stanowisko pracy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowe postępowanie po zakończeniu pracy z odczynnikami chemicznymi w laboratorium opiera się na kilku kluczowych zasadach bezpieczeństwa i higieny pracy. Po pierwsze, zawsze należy szczelnie zamknąć pojemniki z używanymi chemikaliami, aby uniknąć parowania, przypadkowego kontaktu oraz zanieczyszczenia powietrza szkodliwymi substancjami. To ważne nie tylko dla zdrowia pracowników, ale też dla ochrony środowiska. Następnie wszelkie odpady chemiczne muszą być posegregowane i zutylizowane zgodnie z obowiązującymi przepisami – nie wolno ich wylewać do zlewu czy pozostawiać na stanowisku. Wreszcie, dokładne umycie stanowiska pracy to nie tylko kwestia estetyki, ale też bezpieczeństwa: resztki substancji mogą powodować nieprzewidywalne reakcje lub narazić kolejne osoby korzystające z tego miejsca. Moim zdaniem, takie podejście minimalizuje ryzyko wypadków i sprawia, że praca w laboratorium jest bardziej przewidywalna. W praktyce, nawet jeśli jesteśmy zmęczeni po długim dniu eksperymentów, warto poświęcić te kilka minut na sprzątnięcie, bo to się po prostu opłaca – dla nas i dla innych. To standard nie tylko w szkołach i uczelniach, ale też w profesjonalnych laboratoriach chemicznych na całym świecie.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Do rozpuszczania próbek wykorzystuje się wodę królewską, która stanowi mieszaninę stężonych kwasów

A. HCl i HNO3 w proporcji objętościowej 3:1
B. H2SO4 i HCl w proporcji objętościowej 3:1
C. HNO3 i HCl w proporcji objętościowej 3:1
D. H2SO4 i HCl w proporcji objętościowej 1:3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że woda królewska jest mieszaniną HCl i HNO3 w stosunku objętościowym 3:1, jest poprawna. Woda królewska to silnie żrąca substancja, zdolna do rozpuszczania metali szlachetnych, takich jak złoto i platyna. Składa się głównie z kwasu solnego (HCl) i kwasu azotowego (HNO3), co czyni ją nieocenionym narzędziem w laboratoriach chemicznych oraz w przemyśle metalurgicznym. Stosunek 3:1 jest kluczowy, ponieważ zapewnia odpowiednie proporcje kwasów, które umożliwiają ich synergiczne działanie, gdzie HCl dostarcza jony chlorowe, a HNO3 przyczynia się do utleniania metali. W praktyce, woda królewska jest często wykorzystywana do analizy chemicznej i przygotowywania próbek do dalszych badań, a także w procesach oczyszczania metali. W branży laboratoryjnej przestrzeganie standardów bezpieczeństwa jest niezbędne, ponieważ zarówno HCl, jak i HNO3 są substancjami niebezpiecznymi, a ich mieszanie wymaga ostrożności oraz stosowania odpowiednich środków ochrony osobistej, takich jak rękawice i okulary ochronne.

Pytanie 34

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. elastyczne, o najmniejszych porach
B. elastyczne, o największych porach
C. sztywne, o największych porach
D. sztywne, o najmniejszych porach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 35

Zgodnie z instrukcją dotyczącą pobierania próbek nawozów (na podstawie normy PN-EN 12579:2001), liczbę punktów pobierania próbek pierwotnych ustala się według wzoru nsp = 0,5·√V, gdzie V oznacza objętość jednostki badanej w m3. Wartość nsp zaokrągla się do liczby całkowitej, a dodatkowo nie może być mniejsza niż 12 ani większa niż 30.
Dlatego dla objętości V = 4900 m3, nsp wynosi

A. 70
B. 35
C. 12
D. 30

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 30 jest poprawna, ponieważ zgodnie z normą PN-EN 12579:2001, liczba miejsc pobierania próbek pierwotnych oblicza się według wzoru n<sub>sp</sub> = 0,5·√V, gdzie V to objętość jednostki badanej wyrażona w m<sup>3</sup>. Dla objętości V = 4900 m<sup>3</sup>, obliczamy: n<sub>sp</sub> = 0,5·√4900 = 0,5·70 = 35. Jednakże wartość n<sub>sp</sub> musi być zaokrąglona do liczby całkowitej oraz mieścić się w granicach 12 i 30. W związku z tym, mimo że obliczona wartość to 35, ze względu na górny limit, ostateczna wartość n<sub>sp</sub> wynosi 30. Takie podejście zapewnia odpowiednią reprezentatywność próbek, co jest kluczowe w analizach laboratoryjnych. W praktyce, stosowanie właściwej liczby próbek pozwala na dokładniejszą ocenę jakości nawozów oraz ich wpływu na glebę. Utrzymanie standardów w procesie pobierania próbek jest niezbędne do uzyskania wiarygodnych wyników, co jest szczególnie istotne w kontekście zrównoważonego rolnictwa i ochrony środowiska.

Pytanie 36

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. rozpuszczalność
B. czystość
C. palność
D. reaktywność

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Temperatura topnienia jest istotnym wskaźnikiem czystości substancji chemicznych, szczególnie związków organicznych. Czystość substancji można ocenić na podstawie jej temperatury topnienia, ponieważ czyste substancje mają ściśle określoną temperaturę topnienia, podczas gdy obecność zanieczyszczeń obniża, a czasem także podwyższa tę temperaturę. Przykładem jest analiza kwasu benzoesowego, który ma temperaturę topnienia wynoszącą 122 °C. Jeśli podczas pomiaru odkryjemy, że temperatura topnienia wynosi 120 °C, może to sugerować obecność zanieczyszczeń. W praktyce, metody takie jak montaż termometru w naczyniu z próbką oraz kontrola tempa podgrzewania są stosowane, aby uzyskać dokładny wynik. W laboratoriach chemicznych stosuje się również standardy takie jak ASTM E2875, które precyzują metody pomiaru temperatury topnienia. Dzięki tym praktykom, możliwe jest nie tylko potwierdzenie czystości próbki, ale również ocena jakości związków organicznych, co jest kluczowe w chemii analitycznej, farmaceutycznej i przemysłowej.

Pytanie 37

50 cm3 alkoholu etylowego zmieszano w kolbie miarowej z 50 cm3 wody. W wyniku zjawiska kontrakcji objętość otrzymanego roztworu wyniosła 97,5 cm3. Ile wynosi stężenie procentowe (v/v) roztworu alkoholu w wodzie po zmieszaniu i stężenie procentowe roztworu alkoholu (v/v) po uzupełnieniu kolby wodą do 100 cm3?

Stężenie procentowe (v/v) roztworu alkoholu w wodzie po zmieszaniuStężenie procentowe (v/v) roztworu alkoholu po uzupełnieniu kolby wodą do 100 cm3
A.49,2%48,0%
B.50,0%49,7%
C.51,3%,50,0%
D.53,3%50,2%
A. D.
B. C.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest poprawna, ponieważ stężenie procentowe (v/v) roztworu alkoholu w wodzie po zmieszaniu wynosi około 51,3%. Obliczamy to, dzieląc objętość alkoholu (50 cm³) przez objętość roztworu po zmieszaniu (97,5 cm³) i mnożąc przez 100%, co daje: (50 cm³ / 97,5 cm³) * 100% ≈ 51,3%. Następnie, gdy uzupełnimy kolbę wodą do 100 cm³, całkowita objętość roztworu będzie wynosić 100 cm³, a objętość alkoholu pozostanie taka sama (50 cm³), co prowadzi do stężenia: (50 cm³ / 100 cm³) * 100% = 50%. Rozumienie tych obliczeń jest kluczowe w chemii, zwłaszcza w kontekście przygotowywania roztworów, gdzie precyzyjne stężenia są istotne w laboratoriach analitycznych, farmaceutycznych oraz w przemyśle chemicznym. Przykładem zastosowania tej wiedzy jest przygotowanie roztworów do badań laboratoryjnych, gdzie dokładność i powtarzalność stężeń mają kluczowe znaczenie dla uzyskania wiarygodnych wyników.

Pytanie 38

Aby ustalić miano roztworu wodnego NaOH, należy zastosować

A. naważkę kwasu benzenokarboksylowego
B. odmierzoną porcję roztworu kwasu octowego
C. naważkę kwasu mrówkowego
D. odmierzoną ilość kwasu azotowego(V)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użycie naważki kwasu benzenokarboksylowego do przygotowywania miana roztworu wodnego wodorotlenku sodu jest właściwe z kilku istotnych powodów. Kwas benzenokarboksylowy jest znanym kwasem organicznym, którego właściwości chemiczne umożliwiają precyzyjne ustalanie stężenia zasady w roztworze. Przygotowanie roztworu wzorcowego polega na rozpuszczeniu dokładnie znanej masy substancji w wodzie, co pozwala na osiągnięcie pożądanej koncentracji. W praktyce laboratoryjnej, stosowanie substancji o dobrze znanym i stabilnym stężeniu, takich jak kwas benzenokarboksylowy, jest standardem, który zapewnia powtarzalność wyników oraz dokładność analizy. Dodatkowo, przy pomocy tego kwasu można przeprowadzać miareczkowanie, co jest kluczowe w procesach analitycznych oraz badaniach jakościowych. Tego rodzaju praktyki są zgodne z zasadami metrologii chemicznej, która kładzie nacisk na precyzyjne pomiary i standaryzację procesów.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Podczas rozkładu chloranu(V) potasu powstają chlorek potasu oraz tlen. Ile gramów tlenu zostanie wydzielonych w trakcie rozkładu 24,5 g chloranu(V) potasu, jeśli jednocześnie uzyskano 14,9 g chlorku potasu? Masy molowe pierwiastków: K = 39 g/mol, Cl = 35,5 g/mol, O=16 g/mol?

A. 9,6 g
B. 39,4 g
C. 24,5 g
D. 14,5 g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak chcesz obliczyć masę tlenu, który się wydziela podczas rozkładu chloranu(V) potasu, to najpierw musisz spisać równanie reakcji. Wytwarza się 2 KClO3, a potem 2 KCl i 3 O2. To z tego równania widać, że z dwóch moli chloranu dostajemy dwa mole chlorku potasu i trzy mole tlenu. Jeśli chodzi o masy molowe, to mamy KClO3 - 122,5 g/mol, KCl - 74,5 g/mol i O2 - 32 g/mol. Jeśli weźmiemy 24,5 g KClO3, to obliczamy, że mamy około 0,2 mola. Z równania wychodzi, że z 0,2 mola KClO3 dostaniemy 0,3 mola O2, więc po policzeniu masy tlenu wyjdzie nam 9,6 g. Fajnie jest wiedzieć, jak ważne są te obliczenia, szczególnie w laboratoriach, gdzie precyzja ma znaczenie.