Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 18 lutego 2026 13:17
  • Data zakończenia: 18 lutego 2026 13:53

Egzamin niezdany

Wynik: 7/40 punktów (17,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z podanych adresów IPv4 należy do kategorii B?

A. 128.100.100.10
B. 10.10.10.10
C. 192.168.1.10
D. 224.100.10.10
Adresy IPv4 klasy A, B, C, D i E mają określone przedziały, które są kluczowe w ich klasyfikacji. Klasa A to adresy, których pierwszy oktet mieści się w zakresie od 1 do 126. Adres 10.10.10.10 jest przykładem adresu klasy A, który jest często używany w prywatnych sieciach. Klasa C obejmuje adresy od 192 do 223, co obejmuje na przykład adres 192.168.1.10, powszechnie stosowany w lokalnych sieciach domowych. Klasa D, z adresami od 224 do 239, jest zarezerwowana do multicastingu, co oznacza, że jest używana do przesyłania danych do wielu odbiorców jednocześnie. Klasa E, z adresami od 240 do 255, jest przeznaczona do celów eksperymentalnych. Adres 224.100.10.10 znajduje się w przedziale klasy D i nie jest używany do standardowego routingu, co jest często mylnie interpretowane przez osoby, które nie są dobrze zaznajomione z zasadami klasyfikacji adresów IP. Kluczowym błędem jest mylenie adresów prywatnych i publicznych oraz nieznajomość zakresów klas. Wiedza na temat klas adresów IP jest niezbędna dla każdego, kto planuje projektować lub utrzymywać sieci komputerowe, ponieważ pozwala na efekwne zarządzanie adresowaniem i zapewnienie bezpieczeństwa w sieci.

Pytanie 2

Protokołem umożliwiającym bezpołączeniowe przesyłanie datagramów jest

A. IP
B. UDP
C. ARP
D. TCP
Wybór IP, TCP lub ARP jako protokołu do bezpołączeniowego dostarczania datagramów wykazuje pewne nieporozumienia dotyczące funkcji i charakterystyki tych protokołów. IP (Internet Protocol) jest protokołem warstwy sieciowej, który odpowiada za adresowanie i routing pakietów w sieci, ale nie jest protokołem transportowym. Nie zapewnia on bezpośredniej komunikacji pomiędzy aplikacjami ani zarządzania tranzytem danych, co czyni go niewłaściwym wyborem w kontekście dostarczania datagramów. TCP, mimo że jest protokołem bezpołączeniowym, oferuje pełne zarządzanie połączeniami, co obejmuje mechanizmy kontroli błędów i retransmisji, co wprowadza dodatkowe opóźnienia i narzuty, przez co nie jest odpowiedni do sytuacji, gdzie kluczowe jest szybkie dostarczanie danych. ARP (Address Resolution Protocol) działa na warstwie łącza danych i ma na celu mapowanie adresów IP na adresy MAC, co również nie ma związku z dostarczaniem datagramów na poziomie transportowym. Zrozumienie specyfiki tych protokołów jest kluczowe, aby uniknąć błędnych wniosków i zastosować odpowiednie technologie w odpowiednich kontekstach, co jest podstawą skutecznej komunikacji sieciowej. Podczas wyboru protokołu, ważne jest rozważenie wymagań aplikacji oraz charakterystyki przesyłanych danych, aby dostosować odpowiednią metodę komunikacji.

Pytanie 3

W układzie SI jednostką, która mierzy napięcie, jest

A. wat
B. amper
C. herc
D. wolt
W odpowiedziach na to pytanie pojawiły się inne jednostki miary, które nie odnoszą się do napięcia elektrycznego. Wat (W) jest jednostką mocy, która mierzy ilość energii przekazywanej w jednostce czasu. Mocy nie należy mylić z napięciem, ponieważ moc zależy od napięcia i prądu elektrycznego według wzoru P = U * I, gdzie P to moc, U to napięcie, a I to natężenie prądu. Herc (Hz) to jednostka częstotliwości, oznaczająca liczbę cykli na sekundę. Częstotliwość jest istotna w kontekście sygnałów elektrycznych, ale nie jest miarą napięcia. Amper (A) to jednostka natężenia prądu elektrycznego, co również jest odmiennym pojęciem od napięcia. Mylenie napięcia z mocą, częstotliwością lub natężeniem prądu może prowadzić do błędnych wniosków w projektowaniu i analizie obwodów elektrycznych. Dlatego ważne jest, aby mieć jasne zrozumienie podstawowych pojęć elektrycznych, aby unikać typowych błędów myślowych, które mogą prowadzić do nieprawidłowych wyników w obliczeniach inżynieryjnych czy w praktycznych zastosowaniach elektrycznych.

Pytanie 4

Na zdjęciu widać

Ilustracja do pytania
A. przedłużacz kabla UTP
B. wtyk światłowodu
C. wtyk kabla koncentrycznego
D. wtyk audio
Przedłużacz kabla UTP to element stosowany w sieciach lokalnych (LAN) wykonanych z kabli kategorii UTP (Unshielded Twisted Pair). Tego typu kable służą do przesyłania sygnałów elektrycznych w sieciach komputerowych i telekomunikacyjnych. W odróżnieniu od światłowodów kable UTP są bardziej podatne na zakłócenia elektromagnetyczne i mają mniejszą przepustowość. Wtyk audio służy do przesyłania analogowych sygnałów dźwiękowych. Jest to komponent powszechnie używany w sprzęcie audio i nie ma zastosowania w dziedzinie transmisji danych na duże odległości. Wtyki tego typu nie spełniają wymagań technicznych w zakresie szybkości i stabilności transmisji danych jakie są konieczne we współczesnych systemach informatycznych. Wtyk kabla koncentrycznego to kolejny typ złącza używany głównie w telewizji kablowej i systemach antenowych. Kable koncentryczne przesyłają sygnały elektryczne z zastosowaniem wideo i transmisji radiowej ale nie są przystosowane do nowoczesnych wymagań sieciowych w zakresie przepustowości i odległości. Typowe błędy przy wyborze pomiędzy tymi komponentami wynikają z niedopasowania ich właściwości technicznych do zastosowania oraz z nieznajomości specyfikacji takich jak impedancja czy tłumienność. Wybór odpowiednich elementów sieciowych wymaga zrozumienia specyfiki transmisji danych i dopasowania do specyficznych potrzeb projektu zgodnie z obowiązującymi standardami technicznymi i dobrymi praktykami branżowymi co zapewnia optymalizację wydajności i stabilności systemu.

Pytanie 5

Co wskazuje oznaczenie danego procesora?

Ilustracja do pytania
A. jego niewielkich rozmiarach obudowy
B. wersji mobilnej procesora
C. niskim poborze energii przez procesor
D. braku blokady mnożnika (unlocked)
Wiedza o tym, co oznaczają różne litery przy procesorach, jest naprawdę ważna przy wyborze sprzętu. Litera 'K' mówi, że można podkręcać, ale mylenie tego z niskim zużyciem energii to błąd. Dla procesorów energooszczędnych mamy oznaczenia jak 'T' czy 'U', które wskazują na ich zastosowanie w mobilnych urządzeniach. Tak naprawdę, mała obudowa procesora nie ma nic wspólnego z literą 'K'. Dla kompaktowych procesorów lepiej szukać takich oznaczeń jak 'S' czy 'Y'. Jeśli chodzi o wersje mobilne, to zazwyczaj używane są litery 'M' czy 'MQ'. Każde z tych oznaczeń ma swoją rolę w architekturze procesorów, co jest ważne, żeby dobrze dobrać sprzęt. Zrozumienie tych konwencji pomoże w optymalnym wykorzystaniu technologii procesorowej, co jest kluczowe przy zakupie nowego komputera.

Pytanie 6

Materiałem eksploatacyjnym stosowanym w drukarkach tekstylnych jest

A. filament.
B. taśma woskowa.
C. fuser.
D. atrament sublimacyjny.
Atrament sublimacyjny to zdecydowanie podstawowy materiał eksploatacyjny w drukarkach tekstylnych, zwłaszcza tych wykorzystywanych w profesjonalnym druku na tkaninach poliestrowych. W praktyce, technologia sublimacji umożliwia trwałe i bardzo szczegółowe nanoszenie wzorów na materiał – pigmenty po podgrzaniu przechodzą bezpośrednio ze stanu stałego w gaz, co pozwala im przeniknąć w głąb włókien tkaniny. Dzięki temu nadruki są odporne na ścieranie, pranie czy nawet intensywne użytkowanie, co doceniają firmy z branży odzieżowej, reklamowej i dekoracyjnej. Warto wspomnieć, że użycie atramentu sublimacyjnego jest dziś standardem przy produkcji odzieży sportowej, flag, zasłon czy np. personalizowanych gadżetów tekstylnych. Sam proces wymaga zastosowania specjalnych papierów transferowych oraz odpowiedniej temperatury i ciśnienia podczas przenoszenia wzoru – to właśnie ten etap decyduje o jakości efektu końcowego. Moim zdaniem, znajomość działania atramentów sublimacyjnych jest jedną z podstawowych umiejętności każdego technika druku tekstylnego. To naprawdę daje przewagę na rynku pracy, szczególnie gdy trzeba doradzić klientowi najlepszą technologię nadruku czy zrozumieć ograniczenia i możliwości danego procesu. Warto dodać, że inne technologie (np. lateksowe czy pigmentowe) też są używane, ale sublimacja po prostu wygrywa w większości profesjonalnych zastosowań tekstylnych.

Pytanie 7

Jakiego typu wkrętak należy użyć do wypięcia dysku twardego mocowanego w laptopie za pomocą podanych śrub?

Ilustracja do pytania
A. torx
B. spanner
C. imbus
D. philips
Wkrętak spanner, znany również jako klucz do śrub z dwoma otworami, jest stosowany głównie w specjalistycznych aplikacjach przemysłowych, gdzie wymagane są śruby z nietypowym nacięciem, co czyni go nieodpowiednim do standardowych śrub w laptopach. Wkrętak imbus, używany do śrub z łbem sześciokątnym wewnętrznym, jest typowy w konstrukcjach mechanicznych i rowerowych, ale rzadko stosowany w urządzeniach elektronicznych z uwagi na większe wymagania co do przestrzeni montażowej. Wkrętak torx, zaprojektowany z myślą o zwiększeniu momentu obrotowego, charakteryzuje się sześciokątnym nacięciem gwiazdkowym. Choć coraz częściej stosowany w elektronice, nie jest standardem w laptopach do mocowania dysków twardych. Wybór niewłaściwego narzędzia może prowadzić do uszkodzenia śruby lub narzędzia, co zwiększa koszty serwisowe i czas naprawy. Typowym błędem jest niedopasowanie narzędzia do nacięcia śruby, co wynika z niewiedzy lub pośpiechu. W kontekście egzaminu zawodowego, znajomość różnorodności i specyfikacji narzędzi ręcznych jest kluczowa dla prawidłowego wykonywania zadań związanych z naprawą i konserwacją urządzeń, a także przestrzegania standardów bezpieczeństwa i jakości pracy. Dlatego edukacja techniczna powinna kłaść nacisk na praktyczne umiejętności identyfikacji i zastosowania właściwych narzędzi w odpowiednich kontekstach montażowych i serwisowych.

Pytanie 8

Wskaż właściwą formę maski podsieci?

A. 255.255.0.128
B. 0.0.0.0
C. 255.252.252.255
D. 255.255.255.255
Masy podsieci są kluczowym elementem architektury sieci komputerowych, a zrozumienie ich znaczenia jest niezbędne dla każdego specjalisty IT. Odpowiedzi takie jak 0.0.0.0, 255.252.252.255 oraz 255.255.0.128 nie są poprawnymi maskami podsieci. Maska 0.0.0.0 jest używana głównie do oznaczenia braku dostępnych adresów, co czyni ją nieprzydatną w kontekście klasycznych masek podsieci. Z kolei 255.252.252.255, pomimo że wydaje się być maską użyteczną, nie jest standardowo uznaną maską podsieci, ponieważ nie spełnia kryteriów dla podsieci, które wymagają, aby liczba bitów ustawionych na 1 była ciągła od lewej strony maski. 255.255.0.128 również jest błędna, ponieważ prowadzi do podziału w sieci, który nie jest zgodny z praktykami przydzielania adresów IP. W konwencji CIDR (Classless Inter-Domain Routing), maski podsieci powinny mieć formę zdefiniowanych długości prefiksów, co sprawia, że odpowiedzi te są źle zinterpretowane jako maski podsieci. Typowe błędy myślowe, które mogą prowadzić do tych niepoprawnych odpowiedzi, obejmują brak znajomości zasad działania masek podsieci oraz zrozumienia, jak działają adresy IP w kontekście komunikacji w sieci. W związku z tym, kluczowe jest, aby każdy, kto pracuje z sieciami, zrozumiał różne typy masek, ich zastosowania oraz znaczenie poprawnej konfiguracji dla zapewnienia efektywności i bezpieczeństwa sieci.

Pytanie 9

Element trwale zainstalowany, w którym znajduje się zakończenie poziomego okablowania strukturalnego abonenta, to

A. punkt konsolidacyjny
B. gniazdo energetyczne
C. punkt rozdzielczy
D. gniazdo teleinformatyczne
Punkt rozdzielczy jest elementem, który pełni rolę centralnej jednostki w systemach okablowania, jednak jego zadaniem jest rozdzielenie sygnałów na różne kierunki, a nie kończenie okablowania. W praktyce oznacza to, że choć punkt rozdzielczy jest istotny dla zarządzania sygnałami w sieci, to nie jest on odpowiednim rozwiązaniem dla zakończenia okablowania strukturalnego, co sprawia, że nie może być uznawany za poprawną odpowiedź w tym kontekście. Punkt konsolidacyjny działa jako połączenie pomiędzy okablowaniem pionowym a poziomym, ale również nie jest jego końcowym elementem. Jego rola polega na ułatwieniu zarządzania i organizacji kabli, co może prowadzić do pomyłek w interpretacji jego funkcji. Gniazdo energetyczne, choć ważne w kontekście zasilania urządzeń, nie ma nic wspólnego z okablowaniem strukturalnym i nie obsługuje sygnałów teleinformatycznych. Często możemy spotkać się z mylnym rozumieniem tych terminów, co prowadzi do nieprawidłowego doboru komponentów w instalacji. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoją określoną funkcję, a ich zamiana może skutkować poważnymi problemami w działaniu infrastruktury sieciowej.

Pytanie 10

Jaką wartość w systemie dziesiętnym ma suma liczb szesnastkowych: 4C + C4?

A. 270
B. 272
C. 273
D. 271
W przypadku wyboru odpowiedzi, które nie są poprawne, warto zwrócić uwagę na typowe błędy w konwersji systemów liczbowych. Na przykład, błędne zrozumienie wartości cyfr w systemie szesnastkowym może prowadzić do nieprawidłowych obliczeń. Często zdarza się, że osoby przeliczające liczby szesnastkowe mylą wartości cyfr, co skutkuje błędnymi sumami. Na przykład, jeśli ktoś obliczy wartość 4C jako 4 * 16^1 + 11 * 16^0 zamiast 4 * 16^1 + 12 * 16^0, uzyska fałszywy wynik, który może być bliski, ale niepoprawny. Innym częstym błędem jest pominięcie dodawania wartości z obu liczb, co prowadzi do częściowej sumy. Ważne jest również, by zrozumieć, że w systemie szesnastkowym każda cyfra ma inną wagę, a niepoprawne traktowanie tej wagi może prowadzić do błędnych konkluzji. Typowym nieporozumieniem jest również to, że niektórzy mogą przyjąć, iż dodawanie liczb w systemie szesnastkowym można przeprowadzać bez wcześniejszej konwersji do systemu dziesiętnego, co jest błędne. Tego rodzaju nieścisłości mogą wpływać na dalsze analizy i decyzje w obszarze programowania oraz inżynierii oprogramowania, gdzie precyzyjne obliczenia są niezbędne.

Pytanie 11

Jakie urządzenie sieciowe funkcjonuje w warstwie fizycznej modelu ISO/OSI, transmitując sygnał z jednego portu do wszystkich pozostałych portów?

A. Modem
B. Karta sieciowa
C. Przełącznik
D. Koncentrator
Wybór modemu, przełącznika lub karty sieciowej jako odpowiedzi jest związany z pewnymi nieporozumieniami dotyczącymi ich funkcji i warstw w modelu ISO/OSI. Modem, który działa na warstwie dostępu do sieci oraz warstwie aplikacji, jest odpowiedzialny za modulację sygnału i umożliwienie komunikacji między różnymi typami sieci, w tym między siecią lokalną a Internetem. Z tego powodu nie jest on odpowiedni jako urządzenie przesyłające sygnał z portu do portów w warstwie fizycznej. Przełącznik natomiast, mimo że również działa w sieci i łączy urządzenia, funkcjonuje na warstwie drugiej modelu OSI, gdzie analizuje pakiety danych i przesyła je tylko do odpowiednich portów, co znacznie zwiększa efektywność sieci i redukuje kolizje. Karta sieciowa, będąca interfejsem pomiędzy komputerem a siecią, również działa na wyższych warstwach modelu OSI i nie przesyła sygnału w sposób charakterystyczny dla koncentratora. Zrozumienie tych różnic jest kluczowe w projektowaniu i zarządzaniu sieciami, ponieważ wybór odpowiedniego urządzenia wpływa na wydajność oraz bezpieczeństwo komunikacji w sieci.

Pytanie 12

Użytkownik systemu Windows doświadcza komunikatów o niewystarczającej pamięci wirtualnej. Jak można rozwiązać ten problem?

A. dodanie kolejnego dysku
B. rozbudowa pamięci cache procesora
C. zwiększenie pamięci RAM
D. powiększenie rozmiaru pliku virtualfile.sys
Zwiększenie rozmiaru pliku virtualfile.sys może się wydawać mądrym pomysłem, ale tak naprawdę to tylko częściowo pomoże z pamięcią wirtualną, a na fizyczną pamięć RAM to nie ma większego wpływu. Powiększenie pliku wymiany może pomóc, gdy RAM-u brakuje, ale to nie rozwiązuje całego problemu. Windows korzysta z pliku wymiany, jak RAM jest pełen, ale prace na dysku twardym są dużo wolniejsze, co przecież obniża wydajność. Poza tym, jak podłączysz dodatkowy dysk, to może i zwiększysz miejsce na plik wymiany, ale na fizyczną pamięć RAM to nie wpłynie. Nawet dodatkowa pamięć cache procesora nie załatwi sprawy z pamięcią wirtualną, bo cache jest do trzymania danych blisko CPU, a to nie przyspiesza samej pamięci. Myślę, że zwiększenie RAM-u to najważniejszy krok przy zarządzaniu pamięcią systemu, a inne metody mogą tylko ukrywać objawy problemu, ale go nie rozwiążą. Często ludzie mylą RAM z pamięcią wirtualną, co prowadzi do złych decyzji o powiększaniu plików wymiany czy dokupowaniu dysków, nie rozumiejąc, że kluczowa jest sama fizyczna pamięć operacyjna.

Pytanie 13

Jaką postać ma liczba dziesiętna 512 w systemie binarnym?

A. 10000000
B. 100000
C. 1000000000
D. 1000000
Odpowiedzi 10000000, 1000000 oraz 100000 są niepoprawne, ponieważ każda z nich reprezentuje inną wartość w systemie binarnym. Odpowiedź 10000000 odpowiada liczbie 128 w systemie dziesiętnym, co można zweryfikować, rozkładając tę liczbę na potęgi dwójki: 1*2^7 + 0*2^6 + 0*2^5 + 0*2^4 + 0*2^3 + 0*2^2 + 0*2^1 + 0*2^0 = 128. Z kolei odpowiedź 1000000 reprezentuje wartość 64, co również można zweryfikować, stosując tę samą metodę konwersji, a wynik to 1*2^6 = 64. Odpowiedź 100000 z kolei odpowiada liczbie 32, co można przedstawić jako 1*2^5. Typowe błędy myślowe prowadzące do wyboru tych nieprawidłowych odpowiedzi często wynikają z niepełnego zrozumienia sposobu, w jaki system binarny działa lub ze zbytniego polegania na intuicji dotyczącej wartości liczb w systemie dziesiętnym. Warto pamiętać, że każdy bit w systemie binarnym ma swoje określone miejsce i wagę, które są potęgami liczby 2. Zrozumienie tej koncepcji jest kluczowe dla prawidłowego przeliczania liczb między tymi dwoma systemami. W codziennej pracy z komputerami, programowaniem i analizą danych, umiejętność konwersji pomiędzy systemami liczbowymi staje się niezbędna do efektywnego rozwiązywania problemów i tworzenia wydajnych algorytmów.

Pytanie 14

Na schemacie blokowym funkcjonalny blok RAMDAC ilustruje

Ilustracja do pytania
A. pamięć RAM karty graficznej
B. przetwornik cyfrowo-analogowy z pamięcią RAM
C. przetwornik analogowo-cyfrowy z pamięcią RAM
D. pamięć ROM karty graficznej
RAMDAC jest kluczowym komponentem w kartach graficznych, który przekształca dane wideo z postaci cyfrowej na analogową. Jego główną funkcją jest obsługa konwersji sygnałów potrzebnych do wyświetlania obrazu na monitorach CRT. RAMDAC zawiera pamięć RAM, która przechowuje paletę kolorów i przetwornik cyfrowo-analogowy do generowania sygnałów wideo. Przykładem praktycznego zastosowania RAMDAC jest możliwość precyzyjnego odwzorowania kolorów dzięki zastosowaniu tablic look-up, co pozwala na dostosowanie wyjściowego sygnału do różnych standardów wyświetlania. Współczesne technologie, takie jak HDMI czy DisplayPort, zminimalizowały rolę RAMDAC, jednak jego koncepcje pozostają istotne w zrozumieniu podstaw grafiki komputerowej. Zrozumienie działania RAMDAC jest fundamentem dla inżynierów zajmujących się projektowaniem układów graficznych, a wykorzystanie standardów, jak VESA, gwarantuje kompatybilność z szeroką gamą urządzeń wyświetlających. Wiedza o RAMDAC umożliwia projektowanie systemów z zachowaniem pełnej kontroli nad jakością sygnału wideo, co jest kluczowe w zastosowaniach profesjonalnych, gdzie jakość obrazu ma zasadnicze znaczenie.

Pytanie 15

Jaką topologię fizyczną sieci komputerowej przedstawia rysunek?

Ilustracja do pytania
A. Podwójnego pierścienia
B. Magistrali
C. Gwiazdy rozszerzonej
D. Siatki
Topologia siatki charakteryzuje się tym że każde urządzenie w sieci jest bezpośrednio połączone z wieloma innymi co zwiększa złożoność instalacji i kosztów. Nie jest to efektywny model dla większości standardowych zastosowań ze względu na skomplikowaną strukturę i trudności w zarządzaniu. Topologia magistrali z kolei to prosty model w którym wszystkie urządzenia są podłączone do jednego wspólnego przewodu co ogranicza skalowalność i może prowadzić do zatorów w przesyłaniu danych. Wadą tego rozwiązania jest również brak redundancji co oznacza że każde uszkodzenie kabla może powodować awarię całej sieci. Gwiazda rozszerzona to wariant topologii gwiazdy gdzie wiele pod-sieci gwiazdowych jest połączonych ze sobą. Chociaż zapewnia większą skalowalność to brak połączeń redundantnych pomiędzy urządzeniami czyni ją mniej odporną na awarie niż podwójny pierścień. Typowe błędy w analizie topologii sieci wynikają z nieznajomości struktury i mechanizmów działania różnych typów sieci co prowadzi do mylenia bardziej zaawansowanych topologii z prostszymi modelami. Należy dokładnie rozumieć jak poszczególne topologie wpływają na niezawodność efektywność i koszty infrastruktury sieciowej aby móc właściwie je rozróżniać i stosować odpowiednio do wymagań danego środowiska pracy. Podwójny pierścień wyróżnia się zastosowaniem dwóch niezależnych ścieżek co jest kluczowym elementem eliminującym pojedyncze punkty awarii i zwiększającym niezawodność sieci szczególnie w kontekście krytycznych aplikacji biznesowych i przemysłowych. Rozumienie tych różnic jest istotne dla projektowania i utrzymania wydajnych i niezawodnych systemów sieciowych.

Pytanie 16

W trakcie instalacji systemu Windows, zaraz po rozpoczęciu instalatora w trybie graficznym, istnieje możliwość otwarcia Wiersza poleceń (konsoli) za pomocą kombinacji klawiszy

A. SHIFT+F10
B. CTRL+Z
C. CTRL+SHIFT
D. ALT+F4
Wybór ALT+F4 jest błędny, ponieważ ta kombinacja klawiszy w większości systemów operacyjnych, w tym Windows, służy do zamykania aktywnego okna. Użytkownicy mogą być mylnie przekonani, że ta kombinacja może uruchomić dodatkowe funkcje, jednak w kontekście instalacji systemu Windows, jej działanie prowadzi jedynie do zakończenia instalatora, co może skutkować utratą wszelkich wprowadzonych zmian. Z kolei CTRL+Z to skrót stosowany do cofania ostatniej akcji w aplikacjach edytorskich, co nie ma zastosowania w kontekście instalacji systemu operacyjnego, gdzie cofnąć możemy jedynie pojedyncze operacje w ramach aplikacji, a nie w procesie instalacji. Użytkownicy mogą również myśleć, że CTRL+SHIFT może otworzyć Wiersz poleceń, jednak ta kombinacja nie jest przypisana do żadnej funkcji w instalatorze Windows. Wnioskując, problemy te wynikają z nieznajomości specyfiki działania systemu Windows oraz błędnego kojarzenia funkcji klawiszy z ich zastosowaniem w zwykłej pracy z komputerem. Zrozumienie, które klawisze są przypisane do określonych funkcji podczas instalacji systemu, jest kluczowe dla sprawnego przeprowadzania tego procesu oraz unikania frustracji związanych z niepoprawnym użytkowaniem skrótów.

Pytanie 17

Jaką funkcję pełni punkt dostępowy, aby zabezpieczyć sieć bezprzewodową w taki sposób, aby jedynie urządzenia z wybranymi adresami MAC mogły się do niej łączyć?

A. Przydzielenie SSID
B. Autoryzacja
C. Radius (Remote Authentication Dial In User Service)
D. Filtrowanie adresów MAC
Nadanie SSID, uwierzytelnianie oraz usługa RADIUS to techniki, które mają różne funkcje w zakresie zarządzania dostępem do sieci, lecz nie odpowiadają bezpośrednio na pytanie dotyczące zabezpieczania sieci poprzez ograniczenie dostępu tylko do określonych adresów MAC. SSID, czyli Service Set Identifier, jest jedynie nazwą sieci bezprzewodowej, która jest widoczna dla użytkowników i umożliwia im jej lokalizację, ale sama w sobie nie zabezpiecza dostępu. Uwierzytelnianie, z kolei, obejmuje proces potwierdzania tożsamości użytkowników lub urządzeń, ale może dotyczyć różnych metod, takich jak hasła czy certyfikaty, i nie odnosi się bezpośrednio do filtrowania fizycznych adresów MAC. Usługa RADIUS jest systemem, który pozwala na centralne zarządzanie uwierzytelnianiem, autoryzacją oraz rozliczaniem dostępu w sieciach komputerowych, ale również nie jest tożsama z mechanizmem filtrowania adresów MAC. Wiele osób może mylić te różne metody, myśląc, że umieszczają one dodatkowe zabezpieczenia w sieci, podczas gdy nie są one bezpośrednio związane z ograniczaniem dostępu na podstawie adresów MAC. Warto zrozumieć, że skuteczne zabezpieczenie sieci bezprzewodowej polega na wielowarstwowym podejściu, które integruje różne techniki zabezpieczeń, a nie tylko na jednej metodzie. Bezpieczne środowisko sieciowe wymaga zrozumienia i zastosowania odpowiednich praktyk w zakresie bezpieczeństwa, takich jak regularne aktualizacje oprogramowania, silne hasła, a także monitoring ruchu sieciowego.

Pytanie 18

Jaką topologię fizyczną sieci komputerowej przedstawia załączony rysunek?

Ilustracja do pytania
A. Magistrala
B. Gwiazda rozszerzona
C. Podwójny pierścień
D. Siatka
Topologia siatki charakteryzuje się tym, że każdy węzeł jest połączony z wieloma innymi węzłami, co pozwala na wiele alternatywnych tras dla danych, zwiększając złożoność i redundancję systemu. W przeciwieństwie do podwójnego pierścienia, siatka wymaga ogromnej liczby połączeń i jest często stosowana w dużych sieciach, gdzie niezawodność i odporność na awarie są priorytetem. Z kolei topologia magistrali polega na tym, że wszystkie urządzenia są podłączone do jednego wspólnego medium transmisyjnego, co może być przyczyną wąskiego gardła i kolizji, ograniczając skalowalność i niezawodność w większych sieciach. Gwiazda rozszerzona, która jest innowacją w stosunku do klasycznej gwiazdy, używa centralnego hubu lub switcha do połączenia wielu podsieci gwiazdowych, zwiększając elastyczność, ale jednocześnie narażając system na awarię w przypadku problemów z centralnym urządzeniem. Każda z tych topologii ma swoje zastosowania i ograniczenia, ale błędne przypisanie właściwości topologii pierścienia do innych może prowadzić do nieefektywnego zarządzania siecią oraz zwiększonego ryzyka przestojów. Zrozumienie różnic i właściwego kontekstu użycia każdej topologii jest kluczowe dla projektowania nowoczesnych i wydajnych systemów sieciowych.

Pytanie 19

Na przedstawionym schemacie blokowym fragmentu systemu mikroprocesorowego, co oznacza symbol X?

Ilustracja do pytania
A. pamięć Cache
B. pamięć stałą ROM
C. kontroler DMA
D. kontroler przerwań
Wybór niewłaściwej odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu mikroprocesorowego. Pamięć stała ROM jest używana do przechowywania oprogramowania lub danych, które nie mogą być zmieniane podczas normalnej pracy systemu, często zawiera BIOS w komputerach klasy PC. Nie jest jednak związana z obsługą przerwań, które wymagają dynamicznej interakcji i priorytetyzacji sygnałów od różnych urządzeń. Pamięć Cache, z kolei, służy do tymczasowego przechowywania najczęściej używanych danych w celu przyspieszenia dostępu do nich przez procesor. Jest to mechanizm optymalizacyjny mający na celu zwiększenie wydajności przetwarzania danych, a nie zarządzanie sygnałami przerwań. Kontroler DMA odpowiada za bezpośredni dostęp do pamięci przez urządzenia peryferyjne bez udziału procesora, co odciąża procesor przy dużych transferach danych. Choć jest to zaawansowane rozwiązanie do zarządzania przepustowością danych, jego funkcja różni się od zarządzania przerwaniami. Błędne rozumienie tych funkcji może prowadzić do niepoprawnego przypisania komponentów w schematach blokowych. Kluczowe jest zrozumienie specyficznych ról tych urządzeń oraz tego, jak wpływają one na pracę całego systemu mikroprocesorowego. Właściwa klasyfikacja zapewnia poprawne projektowanie i implementację systemów wbudowanych i komputerowych.

Pytanie 20

Ile warstw zawiera model ISO/OSI?

A. 3
B. 5
C. 7
D. 9
Model ISO/OSI definiuje siedem warstw, które stanowią ramy dla zrozumienia i projektowania komunikacji sieciowej. Te warstwy to: warstwa fizyczna, łącza danych, sieciowa, transportowa, sesji, prezentacji oraz aplikacji. Każda warstwa realizuje określone funkcje i współpracuje z warstwami bezpośrednio powyżej i poniżej. Na przykład, warstwa fizyczna odpowiada za przesyłanie bitów przez medium transmisyjne, natomiast warstwa aplikacji umożliwia użytkownikom interakcję z sieciami poprzez aplikacje. Zrozumienie modelu OSI jest kluczowe dla inżynierów i techników sieciowych, ponieważ pozwala na diagnozowanie problemów, projektowanie architektur systemów oraz implementację protokołów komunikacyjnych. Przykładem zastosowania modelu OSI jest proces rozwiązywania problemów, gdzie technik może zidentyfikować, na której warstwie występuje problem (np. problemy z połączeniem mogą wskazywać na warstwę fizyczną), co znacząco usprawnia proces naprawy i utrzymania sieci.

Pytanie 21

Który z wymienionych składników stanowi element pasywny w sieci?

A. Karta sieciowa
B. Panel krosowy
C. Wzmacniak
D. Przełącznik
Wzmacniak, przełącznik oraz karta sieciowa to elementy aktywne, które mają kluczowe znaczenie w przetwarzaniu sygnału oraz zarządzaniu danymi w sieci komputerowej. Wzmacniak, na przykład, służy do zwiększenia siły sygnału, co jest istotne w przypadku długich połączeń, gdzie utrata sygnału może prowadzić do zakłóceń lub przerw w komunikacji. Zastosowanie wzmacniaków jest najczęściej widoczne w sieciach, gdzie wymagane jest przesyłanie sygnału na większe odległości, na przykład w systemach telekomunikacyjnych. Przełącznik natomiast jest urządzeniem, które łączy różne segmenty sieci i decyduje, jak dane są przesyłane między nimi. Umożliwia on efektywne zarządzanie ruchem danych, co jest niezbędne w sieciach lokalnych, gdzie wiele urządzeń komunikuje się jednocześnie. Karta sieciowa, jako interfejs między komputerem a siecią, odpowiada za odbieranie i wysyłanie danych, a także przetwarzanie sygnałów. Wszystkie te urządzenia wykonują aktywne funkcje, co odróżnia je od elementów pasywnych, takich jak panel krosowy. Typowym błędem myślowym jest mylenie funkcji pasywnych z aktywnymi, co może prowadzić do niewłaściwego doboru komponentów w projektach sieciowych. Zrozumienie różnicy między tymi dwoma rodzajami elementów jest kluczowe dla każdego specjalisty zajmującego się infrastrukturą sieciową.

Pytanie 22

Który z podanych adresów IP jest adresem publicznym?

A. 172.18.0.16
B. 172.168.0.16
C. 192.168.168.16
D. 10.99.15.16
Wszystkie pozostałe odpowiedzi wskazują na adresy IP, które są zarezerwowane dla prywatnych sieci lokalnych, co sprawia, że nie mogą być używane jako publiczne adresy IP. Adres 10.99.15.16 należy do zakresu 10.0.0.0/8, który jest całkowicie zarezerwowany dla prywatnych sieci. Oznacza to, że urządzenia z tym adresem mogą komunikować się tylko w obrębie tej samej sieci lokalnej, a nie w Internecie. Podobnie, adres 172.18.0.16 jest częścią zakresu 172.16.0.0 do 172.31.255.255, także przeznaczonego dla sieci prywatnych. Ostatni adres, 192.168.168.16, również należy do zarezerwowanego zakresu 192.168.0.0/16 dla prywatnych sieci, co ogranicza jego użycie do lokalnych rozwiązań. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, często wynikają z braku zrozumienia różnicy między adresacją publiczną i prywatną. Użytkownicy mogą mylić te adresy z publicznymi z powodu podobieństw w ich formacie, jednak istotne jest, aby wiedzieć, że tylko adresy spoza zarezerwowanych zakresów mogą zostać użyte w sieci globalnej. Zrozumienie tych zasad jest kluczowe dla efektywnego zarządzania sieciami oraz zapewnienia ich bezpieczeństwa.

Pytanie 23

Zakres operacji we/wy dla kontrolera DMA w notacji heksadecymalnej wynosi 0094-009F, a w systemie dziesiętnym?

A. 1168-3984
B. 73-249
C. 2368-2544
D. 148-159
To, że wybrałeś inne odpowiedzi, może wynikać z paru nieporozumień co do konwersji systemów liczbowych. Wartości 2368-2544, 1168-3984 oraz 73-249 zdecydowanie nie pasują do heksadecymalnego zakresu 0094-009F. Często w takich sytuacjach myli się sposób, w jaki się przekształca liczby z heksadecymalnego na dziesiętny. Kluczowe jest, żeby pamiętać, że 0094 to 148, a 009F to 159. Może się zdarzyć, że ludzie myślą, iż heksadecymalne liczby można traktować jako zwykłe dziesiętne. Takie podejście prowadzi do problemów w zarządzaniu pamięcią. I pamiętaj, jeśli chodzi o kontrolery DMA, to może być naprawdę kiepsko, jak źle dobierzesz zakresy adresowe, bo to prowadzi do kolizji, a to wpływa na stabilność systemu. Dlatego warto znać zasady konwersji i wiedzieć, jak to działa w praktyce, zwłaszcza dla tych, którzy programują lub robią coś z komputerami.

Pytanie 24

Jakie oprogramowanie pełni rolę serwera DNS w systemie Linux?

A. ProFTPD
B. BIND
C. CUPS
D. APACHE
CUPS, czyli Common Unix Printing System, to system zarządzania drukowaniem w środowisku Unixowym, który nie ma związku z funkcją rozwiązywania nazw w sieci. Jego głównym zadaniem jest zarządzanie zadaniami drukarskimi oraz zapewnienie interfejsów do różnych typów drukarek. Dlatego nie jest odpowiedni jako serwer DNS. Z kolei Apache to serwer HTTP, który obsługuje żądania klientów związane z dostępem do stron internetowych. Jego rola jest zgoła inna – koncentruje się na dostarczaniu treści internetowych, a nie na tłumaczeniu nazw domen na adresy IP. ProFTPD to serwer FTP, który umożliwia przesyłanie plików w sieci, również nie mając nic wspólnego z DNS. Użycie tych terminów w kontekście serwera DNS świadczy o nieporozumieniu w zrozumieniu funkcji, jakie pełnią te usługi w architekturze sieciowej. Kluczowe jest zrozumienie, że każda z tych aplikacji ma swoje specyficzne zastosowanie i nie jest zamiennikiem dla funkcji DNS. W praktyce, błąd ten często wynika z pomylenia różnych usług sieciowych, co jest powszechne wśród tych, którzy dopiero zaczynają swoją przygodę z administracją systemami. Zrozumienie różnic między tymi technologiami jest fundamentalne dla efektywnego zarządzania usługami sieciowymi.

Pytanie 25

Zamieszczony komunikat tekstowy wyświetlony na ekranie komputera z zainstalowanym systemem Windows wskazuje na

Ilustracja do pytania
A. źle skojarzone aplikacje domyślne.
B. błędną konfigurację adresu IP karty Wi-Fi.
C. brak włączonej Zapory systemowej.
D. stare lub uszkodzone sterowniki sprzętowe.
Analizując podane opcje, łatwo się pomylić, bo każdy z wymienionych problemów rzeczywiście może powodować różne kłopoty z komputerem, ale nie są one powiązane z komunikatem BSOD „HAL INITIALIZATION FAILED”. Skojarzenie tego błędu ze źle skonfigurowanymi aplikacjami domyślnymi jest nieporozumieniem – taka sytuacja może co najwyżej utrudnić otwieranie plików określonego typu, ale nie prowadzi do poważnych awarii systemowych czy restartów komputera. Brak włączonej Zapory systemowej (Windows Firewall) może stanowić zagrożenie bezpieczeństwa i zwiększa podatność na ataki z sieci, jednak nie generuje błędów sprzętowych ani nie wywołuje krytycznych błędów systemowych skutkujących niebieskim ekranem. Z kolei błędna konfiguracja adresu IP karty Wi-Fi doprowadzi raczej do utraty połączenia sieciowego lub problemów z dostępem do internetu, lecz nie wpływa bezpośrednio na pracę jądra systemu czy warstwy sprzętowej. Z mojego doświadczenia wynika, że bardzo często użytkownicy mylą błędy logiczne, konfiguracyjne albo sieciowe ze sprzętowymi – to dość powszechny błąd myślowy. Tymczasem warstwa sprzętowa systemu Windows i jej stabilność zależy głównie od poprawności działania sterowników oraz samego sprzętu, a nie od ustawień aplikacji czy sieci. Warto więc na przyszłość odróżniać problemy użytkowe od tych, które mają swoje źródło głębiej – w komunikacji systemu z urządzeniami. Takie rozróżnienie jest jedną z podstawowych umiejętności każdego technika czy administratora IT.

Pytanie 26

Dysk z systemem plików FAT32, na którym regularnie przeprowadza się operacje usuwania starych plików oraz dodawania nowych, staje się:

A. fragmentacji
B. kolokacji
C. relokacji
D. defragmentacji
Wybór kolokacji, relokacji lub defragmentacji jako odpowiedzi jest niepoprawny, ponieważ te terminy odnoszą się do różnych aspektów zarządzania danymi lub organizacji plików. Kolokacja oznacza umieszczanie plików lub danych blisko siebie, co jest korzystne w kontekście systemów baz danych, gdzie lokalizacja danych ma znaczenie dla wydajności zapytań. Relokacja natomiast jest procesem przenoszenia danych z jednego miejsca na drugie, co może być stosowane w kontekście migracji systemów lub zarządzania pamięcią w systemach operacyjnych, ale nie odnosi się bezpośrednio do problemu fragmentacji plików na dysku. Defragmentacja, choć jest procesem, który może zredukować fragmentację, nie jest odpowiedzią na pytanie o to, co się dzieje na dysku FAT32 w wyniku ciągłych operacji zapisu i kasowania plików. Fragmentacja jest naturalnym efektem tych operacji i jest kluczowym zjawiskiem do zrozumienia, aby efektywnie zarządzać przestrzenią dyskową. Wybierając odpowiedzi inne niż fragmentacja, można popełnić błąd w zrozumieniu podstawowych konceptów operacji na plikach i ich wpływu na wydajność systemu.

Pytanie 27

W systemie binarnym liczba 3FC7 będzie zapisana w formie:

A. 01111111100011
B. 11111111000111
C. 10111011110111
D. 0011111111000111
Wiele osób popełnia błędy przy konwersji z systemu szesnastkowego na binarny, co może prowadzić do nieprawidłowych wyników. Często mylnie przekształcają cyfry szesnastkowe, traktując je jako pojedyncze liczby, zamiast przeliczać je na odpowiadające im bity. Na przykład, w przypadku pierwszej opcji odpowiedzi, 01111111100011, można zauważyć, że nie uwzględnia ona pierwszej cyfry szesnastkowej poprawnie; połączenie binarnego przedstawienia cyfra F, która wynosi 1111, z innymi cyferkami nie daje prawidłowego wyniku. Podobnie w drugiej opcji 11111111000111, gdzie również dochodzi do zafałszowania w wyniku błędnej konwersji cyfry C oraz braku odpowiedniego zrozumienia struktury liczby szesnastkowej. Ostatnia opcja, 0011111111000111, jest nieprawidłowa, gdyż nie bierze pod uwagę pełnej konwersji z systemu szesnastkowego. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, często obejmują próbę przekształcenia całej liczby na raz bez rozbicia jej na poszczególne cyfry. Warto zwrócić uwagę na standardowe praktyki konwersji oraz ćwiczyć różne przykłady, aby nabrać biegłości w tym zakresie. Zrozumienie systemów liczbowych jest kluczowe dla analizy danych oraz programowania, co czyni tę wiedzę niezbędną dla każdego profesjonalisty w branży IT.

Pytanie 28

Jeżeli szybkość pobierania danych z sieci wynosi 8 Mb/s, to w ciągu 6 s możliwe jest pobranie pliku o maksymalnej wielkości równej

A. 8 MB
B. 4 MB
C. 6 MB
D. 2 MB
Zrozumienie tematu prędkości pobierania danych z Internetu wymaga uwzględnienia konwersji jednostek oraz właściwych obliczeń. Niepoprawne odpowiedzi często wynikają z nieprawidłowego oszacowania, ile danych można pobrać, co jest kluczowe w kontekście prędkości określanej w megabitach na sekundę. Często myli się megabity z megabajtami, co prowadzi do błędnych wniosków. Na przykład, odpowiedzi wskazujące na 8 MB lub 4 MB ignorują konwersję jednostek. 8 MB w rzeczywistości wykracza poza możliwości pobierania przy prędkości 8 Mb/s w ciągu 6 sekund, ponieważ to oznaczałoby, że urządzenie pobiera więcej danych, niż jest w stanie w tym czasie przetworzyć. Z kolei 4 MB i 2 MB to także zaniżone wartości, które mogą wynikać z błędnego przeliczenia prędkości lub czasu. Kluczowe jest, aby przy takich obliczeniach mieć świadomość definicji megabita i megabajta oraz stosować odpowiednie wzory matematyczne do obliczeń. Typowym błędem myślowym jest też założenie, że prędkość pobierania nigdy nie zmienia się, co jest nieprawdziwe w warunkach rzeczywistych, gdzie wiele zmiennych może wpłynąć na efektywną szybkość transferu. Właściwe zrozumienie tych zasad nie tylko pomaga w unikaniu nieporozumień, ale także przydaje się w planowaniu zadań związanych z pobieraniem i przesyłaniem danych.

Pytanie 29

Topologia fizyczna, w której wszystkie urządzenia końcowe są bezpośrednio połączone z jednym punktem centralnym, takim jak koncentrator lub switch, to topologia

A. Pierścień
B. Magistrala
C. Siatka
D. Gwiazda
Topologia gwiazdy jest jedną z najpopularniejszych architektur sieciowych, w której wszystkie urządzenia końcowe, takie jak komputery, drukarki czy serwery, są bezpośrednio podłączone do centralnego punktu, którym jest koncentrator, przełącznik lub router. Taki układ umożliwia łatwe dodawanie i usuwanie urządzeń z sieci bez zakłócania jej działania, co jest istotne w środowiskach, gdzie zmiany są nieuniknione. W przypadku awarii jednego z urządzeń końcowych, problemy nie rozprzestrzeniają się na inne urządzenia, co zwiększa niezawodność całej sieci. Standardy takie jak Ethernet (IEEE 802.3) często wykorzystują topologię gwiazdy, co potwierdza jej szerokie zastosowanie i akceptację w branży. W praktyce, w biurach i w domowych sieciach lokalnych, topologia gwiazdy pozwala na efektywne zarządzanie ruchem sieciowym i centralizację zarządzania, co jest korzystne w kontekście zabezpieczeń. Efektywność monitorowania i diagnostyki w topologii gwiazdy stanowi kolejny atut, umożliwiający szybkie wykrywanie i rozwiązywanie problemów.

Pytanie 30

W filmie przedstawiono konfigurację ustawień maszyny wirtualnej. Wykonywana czynność jest związana z

A. konfigurowaniem adresu karty sieciowej.
B. wybraniem pliku z obrazem dysku.
C. dodaniem drugiego dysku twardego.
D. ustawieniem rozmiaru pamięci wirtualnej karty graficznej.
Poprawnie – w tej sytuacji chodzi właśnie o wybranie pliku z obrazem dysku (ISO, VDI, VHD, VMDK itp.), który maszyna wirtualna będzie traktować jak fizyczny nośnik. W typowych programach do wirtualizacji, takich jak VirtualBox, VMware czy Hyper‑V, w ustawieniach maszyny wirtualnej przechodzimy do sekcji dotyczącej pamięci masowej lub napędów optycznych i tam wskazujemy plik obrazu. Ten plik może pełnić rolę wirtualnego dysku twardego (system zainstalowany na stałe) albo wirtualnej płyty instalacyjnej, z której dopiero instalujemy system operacyjny. W praktyce wygląda to tak, że zamiast wkładać płytę DVD do napędu, podłączasz plik ISO z obrazu instalacyjnego Windowsa czy Linuxa i ustawiasz w BIOS/UEFI maszyny wirtualnej bootowanie z tego obrazu. To jest podstawowa i zalecana metoda instalowania systemów w VM – szybka, powtarzalna, zgodna z dobrymi praktykami. Dodatkowo, korzystanie z plików obrazów dysków pozwala łatwo przenosić całe środowiska między komputerami, robić szablony maszyn (tzw. template’y) oraz wykonywać kopie zapasowe przez zwykłe kopiowanie plików. Moim zdaniem to jedna z najważniejszych umiejętności przy pracy z wirtualizacją: umieć dobrać właściwy typ obrazu (instalacyjny, systemowy, LiveCD, recovery), poprawnie go podpiąć do właściwego kontrolera (IDE, SATA, SCSI, NVMe – zależnie od hypervisora) i pamiętać o odpięciu obrazu po zakończonej instalacji, żeby maszyna nie startowała ciągle z „płyty”.

Pytanie 31

Jakie polecenie w systemie Linux pozwala na wyświetlenie informacji o bieżącej godzinie, czasie pracy systemu oraz liczbie użytkowników zalogowanych do systemu?

A. uptime
B. history
C. chmod
D. echo
Polecenie 'chmod' jest używane do zmiany uprawnień plików i katalogów w systemie Linux. Jego funkcjonalność jest kluczowa w kontekście bezpieczeństwa systemu, ponieważ pozwala administratorom na precyzyjne zarządzanie, kto może odczytać, zapisać lub wykonywać dany plik. Jednakże, nie ma to nic wspólnego z wyświetlaniem informacji o czasie działania systemu czy liczbie zalogowanych użytkowników. Zrozumienie roli 'chmod' jest istotne, ale w kontekście tego pytania, nie jest odpowiednie. Z kolei polecenie 'history' służy do wyświetlania historii wcześniej wykonanych poleceń w terminalu. Chociaż to narzędzie jest przydatne do śledzenia działań użytkownika, nie dostarcza informacji o czasie działania systemu czy liczbie zalogowanych osób. Warto zauważyć, że błędne wskazanie 'history' może wynikać z nieporozumienia co do funkcji, jakie pełnią różne polecenia w Linuxie. Ostatnią z wymienionych opcji jest 'echo', które po prostu wyświetla tekst w terminalu, ale również nie ma związku z monitorowaniem czasu czy użytkowników systemu. Rozumienie tych narzędzi i ich właściwych zastosowań jest kluczowe dla efektywnego zarządzania systemami Linux, a ich mieszanie prowadzi do błędnych wniosków i może powodować problemy w codziennym użytkowaniu.

Pytanie 32

Jaki typ zabezpieczeń w sieciach WiFi oferuje najwyższy poziom ochrony?

A. WEP
B. WPA2
C. WPA
D. NTFS
WPA2 (Wi-Fi Protected Access 2) to protokół zabezpieczeń, który oferuje znacznie wyższy poziom ochrony niż jego poprzednicy, WEP i WPA. Wprowadza szyfrowanie AES (Advanced Encryption Standard), które jest obecnie uważane za jeden z najbezpieczniejszych algorytmów szyfrowania dostępnych w technologii sieciowej. WEP (Wired Equivalent Privacy) korzysta z algorytmu RC4, który ma liczne słabości i można go łatwo złamać. WPA, będąc przejściowym rozwiązaniem, oferuje poprawę bezpieczeństwa w stosunku do WEP, ale wciąż nie dorównuje WPA2. W praktyce, wiele domowych i biurowych routerów WiFi domyślnie oferuje WPA2 jako standardowy wybór, co czyni go najczęściej stosowanym typem zabezpieczeń. Warto również zwrócić uwagę na fakt, że WPA3, jako nowsza generacja zabezpieczeń, zaczyna zyskiwać na popularności, jednak WPA2 wciąż pozostaje powszechnym i skutecznym rozwiązaniem do zabezpieczania sieci bezprzewodowych.

Pytanie 33

Rysunek obrazuje zasadę działania drukarki

Ilustracja do pytania
A. sublimacyjnej.
B. laserowej.
C. igłowej.
D. atramentowej.
Rysunek ten przedstawia głowicę drukującą, w której kluczowym elementem jest podgrzewanie niewielkiej ilości atramentu, prowadzące do powstania pęcherzyka i wyrzutu kropli na papier. Błąd w interpretacji może wynikać z mylenia różnych technologii drukowania, które opierają się na zupełnie innych zasadach fizycznych. Drukarka sublimacyjna wykorzystuje proces zmiany stanu skupienia barwnika (z ciała stałego w gaz) bez przechodzenia przez fazę ciekłą, co jest typowe np. w drukarkach do zdjęć czy profesjonalnych wydrukach fotograficznych, ale tam nie ma żadnych mikroskopijnych grzałek zanurzonych bezpośrednio w płynie. Z kolei drukarka laserowa bazuje na elektrostatycznym przyciąganiu tonera do naładowanego światłem bębna światłoczułego, a następnie utrwaleniu go na papierze za pomocą wysokiej temperatury, lecz zupełnie nie występuje tutaj zjawisko tworzenia pęcherzyka w cieczy. Igłowa natomiast, działa na zasadzie uderzania stalowymi igłami o taśmę barwiącą, co generuje znaki na papierze – to mechanizm czysto mechaniczny, zupełnie inny niż widoczny na rysunku. Bardzo często popełnianym błędem jest utożsamianie wszystkich drukarek z obecnością tuszu lub barwnika, bez uwzględnienia sposobu ich transportu na papier. W tym przypadku decydujące znaczenie ma właśnie podgrzewanie atramentu, tworzenie pęcherzyka i dynamiczne wypychanie kropli, co jest unikalne dla drukarek atramentowych typu thermal inkjet. Rozpoznanie tych różnic jest kluczowe nie tylko na egzaminie, ale i podczas wyboru sprzętu do konkretnego zastosowania.

Pytanie 34

W przedsiębiorstwie trzeba było zreperować 5 komputerów i serwer. Czas potrzebny na naprawę każdego z komputerów wyniósł 1,5 godziny, a serwera 2,5 godziny. Stawka za usługę to 100,00 zł za roboczogodzinę, a do tego doliczany jest podatek VAT w wysokości 23%. Jaka kwota brutto będzie należna za tę usługę?

A. 1230,00 zł
B. 1023,00 zł
C. 2460,00 zł
D. 2046,00 zł
W przypadku obliczeń związanych z kosztami usług naprawczych, wiele osób może popełnić błąd w szacowaniu całkowitego czasu pracy. Na przykład, niektórzy mogą błędnie zsumować czas naprawy komputerów bez uwzględnienia serwera, co prowadzi do zaniżenia całkowitego kosztu. Warto również zwrócić uwagę na to, że nieprawidłowe stosowanie stawki VAT może znacznie wypaczyć wyniki finansowe. Często zdarza się, że osoby obliczają VAT na całkowity koszt robót zamiast na podstawie kosztu przed opodatkowaniem. Typowym błędem jest także pomijanie istotnych elementów składowych wyceny, takich jak stawki za roboczogodzinę czy opłaty dodatkowe, które powinny być uwzględnione w końcowym rozrachunku. W kontekście prawidłowego obliczania należności za usługi, niezwykle ważne jest zrozumienie, jak wylicza się czas pracy oraz w jaki sposób te obliczenia przekładają się na ostateczną fakturę. W praktyce, nieprawidłowe podejście do obliczeń może prowadzić do konfliktów z klientami oraz problemów z płynnością finansową firmy, dlatego tak istotne jest przestrzeganie standardów i dobrych praktyk w branży.

Pytanie 35

Zjawisko przesłuchu w sieciach komputerowych polega na

A. przenikaniu sygnału pomiędzy sąsiadującymi w kablu parami przewodów
B. utratach sygnału w torze transmisyjnym
C. opóźnieniach w propagacji sygnału w torze transmisyjnym
D. niejednorodności toru wynikającej z modyfikacji geometrii par przewodów
Zjawiska, takie jak niejednorodność toru spowodowana zmianą geometrii par przewodów, straty sygnału w torze transmisyjnym oraz opóźnienia propagacji sygnału, nie są tożsame z przesłuchami, chociaż mogą wpływać na jakość transmisji. Niejednorodność toru, wynikająca ze zmian geometrii, odnosi się do różnic w impedancji, które mogą prowadzić do odbić sygnału. Ten sam efekt, choć nieco związany, nie definiuje mechanizmu przesłuchu, który koncentruje się na interakcji między sąsiadującymi parami przewodów. Straty sygnału w torze transmisyjnym dotyczą ogólnej utraty mocy sygnału na skutek oporu, co jest innym zagadnieniem w kontekście transmisji danych. Opóźnienia propagacji sygnału związane są z czasem, potrzebnym na przebycie sygnału przez medium transmisyjne, co także nie odnosi się bezpośrednio do problemu przesłuchu, ale raczej do parametrów czasu i jakości sygnału. Przesłuch w sieciach komputerowych ma swoje źródło w fizycznych właściwościach przewodów i ich wzajemnych oddziaływaniach, a błędne zrozumienie tego zjawiska może prowadzić do nieefektywnego projektowania i implementacji sieci, w której jakość sygnału i wydajność są kluczowe.

Pytanie 36

Jaką pamięć RAM można użyć z płytą główną GIGABYTE GA-X99-ULTRA GAMING/ X99/ 8x DDR4 2133, ECC, obsługującą maksymalnie 128GB, 4x PCI-E 16x, RAID, USB 3.1, S-2011-V3/ATX?

A. HPE 32GB (1x32GB) Quad Rank x4 DDR4-2133 CAS-15-15-15 Load Reduced Memory Kit, ECC
B. HPE 16GB (1x16GB) Dual Rank x4 PC3-14900R (DDR3-1866) Registered CAS-13 Memory Kit
C. HPE 32GB (1x32GB) Quad Rank x4 PC3-14900L (DDR3-1866) Load Reduced CAS-13 Memory Kit
D. HPE 32GB (1x16GB) Dual Rank x4 PC3L-10600R (DDR3-1333) Registered CAS-9 , Non-ECC
Wszystkie pozostałe odpowiedzi zawierają pamięci RAM, które nie są kompatybilne z płytą główną GIGABYTE GA-X99-ULTRA GAMING z kilku powodów. Przede wszystkim, pamięci DDR3, takie jak HPE 32GB (1x32GB) Quad Rank x4 PC3-14900L oraz HPE 16GB (1x16GB) Dual Rank x4 PC3-14900R, nie będą działać z tą płytą, ponieważ płyta ta obsługuje tylko pamięci DDR4. Użycie pamięci DDR3 spowodowałoby fizyczne niekompatybilności i brak możliwości uruchomienia komputera. Dodatkowo, pamięci z serii PC3L-10600R, choć może być używana w systemach z pamięcią DDR3, również nie będzie odpowiednia ze względu na zbyt niską prędkość i standard, co może prowadzić do obniżenia wydajności systemu. Kolejnym aspektem jest brak obsługi technologii ECC w niektórych z tych pamięci, co ogranicza ich użyteczność w aplikacjach krytycznych dla stabilności systemu. Błąd w wyborze odpowiedniej pamięci RAM często wynika z braku zrozumienia różnic pomiędzy standardami DDR oraz technologiami ECC, co jest kluczowe dla zapewnienia odpowiedniej wydajności i niezawodności systemu.

Pytanie 37

Jak sprawdzić, który z programów w systemie Windows generuje największe obciążenie dla procesora?

A. regedit
B. msconfig
C. menedżer zadań
D. dxdiag
Wybór programów takich jak dxdiag, regedit czy msconfig jako narzędzi do monitorowania obciążenia procesora jest nieadekwatny, ponieważ każde z tych narzędzi pełni zupełnie inne funkcje i nie umożliwia bezpośredniego obserwowania wydajności w czasie rzeczywistym. Dxdiag, czyli narzędzie do diagnostyki systemu, służy do zbierania informacji o sprzęcie i oprogramowaniu, ale nie dostarcza danych o aktualnym obciążeniu CPU. Regedit to edytor rejestru, który pozwala na modyfikację ustawień systemowych, lecz nie ma żadnych funkcji związanych z monitorowaniem wydajności procesora. Natomiast msconfig to narzędzie do konfiguracji systemu, które głównie umożliwia zarządzanie uruchamianiem systemu i usługami, ale nie dostarcza informacji o bieżących procesach i ich obciążeniu. Tego typu pomyłki wynikają często z niepełnego zrozumienia funkcji narzędzi dostępnych w systemie Windows, co może prowadzić do nieefektywnego zarządzania zasobami komputera. Kluczowe jest zrozumienie, że do monitorowania wydajności CPU i zasobów systemowych należy używać dedykowanych narzędzi takich jak Menedżer zadań, a inne aplikacje mogą służyć zupełnie innym celom, co podkreśla znaczenie znajomości funkcji poszczególnych komponentów systemu operacyjnego.

Pytanie 38

Jakie pasmo częstotliwości definiuje klasa okablowania D?

A. 250 MHz
B. 10 MHz
C. 500 MHz
D. 100 MHz
Klasa okablowania D, zgodnie z normą ANSI/TIA-568, definiuje pasmo częstotliwości do 100 MHz. Tego typu okablowanie, zazwyczaj w postaci skrętki kategorii 5e lub 6, jest szeroko stosowane w lokalnych sieciach komputerowych (LAN) oraz w połączeniach telefonicznych. Przykładem zastosowania okablowania klasy D są sieci Ethernet, które wykorzystują tę klasę do przesyłania danych. W praktyce, okablowanie to jest wystarczające do obsługi podstawowych aplikacji, takich jak transmisja danych, głosu i wideo w standardach, które wymagają do 100 MHz. Warto również zauważyć, że okablowanie klasy D stanowi fundament dla późniejszych klas, co czyni je kluczowym elementem infrastruktury teleinformatycznej.

Pytanie 39

Sprzęt sieciowy umożliwiający połączenie pięciu komputerów w tej samej sieci, minimalizując ryzyko kolizji pakietów, to

A. przełącznik.
B. koncentrator.
C. ruter.
D. most.
Wybór mostu jako urządzenia sieciowego nie jest najlepszym rozwiązaniem w kontekście łączenia pięciu komputerów w celu eliminacji kolizji pakietów. Most (bridge) działa na poziomie drugiego modelu OSI i ma na celu łączenie dwóch segmentów sieci, co może prowadzić do nieefektywnego przesyłania danych i zwiększonego ryzyka kolizji, ponieważ most nie segreguje ruchu na poziomie poszczególnych portów. Ruter, z kolei, jest urządzeniem, które operuje na poziomie trzecim modelu OSI i jest odpowiedzialne za kierowanie ruchu pomiędzy różnymi sieciami. Ruter analizuje adresy IP, co czyni go nieodpowiednim narzędziem do zarządzania ruchem w jednej lokalnej sieci, w której kolizje są problemem. Koncentrator (hub) to jeszcze bardziej podstawowe urządzenie, które jedynie transmituje dane do wszystkich podłączonych urządzeń, co z definicji prowadzi do dużego ryzyka kolizji, ponieważ nie segreguje on ruchu. Każde z tych urządzeń ma swoje zastosowania, ale żadne z nich nie spełnia wymogów dotyczących efektywnego zarządzania przesyłem danych w lokalnej sieci tak, jak przełącznik. Typowe błędy myślowe przy wyborze niewłaściwego urządzenia często wynikają z niezrozumienia różnicy pomiędzy funkcjami i poziomami działania tych urządzeń, co skutkuje nieefektywnymi rozwiązaniami sieciowymi.

Pytanie 40

Ile sieci obejmują komputery z adresami IP i maskami sieci podanymi w tabeli?

Adres IPv4Maska
10.120.16.10255.255.0.0
10.120.18.16255.255.0.0
10.110.16.18255.255.255.0
10.110.16.14255.255.255.0
10.130.16.12255.255.255.0
A. 4
B. 3
C. 2
D. 5
Błędne rozumienie liczby sieci, do których należą komputery, wynika często z nieprawidłowej analizy adresów IP i masek sieciowych. Kluczowym elementem jest zrozumienie, jak maska sieciowa definiuje zakres adresów w danej sieci. Maski takie jak 255.255.0.0 oznaczają, że sieć jest określana przez pierwsze dwa oktety, a pozostałe są dostępne dla urządzeń w tej samej lokalnej sieci. W przypadku maski 255.255.255.0 sieć jest określana przez trzy oktety. Zatem błędne podejścia mogą wynikać z nieuwzględnienia tej zależności lub z pomylenia części sieciowej z częścią hosta. Inny typowy błąd to założenie, że każda różnica w adresie IP tworzy nową sieć, co jest nieprawidłowe, gdyż to maska sieciowa określa precyzyjnie granice sieci. Aby uniknąć tych błędów, ważne jest praktyczne ćwiczenie analizy adresów IP i ich klasyfikacji według masek, co jest podstawą planowania sieci i zarządzania nimi według standardów IETF i dobrych praktyk w zakresie projektowania sieci komputerowych. Dokładna analiza adresów i masek umożliwia optymalizację użycia przestrzeni adresowej oraz poprawę skalowalności i bezpieczeństwa infrastruktury sieciowej. Zrozumienie, jak maski wpływają na podział sieci, jest kluczowe w nowoczesnym zarządzaniu siecią, ponieważ pozwala na efektywne projektowanie i implementację rozwiązań sieciowych zgodnych z wymaganiami biznesowymi i technologicznymi. To podejście zwiększa również zdolność do szybkiego rozwiązywania problemów i adaptacji sieci do zmieniających się warunków operacyjnych.